xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 #include "coredump.h"
27 
28 #include "targaddrs.h"
29 #include "bmi.h"
30 
31 #include "hif.h"
32 #include "htc.h"
33 
34 #include "ce.h"
35 #include "pci.h"
36 
37 enum ath10k_pci_reset_mode {
38 	ATH10K_PCI_RESET_AUTO = 0,
39 	ATH10K_PCI_RESET_WARM_ONLY = 1,
40 };
41 
42 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
43 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
44 
45 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
46 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
47 
48 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
49 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
50 
51 /* how long wait to wait for target to initialise, in ms */
52 #define ATH10K_PCI_TARGET_WAIT 3000
53 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
54 
55 /* Maximum number of bytes that can be handled atomically by
56  * diag read and write.
57  */
58 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
59 
60 static const struct pci_device_id ath10k_pci_id_table[] = {
61 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
62 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
63 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
64 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
65 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
66 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
67 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
68 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
69 	{0}
70 };
71 
72 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
73 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
74 	 * hacks. ath10k doesn't have them and these devices crash horribly
75 	 * because of that.
76 	 */
77 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
78 
79 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84 
85 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
86 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
87 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
88 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
89 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
90 
91 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
92 
93 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
94 
95 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
96 
97 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
98 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
99 
100 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
101 };
102 
103 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
104 static int ath10k_pci_cold_reset(struct ath10k *ar);
105 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
106 static int ath10k_pci_init_irq(struct ath10k *ar);
107 static int ath10k_pci_deinit_irq(struct ath10k *ar);
108 static int ath10k_pci_request_irq(struct ath10k *ar);
109 static void ath10k_pci_free_irq(struct ath10k *ar);
110 static int ath10k_pci_bmi_wait(struct ath10k *ar,
111 			       struct ath10k_ce_pipe *tx_pipe,
112 			       struct ath10k_ce_pipe *rx_pipe,
113 			       struct bmi_xfer *xfer);
114 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
115 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
116 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
117 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
118 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
119 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
120 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
121 
122 static struct ce_attr host_ce_config_wlan[] = {
123 	/* CE0: host->target HTC control and raw streams */
124 	{
125 		.flags = CE_ATTR_FLAGS,
126 		.src_nentries = 16,
127 		.src_sz_max = 256,
128 		.dest_nentries = 0,
129 		.send_cb = ath10k_pci_htc_tx_cb,
130 	},
131 
132 	/* CE1: target->host HTT + HTC control */
133 	{
134 		.flags = CE_ATTR_FLAGS,
135 		.src_nentries = 0,
136 		.src_sz_max = 2048,
137 		.dest_nentries = 512,
138 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
139 	},
140 
141 	/* CE2: target->host WMI */
142 	{
143 		.flags = CE_ATTR_FLAGS,
144 		.src_nentries = 0,
145 		.src_sz_max = 2048,
146 		.dest_nentries = 128,
147 		.recv_cb = ath10k_pci_htc_rx_cb,
148 	},
149 
150 	/* CE3: host->target WMI */
151 	{
152 		.flags = CE_ATTR_FLAGS,
153 		.src_nentries = 32,
154 		.src_sz_max = 2048,
155 		.dest_nentries = 0,
156 		.send_cb = ath10k_pci_htc_tx_cb,
157 	},
158 
159 	/* CE4: host->target HTT */
160 	{
161 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
162 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
163 		.src_sz_max = 256,
164 		.dest_nentries = 0,
165 		.send_cb = ath10k_pci_htt_tx_cb,
166 	},
167 
168 	/* CE5: target->host HTT (HIF->HTT) */
169 	{
170 		.flags = CE_ATTR_FLAGS,
171 		.src_nentries = 0,
172 		.src_sz_max = 512,
173 		.dest_nentries = 512,
174 		.recv_cb = ath10k_pci_htt_rx_cb,
175 	},
176 
177 	/* CE6: target autonomous hif_memcpy */
178 	{
179 		.flags = CE_ATTR_FLAGS,
180 		.src_nentries = 0,
181 		.src_sz_max = 0,
182 		.dest_nentries = 0,
183 	},
184 
185 	/* CE7: ce_diag, the Diagnostic Window */
186 	{
187 		.flags = CE_ATTR_FLAGS,
188 		.src_nentries = 2,
189 		.src_sz_max = DIAG_TRANSFER_LIMIT,
190 		.dest_nentries = 2,
191 	},
192 
193 	/* CE8: target->host pktlog */
194 	{
195 		.flags = CE_ATTR_FLAGS,
196 		.src_nentries = 0,
197 		.src_sz_max = 2048,
198 		.dest_nentries = 128,
199 		.recv_cb = ath10k_pci_pktlog_rx_cb,
200 	},
201 
202 	/* CE9 target autonomous qcache memcpy */
203 	{
204 		.flags = CE_ATTR_FLAGS,
205 		.src_nentries = 0,
206 		.src_sz_max = 0,
207 		.dest_nentries = 0,
208 	},
209 
210 	/* CE10: target autonomous hif memcpy */
211 	{
212 		.flags = CE_ATTR_FLAGS,
213 		.src_nentries = 0,
214 		.src_sz_max = 0,
215 		.dest_nentries = 0,
216 	},
217 
218 	/* CE11: target autonomous hif memcpy */
219 	{
220 		.flags = CE_ATTR_FLAGS,
221 		.src_nentries = 0,
222 		.src_sz_max = 0,
223 		.dest_nentries = 0,
224 	},
225 };
226 
227 /* Target firmware's Copy Engine configuration. */
228 static struct ce_pipe_config target_ce_config_wlan[] = {
229 	/* CE0: host->target HTC control and raw streams */
230 	{
231 		.pipenum = __cpu_to_le32(0),
232 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
233 		.nentries = __cpu_to_le32(32),
234 		.nbytes_max = __cpu_to_le32(256),
235 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
236 		.reserved = __cpu_to_le32(0),
237 	},
238 
239 	/* CE1: target->host HTT + HTC control */
240 	{
241 		.pipenum = __cpu_to_le32(1),
242 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
243 		.nentries = __cpu_to_le32(32),
244 		.nbytes_max = __cpu_to_le32(2048),
245 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
246 		.reserved = __cpu_to_le32(0),
247 	},
248 
249 	/* CE2: target->host WMI */
250 	{
251 		.pipenum = __cpu_to_le32(2),
252 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
253 		.nentries = __cpu_to_le32(64),
254 		.nbytes_max = __cpu_to_le32(2048),
255 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
256 		.reserved = __cpu_to_le32(0),
257 	},
258 
259 	/* CE3: host->target WMI */
260 	{
261 		.pipenum = __cpu_to_le32(3),
262 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
263 		.nentries = __cpu_to_le32(32),
264 		.nbytes_max = __cpu_to_le32(2048),
265 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
266 		.reserved = __cpu_to_le32(0),
267 	},
268 
269 	/* CE4: host->target HTT */
270 	{
271 		.pipenum = __cpu_to_le32(4),
272 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
273 		.nentries = __cpu_to_le32(256),
274 		.nbytes_max = __cpu_to_le32(256),
275 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
276 		.reserved = __cpu_to_le32(0),
277 	},
278 
279 	/* NB: 50% of src nentries, since tx has 2 frags */
280 
281 	/* CE5: target->host HTT (HIF->HTT) */
282 	{
283 		.pipenum = __cpu_to_le32(5),
284 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
285 		.nentries = __cpu_to_le32(32),
286 		.nbytes_max = __cpu_to_le32(512),
287 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
288 		.reserved = __cpu_to_le32(0),
289 	},
290 
291 	/* CE6: Reserved for target autonomous hif_memcpy */
292 	{
293 		.pipenum = __cpu_to_le32(6),
294 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
295 		.nentries = __cpu_to_le32(32),
296 		.nbytes_max = __cpu_to_le32(4096),
297 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
298 		.reserved = __cpu_to_le32(0),
299 	},
300 
301 	/* CE7 used only by Host */
302 	{
303 		.pipenum = __cpu_to_le32(7),
304 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
305 		.nentries = __cpu_to_le32(0),
306 		.nbytes_max = __cpu_to_le32(0),
307 		.flags = __cpu_to_le32(0),
308 		.reserved = __cpu_to_le32(0),
309 	},
310 
311 	/* CE8 target->host packtlog */
312 	{
313 		.pipenum = __cpu_to_le32(8),
314 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
315 		.nentries = __cpu_to_le32(64),
316 		.nbytes_max = __cpu_to_le32(2048),
317 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
318 		.reserved = __cpu_to_le32(0),
319 	},
320 
321 	/* CE9 target autonomous qcache memcpy */
322 	{
323 		.pipenum = __cpu_to_le32(9),
324 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
325 		.nentries = __cpu_to_le32(32),
326 		.nbytes_max = __cpu_to_le32(2048),
327 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
328 		.reserved = __cpu_to_le32(0),
329 	},
330 
331 	/* It not necessary to send target wlan configuration for CE10 & CE11
332 	 * as these CEs are not actively used in target.
333 	 */
334 };
335 
336 /*
337  * Map from service/endpoint to Copy Engine.
338  * This table is derived from the CE_PCI TABLE, above.
339  * It is passed to the Target at startup for use by firmware.
340  */
341 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
342 	{
343 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
344 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
345 		__cpu_to_le32(3),
346 	},
347 	{
348 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
349 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
350 		__cpu_to_le32(2),
351 	},
352 	{
353 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
354 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
355 		__cpu_to_le32(3),
356 	},
357 	{
358 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
359 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
360 		__cpu_to_le32(2),
361 	},
362 	{
363 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
364 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
365 		__cpu_to_le32(3),
366 	},
367 	{
368 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
369 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
370 		__cpu_to_le32(2),
371 	},
372 	{
373 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
374 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
375 		__cpu_to_le32(3),
376 	},
377 	{
378 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
379 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
380 		__cpu_to_le32(2),
381 	},
382 	{
383 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
384 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
385 		__cpu_to_le32(3),
386 	},
387 	{
388 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
389 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
390 		__cpu_to_le32(2),
391 	},
392 	{
393 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
394 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
395 		__cpu_to_le32(0),
396 	},
397 	{
398 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
399 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
400 		__cpu_to_le32(1),
401 	},
402 	{ /* not used */
403 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
404 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
405 		__cpu_to_le32(0),
406 	},
407 	{ /* not used */
408 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
409 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
410 		__cpu_to_le32(1),
411 	},
412 	{
413 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
414 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
415 		__cpu_to_le32(4),
416 	},
417 	{
418 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
419 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
420 		__cpu_to_le32(5),
421 	},
422 
423 	/* (Additions here) */
424 
425 	{ /* must be last */
426 		__cpu_to_le32(0),
427 		__cpu_to_le32(0),
428 		__cpu_to_le32(0),
429 	},
430 };
431 
432 static bool ath10k_pci_is_awake(struct ath10k *ar)
433 {
434 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
435 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
436 			   RTC_STATE_ADDRESS);
437 
438 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
439 }
440 
441 static void __ath10k_pci_wake(struct ath10k *ar)
442 {
443 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
444 
445 	lockdep_assert_held(&ar_pci->ps_lock);
446 
447 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
448 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
449 
450 	iowrite32(PCIE_SOC_WAKE_V_MASK,
451 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
452 		  PCIE_SOC_WAKE_ADDRESS);
453 }
454 
455 static void __ath10k_pci_sleep(struct ath10k *ar)
456 {
457 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
458 
459 	lockdep_assert_held(&ar_pci->ps_lock);
460 
461 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
462 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
463 
464 	iowrite32(PCIE_SOC_WAKE_RESET,
465 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
466 		  PCIE_SOC_WAKE_ADDRESS);
467 	ar_pci->ps_awake = false;
468 }
469 
470 static int ath10k_pci_wake_wait(struct ath10k *ar)
471 {
472 	int tot_delay = 0;
473 	int curr_delay = 5;
474 
475 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
476 		if (ath10k_pci_is_awake(ar)) {
477 			if (tot_delay > PCIE_WAKE_LATE_US)
478 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
479 					    tot_delay / 1000);
480 			return 0;
481 		}
482 
483 		udelay(curr_delay);
484 		tot_delay += curr_delay;
485 
486 		if (curr_delay < 50)
487 			curr_delay += 5;
488 	}
489 
490 	return -ETIMEDOUT;
491 }
492 
493 static int ath10k_pci_force_wake(struct ath10k *ar)
494 {
495 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
496 	unsigned long flags;
497 	int ret = 0;
498 
499 	if (ar_pci->pci_ps)
500 		return ret;
501 
502 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
503 
504 	if (!ar_pci->ps_awake) {
505 		iowrite32(PCIE_SOC_WAKE_V_MASK,
506 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
507 			  PCIE_SOC_WAKE_ADDRESS);
508 
509 		ret = ath10k_pci_wake_wait(ar);
510 		if (ret == 0)
511 			ar_pci->ps_awake = true;
512 	}
513 
514 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
515 
516 	return ret;
517 }
518 
519 static void ath10k_pci_force_sleep(struct ath10k *ar)
520 {
521 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
522 	unsigned long flags;
523 
524 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
525 
526 	iowrite32(PCIE_SOC_WAKE_RESET,
527 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
528 		  PCIE_SOC_WAKE_ADDRESS);
529 	ar_pci->ps_awake = false;
530 
531 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
532 }
533 
534 static int ath10k_pci_wake(struct ath10k *ar)
535 {
536 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
537 	unsigned long flags;
538 	int ret = 0;
539 
540 	if (ar_pci->pci_ps == 0)
541 		return ret;
542 
543 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
544 
545 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
546 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
547 
548 	/* This function can be called very frequently. To avoid excessive
549 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
550 	 */
551 	if (!ar_pci->ps_awake) {
552 		__ath10k_pci_wake(ar);
553 
554 		ret = ath10k_pci_wake_wait(ar);
555 		if (ret == 0)
556 			ar_pci->ps_awake = true;
557 	}
558 
559 	if (ret == 0) {
560 		ar_pci->ps_wake_refcount++;
561 		WARN_ON(ar_pci->ps_wake_refcount == 0);
562 	}
563 
564 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
565 
566 	return ret;
567 }
568 
569 static void ath10k_pci_sleep(struct ath10k *ar)
570 {
571 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
572 	unsigned long flags;
573 
574 	if (ar_pci->pci_ps == 0)
575 		return;
576 
577 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
578 
579 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
580 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
581 
582 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
583 		goto skip;
584 
585 	ar_pci->ps_wake_refcount--;
586 
587 	mod_timer(&ar_pci->ps_timer, jiffies +
588 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
589 
590 skip:
591 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
592 }
593 
594 static void ath10k_pci_ps_timer(struct timer_list *t)
595 {
596 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
597 	struct ath10k *ar = ar_pci->ar;
598 	unsigned long flags;
599 
600 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
601 
602 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
603 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
604 
605 	if (ar_pci->ps_wake_refcount > 0)
606 		goto skip;
607 
608 	__ath10k_pci_sleep(ar);
609 
610 skip:
611 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
612 }
613 
614 static void ath10k_pci_sleep_sync(struct ath10k *ar)
615 {
616 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
617 	unsigned long flags;
618 
619 	if (ar_pci->pci_ps == 0) {
620 		ath10k_pci_force_sleep(ar);
621 		return;
622 	}
623 
624 	del_timer_sync(&ar_pci->ps_timer);
625 
626 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
627 	WARN_ON(ar_pci->ps_wake_refcount > 0);
628 	__ath10k_pci_sleep(ar);
629 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
630 }
631 
632 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
633 {
634 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
635 	int ret;
636 
637 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
638 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
639 			    offset, offset + sizeof(value), ar_pci->mem_len);
640 		return;
641 	}
642 
643 	ret = ath10k_pci_wake(ar);
644 	if (ret) {
645 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
646 			    value, offset, ret);
647 		return;
648 	}
649 
650 	iowrite32(value, ar_pci->mem + offset);
651 	ath10k_pci_sleep(ar);
652 }
653 
654 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
655 {
656 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
657 	u32 val;
658 	int ret;
659 
660 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
661 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
662 			    offset, offset + sizeof(val), ar_pci->mem_len);
663 		return 0;
664 	}
665 
666 	ret = ath10k_pci_wake(ar);
667 	if (ret) {
668 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
669 			    offset, ret);
670 		return 0xffffffff;
671 	}
672 
673 	val = ioread32(ar_pci->mem + offset);
674 	ath10k_pci_sleep(ar);
675 
676 	return val;
677 }
678 
679 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
680 {
681 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
682 
683 	ce->bus_ops->write32(ar, offset, value);
684 }
685 
686 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
687 {
688 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
689 
690 	return ce->bus_ops->read32(ar, offset);
691 }
692 
693 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
694 {
695 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
696 }
697 
698 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
699 {
700 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
701 }
702 
703 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
704 {
705 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
706 }
707 
708 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
709 {
710 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
711 }
712 
713 bool ath10k_pci_irq_pending(struct ath10k *ar)
714 {
715 	u32 cause;
716 
717 	/* Check if the shared legacy irq is for us */
718 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
719 				  PCIE_INTR_CAUSE_ADDRESS);
720 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
721 		return true;
722 
723 	return false;
724 }
725 
726 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
727 {
728 	/* IMPORTANT: INTR_CLR register has to be set after
729 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
730 	 * really cleared.
731 	 */
732 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
733 			   0);
734 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
735 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
736 
737 	/* IMPORTANT: this extra read transaction is required to
738 	 * flush the posted write buffer.
739 	 */
740 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
741 				PCIE_INTR_ENABLE_ADDRESS);
742 }
743 
744 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
745 {
746 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
747 			   PCIE_INTR_ENABLE_ADDRESS,
748 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
749 
750 	/* IMPORTANT: this extra read transaction is required to
751 	 * flush the posted write buffer.
752 	 */
753 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
754 				PCIE_INTR_ENABLE_ADDRESS);
755 }
756 
757 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
758 {
759 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
760 
761 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
762 		return "msi";
763 
764 	return "legacy";
765 }
766 
767 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
768 {
769 	struct ath10k *ar = pipe->hif_ce_state;
770 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
771 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
772 	struct sk_buff *skb;
773 	dma_addr_t paddr;
774 	int ret;
775 
776 	skb = dev_alloc_skb(pipe->buf_sz);
777 	if (!skb)
778 		return -ENOMEM;
779 
780 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
781 
782 	paddr = dma_map_single(ar->dev, skb->data,
783 			       skb->len + skb_tailroom(skb),
784 			       DMA_FROM_DEVICE);
785 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
786 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
787 		dev_kfree_skb_any(skb);
788 		return -EIO;
789 	}
790 
791 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
792 
793 	spin_lock_bh(&ce->ce_lock);
794 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
795 	spin_unlock_bh(&ce->ce_lock);
796 	if (ret) {
797 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
798 				 DMA_FROM_DEVICE);
799 		dev_kfree_skb_any(skb);
800 		return ret;
801 	}
802 
803 	return 0;
804 }
805 
806 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
807 {
808 	struct ath10k *ar = pipe->hif_ce_state;
809 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
810 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
811 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
812 	int ret, num;
813 
814 	if (pipe->buf_sz == 0)
815 		return;
816 
817 	if (!ce_pipe->dest_ring)
818 		return;
819 
820 	spin_lock_bh(&ce->ce_lock);
821 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
822 	spin_unlock_bh(&ce->ce_lock);
823 
824 	while (num >= 0) {
825 		ret = __ath10k_pci_rx_post_buf(pipe);
826 		if (ret) {
827 			if (ret == -ENOSPC)
828 				break;
829 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
830 			mod_timer(&ar_pci->rx_post_retry, jiffies +
831 				  ATH10K_PCI_RX_POST_RETRY_MS);
832 			break;
833 		}
834 		num--;
835 	}
836 }
837 
838 void ath10k_pci_rx_post(struct ath10k *ar)
839 {
840 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
841 	int i;
842 
843 	for (i = 0; i < CE_COUNT; i++)
844 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
845 }
846 
847 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
848 {
849 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
850 	struct ath10k *ar = ar_pci->ar;
851 
852 	ath10k_pci_rx_post(ar);
853 }
854 
855 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
856 {
857 	u32 val = 0, region = addr & 0xfffff;
858 
859 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
860 				 & 0x7ff) << 21;
861 	val |= 0x100000 | region;
862 	return val;
863 }
864 
865 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
866 {
867 	u32 val = 0, region = addr & 0xfffff;
868 
869 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
870 	val |= 0x100000 | region;
871 	return val;
872 }
873 
874 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
875 {
876 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
877 
878 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
879 		return -ENOTSUPP;
880 
881 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
882 }
883 
884 /*
885  * Diagnostic read/write access is provided for startup/config/debug usage.
886  * Caller must guarantee proper alignment, when applicable, and single user
887  * at any moment.
888  */
889 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
890 				    int nbytes)
891 {
892 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
893 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
894 	int ret = 0;
895 	u32 *buf;
896 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
897 	struct ath10k_ce_pipe *ce_diag;
898 	/* Host buffer address in CE space */
899 	u32 ce_data;
900 	dma_addr_t ce_data_base = 0;
901 	void *data_buf = NULL;
902 	int i;
903 
904 	spin_lock_bh(&ce->ce_lock);
905 
906 	ce_diag = ar_pci->ce_diag;
907 
908 	/*
909 	 * Allocate a temporary bounce buffer to hold caller's data
910 	 * to be DMA'ed from Target. This guarantees
911 	 *   1) 4-byte alignment
912 	 *   2) Buffer in DMA-able space
913 	 */
914 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
915 
916 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
917 						       alloc_nbytes,
918 						       &ce_data_base,
919 						       GFP_ATOMIC);
920 
921 	if (!data_buf) {
922 		ret = -ENOMEM;
923 		goto done;
924 	}
925 
926 	remaining_bytes = nbytes;
927 	ce_data = ce_data_base;
928 	while (remaining_bytes) {
929 		nbytes = min_t(unsigned int, remaining_bytes,
930 			       DIAG_TRANSFER_LIMIT);
931 
932 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &ce_data, ce_data);
933 		if (ret != 0)
934 			goto done;
935 
936 		/* Request CE to send from Target(!) address to Host buffer */
937 		/*
938 		 * The address supplied by the caller is in the
939 		 * Target CPU virtual address space.
940 		 *
941 		 * In order to use this address with the diagnostic CE,
942 		 * convert it from Target CPU virtual address space
943 		 * to CE address space
944 		 */
945 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
946 
947 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
948 					    0);
949 		if (ret)
950 			goto done;
951 
952 		i = 0;
953 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
954 							    NULL) != 0) {
955 			mdelay(1);
956 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
957 				ret = -EBUSY;
958 				goto done;
959 			}
960 		}
961 
962 		i = 0;
963 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
964 							    (void **)&buf,
965 							    &completed_nbytes)
966 								!= 0) {
967 			mdelay(1);
968 
969 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
970 				ret = -EBUSY;
971 				goto done;
972 			}
973 		}
974 
975 		if (nbytes != completed_nbytes) {
976 			ret = -EIO;
977 			goto done;
978 		}
979 
980 		if (*buf != ce_data) {
981 			ret = -EIO;
982 			goto done;
983 		}
984 
985 		remaining_bytes -= nbytes;
986 		memcpy(data, data_buf, nbytes);
987 
988 		address += nbytes;
989 		data += nbytes;
990 	}
991 
992 done:
993 
994 	if (data_buf)
995 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
996 				  ce_data_base);
997 
998 	spin_unlock_bh(&ce->ce_lock);
999 
1000 	return ret;
1001 }
1002 
1003 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1004 {
1005 	__le32 val = 0;
1006 	int ret;
1007 
1008 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1009 	*value = __le32_to_cpu(val);
1010 
1011 	return ret;
1012 }
1013 
1014 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1015 				     u32 src, u32 len)
1016 {
1017 	u32 host_addr, addr;
1018 	int ret;
1019 
1020 	host_addr = host_interest_item_address(src);
1021 
1022 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1023 	if (ret != 0) {
1024 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1025 			    src, ret);
1026 		return ret;
1027 	}
1028 
1029 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1030 	if (ret != 0) {
1031 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1032 			    addr, len, ret);
1033 		return ret;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1040 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1041 
1042 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1043 			      const void *data, int nbytes)
1044 {
1045 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1046 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1047 	int ret = 0;
1048 	u32 *buf;
1049 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1050 	struct ath10k_ce_pipe *ce_diag;
1051 	void *data_buf = NULL;
1052 	u32 ce_data;	/* Host buffer address in CE space */
1053 	dma_addr_t ce_data_base = 0;
1054 	int i;
1055 
1056 	spin_lock_bh(&ce->ce_lock);
1057 
1058 	ce_diag = ar_pci->ce_diag;
1059 
1060 	/*
1061 	 * Allocate a temporary bounce buffer to hold caller's data
1062 	 * to be DMA'ed to Target. This guarantees
1063 	 *   1) 4-byte alignment
1064 	 *   2) Buffer in DMA-able space
1065 	 */
1066 	orig_nbytes = nbytes;
1067 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1068 						       orig_nbytes,
1069 						       &ce_data_base,
1070 						       GFP_ATOMIC);
1071 	if (!data_buf) {
1072 		ret = -ENOMEM;
1073 		goto done;
1074 	}
1075 
1076 	/* Copy caller's data to allocated DMA buf */
1077 	memcpy(data_buf, data, orig_nbytes);
1078 
1079 	/*
1080 	 * The address supplied by the caller is in the
1081 	 * Target CPU virtual address space.
1082 	 *
1083 	 * In order to use this address with the diagnostic CE,
1084 	 * convert it from
1085 	 *    Target CPU virtual address space
1086 	 * to
1087 	 *    CE address space
1088 	 */
1089 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1090 
1091 	remaining_bytes = orig_nbytes;
1092 	ce_data = ce_data_base;
1093 	while (remaining_bytes) {
1094 		/* FIXME: check cast */
1095 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1096 
1097 		/* Set up to receive directly into Target(!) address */
1098 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &address, address);
1099 		if (ret != 0)
1100 			goto done;
1101 
1102 		/*
1103 		 * Request CE to send caller-supplied data that
1104 		 * was copied to bounce buffer to Target(!) address.
1105 		 */
1106 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1107 					    nbytes, 0, 0);
1108 		if (ret != 0)
1109 			goto done;
1110 
1111 		i = 0;
1112 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1113 							    NULL) != 0) {
1114 			mdelay(1);
1115 
1116 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1117 				ret = -EBUSY;
1118 				goto done;
1119 			}
1120 		}
1121 
1122 		i = 0;
1123 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1124 							    (void **)&buf,
1125 							    &completed_nbytes)
1126 								!= 0) {
1127 			mdelay(1);
1128 
1129 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1130 				ret = -EBUSY;
1131 				goto done;
1132 			}
1133 		}
1134 
1135 		if (nbytes != completed_nbytes) {
1136 			ret = -EIO;
1137 			goto done;
1138 		}
1139 
1140 		if (*buf != address) {
1141 			ret = -EIO;
1142 			goto done;
1143 		}
1144 
1145 		remaining_bytes -= nbytes;
1146 		address += nbytes;
1147 		ce_data += nbytes;
1148 	}
1149 
1150 done:
1151 	if (data_buf) {
1152 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1153 				  ce_data_base);
1154 	}
1155 
1156 	if (ret != 0)
1157 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1158 			    address, ret);
1159 
1160 	spin_unlock_bh(&ce->ce_lock);
1161 
1162 	return ret;
1163 }
1164 
1165 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1166 {
1167 	__le32 val = __cpu_to_le32(value);
1168 
1169 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1170 }
1171 
1172 /* Called by lower (CE) layer when a send to Target completes. */
1173 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1174 {
1175 	struct ath10k *ar = ce_state->ar;
1176 	struct sk_buff_head list;
1177 	struct sk_buff *skb;
1178 
1179 	__skb_queue_head_init(&list);
1180 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1181 		/* no need to call tx completion for NULL pointers */
1182 		if (skb == NULL)
1183 			continue;
1184 
1185 		__skb_queue_tail(&list, skb);
1186 	}
1187 
1188 	while ((skb = __skb_dequeue(&list)))
1189 		ath10k_htc_tx_completion_handler(ar, skb);
1190 }
1191 
1192 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1193 				     void (*callback)(struct ath10k *ar,
1194 						      struct sk_buff *skb))
1195 {
1196 	struct ath10k *ar = ce_state->ar;
1197 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1198 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1199 	struct sk_buff *skb;
1200 	struct sk_buff_head list;
1201 	void *transfer_context;
1202 	unsigned int nbytes, max_nbytes;
1203 
1204 	__skb_queue_head_init(&list);
1205 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1206 					     &nbytes) == 0) {
1207 		skb = transfer_context;
1208 		max_nbytes = skb->len + skb_tailroom(skb);
1209 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1210 				 max_nbytes, DMA_FROM_DEVICE);
1211 
1212 		if (unlikely(max_nbytes < nbytes)) {
1213 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1214 				    nbytes, max_nbytes);
1215 			dev_kfree_skb_any(skb);
1216 			continue;
1217 		}
1218 
1219 		skb_put(skb, nbytes);
1220 		__skb_queue_tail(&list, skb);
1221 	}
1222 
1223 	while ((skb = __skb_dequeue(&list))) {
1224 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1225 			   ce_state->id, skb->len);
1226 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1227 				skb->data, skb->len);
1228 
1229 		callback(ar, skb);
1230 	}
1231 
1232 	ath10k_pci_rx_post_pipe(pipe_info);
1233 }
1234 
1235 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1236 					 void (*callback)(struct ath10k *ar,
1237 							  struct sk_buff *skb))
1238 {
1239 	struct ath10k *ar = ce_state->ar;
1240 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1241 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1242 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1243 	struct sk_buff *skb;
1244 	struct sk_buff_head list;
1245 	void *transfer_context;
1246 	unsigned int nbytes, max_nbytes, nentries;
1247 	int orig_len;
1248 
1249 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1250 	 * is processed other than init and deinit. Before releasing CE5
1251 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1252 	 */
1253 	__skb_queue_head_init(&list);
1254 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1255 						    &nbytes) == 0) {
1256 		skb = transfer_context;
1257 		max_nbytes = skb->len + skb_tailroom(skb);
1258 
1259 		if (unlikely(max_nbytes < nbytes)) {
1260 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1261 				    nbytes, max_nbytes);
1262 			continue;
1263 		}
1264 
1265 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1266 					max_nbytes, DMA_FROM_DEVICE);
1267 		skb_put(skb, nbytes);
1268 		__skb_queue_tail(&list, skb);
1269 	}
1270 
1271 	nentries = skb_queue_len(&list);
1272 	while ((skb = __skb_dequeue(&list))) {
1273 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1274 			   ce_state->id, skb->len);
1275 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1276 				skb->data, skb->len);
1277 
1278 		orig_len = skb->len;
1279 		callback(ar, skb);
1280 		skb_push(skb, orig_len - skb->len);
1281 		skb_reset_tail_pointer(skb);
1282 		skb_trim(skb, 0);
1283 
1284 		/*let device gain the buffer again*/
1285 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1286 					   skb->len + skb_tailroom(skb),
1287 					   DMA_FROM_DEVICE);
1288 	}
1289 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1290 }
1291 
1292 /* Called by lower (CE) layer when data is received from the Target. */
1293 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1294 {
1295 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1296 }
1297 
1298 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1299 {
1300 	/* CE4 polling needs to be done whenever CE pipe which transports
1301 	 * HTT Rx (target->host) is processed.
1302 	 */
1303 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1304 
1305 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1306 }
1307 
1308 /* Called by lower (CE) layer when data is received from the Target.
1309  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1310  */
1311 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1312 {
1313 	ath10k_pci_process_rx_cb(ce_state,
1314 				 ath10k_htt_rx_pktlog_completion_handler);
1315 }
1316 
1317 /* Called by lower (CE) layer when a send to HTT Target completes. */
1318 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1319 {
1320 	struct ath10k *ar = ce_state->ar;
1321 	struct sk_buff *skb;
1322 
1323 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1324 		/* no need to call tx completion for NULL pointers */
1325 		if (!skb)
1326 			continue;
1327 
1328 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1329 				 skb->len, DMA_TO_DEVICE);
1330 		ath10k_htt_hif_tx_complete(ar, skb);
1331 	}
1332 }
1333 
1334 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1335 {
1336 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1337 	ath10k_htt_t2h_msg_handler(ar, skb);
1338 }
1339 
1340 /* Called by lower (CE) layer when HTT data is received from the Target. */
1341 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1342 {
1343 	/* CE4 polling needs to be done whenever CE pipe which transports
1344 	 * HTT Rx (target->host) is processed.
1345 	 */
1346 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1347 
1348 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1349 }
1350 
1351 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1352 			 struct ath10k_hif_sg_item *items, int n_items)
1353 {
1354 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1355 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1356 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1357 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1358 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1359 	unsigned int nentries_mask;
1360 	unsigned int sw_index;
1361 	unsigned int write_index;
1362 	int err, i = 0;
1363 
1364 	spin_lock_bh(&ce->ce_lock);
1365 
1366 	nentries_mask = src_ring->nentries_mask;
1367 	sw_index = src_ring->sw_index;
1368 	write_index = src_ring->write_index;
1369 
1370 	if (unlikely(CE_RING_DELTA(nentries_mask,
1371 				   write_index, sw_index - 1) < n_items)) {
1372 		err = -ENOBUFS;
1373 		goto err;
1374 	}
1375 
1376 	for (i = 0; i < n_items - 1; i++) {
1377 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1378 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1379 			   i, items[i].paddr, items[i].len, n_items);
1380 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1381 				items[i].vaddr, items[i].len);
1382 
1383 		err = ath10k_ce_send_nolock(ce_pipe,
1384 					    items[i].transfer_context,
1385 					    items[i].paddr,
1386 					    items[i].len,
1387 					    items[i].transfer_id,
1388 					    CE_SEND_FLAG_GATHER);
1389 		if (err)
1390 			goto err;
1391 	}
1392 
1393 	/* `i` is equal to `n_items -1` after for() */
1394 
1395 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1396 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1397 		   i, items[i].paddr, items[i].len, n_items);
1398 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1399 			items[i].vaddr, items[i].len);
1400 
1401 	err = ath10k_ce_send_nolock(ce_pipe,
1402 				    items[i].transfer_context,
1403 				    items[i].paddr,
1404 				    items[i].len,
1405 				    items[i].transfer_id,
1406 				    0);
1407 	if (err)
1408 		goto err;
1409 
1410 	spin_unlock_bh(&ce->ce_lock);
1411 	return 0;
1412 
1413 err:
1414 	for (; i > 0; i--)
1415 		__ath10k_ce_send_revert(ce_pipe);
1416 
1417 	spin_unlock_bh(&ce->ce_lock);
1418 	return err;
1419 }
1420 
1421 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1422 			     size_t buf_len)
1423 {
1424 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1425 }
1426 
1427 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1428 {
1429 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1430 
1431 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1432 
1433 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1434 }
1435 
1436 static void ath10k_pci_dump_registers(struct ath10k *ar,
1437 				      struct ath10k_fw_crash_data *crash_data)
1438 {
1439 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1440 	int i, ret;
1441 
1442 	lockdep_assert_held(&ar->data_lock);
1443 
1444 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1445 				      hi_failure_state,
1446 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1447 	if (ret) {
1448 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1449 		return;
1450 	}
1451 
1452 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1453 
1454 	ath10k_err(ar, "firmware register dump:\n");
1455 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1456 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1457 			   i,
1458 			   __le32_to_cpu(reg_dump_values[i]),
1459 			   __le32_to_cpu(reg_dump_values[i + 1]),
1460 			   __le32_to_cpu(reg_dump_values[i + 2]),
1461 			   __le32_to_cpu(reg_dump_values[i + 3]));
1462 
1463 	if (!crash_data)
1464 		return;
1465 
1466 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1467 		crash_data->registers[i] = reg_dump_values[i];
1468 }
1469 
1470 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1471 					  const struct ath10k_mem_region *mem_region,
1472 					  u8 *buf, size_t buf_len)
1473 {
1474 	const struct ath10k_mem_section *cur_section, *next_section;
1475 	unsigned int count, section_size, skip_size;
1476 	int ret, i, j;
1477 
1478 	if (!mem_region || !buf)
1479 		return 0;
1480 
1481 	cur_section = &mem_region->section_table.sections[0];
1482 
1483 	if (mem_region->start > cur_section->start) {
1484 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1485 			    mem_region->start, cur_section->start);
1486 		return 0;
1487 	}
1488 
1489 	skip_size = cur_section->start - mem_region->start;
1490 
1491 	/* fill the gap between the first register section and register
1492 	 * start address
1493 	 */
1494 	for (i = 0; i < skip_size; i++) {
1495 		*buf = ATH10K_MAGIC_NOT_COPIED;
1496 		buf++;
1497 	}
1498 
1499 	count = 0;
1500 
1501 	for (i = 0; cur_section != NULL; i++) {
1502 		section_size = cur_section->end - cur_section->start;
1503 
1504 		if (section_size <= 0) {
1505 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1506 				    cur_section->start,
1507 				    cur_section->end);
1508 			break;
1509 		}
1510 
1511 		if ((i + 1) == mem_region->section_table.size) {
1512 			/* last section */
1513 			next_section = NULL;
1514 			skip_size = 0;
1515 		} else {
1516 			next_section = cur_section + 1;
1517 
1518 			if (cur_section->end > next_section->start) {
1519 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1520 					    next_section->start,
1521 					    cur_section->end);
1522 				break;
1523 			}
1524 
1525 			skip_size = next_section->start - cur_section->end;
1526 		}
1527 
1528 		if (buf_len < (skip_size + section_size)) {
1529 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1530 			break;
1531 		}
1532 
1533 		buf_len -= skip_size + section_size;
1534 
1535 		/* read section to dest memory */
1536 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1537 					       buf, section_size);
1538 		if (ret) {
1539 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1540 				    cur_section->start, ret);
1541 			break;
1542 		}
1543 
1544 		buf += section_size;
1545 		count += section_size;
1546 
1547 		/* fill in the gap between this section and the next */
1548 		for (j = 0; j < skip_size; j++) {
1549 			*buf = ATH10K_MAGIC_NOT_COPIED;
1550 			buf++;
1551 		}
1552 
1553 		count += skip_size;
1554 
1555 		if (!next_section)
1556 			/* this was the last section */
1557 			break;
1558 
1559 		cur_section = next_section;
1560 	}
1561 
1562 	return count;
1563 }
1564 
1565 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1566 {
1567 	u32 val;
1568 
1569 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1570 			   FW_RAM_CONFIG_ADDRESS, config);
1571 
1572 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1573 				FW_RAM_CONFIG_ADDRESS);
1574 	if (val != config) {
1575 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1576 			    val, config);
1577 		return -EIO;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 static void ath10k_pci_dump_memory(struct ath10k *ar,
1584 				   struct ath10k_fw_crash_data *crash_data)
1585 {
1586 	const struct ath10k_hw_mem_layout *mem_layout;
1587 	const struct ath10k_mem_region *current_region;
1588 	struct ath10k_dump_ram_data_hdr *hdr;
1589 	u32 count, shift;
1590 	size_t buf_len;
1591 	int ret, i;
1592 	u8 *buf;
1593 
1594 	lockdep_assert_held(&ar->data_lock);
1595 
1596 	if (!crash_data)
1597 		return;
1598 
1599 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1600 	if (!mem_layout)
1601 		return;
1602 
1603 	current_region = &mem_layout->region_table.regions[0];
1604 
1605 	buf = crash_data->ramdump_buf;
1606 	buf_len = crash_data->ramdump_buf_len;
1607 
1608 	memset(buf, 0, buf_len);
1609 
1610 	for (i = 0; i < mem_layout->region_table.size; i++) {
1611 		count = 0;
1612 
1613 		if (current_region->len > buf_len) {
1614 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1615 				    current_region->name,
1616 				    current_region->len,
1617 				    buf_len);
1618 			break;
1619 		}
1620 
1621 		/* To get IRAM dump, the host driver needs to switch target
1622 		 * ram config from DRAM to IRAM.
1623 		 */
1624 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1625 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1626 			shift = current_region->start >> 20;
1627 
1628 			ret = ath10k_pci_set_ram_config(ar, shift);
1629 			if (ret) {
1630 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1631 					    current_region->name, ret);
1632 				break;
1633 			}
1634 		}
1635 
1636 		/* Reserve space for the header. */
1637 		hdr = (void *)buf;
1638 		buf += sizeof(*hdr);
1639 		buf_len -= sizeof(*hdr);
1640 
1641 		if (current_region->section_table.size > 0) {
1642 			/* Copy each section individually. */
1643 			count = ath10k_pci_dump_memory_section(ar,
1644 							       current_region,
1645 							       buf,
1646 							       current_region->len);
1647 		} else {
1648 			/* No individiual memory sections defined so we can
1649 			 * copy the entire memory region.
1650 			 */
1651 			ret = ath10k_pci_diag_read_mem(ar,
1652 						       current_region->start,
1653 						       buf,
1654 						       current_region->len);
1655 			if (ret) {
1656 				ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1657 					    current_region->name, ret);
1658 				break;
1659 			}
1660 
1661 			count = current_region->len;
1662 		}
1663 
1664 		hdr->region_type = cpu_to_le32(current_region->type);
1665 		hdr->start = cpu_to_le32(current_region->start);
1666 		hdr->length = cpu_to_le32(count);
1667 
1668 		if (count == 0)
1669 			/* Note: the header remains, just with zero length. */
1670 			break;
1671 
1672 		buf += count;
1673 		buf_len -= count;
1674 
1675 		current_region++;
1676 	}
1677 }
1678 
1679 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1680 {
1681 	struct ath10k_fw_crash_data *crash_data;
1682 	char guid[UUID_STRING_LEN + 1];
1683 
1684 	spin_lock_bh(&ar->data_lock);
1685 
1686 	ar->stats.fw_crash_counter++;
1687 
1688 	crash_data = ath10k_coredump_new(ar);
1689 
1690 	if (crash_data)
1691 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1692 	else
1693 		scnprintf(guid, sizeof(guid), "n/a");
1694 
1695 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1696 	ath10k_print_driver_info(ar);
1697 	ath10k_pci_dump_registers(ar, crash_data);
1698 	ath10k_ce_dump_registers(ar, crash_data);
1699 	ath10k_pci_dump_memory(ar, crash_data);
1700 
1701 	spin_unlock_bh(&ar->data_lock);
1702 
1703 	queue_work(ar->workqueue, &ar->restart_work);
1704 }
1705 
1706 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1707 					int force)
1708 {
1709 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1710 
1711 	if (!force) {
1712 		int resources;
1713 		/*
1714 		 * Decide whether to actually poll for completions, or just
1715 		 * wait for a later chance.
1716 		 * If there seem to be plenty of resources left, then just wait
1717 		 * since checking involves reading a CE register, which is a
1718 		 * relatively expensive operation.
1719 		 */
1720 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1721 
1722 		/*
1723 		 * If at least 50% of the total resources are still available,
1724 		 * don't bother checking again yet.
1725 		 */
1726 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1727 			return;
1728 	}
1729 	ath10k_ce_per_engine_service(ar, pipe);
1730 }
1731 
1732 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1733 {
1734 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1735 
1736 	del_timer_sync(&ar_pci->rx_post_retry);
1737 }
1738 
1739 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1740 				       u8 *ul_pipe, u8 *dl_pipe)
1741 {
1742 	const struct service_to_pipe *entry;
1743 	bool ul_set = false, dl_set = false;
1744 	int i;
1745 
1746 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1747 
1748 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1749 		entry = &target_service_to_ce_map_wlan[i];
1750 
1751 		if (__le32_to_cpu(entry->service_id) != service_id)
1752 			continue;
1753 
1754 		switch (__le32_to_cpu(entry->pipedir)) {
1755 		case PIPEDIR_NONE:
1756 			break;
1757 		case PIPEDIR_IN:
1758 			WARN_ON(dl_set);
1759 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1760 			dl_set = true;
1761 			break;
1762 		case PIPEDIR_OUT:
1763 			WARN_ON(ul_set);
1764 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1765 			ul_set = true;
1766 			break;
1767 		case PIPEDIR_INOUT:
1768 			WARN_ON(dl_set);
1769 			WARN_ON(ul_set);
1770 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1771 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1772 			dl_set = true;
1773 			ul_set = true;
1774 			break;
1775 		}
1776 	}
1777 
1778 	if (WARN_ON(!ul_set || !dl_set))
1779 		return -ENOENT;
1780 
1781 	return 0;
1782 }
1783 
1784 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1785 				     u8 *ul_pipe, u8 *dl_pipe)
1786 {
1787 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1788 
1789 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1790 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1791 						 ul_pipe, dl_pipe);
1792 }
1793 
1794 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1795 {
1796 	u32 val;
1797 
1798 	switch (ar->hw_rev) {
1799 	case ATH10K_HW_QCA988X:
1800 	case ATH10K_HW_QCA9887:
1801 	case ATH10K_HW_QCA6174:
1802 	case ATH10K_HW_QCA9377:
1803 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1804 					CORE_CTRL_ADDRESS);
1805 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1806 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1807 				   CORE_CTRL_ADDRESS, val);
1808 		break;
1809 	case ATH10K_HW_QCA99X0:
1810 	case ATH10K_HW_QCA9984:
1811 	case ATH10K_HW_QCA9888:
1812 	case ATH10K_HW_QCA4019:
1813 		/* TODO: Find appropriate register configuration for QCA99X0
1814 		 *  to mask irq/MSI.
1815 		 */
1816 		break;
1817 	case ATH10K_HW_WCN3990:
1818 		break;
1819 	}
1820 }
1821 
1822 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1823 {
1824 	u32 val;
1825 
1826 	switch (ar->hw_rev) {
1827 	case ATH10K_HW_QCA988X:
1828 	case ATH10K_HW_QCA9887:
1829 	case ATH10K_HW_QCA6174:
1830 	case ATH10K_HW_QCA9377:
1831 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1832 					CORE_CTRL_ADDRESS);
1833 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1834 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1835 				   CORE_CTRL_ADDRESS, val);
1836 		break;
1837 	case ATH10K_HW_QCA99X0:
1838 	case ATH10K_HW_QCA9984:
1839 	case ATH10K_HW_QCA9888:
1840 	case ATH10K_HW_QCA4019:
1841 		/* TODO: Find appropriate register configuration for QCA99X0
1842 		 *  to unmask irq/MSI.
1843 		 */
1844 		break;
1845 	case ATH10K_HW_WCN3990:
1846 		break;
1847 	}
1848 }
1849 
1850 static void ath10k_pci_irq_disable(struct ath10k *ar)
1851 {
1852 	ath10k_ce_disable_interrupts(ar);
1853 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1854 	ath10k_pci_irq_msi_fw_mask(ar);
1855 }
1856 
1857 static void ath10k_pci_irq_sync(struct ath10k *ar)
1858 {
1859 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1860 
1861 	synchronize_irq(ar_pci->pdev->irq);
1862 }
1863 
1864 static void ath10k_pci_irq_enable(struct ath10k *ar)
1865 {
1866 	ath10k_ce_enable_interrupts(ar);
1867 	ath10k_pci_enable_legacy_irq(ar);
1868 	ath10k_pci_irq_msi_fw_unmask(ar);
1869 }
1870 
1871 static int ath10k_pci_hif_start(struct ath10k *ar)
1872 {
1873 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1874 
1875 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1876 
1877 	napi_enable(&ar->napi);
1878 
1879 	ath10k_pci_irq_enable(ar);
1880 	ath10k_pci_rx_post(ar);
1881 
1882 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1883 				   ar_pci->link_ctl);
1884 
1885 	return 0;
1886 }
1887 
1888 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1889 {
1890 	struct ath10k *ar;
1891 	struct ath10k_ce_pipe *ce_pipe;
1892 	struct ath10k_ce_ring *ce_ring;
1893 	struct sk_buff *skb;
1894 	int i;
1895 
1896 	ar = pci_pipe->hif_ce_state;
1897 	ce_pipe = pci_pipe->ce_hdl;
1898 	ce_ring = ce_pipe->dest_ring;
1899 
1900 	if (!ce_ring)
1901 		return;
1902 
1903 	if (!pci_pipe->buf_sz)
1904 		return;
1905 
1906 	for (i = 0; i < ce_ring->nentries; i++) {
1907 		skb = ce_ring->per_transfer_context[i];
1908 		if (!skb)
1909 			continue;
1910 
1911 		ce_ring->per_transfer_context[i] = NULL;
1912 
1913 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1914 				 skb->len + skb_tailroom(skb),
1915 				 DMA_FROM_DEVICE);
1916 		dev_kfree_skb_any(skb);
1917 	}
1918 }
1919 
1920 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1921 {
1922 	struct ath10k *ar;
1923 	struct ath10k_ce_pipe *ce_pipe;
1924 	struct ath10k_ce_ring *ce_ring;
1925 	struct sk_buff *skb;
1926 	int i;
1927 
1928 	ar = pci_pipe->hif_ce_state;
1929 	ce_pipe = pci_pipe->ce_hdl;
1930 	ce_ring = ce_pipe->src_ring;
1931 
1932 	if (!ce_ring)
1933 		return;
1934 
1935 	if (!pci_pipe->buf_sz)
1936 		return;
1937 
1938 	for (i = 0; i < ce_ring->nentries; i++) {
1939 		skb = ce_ring->per_transfer_context[i];
1940 		if (!skb)
1941 			continue;
1942 
1943 		ce_ring->per_transfer_context[i] = NULL;
1944 
1945 		ath10k_htc_tx_completion_handler(ar, skb);
1946 	}
1947 }
1948 
1949 /*
1950  * Cleanup residual buffers for device shutdown:
1951  *    buffers that were enqueued for receive
1952  *    buffers that were to be sent
1953  * Note: Buffers that had completed but which were
1954  * not yet processed are on a completion queue. They
1955  * are handled when the completion thread shuts down.
1956  */
1957 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1958 {
1959 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1960 	int pipe_num;
1961 
1962 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1963 		struct ath10k_pci_pipe *pipe_info;
1964 
1965 		pipe_info = &ar_pci->pipe_info[pipe_num];
1966 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1967 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1968 	}
1969 }
1970 
1971 void ath10k_pci_ce_deinit(struct ath10k *ar)
1972 {
1973 	int i;
1974 
1975 	for (i = 0; i < CE_COUNT; i++)
1976 		ath10k_ce_deinit_pipe(ar, i);
1977 }
1978 
1979 void ath10k_pci_flush(struct ath10k *ar)
1980 {
1981 	ath10k_pci_rx_retry_sync(ar);
1982 	ath10k_pci_buffer_cleanup(ar);
1983 }
1984 
1985 static void ath10k_pci_hif_stop(struct ath10k *ar)
1986 {
1987 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1988 	unsigned long flags;
1989 
1990 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1991 
1992 	/* Most likely the device has HTT Rx ring configured. The only way to
1993 	 * prevent the device from accessing (and possible corrupting) host
1994 	 * memory is to reset the chip now.
1995 	 *
1996 	 * There's also no known way of masking MSI interrupts on the device.
1997 	 * For ranged MSI the CE-related interrupts can be masked. However
1998 	 * regardless how many MSI interrupts are assigned the first one
1999 	 * is always used for firmware indications (crashes) and cannot be
2000 	 * masked. To prevent the device from asserting the interrupt reset it
2001 	 * before proceeding with cleanup.
2002 	 */
2003 	ath10k_pci_safe_chip_reset(ar);
2004 
2005 	ath10k_pci_irq_disable(ar);
2006 	ath10k_pci_irq_sync(ar);
2007 	ath10k_pci_flush(ar);
2008 	napi_synchronize(&ar->napi);
2009 	napi_disable(&ar->napi);
2010 
2011 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2012 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2013 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2014 }
2015 
2016 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2017 				    void *req, u32 req_len,
2018 				    void *resp, u32 *resp_len)
2019 {
2020 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2021 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2022 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2023 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2024 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2025 	dma_addr_t req_paddr = 0;
2026 	dma_addr_t resp_paddr = 0;
2027 	struct bmi_xfer xfer = {};
2028 	void *treq, *tresp = NULL;
2029 	int ret = 0;
2030 
2031 	might_sleep();
2032 
2033 	if (resp && !resp_len)
2034 		return -EINVAL;
2035 
2036 	if (resp && resp_len && *resp_len == 0)
2037 		return -EINVAL;
2038 
2039 	treq = kmemdup(req, req_len, GFP_KERNEL);
2040 	if (!treq)
2041 		return -ENOMEM;
2042 
2043 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2044 	ret = dma_mapping_error(ar->dev, req_paddr);
2045 	if (ret) {
2046 		ret = -EIO;
2047 		goto err_dma;
2048 	}
2049 
2050 	if (resp && resp_len) {
2051 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2052 		if (!tresp) {
2053 			ret = -ENOMEM;
2054 			goto err_req;
2055 		}
2056 
2057 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2058 					    DMA_FROM_DEVICE);
2059 		ret = dma_mapping_error(ar->dev, resp_paddr);
2060 		if (ret) {
2061 			ret = -EIO;
2062 			goto err_req;
2063 		}
2064 
2065 		xfer.wait_for_resp = true;
2066 		xfer.resp_len = 0;
2067 
2068 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2069 	}
2070 
2071 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2072 	if (ret)
2073 		goto err_resp;
2074 
2075 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2076 	if (ret) {
2077 		dma_addr_t unused_buffer;
2078 		unsigned int unused_nbytes;
2079 		unsigned int unused_id;
2080 
2081 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2082 					   &unused_nbytes, &unused_id);
2083 	} else {
2084 		/* non-zero means we did not time out */
2085 		ret = 0;
2086 	}
2087 
2088 err_resp:
2089 	if (resp) {
2090 		dma_addr_t unused_buffer;
2091 
2092 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2093 		dma_unmap_single(ar->dev, resp_paddr,
2094 				 *resp_len, DMA_FROM_DEVICE);
2095 	}
2096 err_req:
2097 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2098 
2099 	if (ret == 0 && resp_len) {
2100 		*resp_len = min(*resp_len, xfer.resp_len);
2101 		memcpy(resp, tresp, xfer.resp_len);
2102 	}
2103 err_dma:
2104 	kfree(treq);
2105 	kfree(tresp);
2106 
2107 	return ret;
2108 }
2109 
2110 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2111 {
2112 	struct bmi_xfer *xfer;
2113 
2114 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2115 		return;
2116 
2117 	xfer->tx_done = true;
2118 }
2119 
2120 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2121 {
2122 	struct ath10k *ar = ce_state->ar;
2123 	struct bmi_xfer *xfer;
2124 	unsigned int nbytes;
2125 
2126 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2127 					  &nbytes))
2128 		return;
2129 
2130 	if (WARN_ON_ONCE(!xfer))
2131 		return;
2132 
2133 	if (!xfer->wait_for_resp) {
2134 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2135 		return;
2136 	}
2137 
2138 	xfer->resp_len = nbytes;
2139 	xfer->rx_done = true;
2140 }
2141 
2142 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2143 			       struct ath10k_ce_pipe *tx_pipe,
2144 			       struct ath10k_ce_pipe *rx_pipe,
2145 			       struct bmi_xfer *xfer)
2146 {
2147 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2148 	unsigned long started = jiffies;
2149 	unsigned long dur;
2150 	int ret;
2151 
2152 	while (time_before_eq(jiffies, timeout)) {
2153 		ath10k_pci_bmi_send_done(tx_pipe);
2154 		ath10k_pci_bmi_recv_data(rx_pipe);
2155 
2156 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2157 			ret = 0;
2158 			goto out;
2159 		}
2160 
2161 		schedule();
2162 	}
2163 
2164 	ret = -ETIMEDOUT;
2165 
2166 out:
2167 	dur = jiffies - started;
2168 	if (dur > HZ)
2169 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2170 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2171 			   dur, HZ, ret);
2172 	return ret;
2173 }
2174 
2175 /*
2176  * Send an interrupt to the device to wake up the Target CPU
2177  * so it has an opportunity to notice any changed state.
2178  */
2179 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2180 {
2181 	u32 addr, val;
2182 
2183 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2184 	val = ath10k_pci_read32(ar, addr);
2185 	val |= CORE_CTRL_CPU_INTR_MASK;
2186 	ath10k_pci_write32(ar, addr, val);
2187 
2188 	return 0;
2189 }
2190 
2191 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2192 {
2193 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2194 
2195 	switch (ar_pci->pdev->device) {
2196 	case QCA988X_2_0_DEVICE_ID:
2197 	case QCA99X0_2_0_DEVICE_ID:
2198 	case QCA9888_2_0_DEVICE_ID:
2199 	case QCA9984_1_0_DEVICE_ID:
2200 	case QCA9887_1_0_DEVICE_ID:
2201 		return 1;
2202 	case QCA6164_2_1_DEVICE_ID:
2203 	case QCA6174_2_1_DEVICE_ID:
2204 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
2205 		case QCA6174_HW_1_0_CHIP_ID_REV:
2206 		case QCA6174_HW_1_1_CHIP_ID_REV:
2207 		case QCA6174_HW_2_1_CHIP_ID_REV:
2208 		case QCA6174_HW_2_2_CHIP_ID_REV:
2209 			return 3;
2210 		case QCA6174_HW_1_3_CHIP_ID_REV:
2211 			return 2;
2212 		case QCA6174_HW_3_0_CHIP_ID_REV:
2213 		case QCA6174_HW_3_1_CHIP_ID_REV:
2214 		case QCA6174_HW_3_2_CHIP_ID_REV:
2215 			return 9;
2216 		}
2217 		break;
2218 	case QCA9377_1_0_DEVICE_ID:
2219 		return 4;
2220 	}
2221 
2222 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2223 	return 1;
2224 }
2225 
2226 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2227 {
2228 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2229 
2230 	return ce->bus_ops->get_num_banks(ar);
2231 }
2232 
2233 int ath10k_pci_init_config(struct ath10k *ar)
2234 {
2235 	u32 interconnect_targ_addr;
2236 	u32 pcie_state_targ_addr = 0;
2237 	u32 pipe_cfg_targ_addr = 0;
2238 	u32 svc_to_pipe_map = 0;
2239 	u32 pcie_config_flags = 0;
2240 	u32 ealloc_value;
2241 	u32 ealloc_targ_addr;
2242 	u32 flag2_value;
2243 	u32 flag2_targ_addr;
2244 	int ret = 0;
2245 
2246 	/* Download to Target the CE Config and the service-to-CE map */
2247 	interconnect_targ_addr =
2248 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2249 
2250 	/* Supply Target-side CE configuration */
2251 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2252 				     &pcie_state_targ_addr);
2253 	if (ret != 0) {
2254 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2255 		return ret;
2256 	}
2257 
2258 	if (pcie_state_targ_addr == 0) {
2259 		ret = -EIO;
2260 		ath10k_err(ar, "Invalid pcie state addr\n");
2261 		return ret;
2262 	}
2263 
2264 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2265 					  offsetof(struct pcie_state,
2266 						   pipe_cfg_addr)),
2267 				     &pipe_cfg_targ_addr);
2268 	if (ret != 0) {
2269 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2270 		return ret;
2271 	}
2272 
2273 	if (pipe_cfg_targ_addr == 0) {
2274 		ret = -EIO;
2275 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2276 		return ret;
2277 	}
2278 
2279 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2280 					target_ce_config_wlan,
2281 					sizeof(struct ce_pipe_config) *
2282 					NUM_TARGET_CE_CONFIG_WLAN);
2283 
2284 	if (ret != 0) {
2285 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2286 		return ret;
2287 	}
2288 
2289 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2290 					  offsetof(struct pcie_state,
2291 						   svc_to_pipe_map)),
2292 				     &svc_to_pipe_map);
2293 	if (ret != 0) {
2294 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2295 		return ret;
2296 	}
2297 
2298 	if (svc_to_pipe_map == 0) {
2299 		ret = -EIO;
2300 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2301 		return ret;
2302 	}
2303 
2304 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2305 					target_service_to_ce_map_wlan,
2306 					sizeof(target_service_to_ce_map_wlan));
2307 	if (ret != 0) {
2308 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2309 		return ret;
2310 	}
2311 
2312 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2313 					  offsetof(struct pcie_state,
2314 						   config_flags)),
2315 				     &pcie_config_flags);
2316 	if (ret != 0) {
2317 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2318 		return ret;
2319 	}
2320 
2321 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2322 
2323 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2324 					   offsetof(struct pcie_state,
2325 						    config_flags)),
2326 				      pcie_config_flags);
2327 	if (ret != 0) {
2328 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2329 		return ret;
2330 	}
2331 
2332 	/* configure early allocation */
2333 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2334 
2335 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2336 	if (ret != 0) {
2337 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2338 		return ret;
2339 	}
2340 
2341 	/* first bank is switched to IRAM */
2342 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2343 			 HI_EARLY_ALLOC_MAGIC_MASK);
2344 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2345 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2346 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2347 
2348 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2349 	if (ret != 0) {
2350 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2351 		return ret;
2352 	}
2353 
2354 	/* Tell Target to proceed with initialization */
2355 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2356 
2357 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2358 	if (ret != 0) {
2359 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2360 		return ret;
2361 	}
2362 
2363 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2364 
2365 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2366 	if (ret != 0) {
2367 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2368 		return ret;
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2375 {
2376 	struct ce_attr *attr;
2377 	struct ce_pipe_config *config;
2378 
2379 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2380 	 * since it is currently used for other feature.
2381 	 */
2382 
2383 	/* Override Host's Copy Engine 5 configuration */
2384 	attr = &host_ce_config_wlan[5];
2385 	attr->src_sz_max = 0;
2386 	attr->dest_nentries = 0;
2387 
2388 	/* Override Target firmware's Copy Engine configuration */
2389 	config = &target_ce_config_wlan[5];
2390 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2391 	config->nbytes_max = __cpu_to_le32(2048);
2392 
2393 	/* Map from service/endpoint to Copy Engine */
2394 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2395 }
2396 
2397 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2398 {
2399 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2400 	struct ath10k_pci_pipe *pipe;
2401 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2402 	int i, ret;
2403 
2404 	for (i = 0; i < CE_COUNT; i++) {
2405 		pipe = &ar_pci->pipe_info[i];
2406 		pipe->ce_hdl = &ce->ce_states[i];
2407 		pipe->pipe_num = i;
2408 		pipe->hif_ce_state = ar;
2409 
2410 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2411 		if (ret) {
2412 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2413 				   i, ret);
2414 			return ret;
2415 		}
2416 
2417 		/* Last CE is Diagnostic Window */
2418 		if (i == CE_DIAG_PIPE) {
2419 			ar_pci->ce_diag = pipe->ce_hdl;
2420 			continue;
2421 		}
2422 
2423 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2424 	}
2425 
2426 	return 0;
2427 }
2428 
2429 void ath10k_pci_free_pipes(struct ath10k *ar)
2430 {
2431 	int i;
2432 
2433 	for (i = 0; i < CE_COUNT; i++)
2434 		ath10k_ce_free_pipe(ar, i);
2435 }
2436 
2437 int ath10k_pci_init_pipes(struct ath10k *ar)
2438 {
2439 	int i, ret;
2440 
2441 	for (i = 0; i < CE_COUNT; i++) {
2442 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2443 		if (ret) {
2444 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2445 				   i, ret);
2446 			return ret;
2447 		}
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2454 {
2455 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2456 	       FW_IND_EVENT_PENDING;
2457 }
2458 
2459 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2460 {
2461 	u32 val;
2462 
2463 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2464 	val &= ~FW_IND_EVENT_PENDING;
2465 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2466 }
2467 
2468 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2469 {
2470 	u32 val;
2471 
2472 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2473 	return (val == 0xffffffff);
2474 }
2475 
2476 /* this function effectively clears target memory controller assert line */
2477 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2478 {
2479 	u32 val;
2480 
2481 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2482 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2483 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2484 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2485 
2486 	msleep(10);
2487 
2488 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2489 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2490 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2491 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2492 
2493 	msleep(10);
2494 }
2495 
2496 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2497 {
2498 	u32 val;
2499 
2500 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2501 
2502 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2503 				SOC_RESET_CONTROL_ADDRESS);
2504 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2505 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2506 }
2507 
2508 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2509 {
2510 	u32 val;
2511 
2512 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2513 				SOC_RESET_CONTROL_ADDRESS);
2514 
2515 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2516 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2517 	msleep(10);
2518 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2519 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2520 }
2521 
2522 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2523 {
2524 	u32 val;
2525 
2526 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2527 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2528 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2529 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2530 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2531 }
2532 
2533 static int ath10k_pci_warm_reset(struct ath10k *ar)
2534 {
2535 	int ret;
2536 
2537 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2538 
2539 	spin_lock_bh(&ar->data_lock);
2540 	ar->stats.fw_warm_reset_counter++;
2541 	spin_unlock_bh(&ar->data_lock);
2542 
2543 	ath10k_pci_irq_disable(ar);
2544 
2545 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2546 	 * were to access copy engine while host performs copy engine reset
2547 	 * then it is possible for the device to confuse pci-e controller to
2548 	 * the point of bringing host system to a complete stop (i.e. hang).
2549 	 */
2550 	ath10k_pci_warm_reset_si0(ar);
2551 	ath10k_pci_warm_reset_cpu(ar);
2552 	ath10k_pci_init_pipes(ar);
2553 	ath10k_pci_wait_for_target_init(ar);
2554 
2555 	ath10k_pci_warm_reset_clear_lf(ar);
2556 	ath10k_pci_warm_reset_ce(ar);
2557 	ath10k_pci_warm_reset_cpu(ar);
2558 	ath10k_pci_init_pipes(ar);
2559 
2560 	ret = ath10k_pci_wait_for_target_init(ar);
2561 	if (ret) {
2562 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2563 		return ret;
2564 	}
2565 
2566 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2567 
2568 	return 0;
2569 }
2570 
2571 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2572 {
2573 	ath10k_pci_irq_disable(ar);
2574 	return ath10k_pci_qca99x0_chip_reset(ar);
2575 }
2576 
2577 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2578 {
2579 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2580 
2581 	if (!ar_pci->pci_soft_reset)
2582 		return -ENOTSUPP;
2583 
2584 	return ar_pci->pci_soft_reset(ar);
2585 }
2586 
2587 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2588 {
2589 	int i, ret;
2590 	u32 val;
2591 
2592 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2593 
2594 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2595 	 * It is thus preferred to use warm reset which is safer but may not be
2596 	 * able to recover the device from all possible fail scenarios.
2597 	 *
2598 	 * Warm reset doesn't always work on first try so attempt it a few
2599 	 * times before giving up.
2600 	 */
2601 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2602 		ret = ath10k_pci_warm_reset(ar);
2603 		if (ret) {
2604 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2605 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2606 				    ret);
2607 			continue;
2608 		}
2609 
2610 		/* FIXME: Sometimes copy engine doesn't recover after warm
2611 		 * reset. In most cases this needs cold reset. In some of these
2612 		 * cases the device is in such a state that a cold reset may
2613 		 * lock up the host.
2614 		 *
2615 		 * Reading any host interest register via copy engine is
2616 		 * sufficient to verify if device is capable of booting
2617 		 * firmware blob.
2618 		 */
2619 		ret = ath10k_pci_init_pipes(ar);
2620 		if (ret) {
2621 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2622 				    ret);
2623 			continue;
2624 		}
2625 
2626 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2627 					     &val);
2628 		if (ret) {
2629 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2630 				    ret);
2631 			continue;
2632 		}
2633 
2634 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2635 		return 0;
2636 	}
2637 
2638 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2639 		ath10k_warn(ar, "refusing cold reset as requested\n");
2640 		return -EPERM;
2641 	}
2642 
2643 	ret = ath10k_pci_cold_reset(ar);
2644 	if (ret) {
2645 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2646 		return ret;
2647 	}
2648 
2649 	ret = ath10k_pci_wait_for_target_init(ar);
2650 	if (ret) {
2651 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2652 			    ret);
2653 		return ret;
2654 	}
2655 
2656 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2657 
2658 	return 0;
2659 }
2660 
2661 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2662 {
2663 	int ret;
2664 
2665 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2666 
2667 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2668 
2669 	ret = ath10k_pci_cold_reset(ar);
2670 	if (ret) {
2671 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2672 		return ret;
2673 	}
2674 
2675 	ret = ath10k_pci_wait_for_target_init(ar);
2676 	if (ret) {
2677 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2678 			    ret);
2679 		return ret;
2680 	}
2681 
2682 	ret = ath10k_pci_warm_reset(ar);
2683 	if (ret) {
2684 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2685 		return ret;
2686 	}
2687 
2688 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2689 
2690 	return 0;
2691 }
2692 
2693 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2694 {
2695 	int ret;
2696 
2697 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2698 
2699 	ret = ath10k_pci_cold_reset(ar);
2700 	if (ret) {
2701 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2702 		return ret;
2703 	}
2704 
2705 	ret = ath10k_pci_wait_for_target_init(ar);
2706 	if (ret) {
2707 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2708 			    ret);
2709 		return ret;
2710 	}
2711 
2712 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2713 
2714 	return 0;
2715 }
2716 
2717 static int ath10k_pci_chip_reset(struct ath10k *ar)
2718 {
2719 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2720 
2721 	if (WARN_ON(!ar_pci->pci_hard_reset))
2722 		return -ENOTSUPP;
2723 
2724 	return ar_pci->pci_hard_reset(ar);
2725 }
2726 
2727 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2728 {
2729 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2730 	int ret;
2731 
2732 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2733 
2734 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2735 				  &ar_pci->link_ctl);
2736 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2737 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2738 
2739 	/*
2740 	 * Bring the target up cleanly.
2741 	 *
2742 	 * The target may be in an undefined state with an AUX-powered Target
2743 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2744 	 * restarted (without unloading the driver) then the Target is left
2745 	 * (aux) powered and running. On a subsequent driver load, the Target
2746 	 * is in an unexpected state. We try to catch that here in order to
2747 	 * reset the Target and retry the probe.
2748 	 */
2749 	ret = ath10k_pci_chip_reset(ar);
2750 	if (ret) {
2751 		if (ath10k_pci_has_fw_crashed(ar)) {
2752 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2753 			ath10k_pci_fw_crashed_clear(ar);
2754 			ath10k_pci_fw_crashed_dump(ar);
2755 		}
2756 
2757 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2758 		goto err_sleep;
2759 	}
2760 
2761 	ret = ath10k_pci_init_pipes(ar);
2762 	if (ret) {
2763 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2764 		goto err_sleep;
2765 	}
2766 
2767 	ret = ath10k_pci_init_config(ar);
2768 	if (ret) {
2769 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2770 		goto err_ce;
2771 	}
2772 
2773 	ret = ath10k_pci_wake_target_cpu(ar);
2774 	if (ret) {
2775 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2776 		goto err_ce;
2777 	}
2778 
2779 	return 0;
2780 
2781 err_ce:
2782 	ath10k_pci_ce_deinit(ar);
2783 
2784 err_sleep:
2785 	return ret;
2786 }
2787 
2788 void ath10k_pci_hif_power_down(struct ath10k *ar)
2789 {
2790 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2791 
2792 	/* Currently hif_power_up performs effectively a reset and hif_stop
2793 	 * resets the chip as well so there's no point in resetting here.
2794 	 */
2795 }
2796 
2797 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2798 {
2799 	/* Nothing to do; the important stuff is in the driver suspend. */
2800 	return 0;
2801 }
2802 
2803 static int ath10k_pci_suspend(struct ath10k *ar)
2804 {
2805 	/* The grace timer can still be counting down and ar->ps_awake be true.
2806 	 * It is known that the device may be asleep after resuming regardless
2807 	 * of the SoC powersave state before suspending. Hence make sure the
2808 	 * device is asleep before proceeding.
2809 	 */
2810 	ath10k_pci_sleep_sync(ar);
2811 
2812 	return 0;
2813 }
2814 
2815 static int ath10k_pci_hif_resume(struct ath10k *ar)
2816 {
2817 	/* Nothing to do; the important stuff is in the driver resume. */
2818 	return 0;
2819 }
2820 
2821 static int ath10k_pci_resume(struct ath10k *ar)
2822 {
2823 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2824 	struct pci_dev *pdev = ar_pci->pdev;
2825 	u32 val;
2826 	int ret = 0;
2827 
2828 	ret = ath10k_pci_force_wake(ar);
2829 	if (ret) {
2830 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2831 		return ret;
2832 	}
2833 
2834 	/* Suspend/Resume resets the PCI configuration space, so we have to
2835 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2836 	 * from interfering with C3 CPU state. pci_restore_state won't help
2837 	 * here since it only restores the first 64 bytes pci config header.
2838 	 */
2839 	pci_read_config_dword(pdev, 0x40, &val);
2840 	if ((val & 0x0000ff00) != 0)
2841 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2842 
2843 	return ret;
2844 }
2845 
2846 static bool ath10k_pci_validate_cal(void *data, size_t size)
2847 {
2848 	__le16 *cal_words = data;
2849 	u16 checksum = 0;
2850 	size_t i;
2851 
2852 	if (size % 2 != 0)
2853 		return false;
2854 
2855 	for (i = 0; i < size / 2; i++)
2856 		checksum ^= le16_to_cpu(cal_words[i]);
2857 
2858 	return checksum == 0xffff;
2859 }
2860 
2861 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2862 {
2863 	/* Enable SI clock */
2864 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2865 
2866 	/* Configure GPIOs for I2C operation */
2867 	ath10k_pci_write32(ar,
2868 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2869 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2870 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2871 			      GPIO_PIN0_CONFIG) |
2872 			   SM(1, GPIO_PIN0_PAD_PULL));
2873 
2874 	ath10k_pci_write32(ar,
2875 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2876 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2877 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2878 			   SM(1, GPIO_PIN0_PAD_PULL));
2879 
2880 	ath10k_pci_write32(ar,
2881 			   GPIO_BASE_ADDRESS +
2882 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2883 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2884 
2885 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2886 	ath10k_pci_write32(ar,
2887 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2888 			   SM(1, SI_CONFIG_ERR_INT) |
2889 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2890 			   SM(1, SI_CONFIG_I2C) |
2891 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2892 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2893 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2894 			   SM(8, SI_CONFIG_DIVIDER));
2895 }
2896 
2897 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2898 {
2899 	u32 reg;
2900 	int wait_limit;
2901 
2902 	/* set device select byte and for the read operation */
2903 	reg = QCA9887_EEPROM_SELECT_READ |
2904 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2905 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2906 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2907 
2908 	/* write transmit data, transfer length, and START bit */
2909 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2910 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2911 			   SM(4, SI_CS_TX_CNT));
2912 
2913 	/* wait max 1 sec */
2914 	wait_limit = 100000;
2915 
2916 	/* wait for SI_CS_DONE_INT */
2917 	do {
2918 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2919 		if (MS(reg, SI_CS_DONE_INT))
2920 			break;
2921 
2922 		wait_limit--;
2923 		udelay(10);
2924 	} while (wait_limit > 0);
2925 
2926 	if (!MS(reg, SI_CS_DONE_INT)) {
2927 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2928 			   addr);
2929 		return -ETIMEDOUT;
2930 	}
2931 
2932 	/* clear SI_CS_DONE_INT */
2933 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2934 
2935 	if (MS(reg, SI_CS_DONE_ERR)) {
2936 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2937 		return -EIO;
2938 	}
2939 
2940 	/* extract receive data */
2941 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2942 	*out = reg;
2943 
2944 	return 0;
2945 }
2946 
2947 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2948 					   size_t *data_len)
2949 {
2950 	u8 *caldata = NULL;
2951 	size_t calsize, i;
2952 	int ret;
2953 
2954 	if (!QCA_REV_9887(ar))
2955 		return -EOPNOTSUPP;
2956 
2957 	calsize = ar->hw_params.cal_data_len;
2958 	caldata = kmalloc(calsize, GFP_KERNEL);
2959 	if (!caldata)
2960 		return -ENOMEM;
2961 
2962 	ath10k_pci_enable_eeprom(ar);
2963 
2964 	for (i = 0; i < calsize; i++) {
2965 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2966 		if (ret)
2967 			goto err_free;
2968 	}
2969 
2970 	if (!ath10k_pci_validate_cal(caldata, calsize))
2971 		goto err_free;
2972 
2973 	*data = caldata;
2974 	*data_len = calsize;
2975 
2976 	return 0;
2977 
2978 err_free:
2979 	kfree(caldata);
2980 
2981 	return -EINVAL;
2982 }
2983 
2984 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2985 	.tx_sg			= ath10k_pci_hif_tx_sg,
2986 	.diag_read		= ath10k_pci_hif_diag_read,
2987 	.diag_write		= ath10k_pci_diag_write_mem,
2988 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2989 	.start			= ath10k_pci_hif_start,
2990 	.stop			= ath10k_pci_hif_stop,
2991 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2992 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2993 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2994 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2995 	.power_up		= ath10k_pci_hif_power_up,
2996 	.power_down		= ath10k_pci_hif_power_down,
2997 	.read32			= ath10k_pci_read32,
2998 	.write32		= ath10k_pci_write32,
2999 	.suspend		= ath10k_pci_hif_suspend,
3000 	.resume			= ath10k_pci_hif_resume,
3001 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3002 };
3003 
3004 /*
3005  * Top-level interrupt handler for all PCI interrupts from a Target.
3006  * When a block of MSI interrupts is allocated, this top-level handler
3007  * is not used; instead, we directly call the correct sub-handler.
3008  */
3009 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3010 {
3011 	struct ath10k *ar = arg;
3012 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3013 	int ret;
3014 
3015 	if (ath10k_pci_has_device_gone(ar))
3016 		return IRQ_NONE;
3017 
3018 	ret = ath10k_pci_force_wake(ar);
3019 	if (ret) {
3020 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3021 		return IRQ_NONE;
3022 	}
3023 
3024 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3025 	    !ath10k_pci_irq_pending(ar))
3026 		return IRQ_NONE;
3027 
3028 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3029 	ath10k_pci_irq_msi_fw_mask(ar);
3030 	napi_schedule(&ar->napi);
3031 
3032 	return IRQ_HANDLED;
3033 }
3034 
3035 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3036 {
3037 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3038 	int done = 0;
3039 
3040 	if (ath10k_pci_has_fw_crashed(ar)) {
3041 		ath10k_pci_fw_crashed_clear(ar);
3042 		ath10k_pci_fw_crashed_dump(ar);
3043 		napi_complete(ctx);
3044 		return done;
3045 	}
3046 
3047 	ath10k_ce_per_engine_service_any(ar);
3048 
3049 	done = ath10k_htt_txrx_compl_task(ar, budget);
3050 
3051 	if (done < budget) {
3052 		napi_complete_done(ctx, done);
3053 		/* In case of MSI, it is possible that interrupts are received
3054 		 * while NAPI poll is inprogress. So pending interrupts that are
3055 		 * received after processing all copy engine pipes by NAPI poll
3056 		 * will not be handled again. This is causing failure to
3057 		 * complete boot sequence in x86 platform. So before enabling
3058 		 * interrupts safer to check for pending interrupts for
3059 		 * immediate servicing.
3060 		 */
3061 		if (ath10k_ce_interrupt_summary(ar)) {
3062 			napi_reschedule(ctx);
3063 			goto out;
3064 		}
3065 		ath10k_pci_enable_legacy_irq(ar);
3066 		ath10k_pci_irq_msi_fw_unmask(ar);
3067 	}
3068 
3069 out:
3070 	return done;
3071 }
3072 
3073 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3074 {
3075 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3076 	int ret;
3077 
3078 	ret = request_irq(ar_pci->pdev->irq,
3079 			  ath10k_pci_interrupt_handler,
3080 			  IRQF_SHARED, "ath10k_pci", ar);
3081 	if (ret) {
3082 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3083 			    ar_pci->pdev->irq, ret);
3084 		return ret;
3085 	}
3086 
3087 	return 0;
3088 }
3089 
3090 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3091 {
3092 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3093 	int ret;
3094 
3095 	ret = request_irq(ar_pci->pdev->irq,
3096 			  ath10k_pci_interrupt_handler,
3097 			  IRQF_SHARED, "ath10k_pci", ar);
3098 	if (ret) {
3099 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3100 			    ar_pci->pdev->irq, ret);
3101 		return ret;
3102 	}
3103 
3104 	return 0;
3105 }
3106 
3107 static int ath10k_pci_request_irq(struct ath10k *ar)
3108 {
3109 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3110 
3111 	switch (ar_pci->oper_irq_mode) {
3112 	case ATH10K_PCI_IRQ_LEGACY:
3113 		return ath10k_pci_request_irq_legacy(ar);
3114 	case ATH10K_PCI_IRQ_MSI:
3115 		return ath10k_pci_request_irq_msi(ar);
3116 	default:
3117 		return -EINVAL;
3118 	}
3119 }
3120 
3121 static void ath10k_pci_free_irq(struct ath10k *ar)
3122 {
3123 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3124 
3125 	free_irq(ar_pci->pdev->irq, ar);
3126 }
3127 
3128 void ath10k_pci_init_napi(struct ath10k *ar)
3129 {
3130 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3131 		       ATH10K_NAPI_BUDGET);
3132 }
3133 
3134 static int ath10k_pci_init_irq(struct ath10k *ar)
3135 {
3136 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3137 	int ret;
3138 
3139 	ath10k_pci_init_napi(ar);
3140 
3141 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3142 		ath10k_info(ar, "limiting irq mode to: %d\n",
3143 			    ath10k_pci_irq_mode);
3144 
3145 	/* Try MSI */
3146 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3147 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3148 		ret = pci_enable_msi(ar_pci->pdev);
3149 		if (ret == 0)
3150 			return 0;
3151 
3152 		/* fall-through */
3153 	}
3154 
3155 	/* Try legacy irq
3156 	 *
3157 	 * A potential race occurs here: The CORE_BASE write
3158 	 * depends on target correctly decoding AXI address but
3159 	 * host won't know when target writes BAR to CORE_CTRL.
3160 	 * This write might get lost if target has NOT written BAR.
3161 	 * For now, fix the race by repeating the write in below
3162 	 * synchronization checking.
3163 	 */
3164 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3165 
3166 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3167 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3168 
3169 	return 0;
3170 }
3171 
3172 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3173 {
3174 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3175 			   0);
3176 }
3177 
3178 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3179 {
3180 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3181 
3182 	switch (ar_pci->oper_irq_mode) {
3183 	case ATH10K_PCI_IRQ_LEGACY:
3184 		ath10k_pci_deinit_irq_legacy(ar);
3185 		break;
3186 	default:
3187 		pci_disable_msi(ar_pci->pdev);
3188 		break;
3189 	}
3190 
3191 	return 0;
3192 }
3193 
3194 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3195 {
3196 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3197 	unsigned long timeout;
3198 	u32 val;
3199 
3200 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3201 
3202 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3203 
3204 	do {
3205 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3206 
3207 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3208 			   val);
3209 
3210 		/* target should never return this */
3211 		if (val == 0xffffffff)
3212 			continue;
3213 
3214 		/* the device has crashed so don't bother trying anymore */
3215 		if (val & FW_IND_EVENT_PENDING)
3216 			break;
3217 
3218 		if (val & FW_IND_INITIALIZED)
3219 			break;
3220 
3221 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3222 			/* Fix potential race by repeating CORE_BASE writes */
3223 			ath10k_pci_enable_legacy_irq(ar);
3224 
3225 		mdelay(10);
3226 	} while (time_before(jiffies, timeout));
3227 
3228 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3229 	ath10k_pci_irq_msi_fw_mask(ar);
3230 
3231 	if (val == 0xffffffff) {
3232 		ath10k_err(ar, "failed to read device register, device is gone\n");
3233 		return -EIO;
3234 	}
3235 
3236 	if (val & FW_IND_EVENT_PENDING) {
3237 		ath10k_warn(ar, "device has crashed during init\n");
3238 		return -ECOMM;
3239 	}
3240 
3241 	if (!(val & FW_IND_INITIALIZED)) {
3242 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3243 			   val);
3244 		return -ETIMEDOUT;
3245 	}
3246 
3247 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3248 	return 0;
3249 }
3250 
3251 static int ath10k_pci_cold_reset(struct ath10k *ar)
3252 {
3253 	u32 val;
3254 
3255 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3256 
3257 	spin_lock_bh(&ar->data_lock);
3258 
3259 	ar->stats.fw_cold_reset_counter++;
3260 
3261 	spin_unlock_bh(&ar->data_lock);
3262 
3263 	/* Put Target, including PCIe, into RESET. */
3264 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3265 	val |= 1;
3266 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3267 
3268 	/* After writing into SOC_GLOBAL_RESET to put device into
3269 	 * reset and pulling out of reset pcie may not be stable
3270 	 * for any immediate pcie register access and cause bus error,
3271 	 * add delay before any pcie access request to fix this issue.
3272 	 */
3273 	msleep(20);
3274 
3275 	/* Pull Target, including PCIe, out of RESET. */
3276 	val &= ~1;
3277 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3278 
3279 	msleep(20);
3280 
3281 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3282 
3283 	return 0;
3284 }
3285 
3286 static int ath10k_pci_claim(struct ath10k *ar)
3287 {
3288 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3289 	struct pci_dev *pdev = ar_pci->pdev;
3290 	int ret;
3291 
3292 	pci_set_drvdata(pdev, ar);
3293 
3294 	ret = pci_enable_device(pdev);
3295 	if (ret) {
3296 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3297 		return ret;
3298 	}
3299 
3300 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3301 	if (ret) {
3302 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3303 			   ret);
3304 		goto err_device;
3305 	}
3306 
3307 	/* Target expects 32 bit DMA. Enforce it. */
3308 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3309 	if (ret) {
3310 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3311 		goto err_region;
3312 	}
3313 
3314 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3315 	if (ret) {
3316 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3317 			   ret);
3318 		goto err_region;
3319 	}
3320 
3321 	pci_set_master(pdev);
3322 
3323 	/* Arrange for access to Target SoC registers. */
3324 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3325 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3326 	if (!ar_pci->mem) {
3327 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3328 		ret = -EIO;
3329 		goto err_master;
3330 	}
3331 
3332 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3333 	return 0;
3334 
3335 err_master:
3336 	pci_clear_master(pdev);
3337 
3338 err_region:
3339 	pci_release_region(pdev, BAR_NUM);
3340 
3341 err_device:
3342 	pci_disable_device(pdev);
3343 
3344 	return ret;
3345 }
3346 
3347 static void ath10k_pci_release(struct ath10k *ar)
3348 {
3349 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3350 	struct pci_dev *pdev = ar_pci->pdev;
3351 
3352 	pci_iounmap(pdev, ar_pci->mem);
3353 	pci_release_region(pdev, BAR_NUM);
3354 	pci_clear_master(pdev);
3355 	pci_disable_device(pdev);
3356 }
3357 
3358 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3359 {
3360 	const struct ath10k_pci_supp_chip *supp_chip;
3361 	int i;
3362 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3363 
3364 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3365 		supp_chip = &ath10k_pci_supp_chips[i];
3366 
3367 		if (supp_chip->dev_id == dev_id &&
3368 		    supp_chip->rev_id == rev_id)
3369 			return true;
3370 	}
3371 
3372 	return false;
3373 }
3374 
3375 int ath10k_pci_setup_resource(struct ath10k *ar)
3376 {
3377 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3378 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3379 	int ret;
3380 
3381 	spin_lock_init(&ce->ce_lock);
3382 	spin_lock_init(&ar_pci->ps_lock);
3383 
3384 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3385 
3386 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3387 		ath10k_pci_override_ce_config(ar);
3388 
3389 	ret = ath10k_pci_alloc_pipes(ar);
3390 	if (ret) {
3391 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3392 			   ret);
3393 		return ret;
3394 	}
3395 
3396 	return 0;
3397 }
3398 
3399 void ath10k_pci_release_resource(struct ath10k *ar)
3400 {
3401 	ath10k_pci_rx_retry_sync(ar);
3402 	netif_napi_del(&ar->napi);
3403 	ath10k_pci_ce_deinit(ar);
3404 	ath10k_pci_free_pipes(ar);
3405 }
3406 
3407 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3408 	.read32		= ath10k_bus_pci_read32,
3409 	.write32	= ath10k_bus_pci_write32,
3410 	.get_num_banks	= ath10k_pci_get_num_banks,
3411 };
3412 
3413 static int ath10k_pci_probe(struct pci_dev *pdev,
3414 			    const struct pci_device_id *pci_dev)
3415 {
3416 	int ret = 0;
3417 	struct ath10k *ar;
3418 	struct ath10k_pci *ar_pci;
3419 	enum ath10k_hw_rev hw_rev;
3420 	u32 chip_id;
3421 	bool pci_ps;
3422 	int (*pci_soft_reset)(struct ath10k *ar);
3423 	int (*pci_hard_reset)(struct ath10k *ar);
3424 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3425 
3426 	switch (pci_dev->device) {
3427 	case QCA988X_2_0_DEVICE_ID:
3428 		hw_rev = ATH10K_HW_QCA988X;
3429 		pci_ps = false;
3430 		pci_soft_reset = ath10k_pci_warm_reset;
3431 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3432 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3433 		break;
3434 	case QCA9887_1_0_DEVICE_ID:
3435 		hw_rev = ATH10K_HW_QCA9887;
3436 		pci_ps = false;
3437 		pci_soft_reset = ath10k_pci_warm_reset;
3438 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3439 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3440 		break;
3441 	case QCA6164_2_1_DEVICE_ID:
3442 	case QCA6174_2_1_DEVICE_ID:
3443 		hw_rev = ATH10K_HW_QCA6174;
3444 		pci_ps = true;
3445 		pci_soft_reset = ath10k_pci_warm_reset;
3446 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3447 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3448 		break;
3449 	case QCA99X0_2_0_DEVICE_ID:
3450 		hw_rev = ATH10K_HW_QCA99X0;
3451 		pci_ps = false;
3452 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3453 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3454 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3455 		break;
3456 	case QCA9984_1_0_DEVICE_ID:
3457 		hw_rev = ATH10K_HW_QCA9984;
3458 		pci_ps = false;
3459 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3460 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3461 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3462 		break;
3463 	case QCA9888_2_0_DEVICE_ID:
3464 		hw_rev = ATH10K_HW_QCA9888;
3465 		pci_ps = false;
3466 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3467 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3468 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3469 		break;
3470 	case QCA9377_1_0_DEVICE_ID:
3471 		hw_rev = ATH10K_HW_QCA9377;
3472 		pci_ps = true;
3473 		pci_soft_reset = NULL;
3474 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3475 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3476 		break;
3477 	default:
3478 		WARN_ON(1);
3479 		return -ENOTSUPP;
3480 	}
3481 
3482 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3483 				hw_rev, &ath10k_pci_hif_ops);
3484 	if (!ar) {
3485 		dev_err(&pdev->dev, "failed to allocate core\n");
3486 		return -ENOMEM;
3487 	}
3488 
3489 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3490 		   pdev->vendor, pdev->device,
3491 		   pdev->subsystem_vendor, pdev->subsystem_device);
3492 
3493 	ar_pci = ath10k_pci_priv(ar);
3494 	ar_pci->pdev = pdev;
3495 	ar_pci->dev = &pdev->dev;
3496 	ar_pci->ar = ar;
3497 	ar->dev_id = pci_dev->device;
3498 	ar_pci->pci_ps = pci_ps;
3499 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3500 	ar_pci->pci_soft_reset = pci_soft_reset;
3501 	ar_pci->pci_hard_reset = pci_hard_reset;
3502 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3503 	ar->ce_priv = &ar_pci->ce;
3504 
3505 	ar->id.vendor = pdev->vendor;
3506 	ar->id.device = pdev->device;
3507 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3508 	ar->id.subsystem_device = pdev->subsystem_device;
3509 
3510 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3511 
3512 	ret = ath10k_pci_setup_resource(ar);
3513 	if (ret) {
3514 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3515 		goto err_core_destroy;
3516 	}
3517 
3518 	ret = ath10k_pci_claim(ar);
3519 	if (ret) {
3520 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3521 		goto err_free_pipes;
3522 	}
3523 
3524 	ret = ath10k_pci_force_wake(ar);
3525 	if (ret) {
3526 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3527 		goto err_sleep;
3528 	}
3529 
3530 	ath10k_pci_ce_deinit(ar);
3531 	ath10k_pci_irq_disable(ar);
3532 
3533 	ret = ath10k_pci_init_irq(ar);
3534 	if (ret) {
3535 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3536 		goto err_sleep;
3537 	}
3538 
3539 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3540 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3541 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3542 
3543 	ret = ath10k_pci_request_irq(ar);
3544 	if (ret) {
3545 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3546 		goto err_deinit_irq;
3547 	}
3548 
3549 	ret = ath10k_pci_chip_reset(ar);
3550 	if (ret) {
3551 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3552 		goto err_free_irq;
3553 	}
3554 
3555 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3556 	if (chip_id == 0xffffffff) {
3557 		ath10k_err(ar, "failed to get chip id\n");
3558 		goto err_free_irq;
3559 	}
3560 
3561 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3562 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3563 			   pdev->device, chip_id);
3564 		goto err_free_irq;
3565 	}
3566 
3567 	ret = ath10k_core_register(ar, chip_id);
3568 	if (ret) {
3569 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3570 		goto err_free_irq;
3571 	}
3572 
3573 	return 0;
3574 
3575 err_free_irq:
3576 	ath10k_pci_free_irq(ar);
3577 	ath10k_pci_rx_retry_sync(ar);
3578 
3579 err_deinit_irq:
3580 	ath10k_pci_deinit_irq(ar);
3581 
3582 err_sleep:
3583 	ath10k_pci_sleep_sync(ar);
3584 	ath10k_pci_release(ar);
3585 
3586 err_free_pipes:
3587 	ath10k_pci_free_pipes(ar);
3588 
3589 err_core_destroy:
3590 	ath10k_core_destroy(ar);
3591 
3592 	return ret;
3593 }
3594 
3595 static void ath10k_pci_remove(struct pci_dev *pdev)
3596 {
3597 	struct ath10k *ar = pci_get_drvdata(pdev);
3598 	struct ath10k_pci *ar_pci;
3599 
3600 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3601 
3602 	if (!ar)
3603 		return;
3604 
3605 	ar_pci = ath10k_pci_priv(ar);
3606 
3607 	if (!ar_pci)
3608 		return;
3609 
3610 	ath10k_core_unregister(ar);
3611 	ath10k_pci_free_irq(ar);
3612 	ath10k_pci_deinit_irq(ar);
3613 	ath10k_pci_release_resource(ar);
3614 	ath10k_pci_sleep_sync(ar);
3615 	ath10k_pci_release(ar);
3616 	ath10k_core_destroy(ar);
3617 }
3618 
3619 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3620 
3621 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3622 {
3623 	struct ath10k *ar = dev_get_drvdata(dev);
3624 	int ret;
3625 
3626 	ret = ath10k_pci_suspend(ar);
3627 	if (ret)
3628 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3629 
3630 	return ret;
3631 }
3632 
3633 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3634 {
3635 	struct ath10k *ar = dev_get_drvdata(dev);
3636 	int ret;
3637 
3638 	ret = ath10k_pci_resume(ar);
3639 	if (ret)
3640 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3641 
3642 	return ret;
3643 }
3644 
3645 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3646 			 ath10k_pci_pm_suspend,
3647 			 ath10k_pci_pm_resume);
3648 
3649 static struct pci_driver ath10k_pci_driver = {
3650 	.name = "ath10k_pci",
3651 	.id_table = ath10k_pci_id_table,
3652 	.probe = ath10k_pci_probe,
3653 	.remove = ath10k_pci_remove,
3654 #ifdef CONFIG_PM
3655 	.driver.pm = &ath10k_pci_pm_ops,
3656 #endif
3657 };
3658 
3659 static int __init ath10k_pci_init(void)
3660 {
3661 	int ret;
3662 
3663 	ret = pci_register_driver(&ath10k_pci_driver);
3664 	if (ret)
3665 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3666 		       ret);
3667 
3668 	ret = ath10k_ahb_init();
3669 	if (ret)
3670 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3671 
3672 	return ret;
3673 }
3674 module_init(ath10k_pci_init);
3675 
3676 static void __exit ath10k_pci_exit(void)
3677 {
3678 	pci_unregister_driver(&ath10k_pci_driver);
3679 	ath10k_ahb_exit();
3680 }
3681 
3682 module_exit(ath10k_pci_exit);
3683 
3684 MODULE_AUTHOR("Qualcomm Atheros");
3685 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3686 MODULE_LICENSE("Dual BSD/GPL");
3687 
3688 /* QCA988x 2.0 firmware files */
3689 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3690 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3691 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3692 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3693 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3694 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3695 
3696 /* QCA9887 1.0 firmware files */
3697 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3698 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3699 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3700 
3701 /* QCA6174 2.1 firmware files */
3702 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3703 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3704 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3705 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3706 
3707 /* QCA6174 3.1 firmware files */
3708 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3709 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3710 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3711 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3712 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3713 
3714 /* QCA9377 1.0 firmware files */
3715 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3716 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3717