xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_irq_mode {
37 	ATH10K_PCI_IRQ_AUTO = 0,
38 	ATH10K_PCI_IRQ_LEGACY = 1,
39 	ATH10K_PCI_IRQ_MSI = 2,
40 };
41 
42 enum ath10k_pci_reset_mode {
43 	ATH10K_PCI_RESET_AUTO = 0,
44 	ATH10K_PCI_RESET_WARM_ONLY = 1,
45 };
46 
47 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49 
50 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52 
53 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55 
56 /* how long wait to wait for target to initialise, in ms */
57 #define ATH10K_PCI_TARGET_WAIT 3000
58 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59 
60 static const struct pci_device_id ath10k_pci_id_table[] = {
61 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
62 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
63 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
64 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
65 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
66 	{0}
67 };
68 
69 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
71 	 * hacks. ath10k doesn't have them and these devices crash horribly
72 	 * because of that.
73 	 */
74 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75 
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81 
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87 
88 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89 
90 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
91 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
92 };
93 
94 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
95 static int ath10k_pci_cold_reset(struct ath10k *ar);
96 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
97 static int ath10k_pci_init_irq(struct ath10k *ar);
98 static int ath10k_pci_deinit_irq(struct ath10k *ar);
99 static int ath10k_pci_request_irq(struct ath10k *ar);
100 static void ath10k_pci_free_irq(struct ath10k *ar);
101 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
102 			       struct ath10k_ce_pipe *rx_pipe,
103 			       struct bmi_xfer *xfer);
104 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
105 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
106 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
107 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
108 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
109 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
111 
112 static struct ce_attr host_ce_config_wlan[] = {
113 	/* CE0: host->target HTC control and raw streams */
114 	{
115 		.flags = CE_ATTR_FLAGS,
116 		.src_nentries = 16,
117 		.src_sz_max = 256,
118 		.dest_nentries = 0,
119 		.send_cb = ath10k_pci_htc_tx_cb,
120 	},
121 
122 	/* CE1: target->host HTT + HTC control */
123 	{
124 		.flags = CE_ATTR_FLAGS,
125 		.src_nentries = 0,
126 		.src_sz_max = 2048,
127 		.dest_nentries = 512,
128 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
129 	},
130 
131 	/* CE2: target->host WMI */
132 	{
133 		.flags = CE_ATTR_FLAGS,
134 		.src_nentries = 0,
135 		.src_sz_max = 2048,
136 		.dest_nentries = 128,
137 		.recv_cb = ath10k_pci_htc_rx_cb,
138 	},
139 
140 	/* CE3: host->target WMI */
141 	{
142 		.flags = CE_ATTR_FLAGS,
143 		.src_nentries = 32,
144 		.src_sz_max = 2048,
145 		.dest_nentries = 0,
146 		.send_cb = ath10k_pci_htc_tx_cb,
147 	},
148 
149 	/* CE4: host->target HTT */
150 	{
151 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
152 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
153 		.src_sz_max = 256,
154 		.dest_nentries = 0,
155 		.send_cb = ath10k_pci_htt_tx_cb,
156 	},
157 
158 	/* CE5: target->host HTT (HIF->HTT) */
159 	{
160 		.flags = CE_ATTR_FLAGS,
161 		.src_nentries = 0,
162 		.src_sz_max = 512,
163 		.dest_nentries = 512,
164 		.recv_cb = ath10k_pci_htt_rx_cb,
165 	},
166 
167 	/* CE6: target autonomous hif_memcpy */
168 	{
169 		.flags = CE_ATTR_FLAGS,
170 		.src_nentries = 0,
171 		.src_sz_max = 0,
172 		.dest_nentries = 0,
173 	},
174 
175 	/* CE7: ce_diag, the Diagnostic Window */
176 	{
177 		.flags = CE_ATTR_FLAGS,
178 		.src_nentries = 2,
179 		.src_sz_max = DIAG_TRANSFER_LIMIT,
180 		.dest_nentries = 2,
181 	},
182 
183 	/* CE8: target->host pktlog */
184 	{
185 		.flags = CE_ATTR_FLAGS,
186 		.src_nentries = 0,
187 		.src_sz_max = 2048,
188 		.dest_nentries = 128,
189 		.recv_cb = ath10k_pci_pktlog_rx_cb,
190 	},
191 
192 	/* CE9 target autonomous qcache memcpy */
193 	{
194 		.flags = CE_ATTR_FLAGS,
195 		.src_nentries = 0,
196 		.src_sz_max = 0,
197 		.dest_nentries = 0,
198 	},
199 
200 	/* CE10: target autonomous hif memcpy */
201 	{
202 		.flags = CE_ATTR_FLAGS,
203 		.src_nentries = 0,
204 		.src_sz_max = 0,
205 		.dest_nentries = 0,
206 	},
207 
208 	/* CE11: target autonomous hif memcpy */
209 	{
210 		.flags = CE_ATTR_FLAGS,
211 		.src_nentries = 0,
212 		.src_sz_max = 0,
213 		.dest_nentries = 0,
214 	},
215 };
216 
217 /* Target firmware's Copy Engine configuration. */
218 static struct ce_pipe_config target_ce_config_wlan[] = {
219 	/* CE0: host->target HTC control and raw streams */
220 	{
221 		.pipenum = __cpu_to_le32(0),
222 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
223 		.nentries = __cpu_to_le32(32),
224 		.nbytes_max = __cpu_to_le32(256),
225 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
226 		.reserved = __cpu_to_le32(0),
227 	},
228 
229 	/* CE1: target->host HTT + HTC control */
230 	{
231 		.pipenum = __cpu_to_le32(1),
232 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
233 		.nentries = __cpu_to_le32(32),
234 		.nbytes_max = __cpu_to_le32(2048),
235 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
236 		.reserved = __cpu_to_le32(0),
237 	},
238 
239 	/* CE2: target->host WMI */
240 	{
241 		.pipenum = __cpu_to_le32(2),
242 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
243 		.nentries = __cpu_to_le32(64),
244 		.nbytes_max = __cpu_to_le32(2048),
245 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
246 		.reserved = __cpu_to_le32(0),
247 	},
248 
249 	/* CE3: host->target WMI */
250 	{
251 		.pipenum = __cpu_to_le32(3),
252 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
253 		.nentries = __cpu_to_le32(32),
254 		.nbytes_max = __cpu_to_le32(2048),
255 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
256 		.reserved = __cpu_to_le32(0),
257 	},
258 
259 	/* CE4: host->target HTT */
260 	{
261 		.pipenum = __cpu_to_le32(4),
262 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
263 		.nentries = __cpu_to_le32(256),
264 		.nbytes_max = __cpu_to_le32(256),
265 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
266 		.reserved = __cpu_to_le32(0),
267 	},
268 
269 	/* NB: 50% of src nentries, since tx has 2 frags */
270 
271 	/* CE5: target->host HTT (HIF->HTT) */
272 	{
273 		.pipenum = __cpu_to_le32(5),
274 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
275 		.nentries = __cpu_to_le32(32),
276 		.nbytes_max = __cpu_to_le32(512),
277 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
278 		.reserved = __cpu_to_le32(0),
279 	},
280 
281 	/* CE6: Reserved for target autonomous hif_memcpy */
282 	{
283 		.pipenum = __cpu_to_le32(6),
284 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
285 		.nentries = __cpu_to_le32(32),
286 		.nbytes_max = __cpu_to_le32(4096),
287 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
288 		.reserved = __cpu_to_le32(0),
289 	},
290 
291 	/* CE7 used only by Host */
292 	{
293 		.pipenum = __cpu_to_le32(7),
294 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
295 		.nentries = __cpu_to_le32(0),
296 		.nbytes_max = __cpu_to_le32(0),
297 		.flags = __cpu_to_le32(0),
298 		.reserved = __cpu_to_le32(0),
299 	},
300 
301 	/* CE8 target->host packtlog */
302 	{
303 		.pipenum = __cpu_to_le32(8),
304 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
305 		.nentries = __cpu_to_le32(64),
306 		.nbytes_max = __cpu_to_le32(2048),
307 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
308 		.reserved = __cpu_to_le32(0),
309 	},
310 
311 	/* CE9 target autonomous qcache memcpy */
312 	{
313 		.pipenum = __cpu_to_le32(9),
314 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
315 		.nentries = __cpu_to_le32(32),
316 		.nbytes_max = __cpu_to_le32(2048),
317 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
318 		.reserved = __cpu_to_le32(0),
319 	},
320 
321 	/* It not necessary to send target wlan configuration for CE10 & CE11
322 	 * as these CEs are not actively used in target.
323 	 */
324 };
325 
326 /*
327  * Map from service/endpoint to Copy Engine.
328  * This table is derived from the CE_PCI TABLE, above.
329  * It is passed to the Target at startup for use by firmware.
330  */
331 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
332 	{
333 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
334 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
335 		__cpu_to_le32(3),
336 	},
337 	{
338 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
339 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
340 		__cpu_to_le32(2),
341 	},
342 	{
343 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
344 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
345 		__cpu_to_le32(3),
346 	},
347 	{
348 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
349 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
350 		__cpu_to_le32(2),
351 	},
352 	{
353 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
354 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
355 		__cpu_to_le32(3),
356 	},
357 	{
358 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
359 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
360 		__cpu_to_le32(2),
361 	},
362 	{
363 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
364 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
365 		__cpu_to_le32(3),
366 	},
367 	{
368 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
369 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
370 		__cpu_to_le32(2),
371 	},
372 	{
373 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
374 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
375 		__cpu_to_le32(3),
376 	},
377 	{
378 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
379 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
380 		__cpu_to_le32(2),
381 	},
382 	{
383 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
384 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
385 		__cpu_to_le32(0),
386 	},
387 	{
388 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
389 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
390 		__cpu_to_le32(1),
391 	},
392 	{ /* not used */
393 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
394 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
395 		__cpu_to_le32(0),
396 	},
397 	{ /* not used */
398 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
399 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
400 		__cpu_to_le32(1),
401 	},
402 	{
403 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
404 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
405 		__cpu_to_le32(4),
406 	},
407 	{
408 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
409 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
410 		__cpu_to_le32(5),
411 	},
412 
413 	/* (Additions here) */
414 
415 	{ /* must be last */
416 		__cpu_to_le32(0),
417 		__cpu_to_le32(0),
418 		__cpu_to_le32(0),
419 	},
420 };
421 
422 static bool ath10k_pci_is_awake(struct ath10k *ar)
423 {
424 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
425 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
426 			   RTC_STATE_ADDRESS);
427 
428 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
429 }
430 
431 static void __ath10k_pci_wake(struct ath10k *ar)
432 {
433 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
434 
435 	lockdep_assert_held(&ar_pci->ps_lock);
436 
437 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
438 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
439 
440 	iowrite32(PCIE_SOC_WAKE_V_MASK,
441 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
442 		  PCIE_SOC_WAKE_ADDRESS);
443 }
444 
445 static void __ath10k_pci_sleep(struct ath10k *ar)
446 {
447 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
448 
449 	lockdep_assert_held(&ar_pci->ps_lock);
450 
451 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
452 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
453 
454 	iowrite32(PCIE_SOC_WAKE_RESET,
455 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
456 		  PCIE_SOC_WAKE_ADDRESS);
457 	ar_pci->ps_awake = false;
458 }
459 
460 static int ath10k_pci_wake_wait(struct ath10k *ar)
461 {
462 	int tot_delay = 0;
463 	int curr_delay = 5;
464 
465 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
466 		if (ath10k_pci_is_awake(ar)) {
467 			if (tot_delay > PCIE_WAKE_LATE_US)
468 				ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
469 					    tot_delay / 1000);
470 			return 0;
471 		}
472 
473 		udelay(curr_delay);
474 		tot_delay += curr_delay;
475 
476 		if (curr_delay < 50)
477 			curr_delay += 5;
478 	}
479 
480 	return -ETIMEDOUT;
481 }
482 
483 static int ath10k_pci_force_wake(struct ath10k *ar)
484 {
485 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
486 	unsigned long flags;
487 	int ret = 0;
488 
489 	if (ar_pci->pci_ps)
490 		return ret;
491 
492 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
493 
494 	if (!ar_pci->ps_awake) {
495 		iowrite32(PCIE_SOC_WAKE_V_MASK,
496 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
497 			  PCIE_SOC_WAKE_ADDRESS);
498 
499 		ret = ath10k_pci_wake_wait(ar);
500 		if (ret == 0)
501 			ar_pci->ps_awake = true;
502 	}
503 
504 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
505 
506 	return ret;
507 }
508 
509 static void ath10k_pci_force_sleep(struct ath10k *ar)
510 {
511 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
515 
516 	iowrite32(PCIE_SOC_WAKE_RESET,
517 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
518 		  PCIE_SOC_WAKE_ADDRESS);
519 	ar_pci->ps_awake = false;
520 
521 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
522 }
523 
524 static int ath10k_pci_wake(struct ath10k *ar)
525 {
526 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
527 	unsigned long flags;
528 	int ret = 0;
529 
530 	if (ar_pci->pci_ps == 0)
531 		return ret;
532 
533 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
534 
535 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
536 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
537 
538 	/* This function can be called very frequently. To avoid excessive
539 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
540 	 */
541 	if (!ar_pci->ps_awake) {
542 		__ath10k_pci_wake(ar);
543 
544 		ret = ath10k_pci_wake_wait(ar);
545 		if (ret == 0)
546 			ar_pci->ps_awake = true;
547 	}
548 
549 	if (ret == 0) {
550 		ar_pci->ps_wake_refcount++;
551 		WARN_ON(ar_pci->ps_wake_refcount == 0);
552 	}
553 
554 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
555 
556 	return ret;
557 }
558 
559 static void ath10k_pci_sleep(struct ath10k *ar)
560 {
561 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
562 	unsigned long flags;
563 
564 	if (ar_pci->pci_ps == 0)
565 		return;
566 
567 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
568 
569 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
570 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
571 
572 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
573 		goto skip;
574 
575 	ar_pci->ps_wake_refcount--;
576 
577 	mod_timer(&ar_pci->ps_timer, jiffies +
578 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
579 
580 skip:
581 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
582 }
583 
584 static void ath10k_pci_ps_timer(unsigned long ptr)
585 {
586 	struct ath10k *ar = (void *)ptr;
587 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
591 
592 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
593 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
594 
595 	if (ar_pci->ps_wake_refcount > 0)
596 		goto skip;
597 
598 	__ath10k_pci_sleep(ar);
599 
600 skip:
601 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
602 }
603 
604 static void ath10k_pci_sleep_sync(struct ath10k *ar)
605 {
606 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
607 	unsigned long flags;
608 
609 	if (ar_pci->pci_ps == 0) {
610 		ath10k_pci_force_sleep(ar);
611 		return;
612 	}
613 
614 	del_timer_sync(&ar_pci->ps_timer);
615 
616 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
617 	WARN_ON(ar_pci->ps_wake_refcount > 0);
618 	__ath10k_pci_sleep(ar);
619 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
620 }
621 
622 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
623 {
624 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
625 	int ret;
626 
627 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
628 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
629 			    offset, offset + sizeof(value), ar_pci->mem_len);
630 		return;
631 	}
632 
633 	ret = ath10k_pci_wake(ar);
634 	if (ret) {
635 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
636 			    value, offset, ret);
637 		return;
638 	}
639 
640 	iowrite32(value, ar_pci->mem + offset);
641 	ath10k_pci_sleep(ar);
642 }
643 
644 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
645 {
646 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
647 	u32 val;
648 	int ret;
649 
650 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
651 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
652 			    offset, offset + sizeof(val), ar_pci->mem_len);
653 		return 0;
654 	}
655 
656 	ret = ath10k_pci_wake(ar);
657 	if (ret) {
658 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
659 			    offset, ret);
660 		return 0xffffffff;
661 	}
662 
663 	val = ioread32(ar_pci->mem + offset);
664 	ath10k_pci_sleep(ar);
665 
666 	return val;
667 }
668 
669 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
670 {
671 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
672 
673 	ar_pci->bus_ops->write32(ar, offset, value);
674 }
675 
676 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
677 {
678 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
679 
680 	return ar_pci->bus_ops->read32(ar, offset);
681 }
682 
683 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
684 {
685 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
686 }
687 
688 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
689 {
690 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
691 }
692 
693 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
694 {
695 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
696 }
697 
698 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
699 {
700 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
701 }
702 
703 bool ath10k_pci_irq_pending(struct ath10k *ar)
704 {
705 	u32 cause;
706 
707 	/* Check if the shared legacy irq is for us */
708 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
709 				  PCIE_INTR_CAUSE_ADDRESS);
710 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
711 		return true;
712 
713 	return false;
714 }
715 
716 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
717 {
718 	/* IMPORTANT: INTR_CLR register has to be set after
719 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
720 	 * really cleared. */
721 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
722 			   0);
723 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
724 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
725 
726 	/* IMPORTANT: this extra read transaction is required to
727 	 * flush the posted write buffer. */
728 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
729 				PCIE_INTR_ENABLE_ADDRESS);
730 }
731 
732 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
733 {
734 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
735 			   PCIE_INTR_ENABLE_ADDRESS,
736 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
737 
738 	/* IMPORTANT: this extra read transaction is required to
739 	 * flush the posted write buffer. */
740 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
741 				PCIE_INTR_ENABLE_ADDRESS);
742 }
743 
744 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
745 {
746 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
747 
748 	if (ar_pci->num_msi_intrs > 1)
749 		return "msi-x";
750 
751 	if (ar_pci->num_msi_intrs == 1)
752 		return "msi";
753 
754 	return "legacy";
755 }
756 
757 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
758 {
759 	struct ath10k *ar = pipe->hif_ce_state;
760 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
761 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
762 	struct sk_buff *skb;
763 	dma_addr_t paddr;
764 	int ret;
765 
766 	skb = dev_alloc_skb(pipe->buf_sz);
767 	if (!skb)
768 		return -ENOMEM;
769 
770 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
771 
772 	paddr = dma_map_single(ar->dev, skb->data,
773 			       skb->len + skb_tailroom(skb),
774 			       DMA_FROM_DEVICE);
775 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
776 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
777 		dev_kfree_skb_any(skb);
778 		return -EIO;
779 	}
780 
781 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
782 
783 	spin_lock_bh(&ar_pci->ce_lock);
784 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
785 	spin_unlock_bh(&ar_pci->ce_lock);
786 	if (ret) {
787 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
788 				 DMA_FROM_DEVICE);
789 		dev_kfree_skb_any(skb);
790 		return ret;
791 	}
792 
793 	return 0;
794 }
795 
796 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
797 {
798 	struct ath10k *ar = pipe->hif_ce_state;
799 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
800 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
801 	int ret, num;
802 
803 	if (pipe->buf_sz == 0)
804 		return;
805 
806 	if (!ce_pipe->dest_ring)
807 		return;
808 
809 	spin_lock_bh(&ar_pci->ce_lock);
810 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
811 	spin_unlock_bh(&ar_pci->ce_lock);
812 	while (num--) {
813 		ret = __ath10k_pci_rx_post_buf(pipe);
814 		if (ret) {
815 			if (ret == -ENOSPC)
816 				break;
817 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
818 			mod_timer(&ar_pci->rx_post_retry, jiffies +
819 				  ATH10K_PCI_RX_POST_RETRY_MS);
820 			break;
821 		}
822 	}
823 }
824 
825 void ath10k_pci_rx_post(struct ath10k *ar)
826 {
827 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
828 	int i;
829 
830 	for (i = 0; i < CE_COUNT; i++)
831 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
832 }
833 
834 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
835 {
836 	struct ath10k *ar = (void *)ptr;
837 
838 	ath10k_pci_rx_post(ar);
839 }
840 
841 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
842 {
843 	u32 val = 0;
844 
845 	switch (ar->hw_rev) {
846 	case ATH10K_HW_QCA988X:
847 	case ATH10K_HW_QCA6174:
848 	case ATH10K_HW_QCA9377:
849 		val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
850 					  CORE_CTRL_ADDRESS) &
851 		       0x7ff) << 21;
852 		break;
853 	case ATH10K_HW_QCA99X0:
854 	case ATH10K_HW_QCA4019:
855 		val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
856 		break;
857 	}
858 
859 	val |= 0x100000 | (addr & 0xfffff);
860 	return val;
861 }
862 
863 /*
864  * Diagnostic read/write access is provided for startup/config/debug usage.
865  * Caller must guarantee proper alignment, when applicable, and single user
866  * at any moment.
867  */
868 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
869 				    int nbytes)
870 {
871 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
872 	int ret = 0;
873 	u32 buf;
874 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
875 	unsigned int id;
876 	unsigned int flags;
877 	struct ath10k_ce_pipe *ce_diag;
878 	/* Host buffer address in CE space */
879 	u32 ce_data;
880 	dma_addr_t ce_data_base = 0;
881 	void *data_buf = NULL;
882 	int i;
883 
884 	spin_lock_bh(&ar_pci->ce_lock);
885 
886 	ce_diag = ar_pci->ce_diag;
887 
888 	/*
889 	 * Allocate a temporary bounce buffer to hold caller's data
890 	 * to be DMA'ed from Target. This guarantees
891 	 *   1) 4-byte alignment
892 	 *   2) Buffer in DMA-able space
893 	 */
894 	orig_nbytes = nbytes;
895 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
896 						       orig_nbytes,
897 						       &ce_data_base,
898 						       GFP_ATOMIC);
899 
900 	if (!data_buf) {
901 		ret = -ENOMEM;
902 		goto done;
903 	}
904 	memset(data_buf, 0, orig_nbytes);
905 
906 	remaining_bytes = orig_nbytes;
907 	ce_data = ce_data_base;
908 	while (remaining_bytes) {
909 		nbytes = min_t(unsigned int, remaining_bytes,
910 			       DIAG_TRANSFER_LIMIT);
911 
912 		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
913 		if (ret != 0)
914 			goto done;
915 
916 		/* Request CE to send from Target(!) address to Host buffer */
917 		/*
918 		 * The address supplied by the caller is in the
919 		 * Target CPU virtual address space.
920 		 *
921 		 * In order to use this address with the diagnostic CE,
922 		 * convert it from Target CPU virtual address space
923 		 * to CE address space
924 		 */
925 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
926 
927 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
928 					    0);
929 		if (ret)
930 			goto done;
931 
932 		i = 0;
933 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
934 							    NULL) != 0) {
935 			mdelay(1);
936 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
937 				ret = -EBUSY;
938 				goto done;
939 			}
940 		}
941 
942 		i = 0;
943 		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
944 							    &completed_nbytes,
945 							    &id, &flags) != 0) {
946 			mdelay(1);
947 
948 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
949 				ret = -EBUSY;
950 				goto done;
951 			}
952 		}
953 
954 		if (nbytes != completed_nbytes) {
955 			ret = -EIO;
956 			goto done;
957 		}
958 
959 		if (buf != ce_data) {
960 			ret = -EIO;
961 			goto done;
962 		}
963 
964 		remaining_bytes -= nbytes;
965 		address += nbytes;
966 		ce_data += nbytes;
967 	}
968 
969 done:
970 	if (ret == 0)
971 		memcpy(data, data_buf, orig_nbytes);
972 	else
973 		ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
974 			    address, ret);
975 
976 	if (data_buf)
977 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
978 				  ce_data_base);
979 
980 	spin_unlock_bh(&ar_pci->ce_lock);
981 
982 	return ret;
983 }
984 
985 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
986 {
987 	__le32 val = 0;
988 	int ret;
989 
990 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
991 	*value = __le32_to_cpu(val);
992 
993 	return ret;
994 }
995 
996 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
997 				     u32 src, u32 len)
998 {
999 	u32 host_addr, addr;
1000 	int ret;
1001 
1002 	host_addr = host_interest_item_address(src);
1003 
1004 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1005 	if (ret != 0) {
1006 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1007 			    src, ret);
1008 		return ret;
1009 	}
1010 
1011 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1012 	if (ret != 0) {
1013 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1014 			    addr, len, ret);
1015 		return ret;
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1022 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1023 
1024 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1025 			      const void *data, int nbytes)
1026 {
1027 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1028 	int ret = 0;
1029 	u32 buf;
1030 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1031 	unsigned int id;
1032 	unsigned int flags;
1033 	struct ath10k_ce_pipe *ce_diag;
1034 	void *data_buf = NULL;
1035 	u32 ce_data;	/* Host buffer address in CE space */
1036 	dma_addr_t ce_data_base = 0;
1037 	int i;
1038 
1039 	spin_lock_bh(&ar_pci->ce_lock);
1040 
1041 	ce_diag = ar_pci->ce_diag;
1042 
1043 	/*
1044 	 * Allocate a temporary bounce buffer to hold caller's data
1045 	 * to be DMA'ed to Target. This guarantees
1046 	 *   1) 4-byte alignment
1047 	 *   2) Buffer in DMA-able space
1048 	 */
1049 	orig_nbytes = nbytes;
1050 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1051 						       orig_nbytes,
1052 						       &ce_data_base,
1053 						       GFP_ATOMIC);
1054 	if (!data_buf) {
1055 		ret = -ENOMEM;
1056 		goto done;
1057 	}
1058 
1059 	/* Copy caller's data to allocated DMA buf */
1060 	memcpy(data_buf, data, orig_nbytes);
1061 
1062 	/*
1063 	 * The address supplied by the caller is in the
1064 	 * Target CPU virtual address space.
1065 	 *
1066 	 * In order to use this address with the diagnostic CE,
1067 	 * convert it from
1068 	 *    Target CPU virtual address space
1069 	 * to
1070 	 *    CE address space
1071 	 */
1072 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1073 
1074 	remaining_bytes = orig_nbytes;
1075 	ce_data = ce_data_base;
1076 	while (remaining_bytes) {
1077 		/* FIXME: check cast */
1078 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1079 
1080 		/* Set up to receive directly into Target(!) address */
1081 		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
1082 		if (ret != 0)
1083 			goto done;
1084 
1085 		/*
1086 		 * Request CE to send caller-supplied data that
1087 		 * was copied to bounce buffer to Target(!) address.
1088 		 */
1089 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1090 					    nbytes, 0, 0);
1091 		if (ret != 0)
1092 			goto done;
1093 
1094 		i = 0;
1095 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1096 							    NULL) != 0) {
1097 			mdelay(1);
1098 
1099 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1100 				ret = -EBUSY;
1101 				goto done;
1102 			}
1103 		}
1104 
1105 		i = 0;
1106 		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
1107 							    &completed_nbytes,
1108 							    &id, &flags) != 0) {
1109 			mdelay(1);
1110 
1111 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1112 				ret = -EBUSY;
1113 				goto done;
1114 			}
1115 		}
1116 
1117 		if (nbytes != completed_nbytes) {
1118 			ret = -EIO;
1119 			goto done;
1120 		}
1121 
1122 		if (buf != address) {
1123 			ret = -EIO;
1124 			goto done;
1125 		}
1126 
1127 		remaining_bytes -= nbytes;
1128 		address += nbytes;
1129 		ce_data += nbytes;
1130 	}
1131 
1132 done:
1133 	if (data_buf) {
1134 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1135 				  ce_data_base);
1136 	}
1137 
1138 	if (ret != 0)
1139 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1140 			    address, ret);
1141 
1142 	spin_unlock_bh(&ar_pci->ce_lock);
1143 
1144 	return ret;
1145 }
1146 
1147 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1148 {
1149 	__le32 val = __cpu_to_le32(value);
1150 
1151 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1152 }
1153 
1154 /* Called by lower (CE) layer when a send to Target completes. */
1155 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1156 {
1157 	struct ath10k *ar = ce_state->ar;
1158 	struct sk_buff_head list;
1159 	struct sk_buff *skb;
1160 
1161 	__skb_queue_head_init(&list);
1162 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1163 		/* no need to call tx completion for NULL pointers */
1164 		if (skb == NULL)
1165 			continue;
1166 
1167 		__skb_queue_tail(&list, skb);
1168 	}
1169 
1170 	while ((skb = __skb_dequeue(&list)))
1171 		ath10k_htc_tx_completion_handler(ar, skb);
1172 }
1173 
1174 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1175 				     void (*callback)(struct ath10k *ar,
1176 						      struct sk_buff *skb))
1177 {
1178 	struct ath10k *ar = ce_state->ar;
1179 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1180 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1181 	struct sk_buff *skb;
1182 	struct sk_buff_head list;
1183 	void *transfer_context;
1184 	u32 ce_data;
1185 	unsigned int nbytes, max_nbytes;
1186 	unsigned int transfer_id;
1187 	unsigned int flags;
1188 
1189 	__skb_queue_head_init(&list);
1190 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1191 					     &ce_data, &nbytes, &transfer_id,
1192 					     &flags) == 0) {
1193 		skb = transfer_context;
1194 		max_nbytes = skb->len + skb_tailroom(skb);
1195 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1196 				 max_nbytes, DMA_FROM_DEVICE);
1197 
1198 		if (unlikely(max_nbytes < nbytes)) {
1199 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1200 				    nbytes, max_nbytes);
1201 			dev_kfree_skb_any(skb);
1202 			continue;
1203 		}
1204 
1205 		skb_put(skb, nbytes);
1206 		__skb_queue_tail(&list, skb);
1207 	}
1208 
1209 	while ((skb = __skb_dequeue(&list))) {
1210 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1211 			   ce_state->id, skb->len);
1212 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1213 				skb->data, skb->len);
1214 
1215 		callback(ar, skb);
1216 	}
1217 
1218 	ath10k_pci_rx_post_pipe(pipe_info);
1219 }
1220 
1221 /* Called by lower (CE) layer when data is received from the Target. */
1222 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1223 {
1224 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1225 }
1226 
1227 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1228 {
1229 	/* CE4 polling needs to be done whenever CE pipe which transports
1230 	 * HTT Rx (target->host) is processed.
1231 	 */
1232 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1233 
1234 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1235 }
1236 
1237 /* Called by lower (CE) layer when data is received from the Target.
1238  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1239  */
1240 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1241 {
1242 	ath10k_pci_process_rx_cb(ce_state,
1243 				 ath10k_htt_rx_pktlog_completion_handler);
1244 }
1245 
1246 /* Called by lower (CE) layer when a send to HTT Target completes. */
1247 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1248 {
1249 	struct ath10k *ar = ce_state->ar;
1250 	struct sk_buff *skb;
1251 
1252 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1253 		/* no need to call tx completion for NULL pointers */
1254 		if (!skb)
1255 			continue;
1256 
1257 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1258 				 skb->len, DMA_TO_DEVICE);
1259 		ath10k_htt_hif_tx_complete(ar, skb);
1260 	}
1261 }
1262 
1263 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1264 {
1265 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1266 	ath10k_htt_t2h_msg_handler(ar, skb);
1267 }
1268 
1269 /* Called by lower (CE) layer when HTT data is received from the Target. */
1270 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1271 {
1272 	/* CE4 polling needs to be done whenever CE pipe which transports
1273 	 * HTT Rx (target->host) is processed.
1274 	 */
1275 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1276 
1277 	ath10k_pci_process_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1278 }
1279 
1280 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1281 			 struct ath10k_hif_sg_item *items, int n_items)
1282 {
1283 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1284 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1285 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1286 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1287 	unsigned int nentries_mask;
1288 	unsigned int sw_index;
1289 	unsigned int write_index;
1290 	int err, i = 0;
1291 
1292 	spin_lock_bh(&ar_pci->ce_lock);
1293 
1294 	nentries_mask = src_ring->nentries_mask;
1295 	sw_index = src_ring->sw_index;
1296 	write_index = src_ring->write_index;
1297 
1298 	if (unlikely(CE_RING_DELTA(nentries_mask,
1299 				   write_index, sw_index - 1) < n_items)) {
1300 		err = -ENOBUFS;
1301 		goto err;
1302 	}
1303 
1304 	for (i = 0; i < n_items - 1; i++) {
1305 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1306 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1307 			   i, items[i].paddr, items[i].len, n_items);
1308 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1309 				items[i].vaddr, items[i].len);
1310 
1311 		err = ath10k_ce_send_nolock(ce_pipe,
1312 					    items[i].transfer_context,
1313 					    items[i].paddr,
1314 					    items[i].len,
1315 					    items[i].transfer_id,
1316 					    CE_SEND_FLAG_GATHER);
1317 		if (err)
1318 			goto err;
1319 	}
1320 
1321 	/* `i` is equal to `n_items -1` after for() */
1322 
1323 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1324 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1325 		   i, items[i].paddr, items[i].len, n_items);
1326 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1327 			items[i].vaddr, items[i].len);
1328 
1329 	err = ath10k_ce_send_nolock(ce_pipe,
1330 				    items[i].transfer_context,
1331 				    items[i].paddr,
1332 				    items[i].len,
1333 				    items[i].transfer_id,
1334 				    0);
1335 	if (err)
1336 		goto err;
1337 
1338 	spin_unlock_bh(&ar_pci->ce_lock);
1339 	return 0;
1340 
1341 err:
1342 	for (; i > 0; i--)
1343 		__ath10k_ce_send_revert(ce_pipe);
1344 
1345 	spin_unlock_bh(&ar_pci->ce_lock);
1346 	return err;
1347 }
1348 
1349 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1350 			     size_t buf_len)
1351 {
1352 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1353 }
1354 
1355 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1356 {
1357 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1358 
1359 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1360 
1361 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1362 }
1363 
1364 static void ath10k_pci_dump_registers(struct ath10k *ar,
1365 				      struct ath10k_fw_crash_data *crash_data)
1366 {
1367 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1368 	int i, ret;
1369 
1370 	lockdep_assert_held(&ar->data_lock);
1371 
1372 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1373 				      hi_failure_state,
1374 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1375 	if (ret) {
1376 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1377 		return;
1378 	}
1379 
1380 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1381 
1382 	ath10k_err(ar, "firmware register dump:\n");
1383 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1384 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1385 			   i,
1386 			   __le32_to_cpu(reg_dump_values[i]),
1387 			   __le32_to_cpu(reg_dump_values[i + 1]),
1388 			   __le32_to_cpu(reg_dump_values[i + 2]),
1389 			   __le32_to_cpu(reg_dump_values[i + 3]));
1390 
1391 	if (!crash_data)
1392 		return;
1393 
1394 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1395 		crash_data->registers[i] = reg_dump_values[i];
1396 }
1397 
1398 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1399 {
1400 	struct ath10k_fw_crash_data *crash_data;
1401 	char uuid[50];
1402 
1403 	spin_lock_bh(&ar->data_lock);
1404 
1405 	ar->stats.fw_crash_counter++;
1406 
1407 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1408 
1409 	if (crash_data)
1410 		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1411 	else
1412 		scnprintf(uuid, sizeof(uuid), "n/a");
1413 
1414 	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1415 	ath10k_print_driver_info(ar);
1416 	ath10k_pci_dump_registers(ar, crash_data);
1417 
1418 	spin_unlock_bh(&ar->data_lock);
1419 
1420 	queue_work(ar->workqueue, &ar->restart_work);
1421 }
1422 
1423 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1424 					int force)
1425 {
1426 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1427 
1428 	if (!force) {
1429 		int resources;
1430 		/*
1431 		 * Decide whether to actually poll for completions, or just
1432 		 * wait for a later chance.
1433 		 * If there seem to be plenty of resources left, then just wait
1434 		 * since checking involves reading a CE register, which is a
1435 		 * relatively expensive operation.
1436 		 */
1437 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1438 
1439 		/*
1440 		 * If at least 50% of the total resources are still available,
1441 		 * don't bother checking again yet.
1442 		 */
1443 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1444 			return;
1445 	}
1446 	ath10k_ce_per_engine_service(ar, pipe);
1447 }
1448 
1449 void ath10k_pci_kill_tasklet(struct ath10k *ar)
1450 {
1451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1452 	int i;
1453 
1454 	tasklet_kill(&ar_pci->intr_tq);
1455 	tasklet_kill(&ar_pci->msi_fw_err);
1456 
1457 	for (i = 0; i < CE_COUNT; i++)
1458 		tasklet_kill(&ar_pci->pipe_info[i].intr);
1459 
1460 	del_timer_sync(&ar_pci->rx_post_retry);
1461 }
1462 
1463 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1464 				       u8 *ul_pipe, u8 *dl_pipe)
1465 {
1466 	const struct service_to_pipe *entry;
1467 	bool ul_set = false, dl_set = false;
1468 	int i;
1469 
1470 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1471 
1472 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1473 		entry = &target_service_to_ce_map_wlan[i];
1474 
1475 		if (__le32_to_cpu(entry->service_id) != service_id)
1476 			continue;
1477 
1478 		switch (__le32_to_cpu(entry->pipedir)) {
1479 		case PIPEDIR_NONE:
1480 			break;
1481 		case PIPEDIR_IN:
1482 			WARN_ON(dl_set);
1483 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1484 			dl_set = true;
1485 			break;
1486 		case PIPEDIR_OUT:
1487 			WARN_ON(ul_set);
1488 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1489 			ul_set = true;
1490 			break;
1491 		case PIPEDIR_INOUT:
1492 			WARN_ON(dl_set);
1493 			WARN_ON(ul_set);
1494 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1495 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1496 			dl_set = true;
1497 			ul_set = true;
1498 			break;
1499 		}
1500 	}
1501 
1502 	if (WARN_ON(!ul_set || !dl_set))
1503 		return -ENOENT;
1504 
1505 	return 0;
1506 }
1507 
1508 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1509 				     u8 *ul_pipe, u8 *dl_pipe)
1510 {
1511 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1512 
1513 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1514 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1515 						 ul_pipe, dl_pipe);
1516 }
1517 
1518 static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1519 {
1520 	u32 val;
1521 
1522 	switch (ar->hw_rev) {
1523 	case ATH10K_HW_QCA988X:
1524 	case ATH10K_HW_QCA6174:
1525 	case ATH10K_HW_QCA9377:
1526 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1527 					CORE_CTRL_ADDRESS);
1528 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1529 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1530 				   CORE_CTRL_ADDRESS, val);
1531 		break;
1532 	case ATH10K_HW_QCA99X0:
1533 	case ATH10K_HW_QCA4019:
1534 		/* TODO: Find appropriate register configuration for QCA99X0
1535 		 *  to mask irq/MSI.
1536 		 */
1537 		 break;
1538 	}
1539 }
1540 
1541 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1542 {
1543 	u32 val;
1544 
1545 	switch (ar->hw_rev) {
1546 	case ATH10K_HW_QCA988X:
1547 	case ATH10K_HW_QCA6174:
1548 	case ATH10K_HW_QCA9377:
1549 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1550 					CORE_CTRL_ADDRESS);
1551 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1552 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1553 				   CORE_CTRL_ADDRESS, val);
1554 		break;
1555 	case ATH10K_HW_QCA99X0:
1556 	case ATH10K_HW_QCA4019:
1557 		/* TODO: Find appropriate register configuration for QCA99X0
1558 		 *  to unmask irq/MSI.
1559 		 */
1560 		break;
1561 	}
1562 }
1563 
1564 static void ath10k_pci_irq_disable(struct ath10k *ar)
1565 {
1566 	ath10k_ce_disable_interrupts(ar);
1567 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1568 	ath10k_pci_irq_msi_fw_mask(ar);
1569 }
1570 
1571 static void ath10k_pci_irq_sync(struct ath10k *ar)
1572 {
1573 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1574 	int i;
1575 
1576 	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1577 		synchronize_irq(ar_pci->pdev->irq + i);
1578 }
1579 
1580 static void ath10k_pci_irq_enable(struct ath10k *ar)
1581 {
1582 	ath10k_ce_enable_interrupts(ar);
1583 	ath10k_pci_enable_legacy_irq(ar);
1584 	ath10k_pci_irq_msi_fw_unmask(ar);
1585 }
1586 
1587 static int ath10k_pci_hif_start(struct ath10k *ar)
1588 {
1589 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1590 
1591 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1592 
1593 	ath10k_pci_irq_enable(ar);
1594 	ath10k_pci_rx_post(ar);
1595 
1596 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1597 				   ar_pci->link_ctl);
1598 
1599 	return 0;
1600 }
1601 
1602 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1603 {
1604 	struct ath10k *ar;
1605 	struct ath10k_ce_pipe *ce_pipe;
1606 	struct ath10k_ce_ring *ce_ring;
1607 	struct sk_buff *skb;
1608 	int i;
1609 
1610 	ar = pci_pipe->hif_ce_state;
1611 	ce_pipe = pci_pipe->ce_hdl;
1612 	ce_ring = ce_pipe->dest_ring;
1613 
1614 	if (!ce_ring)
1615 		return;
1616 
1617 	if (!pci_pipe->buf_sz)
1618 		return;
1619 
1620 	for (i = 0; i < ce_ring->nentries; i++) {
1621 		skb = ce_ring->per_transfer_context[i];
1622 		if (!skb)
1623 			continue;
1624 
1625 		ce_ring->per_transfer_context[i] = NULL;
1626 
1627 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1628 				 skb->len + skb_tailroom(skb),
1629 				 DMA_FROM_DEVICE);
1630 		dev_kfree_skb_any(skb);
1631 	}
1632 }
1633 
1634 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1635 {
1636 	struct ath10k *ar;
1637 	struct ath10k_pci *ar_pci;
1638 	struct ath10k_ce_pipe *ce_pipe;
1639 	struct ath10k_ce_ring *ce_ring;
1640 	struct sk_buff *skb;
1641 	int i;
1642 
1643 	ar = pci_pipe->hif_ce_state;
1644 	ar_pci = ath10k_pci_priv(ar);
1645 	ce_pipe = pci_pipe->ce_hdl;
1646 	ce_ring = ce_pipe->src_ring;
1647 
1648 	if (!ce_ring)
1649 		return;
1650 
1651 	if (!pci_pipe->buf_sz)
1652 		return;
1653 
1654 	for (i = 0; i < ce_ring->nentries; i++) {
1655 		skb = ce_ring->per_transfer_context[i];
1656 		if (!skb)
1657 			continue;
1658 
1659 		ce_ring->per_transfer_context[i] = NULL;
1660 
1661 		ath10k_htc_tx_completion_handler(ar, skb);
1662 	}
1663 }
1664 
1665 /*
1666  * Cleanup residual buffers for device shutdown:
1667  *    buffers that were enqueued for receive
1668  *    buffers that were to be sent
1669  * Note: Buffers that had completed but which were
1670  * not yet processed are on a completion queue. They
1671  * are handled when the completion thread shuts down.
1672  */
1673 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1674 {
1675 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1676 	int pipe_num;
1677 
1678 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1679 		struct ath10k_pci_pipe *pipe_info;
1680 
1681 		pipe_info = &ar_pci->pipe_info[pipe_num];
1682 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1683 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1684 	}
1685 }
1686 
1687 void ath10k_pci_ce_deinit(struct ath10k *ar)
1688 {
1689 	int i;
1690 
1691 	for (i = 0; i < CE_COUNT; i++)
1692 		ath10k_ce_deinit_pipe(ar, i);
1693 }
1694 
1695 void ath10k_pci_flush(struct ath10k *ar)
1696 {
1697 	ath10k_pci_kill_tasklet(ar);
1698 	ath10k_pci_buffer_cleanup(ar);
1699 }
1700 
1701 static void ath10k_pci_hif_stop(struct ath10k *ar)
1702 {
1703 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1704 	unsigned long flags;
1705 
1706 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1707 
1708 	/* Most likely the device has HTT Rx ring configured. The only way to
1709 	 * prevent the device from accessing (and possible corrupting) host
1710 	 * memory is to reset the chip now.
1711 	 *
1712 	 * There's also no known way of masking MSI interrupts on the device.
1713 	 * For ranged MSI the CE-related interrupts can be masked. However
1714 	 * regardless how many MSI interrupts are assigned the first one
1715 	 * is always used for firmware indications (crashes) and cannot be
1716 	 * masked. To prevent the device from asserting the interrupt reset it
1717 	 * before proceeding with cleanup.
1718 	 */
1719 	ath10k_pci_safe_chip_reset(ar);
1720 
1721 	ath10k_pci_irq_disable(ar);
1722 	ath10k_pci_irq_sync(ar);
1723 	ath10k_pci_flush(ar);
1724 
1725 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1726 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1727 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1728 }
1729 
1730 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1731 				    void *req, u32 req_len,
1732 				    void *resp, u32 *resp_len)
1733 {
1734 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1735 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1736 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1737 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1738 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1739 	dma_addr_t req_paddr = 0;
1740 	dma_addr_t resp_paddr = 0;
1741 	struct bmi_xfer xfer = {};
1742 	void *treq, *tresp = NULL;
1743 	int ret = 0;
1744 
1745 	might_sleep();
1746 
1747 	if (resp && !resp_len)
1748 		return -EINVAL;
1749 
1750 	if (resp && resp_len && *resp_len == 0)
1751 		return -EINVAL;
1752 
1753 	treq = kmemdup(req, req_len, GFP_KERNEL);
1754 	if (!treq)
1755 		return -ENOMEM;
1756 
1757 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1758 	ret = dma_mapping_error(ar->dev, req_paddr);
1759 	if (ret) {
1760 		ret = -EIO;
1761 		goto err_dma;
1762 	}
1763 
1764 	if (resp && resp_len) {
1765 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1766 		if (!tresp) {
1767 			ret = -ENOMEM;
1768 			goto err_req;
1769 		}
1770 
1771 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1772 					    DMA_FROM_DEVICE);
1773 		ret = dma_mapping_error(ar->dev, resp_paddr);
1774 		if (ret) {
1775 			ret = -EIO;
1776 			goto err_req;
1777 		}
1778 
1779 		xfer.wait_for_resp = true;
1780 		xfer.resp_len = 0;
1781 
1782 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1783 	}
1784 
1785 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1786 	if (ret)
1787 		goto err_resp;
1788 
1789 	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1790 	if (ret) {
1791 		u32 unused_buffer;
1792 		unsigned int unused_nbytes;
1793 		unsigned int unused_id;
1794 
1795 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1796 					   &unused_nbytes, &unused_id);
1797 	} else {
1798 		/* non-zero means we did not time out */
1799 		ret = 0;
1800 	}
1801 
1802 err_resp:
1803 	if (resp) {
1804 		u32 unused_buffer;
1805 
1806 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1807 		dma_unmap_single(ar->dev, resp_paddr,
1808 				 *resp_len, DMA_FROM_DEVICE);
1809 	}
1810 err_req:
1811 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1812 
1813 	if (ret == 0 && resp_len) {
1814 		*resp_len = min(*resp_len, xfer.resp_len);
1815 		memcpy(resp, tresp, xfer.resp_len);
1816 	}
1817 err_dma:
1818 	kfree(treq);
1819 	kfree(tresp);
1820 
1821 	return ret;
1822 }
1823 
1824 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1825 {
1826 	struct bmi_xfer *xfer;
1827 
1828 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1829 		return;
1830 
1831 	xfer->tx_done = true;
1832 }
1833 
1834 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1835 {
1836 	struct ath10k *ar = ce_state->ar;
1837 	struct bmi_xfer *xfer;
1838 	u32 ce_data;
1839 	unsigned int nbytes;
1840 	unsigned int transfer_id;
1841 	unsigned int flags;
1842 
1843 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1844 					  &nbytes, &transfer_id, &flags))
1845 		return;
1846 
1847 	if (WARN_ON_ONCE(!xfer))
1848 		return;
1849 
1850 	if (!xfer->wait_for_resp) {
1851 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1852 		return;
1853 	}
1854 
1855 	xfer->resp_len = nbytes;
1856 	xfer->rx_done = true;
1857 }
1858 
1859 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1860 			       struct ath10k_ce_pipe *rx_pipe,
1861 			       struct bmi_xfer *xfer)
1862 {
1863 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1864 
1865 	while (time_before_eq(jiffies, timeout)) {
1866 		ath10k_pci_bmi_send_done(tx_pipe);
1867 		ath10k_pci_bmi_recv_data(rx_pipe);
1868 
1869 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1870 			return 0;
1871 
1872 		schedule();
1873 	}
1874 
1875 	return -ETIMEDOUT;
1876 }
1877 
1878 /*
1879  * Send an interrupt to the device to wake up the Target CPU
1880  * so it has an opportunity to notice any changed state.
1881  */
1882 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1883 {
1884 	u32 addr, val;
1885 
1886 	addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1887 	val = ath10k_pci_read32(ar, addr);
1888 	val |= CORE_CTRL_CPU_INTR_MASK;
1889 	ath10k_pci_write32(ar, addr, val);
1890 
1891 	return 0;
1892 }
1893 
1894 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1895 {
1896 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1897 
1898 	switch (ar_pci->pdev->device) {
1899 	case QCA988X_2_0_DEVICE_ID:
1900 	case QCA99X0_2_0_DEVICE_ID:
1901 		return 1;
1902 	case QCA6164_2_1_DEVICE_ID:
1903 	case QCA6174_2_1_DEVICE_ID:
1904 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1905 		case QCA6174_HW_1_0_CHIP_ID_REV:
1906 		case QCA6174_HW_1_1_CHIP_ID_REV:
1907 		case QCA6174_HW_2_1_CHIP_ID_REV:
1908 		case QCA6174_HW_2_2_CHIP_ID_REV:
1909 			return 3;
1910 		case QCA6174_HW_1_3_CHIP_ID_REV:
1911 			return 2;
1912 		case QCA6174_HW_3_0_CHIP_ID_REV:
1913 		case QCA6174_HW_3_1_CHIP_ID_REV:
1914 		case QCA6174_HW_3_2_CHIP_ID_REV:
1915 			return 9;
1916 		}
1917 		break;
1918 	case QCA9377_1_0_DEVICE_ID:
1919 		return 2;
1920 	}
1921 
1922 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1923 	return 1;
1924 }
1925 
1926 static int ath10k_bus_get_num_banks(struct ath10k *ar)
1927 {
1928 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1929 
1930 	return ar_pci->bus_ops->get_num_banks(ar);
1931 }
1932 
1933 int ath10k_pci_init_config(struct ath10k *ar)
1934 {
1935 	u32 interconnect_targ_addr;
1936 	u32 pcie_state_targ_addr = 0;
1937 	u32 pipe_cfg_targ_addr = 0;
1938 	u32 svc_to_pipe_map = 0;
1939 	u32 pcie_config_flags = 0;
1940 	u32 ealloc_value;
1941 	u32 ealloc_targ_addr;
1942 	u32 flag2_value;
1943 	u32 flag2_targ_addr;
1944 	int ret = 0;
1945 
1946 	/* Download to Target the CE Config and the service-to-CE map */
1947 	interconnect_targ_addr =
1948 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
1949 
1950 	/* Supply Target-side CE configuration */
1951 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1952 				     &pcie_state_targ_addr);
1953 	if (ret != 0) {
1954 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1955 		return ret;
1956 	}
1957 
1958 	if (pcie_state_targ_addr == 0) {
1959 		ret = -EIO;
1960 		ath10k_err(ar, "Invalid pcie state addr\n");
1961 		return ret;
1962 	}
1963 
1964 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1965 					  offsetof(struct pcie_state,
1966 						   pipe_cfg_addr)),
1967 				     &pipe_cfg_targ_addr);
1968 	if (ret != 0) {
1969 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1970 		return ret;
1971 	}
1972 
1973 	if (pipe_cfg_targ_addr == 0) {
1974 		ret = -EIO;
1975 		ath10k_err(ar, "Invalid pipe cfg addr\n");
1976 		return ret;
1977 	}
1978 
1979 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1980 					target_ce_config_wlan,
1981 					sizeof(struct ce_pipe_config) *
1982 					NUM_TARGET_CE_CONFIG_WLAN);
1983 
1984 	if (ret != 0) {
1985 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1986 		return ret;
1987 	}
1988 
1989 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1990 					  offsetof(struct pcie_state,
1991 						   svc_to_pipe_map)),
1992 				     &svc_to_pipe_map);
1993 	if (ret != 0) {
1994 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1995 		return ret;
1996 	}
1997 
1998 	if (svc_to_pipe_map == 0) {
1999 		ret = -EIO;
2000 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2001 		return ret;
2002 	}
2003 
2004 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2005 					target_service_to_ce_map_wlan,
2006 					sizeof(target_service_to_ce_map_wlan));
2007 	if (ret != 0) {
2008 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2009 		return ret;
2010 	}
2011 
2012 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2013 					  offsetof(struct pcie_state,
2014 						   config_flags)),
2015 				     &pcie_config_flags);
2016 	if (ret != 0) {
2017 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2018 		return ret;
2019 	}
2020 
2021 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2022 
2023 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2024 					   offsetof(struct pcie_state,
2025 						    config_flags)),
2026 				      pcie_config_flags);
2027 	if (ret != 0) {
2028 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2029 		return ret;
2030 	}
2031 
2032 	/* configure early allocation */
2033 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2034 
2035 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2036 	if (ret != 0) {
2037 		ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
2038 		return ret;
2039 	}
2040 
2041 	/* first bank is switched to IRAM */
2042 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2043 			 HI_EARLY_ALLOC_MAGIC_MASK);
2044 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2045 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2046 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2047 
2048 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2049 	if (ret != 0) {
2050 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2051 		return ret;
2052 	}
2053 
2054 	/* Tell Target to proceed with initialization */
2055 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2056 
2057 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2058 	if (ret != 0) {
2059 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2060 		return ret;
2061 	}
2062 
2063 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2064 
2065 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2066 	if (ret != 0) {
2067 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2068 		return ret;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2075 {
2076 	struct ce_attr *attr;
2077 	struct ce_pipe_config *config;
2078 
2079 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2080 	 * since it is currently used for other feature.
2081 	 */
2082 
2083 	/* Override Host's Copy Engine 5 configuration */
2084 	attr = &host_ce_config_wlan[5];
2085 	attr->src_sz_max = 0;
2086 	attr->dest_nentries = 0;
2087 
2088 	/* Override Target firmware's Copy Engine configuration */
2089 	config = &target_ce_config_wlan[5];
2090 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2091 	config->nbytes_max = __cpu_to_le32(2048);
2092 
2093 	/* Map from service/endpoint to Copy Engine */
2094 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2095 }
2096 
2097 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2098 {
2099 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2100 	struct ath10k_pci_pipe *pipe;
2101 	int i, ret;
2102 
2103 	for (i = 0; i < CE_COUNT; i++) {
2104 		pipe = &ar_pci->pipe_info[i];
2105 		pipe->ce_hdl = &ar_pci->ce_states[i];
2106 		pipe->pipe_num = i;
2107 		pipe->hif_ce_state = ar;
2108 
2109 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2110 		if (ret) {
2111 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2112 				   i, ret);
2113 			return ret;
2114 		}
2115 
2116 		/* Last CE is Diagnostic Window */
2117 		if (i == CE_DIAG_PIPE) {
2118 			ar_pci->ce_diag = pipe->ce_hdl;
2119 			continue;
2120 		}
2121 
2122 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 void ath10k_pci_free_pipes(struct ath10k *ar)
2129 {
2130 	int i;
2131 
2132 	for (i = 0; i < CE_COUNT; i++)
2133 		ath10k_ce_free_pipe(ar, i);
2134 }
2135 
2136 int ath10k_pci_init_pipes(struct ath10k *ar)
2137 {
2138 	int i, ret;
2139 
2140 	for (i = 0; i < CE_COUNT; i++) {
2141 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2142 		if (ret) {
2143 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2144 				   i, ret);
2145 			return ret;
2146 		}
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2153 {
2154 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2155 	       FW_IND_EVENT_PENDING;
2156 }
2157 
2158 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2159 {
2160 	u32 val;
2161 
2162 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2163 	val &= ~FW_IND_EVENT_PENDING;
2164 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2165 }
2166 
2167 /* this function effectively clears target memory controller assert line */
2168 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2169 {
2170 	u32 val;
2171 
2172 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2173 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2174 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2175 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2176 
2177 	msleep(10);
2178 
2179 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2180 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2181 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2182 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2183 
2184 	msleep(10);
2185 }
2186 
2187 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2188 {
2189 	u32 val;
2190 
2191 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2192 
2193 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2194 				SOC_RESET_CONTROL_ADDRESS);
2195 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2196 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2197 }
2198 
2199 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2200 {
2201 	u32 val;
2202 
2203 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2204 				SOC_RESET_CONTROL_ADDRESS);
2205 
2206 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2207 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2208 	msleep(10);
2209 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2210 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2211 }
2212 
2213 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2214 {
2215 	u32 val;
2216 
2217 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2218 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2219 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2220 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2221 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2222 }
2223 
2224 static int ath10k_pci_warm_reset(struct ath10k *ar)
2225 {
2226 	int ret;
2227 
2228 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2229 
2230 	spin_lock_bh(&ar->data_lock);
2231 	ar->stats.fw_warm_reset_counter++;
2232 	spin_unlock_bh(&ar->data_lock);
2233 
2234 	ath10k_pci_irq_disable(ar);
2235 
2236 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2237 	 * were to access copy engine while host performs copy engine reset
2238 	 * then it is possible for the device to confuse pci-e controller to
2239 	 * the point of bringing host system to a complete stop (i.e. hang).
2240 	 */
2241 	ath10k_pci_warm_reset_si0(ar);
2242 	ath10k_pci_warm_reset_cpu(ar);
2243 	ath10k_pci_init_pipes(ar);
2244 	ath10k_pci_wait_for_target_init(ar);
2245 
2246 	ath10k_pci_warm_reset_clear_lf(ar);
2247 	ath10k_pci_warm_reset_ce(ar);
2248 	ath10k_pci_warm_reset_cpu(ar);
2249 	ath10k_pci_init_pipes(ar);
2250 
2251 	ret = ath10k_pci_wait_for_target_init(ar);
2252 	if (ret) {
2253 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2254 		return ret;
2255 	}
2256 
2257 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2258 
2259 	return 0;
2260 }
2261 
2262 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2263 {
2264 	if (QCA_REV_988X(ar) || QCA_REV_6174(ar)) {
2265 		return ath10k_pci_warm_reset(ar);
2266 	} else if (QCA_REV_99X0(ar)) {
2267 		ath10k_pci_irq_disable(ar);
2268 		return ath10k_pci_qca99x0_chip_reset(ar);
2269 	} else {
2270 		return -ENOTSUPP;
2271 	}
2272 }
2273 
2274 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2275 {
2276 	int i, ret;
2277 	u32 val;
2278 
2279 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2280 
2281 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2282 	 * It is thus preferred to use warm reset which is safer but may not be
2283 	 * able to recover the device from all possible fail scenarios.
2284 	 *
2285 	 * Warm reset doesn't always work on first try so attempt it a few
2286 	 * times before giving up.
2287 	 */
2288 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2289 		ret = ath10k_pci_warm_reset(ar);
2290 		if (ret) {
2291 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2292 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2293 				    ret);
2294 			continue;
2295 		}
2296 
2297 		/* FIXME: Sometimes copy engine doesn't recover after warm
2298 		 * reset. In most cases this needs cold reset. In some of these
2299 		 * cases the device is in such a state that a cold reset may
2300 		 * lock up the host.
2301 		 *
2302 		 * Reading any host interest register via copy engine is
2303 		 * sufficient to verify if device is capable of booting
2304 		 * firmware blob.
2305 		 */
2306 		ret = ath10k_pci_init_pipes(ar);
2307 		if (ret) {
2308 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2309 				    ret);
2310 			continue;
2311 		}
2312 
2313 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2314 					     &val);
2315 		if (ret) {
2316 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2317 				    ret);
2318 			continue;
2319 		}
2320 
2321 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2322 		return 0;
2323 	}
2324 
2325 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2326 		ath10k_warn(ar, "refusing cold reset as requested\n");
2327 		return -EPERM;
2328 	}
2329 
2330 	ret = ath10k_pci_cold_reset(ar);
2331 	if (ret) {
2332 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2333 		return ret;
2334 	}
2335 
2336 	ret = ath10k_pci_wait_for_target_init(ar);
2337 	if (ret) {
2338 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2339 			    ret);
2340 		return ret;
2341 	}
2342 
2343 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2344 
2345 	return 0;
2346 }
2347 
2348 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2349 {
2350 	int ret;
2351 
2352 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2353 
2354 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2355 
2356 	ret = ath10k_pci_cold_reset(ar);
2357 	if (ret) {
2358 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2359 		return ret;
2360 	}
2361 
2362 	ret = ath10k_pci_wait_for_target_init(ar);
2363 	if (ret) {
2364 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2365 			    ret);
2366 		return ret;
2367 	}
2368 
2369 	ret = ath10k_pci_warm_reset(ar);
2370 	if (ret) {
2371 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2372 		return ret;
2373 	}
2374 
2375 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2376 
2377 	return 0;
2378 }
2379 
2380 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2381 {
2382 	int ret;
2383 
2384 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2385 
2386 	ret = ath10k_pci_cold_reset(ar);
2387 	if (ret) {
2388 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2389 		return ret;
2390 	}
2391 
2392 	ret = ath10k_pci_wait_for_target_init(ar);
2393 	if (ret) {
2394 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2395 			    ret);
2396 		return ret;
2397 	}
2398 
2399 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2400 
2401 	return 0;
2402 }
2403 
2404 static int ath10k_pci_chip_reset(struct ath10k *ar)
2405 {
2406 	if (QCA_REV_988X(ar))
2407 		return ath10k_pci_qca988x_chip_reset(ar);
2408 	else if (QCA_REV_6174(ar))
2409 		return ath10k_pci_qca6174_chip_reset(ar);
2410 	else if (QCA_REV_9377(ar))
2411 		return ath10k_pci_qca6174_chip_reset(ar);
2412 	else if (QCA_REV_99X0(ar))
2413 		return ath10k_pci_qca99x0_chip_reset(ar);
2414 	else
2415 		return -ENOTSUPP;
2416 }
2417 
2418 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2419 {
2420 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2421 	int ret;
2422 
2423 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2424 
2425 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2426 				  &ar_pci->link_ctl);
2427 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2428 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2429 
2430 	/*
2431 	 * Bring the target up cleanly.
2432 	 *
2433 	 * The target may be in an undefined state with an AUX-powered Target
2434 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2435 	 * restarted (without unloading the driver) then the Target is left
2436 	 * (aux) powered and running. On a subsequent driver load, the Target
2437 	 * is in an unexpected state. We try to catch that here in order to
2438 	 * reset the Target and retry the probe.
2439 	 */
2440 	ret = ath10k_pci_chip_reset(ar);
2441 	if (ret) {
2442 		if (ath10k_pci_has_fw_crashed(ar)) {
2443 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2444 			ath10k_pci_fw_crashed_clear(ar);
2445 			ath10k_pci_fw_crashed_dump(ar);
2446 		}
2447 
2448 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2449 		goto err_sleep;
2450 	}
2451 
2452 	ret = ath10k_pci_init_pipes(ar);
2453 	if (ret) {
2454 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2455 		goto err_sleep;
2456 	}
2457 
2458 	ret = ath10k_pci_init_config(ar);
2459 	if (ret) {
2460 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2461 		goto err_ce;
2462 	}
2463 
2464 	ret = ath10k_pci_wake_target_cpu(ar);
2465 	if (ret) {
2466 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2467 		goto err_ce;
2468 	}
2469 
2470 	return 0;
2471 
2472 err_ce:
2473 	ath10k_pci_ce_deinit(ar);
2474 
2475 err_sleep:
2476 	return ret;
2477 }
2478 
2479 void ath10k_pci_hif_power_down(struct ath10k *ar)
2480 {
2481 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2482 
2483 	/* Currently hif_power_up performs effectively a reset and hif_stop
2484 	 * resets the chip as well so there's no point in resetting here.
2485 	 */
2486 }
2487 
2488 #ifdef CONFIG_PM
2489 
2490 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2491 {
2492 	/* The grace timer can still be counting down and ar->ps_awake be true.
2493 	 * It is known that the device may be asleep after resuming regardless
2494 	 * of the SoC powersave state before suspending. Hence make sure the
2495 	 * device is asleep before proceeding.
2496 	 */
2497 	ath10k_pci_sleep_sync(ar);
2498 
2499 	return 0;
2500 }
2501 
2502 static int ath10k_pci_hif_resume(struct ath10k *ar)
2503 {
2504 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2505 	struct pci_dev *pdev = ar_pci->pdev;
2506 	u32 val;
2507 	int ret = 0;
2508 
2509 	ret = ath10k_pci_force_wake(ar);
2510 	if (ret) {
2511 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2512 		return ret;
2513 	}
2514 
2515 	/* Suspend/Resume resets the PCI configuration space, so we have to
2516 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2517 	 * from interfering with C3 CPU state. pci_restore_state won't help
2518 	 * here since it only restores the first 64 bytes pci config header.
2519 	 */
2520 	pci_read_config_dword(pdev, 0x40, &val);
2521 	if ((val & 0x0000ff00) != 0)
2522 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2523 
2524 	return ret;
2525 }
2526 #endif
2527 
2528 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2529 	.tx_sg			= ath10k_pci_hif_tx_sg,
2530 	.diag_read		= ath10k_pci_hif_diag_read,
2531 	.diag_write		= ath10k_pci_diag_write_mem,
2532 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2533 	.start			= ath10k_pci_hif_start,
2534 	.stop			= ath10k_pci_hif_stop,
2535 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2536 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2537 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2538 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2539 	.power_up		= ath10k_pci_hif_power_up,
2540 	.power_down		= ath10k_pci_hif_power_down,
2541 	.read32			= ath10k_pci_read32,
2542 	.write32		= ath10k_pci_write32,
2543 #ifdef CONFIG_PM
2544 	.suspend		= ath10k_pci_hif_suspend,
2545 	.resume			= ath10k_pci_hif_resume,
2546 #endif
2547 };
2548 
2549 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2550 {
2551 	struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2552 	struct ath10k_pci *ar_pci = pipe->ar_pci;
2553 
2554 	ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2555 }
2556 
2557 static void ath10k_msi_err_tasklet(unsigned long data)
2558 {
2559 	struct ath10k *ar = (struct ath10k *)data;
2560 
2561 	if (!ath10k_pci_has_fw_crashed(ar)) {
2562 		ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2563 		return;
2564 	}
2565 
2566 	ath10k_pci_irq_disable(ar);
2567 	ath10k_pci_fw_crashed_clear(ar);
2568 	ath10k_pci_fw_crashed_dump(ar);
2569 }
2570 
2571 /*
2572  * Handler for a per-engine interrupt on a PARTICULAR CE.
2573  * This is used in cases where each CE has a private MSI interrupt.
2574  */
2575 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2576 {
2577 	struct ath10k *ar = arg;
2578 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2579 	int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2580 
2581 	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2582 		ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2583 			    ce_id);
2584 		return IRQ_HANDLED;
2585 	}
2586 
2587 	/*
2588 	 * NOTE: We are able to derive ce_id from irq because we
2589 	 * use a one-to-one mapping for CE's 0..5.
2590 	 * CE's 6 & 7 do not use interrupts at all.
2591 	 *
2592 	 * This mapping must be kept in sync with the mapping
2593 	 * used by firmware.
2594 	 */
2595 	tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2596 	return IRQ_HANDLED;
2597 }
2598 
2599 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2600 {
2601 	struct ath10k *ar = arg;
2602 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2603 
2604 	tasklet_schedule(&ar_pci->msi_fw_err);
2605 	return IRQ_HANDLED;
2606 }
2607 
2608 /*
2609  * Top-level interrupt handler for all PCI interrupts from a Target.
2610  * When a block of MSI interrupts is allocated, this top-level handler
2611  * is not used; instead, we directly call the correct sub-handler.
2612  */
2613 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2614 {
2615 	struct ath10k *ar = arg;
2616 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2617 	int ret;
2618 
2619 	ret = ath10k_pci_force_wake(ar);
2620 	if (ret) {
2621 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2622 		return IRQ_NONE;
2623 	}
2624 
2625 	if (ar_pci->num_msi_intrs == 0) {
2626 		if (!ath10k_pci_irq_pending(ar))
2627 			return IRQ_NONE;
2628 
2629 		ath10k_pci_disable_and_clear_legacy_irq(ar);
2630 	}
2631 
2632 	tasklet_schedule(&ar_pci->intr_tq);
2633 
2634 	return IRQ_HANDLED;
2635 }
2636 
2637 static void ath10k_pci_tasklet(unsigned long data)
2638 {
2639 	struct ath10k *ar = (struct ath10k *)data;
2640 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2641 
2642 	if (ath10k_pci_has_fw_crashed(ar)) {
2643 		ath10k_pci_irq_disable(ar);
2644 		ath10k_pci_fw_crashed_clear(ar);
2645 		ath10k_pci_fw_crashed_dump(ar);
2646 		return;
2647 	}
2648 
2649 	ath10k_ce_per_engine_service_any(ar);
2650 
2651 	/* Re-enable legacy irq that was disabled in the irq handler */
2652 	if (ar_pci->num_msi_intrs == 0)
2653 		ath10k_pci_enable_legacy_irq(ar);
2654 }
2655 
2656 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2657 {
2658 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2659 	int ret, i;
2660 
2661 	ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2662 			  ath10k_pci_msi_fw_handler,
2663 			  IRQF_SHARED, "ath10k_pci", ar);
2664 	if (ret) {
2665 		ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2666 			    ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2667 		return ret;
2668 	}
2669 
2670 	for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2671 		ret = request_irq(ar_pci->pdev->irq + i,
2672 				  ath10k_pci_per_engine_handler,
2673 				  IRQF_SHARED, "ath10k_pci", ar);
2674 		if (ret) {
2675 			ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2676 				    ar_pci->pdev->irq + i, ret);
2677 
2678 			for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2679 				free_irq(ar_pci->pdev->irq + i, ar);
2680 
2681 			free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2682 			return ret;
2683 		}
2684 	}
2685 
2686 	return 0;
2687 }
2688 
2689 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2690 {
2691 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2692 	int ret;
2693 
2694 	ret = request_irq(ar_pci->pdev->irq,
2695 			  ath10k_pci_interrupt_handler,
2696 			  IRQF_SHARED, "ath10k_pci", ar);
2697 	if (ret) {
2698 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2699 			    ar_pci->pdev->irq, ret);
2700 		return ret;
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2707 {
2708 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2709 	int ret;
2710 
2711 	ret = request_irq(ar_pci->pdev->irq,
2712 			  ath10k_pci_interrupt_handler,
2713 			  IRQF_SHARED, "ath10k_pci", ar);
2714 	if (ret) {
2715 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2716 			    ar_pci->pdev->irq, ret);
2717 		return ret;
2718 	}
2719 
2720 	return 0;
2721 }
2722 
2723 static int ath10k_pci_request_irq(struct ath10k *ar)
2724 {
2725 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2726 
2727 	switch (ar_pci->num_msi_intrs) {
2728 	case 0:
2729 		return ath10k_pci_request_irq_legacy(ar);
2730 	case 1:
2731 		return ath10k_pci_request_irq_msi(ar);
2732 	default:
2733 		return ath10k_pci_request_irq_msix(ar);
2734 	}
2735 }
2736 
2737 static void ath10k_pci_free_irq(struct ath10k *ar)
2738 {
2739 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2740 	int i;
2741 
2742 	/* There's at least one interrupt irregardless whether its legacy INTR
2743 	 * or MSI or MSI-X */
2744 	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2745 		free_irq(ar_pci->pdev->irq + i, ar);
2746 }
2747 
2748 void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2749 {
2750 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2751 	int i;
2752 
2753 	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2754 	tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2755 		     (unsigned long)ar);
2756 
2757 	for (i = 0; i < CE_COUNT; i++) {
2758 		ar_pci->pipe_info[i].ar_pci = ar_pci;
2759 		tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2760 			     (unsigned long)&ar_pci->pipe_info[i]);
2761 	}
2762 }
2763 
2764 static int ath10k_pci_init_irq(struct ath10k *ar)
2765 {
2766 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2767 	int ret;
2768 
2769 	ath10k_pci_init_irq_tasklets(ar);
2770 
2771 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2772 		ath10k_info(ar, "limiting irq mode to: %d\n",
2773 			    ath10k_pci_irq_mode);
2774 
2775 	/* Try MSI-X */
2776 	if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2777 		ar_pci->num_msi_intrs = MSI_ASSIGN_CE_MAX + 1;
2778 		ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2779 					   ar_pci->num_msi_intrs);
2780 		if (ret > 0)
2781 			return 0;
2782 
2783 		/* fall-through */
2784 	}
2785 
2786 	/* Try MSI */
2787 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2788 		ar_pci->num_msi_intrs = 1;
2789 		ret = pci_enable_msi(ar_pci->pdev);
2790 		if (ret == 0)
2791 			return 0;
2792 
2793 		/* fall-through */
2794 	}
2795 
2796 	/* Try legacy irq
2797 	 *
2798 	 * A potential race occurs here: The CORE_BASE write
2799 	 * depends on target correctly decoding AXI address but
2800 	 * host won't know when target writes BAR to CORE_CTRL.
2801 	 * This write might get lost if target has NOT written BAR.
2802 	 * For now, fix the race by repeating the write in below
2803 	 * synchronization checking. */
2804 	ar_pci->num_msi_intrs = 0;
2805 
2806 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2807 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2808 
2809 	return 0;
2810 }
2811 
2812 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2813 {
2814 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2815 			   0);
2816 }
2817 
2818 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2819 {
2820 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2821 
2822 	switch (ar_pci->num_msi_intrs) {
2823 	case 0:
2824 		ath10k_pci_deinit_irq_legacy(ar);
2825 		break;
2826 	default:
2827 		pci_disable_msi(ar_pci->pdev);
2828 		break;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2835 {
2836 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2837 	unsigned long timeout;
2838 	u32 val;
2839 
2840 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2841 
2842 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2843 
2844 	do {
2845 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2846 
2847 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2848 			   val);
2849 
2850 		/* target should never return this */
2851 		if (val == 0xffffffff)
2852 			continue;
2853 
2854 		/* the device has crashed so don't bother trying anymore */
2855 		if (val & FW_IND_EVENT_PENDING)
2856 			break;
2857 
2858 		if (val & FW_IND_INITIALIZED)
2859 			break;
2860 
2861 		if (ar_pci->num_msi_intrs == 0)
2862 			/* Fix potential race by repeating CORE_BASE writes */
2863 			ath10k_pci_enable_legacy_irq(ar);
2864 
2865 		mdelay(10);
2866 	} while (time_before(jiffies, timeout));
2867 
2868 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2869 	ath10k_pci_irq_msi_fw_mask(ar);
2870 
2871 	if (val == 0xffffffff) {
2872 		ath10k_err(ar, "failed to read device register, device is gone\n");
2873 		return -EIO;
2874 	}
2875 
2876 	if (val & FW_IND_EVENT_PENDING) {
2877 		ath10k_warn(ar, "device has crashed during init\n");
2878 		return -ECOMM;
2879 	}
2880 
2881 	if (!(val & FW_IND_INITIALIZED)) {
2882 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2883 			   val);
2884 		return -ETIMEDOUT;
2885 	}
2886 
2887 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2888 	return 0;
2889 }
2890 
2891 static int ath10k_pci_cold_reset(struct ath10k *ar)
2892 {
2893 	u32 val;
2894 
2895 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2896 
2897 	spin_lock_bh(&ar->data_lock);
2898 
2899 	ar->stats.fw_cold_reset_counter++;
2900 
2901 	spin_unlock_bh(&ar->data_lock);
2902 
2903 	/* Put Target, including PCIe, into RESET. */
2904 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2905 	val |= 1;
2906 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2907 
2908 	/* After writing into SOC_GLOBAL_RESET to put device into
2909 	 * reset and pulling out of reset pcie may not be stable
2910 	 * for any immediate pcie register access and cause bus error,
2911 	 * add delay before any pcie access request to fix this issue.
2912 	 */
2913 	msleep(20);
2914 
2915 	/* Pull Target, including PCIe, out of RESET. */
2916 	val &= ~1;
2917 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2918 
2919 	msleep(20);
2920 
2921 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2922 
2923 	return 0;
2924 }
2925 
2926 static int ath10k_pci_claim(struct ath10k *ar)
2927 {
2928 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2929 	struct pci_dev *pdev = ar_pci->pdev;
2930 	int ret;
2931 
2932 	pci_set_drvdata(pdev, ar);
2933 
2934 	ret = pci_enable_device(pdev);
2935 	if (ret) {
2936 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2937 		return ret;
2938 	}
2939 
2940 	ret = pci_request_region(pdev, BAR_NUM, "ath");
2941 	if (ret) {
2942 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2943 			   ret);
2944 		goto err_device;
2945 	}
2946 
2947 	/* Target expects 32 bit DMA. Enforce it. */
2948 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2949 	if (ret) {
2950 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2951 		goto err_region;
2952 	}
2953 
2954 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2955 	if (ret) {
2956 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2957 			   ret);
2958 		goto err_region;
2959 	}
2960 
2961 	pci_set_master(pdev);
2962 
2963 	/* Arrange for access to Target SoC registers. */
2964 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
2965 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2966 	if (!ar_pci->mem) {
2967 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2968 		ret = -EIO;
2969 		goto err_master;
2970 	}
2971 
2972 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2973 	return 0;
2974 
2975 err_master:
2976 	pci_clear_master(pdev);
2977 
2978 err_region:
2979 	pci_release_region(pdev, BAR_NUM);
2980 
2981 err_device:
2982 	pci_disable_device(pdev);
2983 
2984 	return ret;
2985 }
2986 
2987 static void ath10k_pci_release(struct ath10k *ar)
2988 {
2989 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2990 	struct pci_dev *pdev = ar_pci->pdev;
2991 
2992 	pci_iounmap(pdev, ar_pci->mem);
2993 	pci_release_region(pdev, BAR_NUM);
2994 	pci_clear_master(pdev);
2995 	pci_disable_device(pdev);
2996 }
2997 
2998 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2999 {
3000 	const struct ath10k_pci_supp_chip *supp_chip;
3001 	int i;
3002 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3003 
3004 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3005 		supp_chip = &ath10k_pci_supp_chips[i];
3006 
3007 		if (supp_chip->dev_id == dev_id &&
3008 		    supp_chip->rev_id == rev_id)
3009 			return true;
3010 	}
3011 
3012 	return false;
3013 }
3014 
3015 int ath10k_pci_setup_resource(struct ath10k *ar)
3016 {
3017 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3018 	int ret;
3019 
3020 	spin_lock_init(&ar_pci->ce_lock);
3021 	spin_lock_init(&ar_pci->ps_lock);
3022 
3023 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3024 		    (unsigned long)ar);
3025 
3026 	if (QCA_REV_6174(ar))
3027 		ath10k_pci_override_ce_config(ar);
3028 
3029 	ret = ath10k_pci_alloc_pipes(ar);
3030 	if (ret) {
3031 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3032 			   ret);
3033 		return ret;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 void ath10k_pci_release_resource(struct ath10k *ar)
3040 {
3041 	ath10k_pci_kill_tasklet(ar);
3042 	ath10k_pci_ce_deinit(ar);
3043 	ath10k_pci_free_pipes(ar);
3044 }
3045 
3046 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3047 	.read32		= ath10k_bus_pci_read32,
3048 	.write32	= ath10k_bus_pci_write32,
3049 	.get_num_banks	= ath10k_pci_get_num_banks,
3050 };
3051 
3052 static int ath10k_pci_probe(struct pci_dev *pdev,
3053 			    const struct pci_device_id *pci_dev)
3054 {
3055 	int ret = 0;
3056 	struct ath10k *ar;
3057 	struct ath10k_pci *ar_pci;
3058 	enum ath10k_hw_rev hw_rev;
3059 	u32 chip_id;
3060 	bool pci_ps;
3061 
3062 	switch (pci_dev->device) {
3063 	case QCA988X_2_0_DEVICE_ID:
3064 		hw_rev = ATH10K_HW_QCA988X;
3065 		pci_ps = false;
3066 		break;
3067 	case QCA6164_2_1_DEVICE_ID:
3068 	case QCA6174_2_1_DEVICE_ID:
3069 		hw_rev = ATH10K_HW_QCA6174;
3070 		pci_ps = true;
3071 		break;
3072 	case QCA99X0_2_0_DEVICE_ID:
3073 		hw_rev = ATH10K_HW_QCA99X0;
3074 		pci_ps = false;
3075 		break;
3076 	case QCA9377_1_0_DEVICE_ID:
3077 		hw_rev = ATH10K_HW_QCA9377;
3078 		pci_ps = true;
3079 		break;
3080 	default:
3081 		WARN_ON(1);
3082 		return -ENOTSUPP;
3083 	}
3084 
3085 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3086 				hw_rev, &ath10k_pci_hif_ops);
3087 	if (!ar) {
3088 		dev_err(&pdev->dev, "failed to allocate core\n");
3089 		return -ENOMEM;
3090 	}
3091 
3092 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3093 		   pdev->vendor, pdev->device,
3094 		   pdev->subsystem_vendor, pdev->subsystem_device);
3095 
3096 	ar_pci = ath10k_pci_priv(ar);
3097 	ar_pci->pdev = pdev;
3098 	ar_pci->dev = &pdev->dev;
3099 	ar_pci->ar = ar;
3100 	ar->dev_id = pci_dev->device;
3101 	ar_pci->pci_ps = pci_ps;
3102 	ar_pci->bus_ops = &ath10k_pci_bus_ops;
3103 
3104 	ar->id.vendor = pdev->vendor;
3105 	ar->id.device = pdev->device;
3106 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3107 	ar->id.subsystem_device = pdev->subsystem_device;
3108 
3109 	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3110 		    (unsigned long)ar);
3111 
3112 	ret = ath10k_pci_setup_resource(ar);
3113 	if (ret) {
3114 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3115 		goto err_core_destroy;
3116 	}
3117 
3118 	ret = ath10k_pci_claim(ar);
3119 	if (ret) {
3120 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3121 		goto err_free_pipes;
3122 	}
3123 
3124 	ret = ath10k_pci_force_wake(ar);
3125 	if (ret) {
3126 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3127 		goto err_sleep;
3128 	}
3129 
3130 	ath10k_pci_ce_deinit(ar);
3131 	ath10k_pci_irq_disable(ar);
3132 
3133 	ret = ath10k_pci_init_irq(ar);
3134 	if (ret) {
3135 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3136 		goto err_sleep;
3137 	}
3138 
3139 	ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
3140 		    ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
3141 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3142 
3143 	ret = ath10k_pci_request_irq(ar);
3144 	if (ret) {
3145 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3146 		goto err_deinit_irq;
3147 	}
3148 
3149 	ret = ath10k_pci_chip_reset(ar);
3150 	if (ret) {
3151 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3152 		goto err_free_irq;
3153 	}
3154 
3155 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3156 	if (chip_id == 0xffffffff) {
3157 		ath10k_err(ar, "failed to get chip id\n");
3158 		goto err_free_irq;
3159 	}
3160 
3161 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3162 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3163 			   pdev->device, chip_id);
3164 		goto err_free_irq;
3165 	}
3166 
3167 	ret = ath10k_core_register(ar, chip_id);
3168 	if (ret) {
3169 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3170 		goto err_free_irq;
3171 	}
3172 
3173 	return 0;
3174 
3175 err_free_irq:
3176 	ath10k_pci_free_irq(ar);
3177 	ath10k_pci_kill_tasklet(ar);
3178 
3179 err_deinit_irq:
3180 	ath10k_pci_deinit_irq(ar);
3181 
3182 err_sleep:
3183 	ath10k_pci_sleep_sync(ar);
3184 	ath10k_pci_release(ar);
3185 
3186 err_free_pipes:
3187 	ath10k_pci_free_pipes(ar);
3188 
3189 err_core_destroy:
3190 	ath10k_core_destroy(ar);
3191 
3192 	return ret;
3193 }
3194 
3195 static void ath10k_pci_remove(struct pci_dev *pdev)
3196 {
3197 	struct ath10k *ar = pci_get_drvdata(pdev);
3198 	struct ath10k_pci *ar_pci;
3199 
3200 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3201 
3202 	if (!ar)
3203 		return;
3204 
3205 	ar_pci = ath10k_pci_priv(ar);
3206 
3207 	if (!ar_pci)
3208 		return;
3209 
3210 	ath10k_core_unregister(ar);
3211 	ath10k_pci_free_irq(ar);
3212 	ath10k_pci_deinit_irq(ar);
3213 	ath10k_pci_release_resource(ar);
3214 	ath10k_pci_sleep_sync(ar);
3215 	ath10k_pci_release(ar);
3216 	ath10k_core_destroy(ar);
3217 }
3218 
3219 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3220 
3221 static struct pci_driver ath10k_pci_driver = {
3222 	.name = "ath10k_pci",
3223 	.id_table = ath10k_pci_id_table,
3224 	.probe = ath10k_pci_probe,
3225 	.remove = ath10k_pci_remove,
3226 };
3227 
3228 static int __init ath10k_pci_init(void)
3229 {
3230 	int ret;
3231 
3232 	ret = pci_register_driver(&ath10k_pci_driver);
3233 	if (ret)
3234 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3235 		       ret);
3236 
3237 	ret = ath10k_ahb_init();
3238 	if (ret)
3239 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3240 
3241 	return ret;
3242 }
3243 module_init(ath10k_pci_init);
3244 
3245 static void __exit ath10k_pci_exit(void)
3246 {
3247 	pci_unregister_driver(&ath10k_pci_driver);
3248 	ath10k_ahb_exit();
3249 }
3250 
3251 module_exit(ath10k_pci_exit);
3252 
3253 MODULE_AUTHOR("Qualcomm Atheros");
3254 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
3255 MODULE_LICENSE("Dual BSD/GPL");
3256 
3257 /* QCA988x 2.0 firmware files */
3258 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
3259 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3260 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3261 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3262 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3263 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3264 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3265 
3266 /* QCA6174 2.1 firmware files */
3267 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3268 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3269 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3270 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3271 
3272 /* QCA6174 3.1 firmware files */
3273 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3274 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3275 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3276 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3277 
3278 /* QCA9377 1.0 firmware files */
3279 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3280 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3281