1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2014-2017 Qualcomm Atheros, Inc. 4 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. 5 */ 6 7 #include <linux/types.h> 8 #include <linux/bitops.h> 9 #include <linux/bitfield.h> 10 #include "core.h" 11 #include "hw.h" 12 #include "hif.h" 13 #include "wmi-ops.h" 14 #include "bmi.h" 15 #include "rx_desc.h" 16 17 const struct ath10k_hw_regs qca988x_regs = { 18 .rtc_soc_base_address = 0x00004000, 19 .rtc_wmac_base_address = 0x00005000, 20 .soc_core_base_address = 0x00009000, 21 .wlan_mac_base_address = 0x00020000, 22 .ce_wrapper_base_address = 0x00057000, 23 .ce0_base_address = 0x00057400, 24 .ce1_base_address = 0x00057800, 25 .ce2_base_address = 0x00057c00, 26 .ce3_base_address = 0x00058000, 27 .ce4_base_address = 0x00058400, 28 .ce5_base_address = 0x00058800, 29 .ce6_base_address = 0x00058c00, 30 .ce7_base_address = 0x00059000, 31 .soc_reset_control_si0_rst_mask = 0x00000001, 32 .soc_reset_control_ce_rst_mask = 0x00040000, 33 .soc_chip_id_address = 0x000000ec, 34 .scratch_3_address = 0x00000030, 35 .fw_indicator_address = 0x00009030, 36 .pcie_local_base_address = 0x00080000, 37 .ce_wrap_intr_sum_host_msi_lsb = 0x00000008, 38 .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00, 39 .pcie_intr_fw_mask = 0x00000400, 40 .pcie_intr_ce_mask_all = 0x0007f800, 41 .pcie_intr_clr_address = 0x00000014, 42 }; 43 44 const struct ath10k_hw_regs qca6174_regs = { 45 .rtc_soc_base_address = 0x00000800, 46 .rtc_wmac_base_address = 0x00001000, 47 .soc_core_base_address = 0x0003a000, 48 .wlan_mac_base_address = 0x00010000, 49 .ce_wrapper_base_address = 0x00034000, 50 .ce0_base_address = 0x00034400, 51 .ce1_base_address = 0x00034800, 52 .ce2_base_address = 0x00034c00, 53 .ce3_base_address = 0x00035000, 54 .ce4_base_address = 0x00035400, 55 .ce5_base_address = 0x00035800, 56 .ce6_base_address = 0x00035c00, 57 .ce7_base_address = 0x00036000, 58 .soc_reset_control_si0_rst_mask = 0x00000000, 59 .soc_reset_control_ce_rst_mask = 0x00000001, 60 .soc_chip_id_address = 0x000000f0, 61 .scratch_3_address = 0x00000028, 62 .fw_indicator_address = 0x0003a028, 63 .pcie_local_base_address = 0x00080000, 64 .ce_wrap_intr_sum_host_msi_lsb = 0x00000008, 65 .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00, 66 .pcie_intr_fw_mask = 0x00000400, 67 .pcie_intr_ce_mask_all = 0x0007f800, 68 .pcie_intr_clr_address = 0x00000014, 69 .cpu_pll_init_address = 0x00404020, 70 .cpu_speed_address = 0x00404024, 71 .core_clk_div_address = 0x00404028, 72 }; 73 74 const struct ath10k_hw_regs qca99x0_regs = { 75 .rtc_soc_base_address = 0x00080000, 76 .rtc_wmac_base_address = 0x00000000, 77 .soc_core_base_address = 0x00082000, 78 .wlan_mac_base_address = 0x00030000, 79 .ce_wrapper_base_address = 0x0004d000, 80 .ce0_base_address = 0x0004a000, 81 .ce1_base_address = 0x0004a400, 82 .ce2_base_address = 0x0004a800, 83 .ce3_base_address = 0x0004ac00, 84 .ce4_base_address = 0x0004b000, 85 .ce5_base_address = 0x0004b400, 86 .ce6_base_address = 0x0004b800, 87 .ce7_base_address = 0x0004bc00, 88 /* Note: qca99x0 supports up to 12 Copy Engines. Other than address of 89 * CE0 and CE1 no other copy engine is directly referred in the code. 90 * It is not really necessary to assign address for newly supported 91 * CEs in this address table. 92 * Copy Engine Address 93 * CE8 0x0004c000 94 * CE9 0x0004c400 95 * CE10 0x0004c800 96 * CE11 0x0004cc00 97 */ 98 .soc_reset_control_si0_rst_mask = 0x00000001, 99 .soc_reset_control_ce_rst_mask = 0x00000100, 100 .soc_chip_id_address = 0x000000ec, 101 .scratch_3_address = 0x00040050, 102 .fw_indicator_address = 0x00040050, 103 .pcie_local_base_address = 0x00000000, 104 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 105 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 106 .pcie_intr_fw_mask = 0x00100000, 107 .pcie_intr_ce_mask_all = 0x000fff00, 108 .pcie_intr_clr_address = 0x00000010, 109 }; 110 111 const struct ath10k_hw_regs qca4019_regs = { 112 .rtc_soc_base_address = 0x00080000, 113 .soc_core_base_address = 0x00082000, 114 .wlan_mac_base_address = 0x00030000, 115 .ce_wrapper_base_address = 0x0004d000, 116 .ce0_base_address = 0x0004a000, 117 .ce1_base_address = 0x0004a400, 118 .ce2_base_address = 0x0004a800, 119 .ce3_base_address = 0x0004ac00, 120 .ce4_base_address = 0x0004b000, 121 .ce5_base_address = 0x0004b400, 122 .ce6_base_address = 0x0004b800, 123 .ce7_base_address = 0x0004bc00, 124 /* qca4019 supports up to 12 copy engines. Since base address 125 * of ce8 to ce11 are not directly referred in the code, 126 * no need have them in separate members in this table. 127 * Copy Engine Address 128 * CE8 0x0004c000 129 * CE9 0x0004c400 130 * CE10 0x0004c800 131 * CE11 0x0004cc00 132 */ 133 .soc_reset_control_si0_rst_mask = 0x00000001, 134 .soc_reset_control_ce_rst_mask = 0x00000100, 135 .soc_chip_id_address = 0x000000ec, 136 .fw_indicator_address = 0x0004f00c, 137 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 138 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 139 .pcie_intr_fw_mask = 0x00100000, 140 .pcie_intr_ce_mask_all = 0x000fff00, 141 .pcie_intr_clr_address = 0x00000010, 142 }; 143 144 const struct ath10k_hw_values qca988x_values = { 145 .rtc_state_val_on = 3, 146 .ce_count = 8, 147 .msi_assign_ce_max = 7, 148 .num_target_ce_config_wlan = 7, 149 .ce_desc_meta_data_mask = 0xFFFC, 150 .ce_desc_meta_data_lsb = 2, 151 }; 152 153 const struct ath10k_hw_values qca6174_values = { 154 .rtc_state_val_on = 3, 155 .ce_count = 8, 156 .msi_assign_ce_max = 7, 157 .num_target_ce_config_wlan = 7, 158 .ce_desc_meta_data_mask = 0xFFFC, 159 .ce_desc_meta_data_lsb = 2, 160 .rfkill_pin = 16, 161 .rfkill_cfg = 0, 162 .rfkill_on_level = 1, 163 }; 164 165 const struct ath10k_hw_values qca99x0_values = { 166 .rtc_state_val_on = 7, 167 .ce_count = 12, 168 .msi_assign_ce_max = 12, 169 .num_target_ce_config_wlan = 10, 170 .ce_desc_meta_data_mask = 0xFFF0, 171 .ce_desc_meta_data_lsb = 4, 172 }; 173 174 const struct ath10k_hw_values qca9888_values = { 175 .rtc_state_val_on = 3, 176 .ce_count = 12, 177 .msi_assign_ce_max = 12, 178 .num_target_ce_config_wlan = 10, 179 .ce_desc_meta_data_mask = 0xFFF0, 180 .ce_desc_meta_data_lsb = 4, 181 }; 182 183 const struct ath10k_hw_values qca4019_values = { 184 .ce_count = 12, 185 .num_target_ce_config_wlan = 10, 186 .ce_desc_meta_data_mask = 0xFFF0, 187 .ce_desc_meta_data_lsb = 4, 188 }; 189 190 const struct ath10k_hw_regs wcn3990_regs = { 191 .rtc_soc_base_address = 0x00000000, 192 .rtc_wmac_base_address = 0x00000000, 193 .soc_core_base_address = 0x00000000, 194 .ce_wrapper_base_address = 0x0024C000, 195 .ce0_base_address = 0x00240000, 196 .ce1_base_address = 0x00241000, 197 .ce2_base_address = 0x00242000, 198 .ce3_base_address = 0x00243000, 199 .ce4_base_address = 0x00244000, 200 .ce5_base_address = 0x00245000, 201 .ce6_base_address = 0x00246000, 202 .ce7_base_address = 0x00247000, 203 .ce8_base_address = 0x00248000, 204 .ce9_base_address = 0x00249000, 205 .ce10_base_address = 0x0024A000, 206 .ce11_base_address = 0x0024B000, 207 .soc_chip_id_address = 0x000000f0, 208 .soc_reset_control_si0_rst_mask = 0x00000001, 209 .soc_reset_control_ce_rst_mask = 0x00000100, 210 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 211 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 212 .pcie_intr_fw_mask = 0x00100000, 213 }; 214 215 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_ring = { 216 .msb = 0x00000010, 217 .lsb = 0x00000010, 218 .mask = GENMASK(17, 17), 219 }; 220 221 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_ring = { 222 .msb = 0x00000012, 223 .lsb = 0x00000012, 224 .mask = GENMASK(18, 18), 225 }; 226 227 static struct ath10k_hw_ce_regs_addr_map wcn3990_dmax = { 228 .msb = 0x00000000, 229 .lsb = 0x00000000, 230 .mask = GENMASK(15, 0), 231 }; 232 233 static struct ath10k_hw_ce_ctrl1 wcn3990_ctrl1 = { 234 .addr = 0x00000018, 235 .src_ring = &wcn3990_src_ring, 236 .dst_ring = &wcn3990_dst_ring, 237 .dmax = &wcn3990_dmax, 238 }; 239 240 static struct ath10k_hw_ce_regs_addr_map wcn3990_host_ie_cc = { 241 .mask = GENMASK(0, 0), 242 }; 243 244 static struct ath10k_hw_ce_host_ie wcn3990_host_ie = { 245 .copy_complete = &wcn3990_host_ie_cc, 246 }; 247 248 static struct ath10k_hw_ce_host_wm_regs wcn3990_wm_reg = { 249 .dstr_lmask = 0x00000010, 250 .dstr_hmask = 0x00000008, 251 .srcr_lmask = 0x00000004, 252 .srcr_hmask = 0x00000002, 253 .cc_mask = 0x00000001, 254 .wm_mask = 0x0000001E, 255 .addr = 0x00000030, 256 }; 257 258 static struct ath10k_hw_ce_misc_regs wcn3990_misc_reg = { 259 .axi_err = 0x00000100, 260 .dstr_add_err = 0x00000200, 261 .srcr_len_err = 0x00000100, 262 .dstr_mlen_vio = 0x00000080, 263 .dstr_overflow = 0x00000040, 264 .srcr_overflow = 0x00000020, 265 .err_mask = 0x000003E0, 266 .addr = 0x00000038, 267 }; 268 269 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_low = { 270 .msb = 0x00000000, 271 .lsb = 0x00000010, 272 .mask = GENMASK(31, 16), 273 }; 274 275 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_high = { 276 .msb = 0x0000000f, 277 .lsb = 0x00000000, 278 .mask = GENMASK(15, 0), 279 }; 280 281 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_src_ring = { 282 .addr = 0x0000004c, 283 .low_rst = 0x00000000, 284 .high_rst = 0x00000000, 285 .wm_low = &wcn3990_src_wm_low, 286 .wm_high = &wcn3990_src_wm_high, 287 }; 288 289 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_low = { 290 .lsb = 0x00000010, 291 .mask = GENMASK(31, 16), 292 }; 293 294 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_high = { 295 .msb = 0x0000000f, 296 .lsb = 0x00000000, 297 .mask = GENMASK(15, 0), 298 }; 299 300 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_dst_ring = { 301 .addr = 0x00000050, 302 .low_rst = 0x00000000, 303 .high_rst = 0x00000000, 304 .wm_low = &wcn3990_dst_wm_low, 305 .wm_high = &wcn3990_dst_wm_high, 306 }; 307 308 static struct ath10k_hw_ce_ctrl1_upd wcn3990_ctrl1_upd = { 309 .shift = 19, 310 .mask = 0x00080000, 311 .enable = 0x00000000, 312 }; 313 314 const struct ath10k_hw_ce_regs wcn3990_ce_regs = { 315 .sr_base_addr_lo = 0x00000000, 316 .sr_base_addr_hi = 0x00000004, 317 .sr_size_addr = 0x00000008, 318 .dr_base_addr_lo = 0x0000000c, 319 .dr_base_addr_hi = 0x00000010, 320 .dr_size_addr = 0x00000014, 321 .misc_ie_addr = 0x00000034, 322 .sr_wr_index_addr = 0x0000003c, 323 .dst_wr_index_addr = 0x00000040, 324 .current_srri_addr = 0x00000044, 325 .current_drri_addr = 0x00000048, 326 .ce_rri_low = 0x0024C004, 327 .ce_rri_high = 0x0024C008, 328 .host_ie_addr = 0x0000002c, 329 .ctrl1_regs = &wcn3990_ctrl1, 330 .host_ie = &wcn3990_host_ie, 331 .wm_regs = &wcn3990_wm_reg, 332 .misc_regs = &wcn3990_misc_reg, 333 .wm_srcr = &wcn3990_wm_src_ring, 334 .wm_dstr = &wcn3990_wm_dst_ring, 335 .upd = &wcn3990_ctrl1_upd, 336 }; 337 338 const struct ath10k_hw_values wcn3990_values = { 339 .rtc_state_val_on = 5, 340 .ce_count = 12, 341 .msi_assign_ce_max = 12, 342 .num_target_ce_config_wlan = 12, 343 .ce_desc_meta_data_mask = 0xFFF0, 344 .ce_desc_meta_data_lsb = 4, 345 }; 346 347 static struct ath10k_hw_ce_regs_addr_map qcax_src_ring = { 348 .msb = 0x00000010, 349 .lsb = 0x00000010, 350 .mask = GENMASK(16, 16), 351 }; 352 353 static struct ath10k_hw_ce_regs_addr_map qcax_dst_ring = { 354 .msb = 0x00000011, 355 .lsb = 0x00000011, 356 .mask = GENMASK(17, 17), 357 }; 358 359 static struct ath10k_hw_ce_regs_addr_map qcax_dmax = { 360 .msb = 0x0000000f, 361 .lsb = 0x00000000, 362 .mask = GENMASK(15, 0), 363 }; 364 365 static struct ath10k_hw_ce_ctrl1 qcax_ctrl1 = { 366 .addr = 0x00000010, 367 .hw_mask = 0x0007ffff, 368 .sw_mask = 0x0007ffff, 369 .hw_wr_mask = 0x00000000, 370 .sw_wr_mask = 0x0007ffff, 371 .reset_mask = 0xffffffff, 372 .reset = 0x00000080, 373 .src_ring = &qcax_src_ring, 374 .dst_ring = &qcax_dst_ring, 375 .dmax = &qcax_dmax, 376 }; 377 378 static struct ath10k_hw_ce_regs_addr_map qcax_cmd_halt_status = { 379 .msb = 0x00000003, 380 .lsb = 0x00000003, 381 .mask = GENMASK(3, 3), 382 }; 383 384 static struct ath10k_hw_ce_cmd_halt qcax_cmd_halt = { 385 .msb = 0x00000000, 386 .mask = GENMASK(0, 0), 387 .status_reset = 0x00000000, 388 .status = &qcax_cmd_halt_status, 389 }; 390 391 static struct ath10k_hw_ce_regs_addr_map qcax_host_ie_cc = { 392 .msb = 0x00000000, 393 .lsb = 0x00000000, 394 .mask = GENMASK(0, 0), 395 }; 396 397 static struct ath10k_hw_ce_host_ie qcax_host_ie = { 398 .copy_complete_reset = 0x00000000, 399 .copy_complete = &qcax_host_ie_cc, 400 }; 401 402 static struct ath10k_hw_ce_host_wm_regs qcax_wm_reg = { 403 .dstr_lmask = 0x00000010, 404 .dstr_hmask = 0x00000008, 405 .srcr_lmask = 0x00000004, 406 .srcr_hmask = 0x00000002, 407 .cc_mask = 0x00000001, 408 .wm_mask = 0x0000001E, 409 .addr = 0x00000030, 410 }; 411 412 static struct ath10k_hw_ce_misc_regs qcax_misc_reg = { 413 .axi_err = 0x00000400, 414 .dstr_add_err = 0x00000200, 415 .srcr_len_err = 0x00000100, 416 .dstr_mlen_vio = 0x00000080, 417 .dstr_overflow = 0x00000040, 418 .srcr_overflow = 0x00000020, 419 .err_mask = 0x000007E0, 420 .addr = 0x00000038, 421 }; 422 423 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_low = { 424 .msb = 0x0000001f, 425 .lsb = 0x00000010, 426 .mask = GENMASK(31, 16), 427 }; 428 429 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_high = { 430 .msb = 0x0000000f, 431 .lsb = 0x00000000, 432 .mask = GENMASK(15, 0), 433 }; 434 435 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_src_ring = { 436 .addr = 0x0000004c, 437 .low_rst = 0x00000000, 438 .high_rst = 0x00000000, 439 .wm_low = &qcax_src_wm_low, 440 .wm_high = &qcax_src_wm_high, 441 }; 442 443 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_low = { 444 .lsb = 0x00000010, 445 .mask = GENMASK(31, 16), 446 }; 447 448 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_high = { 449 .msb = 0x0000000f, 450 .lsb = 0x00000000, 451 .mask = GENMASK(15, 0), 452 }; 453 454 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_dst_ring = { 455 .addr = 0x00000050, 456 .low_rst = 0x00000000, 457 .high_rst = 0x00000000, 458 .wm_low = &qcax_dst_wm_low, 459 .wm_high = &qcax_dst_wm_high, 460 }; 461 462 const struct ath10k_hw_ce_regs qcax_ce_regs = { 463 .sr_base_addr_lo = 0x00000000, 464 .sr_size_addr = 0x00000004, 465 .dr_base_addr_lo = 0x00000008, 466 .dr_size_addr = 0x0000000c, 467 .ce_cmd_addr = 0x00000018, 468 .misc_ie_addr = 0x00000034, 469 .sr_wr_index_addr = 0x0000003c, 470 .dst_wr_index_addr = 0x00000040, 471 .current_srri_addr = 0x00000044, 472 .current_drri_addr = 0x00000048, 473 .host_ie_addr = 0x0000002c, 474 .ctrl1_regs = &qcax_ctrl1, 475 .cmd_halt = &qcax_cmd_halt, 476 .host_ie = &qcax_host_ie, 477 .wm_regs = &qcax_wm_reg, 478 .misc_regs = &qcax_misc_reg, 479 .wm_srcr = &qcax_wm_src_ring, 480 .wm_dstr = &qcax_wm_dst_ring, 481 }; 482 483 const struct ath10k_hw_clk_params qca6174_clk[ATH10K_HW_REFCLK_COUNT] = { 484 { 485 .refclk = 48000000, 486 .div = 0xe, 487 .rnfrac = 0x2aaa8, 488 .settle_time = 2400, 489 .refdiv = 0, 490 .outdiv = 1, 491 }, 492 { 493 .refclk = 19200000, 494 .div = 0x24, 495 .rnfrac = 0x2aaa8, 496 .settle_time = 960, 497 .refdiv = 0, 498 .outdiv = 1, 499 }, 500 { 501 .refclk = 24000000, 502 .div = 0x1d, 503 .rnfrac = 0x15551, 504 .settle_time = 1200, 505 .refdiv = 0, 506 .outdiv = 1, 507 }, 508 { 509 .refclk = 26000000, 510 .div = 0x1b, 511 .rnfrac = 0x4ec4, 512 .settle_time = 1300, 513 .refdiv = 0, 514 .outdiv = 1, 515 }, 516 { 517 .refclk = 37400000, 518 .div = 0x12, 519 .rnfrac = 0x34b49, 520 .settle_time = 1870, 521 .refdiv = 0, 522 .outdiv = 1, 523 }, 524 { 525 .refclk = 38400000, 526 .div = 0x12, 527 .rnfrac = 0x15551, 528 .settle_time = 1920, 529 .refdiv = 0, 530 .outdiv = 1, 531 }, 532 { 533 .refclk = 40000000, 534 .div = 0x12, 535 .rnfrac = 0x26665, 536 .settle_time = 2000, 537 .refdiv = 0, 538 .outdiv = 1, 539 }, 540 { 541 .refclk = 52000000, 542 .div = 0x1b, 543 .rnfrac = 0x4ec4, 544 .settle_time = 2600, 545 .refdiv = 0, 546 .outdiv = 1, 547 }, 548 }; 549 550 void ath10k_hw_fill_survey_time(struct ath10k *ar, struct survey_info *survey, 551 u32 cc, u32 rcc, u32 cc_prev, u32 rcc_prev) 552 { 553 u32 cc_fix = 0; 554 u32 rcc_fix = 0; 555 enum ath10k_hw_cc_wraparound_type wraparound_type; 556 557 survey->filled |= SURVEY_INFO_TIME | 558 SURVEY_INFO_TIME_BUSY; 559 560 wraparound_type = ar->hw_params.cc_wraparound_type; 561 562 if (cc < cc_prev || rcc < rcc_prev) { 563 switch (wraparound_type) { 564 case ATH10K_HW_CC_WRAP_SHIFTED_ALL: 565 if (cc < cc_prev) { 566 cc_fix = 0x7fffffff; 567 survey->filled &= ~SURVEY_INFO_TIME_BUSY; 568 } 569 break; 570 case ATH10K_HW_CC_WRAP_SHIFTED_EACH: 571 if (cc < cc_prev) 572 cc_fix = 0x7fffffff; 573 574 if (rcc < rcc_prev) 575 rcc_fix = 0x7fffffff; 576 break; 577 case ATH10K_HW_CC_WRAP_DISABLED: 578 break; 579 } 580 } 581 582 cc -= cc_prev - cc_fix; 583 rcc -= rcc_prev - rcc_fix; 584 585 survey->time = CCNT_TO_MSEC(ar, cc); 586 survey->time_busy = CCNT_TO_MSEC(ar, rcc); 587 } 588 589 /* The firmware does not support setting the coverage class. Instead this 590 * function monitors and modifies the corresponding MAC registers. 591 */ 592 static void ath10k_hw_qca988x_set_coverage_class(struct ath10k *ar, 593 s16 value) 594 { 595 u32 slottime_reg; 596 u32 slottime; 597 u32 timeout_reg; 598 u32 ack_timeout; 599 u32 cts_timeout; 600 u32 phyclk_reg; 601 u32 phyclk; 602 u64 fw_dbglog_mask; 603 u32 fw_dbglog_level; 604 605 mutex_lock(&ar->conf_mutex); 606 607 /* Only modify registers if the core is started. */ 608 if ((ar->state != ATH10K_STATE_ON) && 609 (ar->state != ATH10K_STATE_RESTARTED)) { 610 spin_lock_bh(&ar->data_lock); 611 /* Store config value for when radio boots up */ 612 ar->fw_coverage.coverage_class = value; 613 spin_unlock_bh(&ar->data_lock); 614 goto unlock; 615 } 616 617 /* Retrieve the current values of the two registers that need to be 618 * adjusted. 619 */ 620 slottime_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 621 WAVE1_PCU_GBL_IFS_SLOT); 622 timeout_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 623 WAVE1_PCU_ACK_CTS_TIMEOUT); 624 phyclk_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 625 WAVE1_PHYCLK); 626 phyclk = MS(phyclk_reg, WAVE1_PHYCLK_USEC) + 1; 627 628 if (value < 0) 629 value = ar->fw_coverage.coverage_class; 630 631 /* Break out if the coverage class and registers have the expected 632 * value. 633 */ 634 if (value == ar->fw_coverage.coverage_class && 635 slottime_reg == ar->fw_coverage.reg_slottime_conf && 636 timeout_reg == ar->fw_coverage.reg_ack_cts_timeout_conf && 637 phyclk_reg == ar->fw_coverage.reg_phyclk) 638 goto unlock; 639 640 /* Store new initial register values from the firmware. */ 641 if (slottime_reg != ar->fw_coverage.reg_slottime_conf) 642 ar->fw_coverage.reg_slottime_orig = slottime_reg; 643 if (timeout_reg != ar->fw_coverage.reg_ack_cts_timeout_conf) 644 ar->fw_coverage.reg_ack_cts_timeout_orig = timeout_reg; 645 ar->fw_coverage.reg_phyclk = phyclk_reg; 646 647 /* Calculate new value based on the (original) firmware calculation. */ 648 slottime_reg = ar->fw_coverage.reg_slottime_orig; 649 timeout_reg = ar->fw_coverage.reg_ack_cts_timeout_orig; 650 651 /* Do some sanity checks on the slottime register. */ 652 if (slottime_reg % phyclk) { 653 ath10k_warn(ar, 654 "failed to set coverage class: expected integer microsecond value in register\n"); 655 656 goto store_regs; 657 } 658 659 slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT); 660 slottime = slottime / phyclk; 661 if (slottime != 9 && slottime != 20) { 662 ath10k_warn(ar, 663 "failed to set coverage class: expected slot time of 9 or 20us in HW register. It is %uus.\n", 664 slottime); 665 666 goto store_regs; 667 } 668 669 /* Recalculate the register values by adding the additional propagation 670 * delay (3us per coverage class). 671 */ 672 673 slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT); 674 slottime += value * 3 * phyclk; 675 slottime = min_t(u32, slottime, WAVE1_PCU_GBL_IFS_SLOT_MAX); 676 slottime = SM(slottime, WAVE1_PCU_GBL_IFS_SLOT); 677 slottime_reg = (slottime_reg & ~WAVE1_PCU_GBL_IFS_SLOT_MASK) | slottime; 678 679 /* Update ack timeout (lower halfword). */ 680 ack_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK); 681 ack_timeout += 3 * value * phyclk; 682 ack_timeout = min_t(u32, ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX); 683 ack_timeout = SM(ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK); 684 685 /* Update cts timeout (upper halfword). */ 686 cts_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS); 687 cts_timeout += 3 * value * phyclk; 688 cts_timeout = min_t(u32, cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX); 689 cts_timeout = SM(cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS); 690 691 timeout_reg = ack_timeout | cts_timeout; 692 693 ath10k_hif_write32(ar, 694 WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT, 695 slottime_reg); 696 ath10k_hif_write32(ar, 697 WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT, 698 timeout_reg); 699 700 /* Ensure we have a debug level of WARN set for the case that the 701 * coverage class is larger than 0. This is important as we need to 702 * set the registers again if the firmware does an internal reset and 703 * this way we will be notified of the event. 704 */ 705 fw_dbglog_mask = ath10k_debug_get_fw_dbglog_mask(ar); 706 fw_dbglog_level = ath10k_debug_get_fw_dbglog_level(ar); 707 708 if (value > 0) { 709 if (fw_dbglog_level > ATH10K_DBGLOG_LEVEL_WARN) 710 fw_dbglog_level = ATH10K_DBGLOG_LEVEL_WARN; 711 fw_dbglog_mask = ~0; 712 } 713 714 ath10k_wmi_dbglog_cfg(ar, fw_dbglog_mask, fw_dbglog_level); 715 716 store_regs: 717 /* After an error we will not retry setting the coverage class. */ 718 spin_lock_bh(&ar->data_lock); 719 ar->fw_coverage.coverage_class = value; 720 spin_unlock_bh(&ar->data_lock); 721 722 ar->fw_coverage.reg_slottime_conf = slottime_reg; 723 ar->fw_coverage.reg_ack_cts_timeout_conf = timeout_reg; 724 725 unlock: 726 mutex_unlock(&ar->conf_mutex); 727 } 728 729 /** 730 * ath10k_hw_qca6174_enable_pll_clock() - enable the qca6174 hw pll clock 731 * @ar: the ath10k blob 732 * 733 * This function is very hardware specific, the clock initialization 734 * steps is very sensitive and could lead to unknown crash, so they 735 * should be done in sequence. 736 * 737 * *** Be aware if you planned to refactor them. *** 738 * 739 * Return: 0 if successfully enable the pll, otherwise EINVAL 740 */ 741 static int ath10k_hw_qca6174_enable_pll_clock(struct ath10k *ar) 742 { 743 int ret, wait_limit; 744 u32 clk_div_addr, pll_init_addr, speed_addr; 745 u32 addr, reg_val, mem_val; 746 struct ath10k_hw_params *hw; 747 const struct ath10k_hw_clk_params *hw_clk; 748 749 hw = &ar->hw_params; 750 751 if (ar->regs->core_clk_div_address == 0 || 752 ar->regs->cpu_pll_init_address == 0 || 753 ar->regs->cpu_speed_address == 0) 754 return -EINVAL; 755 756 clk_div_addr = ar->regs->core_clk_div_address; 757 pll_init_addr = ar->regs->cpu_pll_init_address; 758 speed_addr = ar->regs->cpu_speed_address; 759 760 /* Read efuse register to find out the right hw clock configuration */ 761 addr = (RTC_SOC_BASE_ADDRESS | EFUSE_OFFSET); 762 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 763 if (ret) 764 return -EINVAL; 765 766 /* sanitize if the hw refclk index is out of the boundary */ 767 if (MS(reg_val, EFUSE_XTAL_SEL) > ATH10K_HW_REFCLK_COUNT) 768 return -EINVAL; 769 770 hw_clk = &hw->hw_clk[MS(reg_val, EFUSE_XTAL_SEL)]; 771 772 /* Set the rnfrac and outdiv params to bb_pll register */ 773 addr = (RTC_SOC_BASE_ADDRESS | BB_PLL_CONFIG_OFFSET); 774 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 775 if (ret) 776 return -EINVAL; 777 778 reg_val &= ~(BB_PLL_CONFIG_FRAC_MASK | BB_PLL_CONFIG_OUTDIV_MASK); 779 reg_val |= (SM(hw_clk->rnfrac, BB_PLL_CONFIG_FRAC) | 780 SM(hw_clk->outdiv, BB_PLL_CONFIG_OUTDIV)); 781 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 782 if (ret) 783 return -EINVAL; 784 785 /* Set the correct settle time value to pll_settle register */ 786 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_SETTLE_OFFSET); 787 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 788 if (ret) 789 return -EINVAL; 790 791 reg_val &= ~WLAN_PLL_SETTLE_TIME_MASK; 792 reg_val |= SM(hw_clk->settle_time, WLAN_PLL_SETTLE_TIME); 793 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 794 if (ret) 795 return -EINVAL; 796 797 /* Set the clock_ctrl div to core_clk_ctrl register */ 798 addr = (RTC_SOC_BASE_ADDRESS | SOC_CORE_CLK_CTRL_OFFSET); 799 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 800 if (ret) 801 return -EINVAL; 802 803 reg_val &= ~SOC_CORE_CLK_CTRL_DIV_MASK; 804 reg_val |= SM(1, SOC_CORE_CLK_CTRL_DIV); 805 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 806 if (ret) 807 return -EINVAL; 808 809 /* Set the clock_div register */ 810 mem_val = 1; 811 ret = ath10k_bmi_write_memory(ar, clk_div_addr, &mem_val, 812 sizeof(mem_val)); 813 if (ret) 814 return -EINVAL; 815 816 /* Configure the pll_control register */ 817 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 818 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 819 if (ret) 820 return -EINVAL; 821 822 reg_val |= (SM(hw_clk->refdiv, WLAN_PLL_CONTROL_REFDIV) | 823 SM(hw_clk->div, WLAN_PLL_CONTROL_DIV) | 824 SM(1, WLAN_PLL_CONTROL_NOPWD)); 825 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 826 if (ret) 827 return -EINVAL; 828 829 /* busy wait (max 1s) the rtc_sync status register indicate ready */ 830 wait_limit = 100000; 831 addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET); 832 do { 833 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 834 if (ret) 835 return -EINVAL; 836 837 if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 838 break; 839 840 wait_limit--; 841 udelay(10); 842 843 } while (wait_limit > 0); 844 845 if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 846 return -EINVAL; 847 848 /* Unset the pll_bypass in pll_control register */ 849 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 850 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 851 if (ret) 852 return -EINVAL; 853 854 reg_val &= ~WLAN_PLL_CONTROL_BYPASS_MASK; 855 reg_val |= SM(0, WLAN_PLL_CONTROL_BYPASS); 856 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 857 if (ret) 858 return -EINVAL; 859 860 /* busy wait (max 1s) the rtc_sync status register indicate ready */ 861 wait_limit = 100000; 862 addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET); 863 do { 864 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 865 if (ret) 866 return -EINVAL; 867 868 if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 869 break; 870 871 wait_limit--; 872 udelay(10); 873 874 } while (wait_limit > 0); 875 876 if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 877 return -EINVAL; 878 879 /* Enable the hardware cpu clock register */ 880 addr = (RTC_SOC_BASE_ADDRESS | SOC_CPU_CLOCK_OFFSET); 881 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 882 if (ret) 883 return -EINVAL; 884 885 reg_val &= ~SOC_CPU_CLOCK_STANDARD_MASK; 886 reg_val |= SM(1, SOC_CPU_CLOCK_STANDARD); 887 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 888 if (ret) 889 return -EINVAL; 890 891 /* unset the nopwd from pll_control register */ 892 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 893 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 894 if (ret) 895 return -EINVAL; 896 897 reg_val &= ~WLAN_PLL_CONTROL_NOPWD_MASK; 898 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 899 if (ret) 900 return -EINVAL; 901 902 /* enable the pll_init register */ 903 mem_val = 1; 904 ret = ath10k_bmi_write_memory(ar, pll_init_addr, &mem_val, 905 sizeof(mem_val)); 906 if (ret) 907 return -EINVAL; 908 909 /* set the target clock frequency to speed register */ 910 ret = ath10k_bmi_write_memory(ar, speed_addr, &hw->target_cpu_freq, 911 sizeof(hw->target_cpu_freq)); 912 if (ret) 913 return -EINVAL; 914 915 return 0; 916 } 917 918 /* Program CPU_ADDR_MSB to allow different memory 919 * region access. 920 */ 921 static void ath10k_hw_map_target_mem(struct ath10k *ar, u32 msb) 922 { 923 u32 address = SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS; 924 925 ath10k_hif_write32(ar, address, msb); 926 } 927 928 /* 1. Write to memory region of target, such as IRAM and DRAM. 929 * 2. Target address( 0 ~ 00100000 & 0x00400000~0x00500000) 930 * can be written directly. See ath10k_pci_targ_cpu_to_ce_addr() too. 931 * 3. In order to access the region other than the above, 932 * we need to set the value of register CPU_ADDR_MSB. 933 * 4. Target memory access space is limited to 1M size. If the size is larger 934 * than 1M, need to split it and program CPU_ADDR_MSB accordingly. 935 */ 936 static int ath10k_hw_diag_segment_msb_download(struct ath10k *ar, 937 const void *buffer, 938 u32 address, 939 u32 length) 940 { 941 u32 addr = address & REGION_ACCESS_SIZE_MASK; 942 int ret, remain_size, size; 943 const u8 *buf; 944 945 ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address)); 946 947 if (addr + length > REGION_ACCESS_SIZE_LIMIT) { 948 size = REGION_ACCESS_SIZE_LIMIT - addr; 949 remain_size = length - size; 950 951 ret = ath10k_hif_diag_write(ar, address, buffer, size); 952 if (ret) { 953 ath10k_warn(ar, 954 "failed to download the first %d bytes segment to address:0x%x: %d\n", 955 size, address, ret); 956 goto done; 957 } 958 959 /* Change msb to the next memory region*/ 960 ath10k_hw_map_target_mem(ar, 961 CPU_ADDR_MSB_REGION_VAL(address) + 1); 962 buf = buffer + size; 963 ret = ath10k_hif_diag_write(ar, 964 address & ~REGION_ACCESS_SIZE_MASK, 965 buf, remain_size); 966 if (ret) { 967 ath10k_warn(ar, 968 "failed to download the second %d bytes segment to address:0x%x: %d\n", 969 remain_size, 970 address & ~REGION_ACCESS_SIZE_MASK, 971 ret); 972 goto done; 973 } 974 } else { 975 ret = ath10k_hif_diag_write(ar, address, buffer, length); 976 if (ret) { 977 ath10k_warn(ar, 978 "failed to download the only %d bytes segment to address:0x%x: %d\n", 979 length, address, ret); 980 goto done; 981 } 982 } 983 984 done: 985 /* Change msb to DRAM */ 986 ath10k_hw_map_target_mem(ar, 987 CPU_ADDR_MSB_REGION_VAL(DRAM_BASE_ADDRESS)); 988 return ret; 989 } 990 991 static int ath10k_hw_diag_segment_download(struct ath10k *ar, 992 const void *buffer, 993 u32 address, 994 u32 length) 995 { 996 if (address >= DRAM_BASE_ADDRESS + REGION_ACCESS_SIZE_LIMIT) 997 /* Needs to change MSB for memory write */ 998 return ath10k_hw_diag_segment_msb_download(ar, buffer, 999 address, length); 1000 else 1001 return ath10k_hif_diag_write(ar, address, buffer, length); 1002 } 1003 1004 int ath10k_hw_diag_fast_download(struct ath10k *ar, 1005 u32 address, 1006 const void *buffer, 1007 u32 length) 1008 { 1009 const u8 *buf = buffer; 1010 bool sgmt_end = false; 1011 u32 base_addr = 0; 1012 u32 base_len = 0; 1013 u32 left = 0; 1014 struct bmi_segmented_file_header *hdr; 1015 struct bmi_segmented_metadata *metadata; 1016 int ret = 0; 1017 1018 if (length < sizeof(*hdr)) 1019 return -EINVAL; 1020 1021 /* check firmware header. If it has no correct magic number 1022 * or it's compressed, returns error. 1023 */ 1024 hdr = (struct bmi_segmented_file_header *)buf; 1025 if (__le32_to_cpu(hdr->magic_num) != BMI_SGMTFILE_MAGIC_NUM) { 1026 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1027 "Not a supported firmware, magic_num:0x%x\n", 1028 hdr->magic_num); 1029 return -EINVAL; 1030 } 1031 1032 if (hdr->file_flags != 0) { 1033 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1034 "Not a supported firmware, file_flags:0x%x\n", 1035 hdr->file_flags); 1036 return -EINVAL; 1037 } 1038 1039 metadata = (struct bmi_segmented_metadata *)hdr->data; 1040 left = length - sizeof(*hdr); 1041 1042 while (left > 0) { 1043 if (left < sizeof(*metadata)) { 1044 ath10k_warn(ar, "firmware segment is truncated: %d\n", 1045 left); 1046 ret = -EINVAL; 1047 break; 1048 } 1049 base_addr = __le32_to_cpu(metadata->addr); 1050 base_len = __le32_to_cpu(metadata->length); 1051 buf = metadata->data; 1052 left -= sizeof(*metadata); 1053 1054 switch (base_len) { 1055 case BMI_SGMTFILE_BEGINADDR: 1056 /* base_addr is the start address to run */ 1057 ret = ath10k_bmi_set_start(ar, base_addr); 1058 base_len = 0; 1059 break; 1060 case BMI_SGMTFILE_DONE: 1061 /* no more segment */ 1062 base_len = 0; 1063 sgmt_end = true; 1064 ret = 0; 1065 break; 1066 case BMI_SGMTFILE_BDDATA: 1067 case BMI_SGMTFILE_EXEC: 1068 ath10k_warn(ar, 1069 "firmware has unsupported segment:%d\n", 1070 base_len); 1071 ret = -EINVAL; 1072 break; 1073 default: 1074 if (base_len > left) { 1075 /* sanity check */ 1076 ath10k_warn(ar, 1077 "firmware has invalid segment length, %d > %d\n", 1078 base_len, left); 1079 ret = -EINVAL; 1080 break; 1081 } 1082 1083 ret = ath10k_hw_diag_segment_download(ar, 1084 buf, 1085 base_addr, 1086 base_len); 1087 1088 if (ret) 1089 ath10k_warn(ar, 1090 "failed to download firmware via diag interface:%d\n", 1091 ret); 1092 break; 1093 } 1094 1095 if (ret || sgmt_end) 1096 break; 1097 1098 metadata = (struct bmi_segmented_metadata *)(buf + base_len); 1099 left -= base_len; 1100 } 1101 1102 if (ret == 0) 1103 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1104 "boot firmware fast diag download successfully.\n"); 1105 return ret; 1106 } 1107 1108 static int ath10k_htt_tx_rssi_enable(struct htt_resp *resp) 1109 { 1110 return (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI); 1111 } 1112 1113 static int ath10k_htt_tx_rssi_enable_wcn3990(struct htt_resp *resp) 1114 { 1115 return (resp->data_tx_completion.flags2 & 1116 HTT_TX_DATA_RSSI_ENABLE_WCN3990); 1117 } 1118 1119 static int ath10k_get_htt_tx_data_rssi_pad(struct htt_resp *resp) 1120 { 1121 struct htt_data_tx_completion_ext extd; 1122 int pad_bytes = 0; 1123 1124 if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_RETRIES) 1125 pad_bytes += sizeof(extd.a_retries) / 1126 sizeof(extd.msdus_rssi[0]); 1127 1128 if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_TIMESTAMP) 1129 pad_bytes += sizeof(extd.t_stamp) / sizeof(extd.msdus_rssi[0]); 1130 1131 return pad_bytes; 1132 } 1133 1134 const struct ath10k_hw_ops qca988x_ops = { 1135 .set_coverage_class = ath10k_hw_qca988x_set_coverage_class, 1136 .is_rssi_enable = ath10k_htt_tx_rssi_enable, 1137 }; 1138 1139 const struct ath10k_hw_ops qca99x0_ops = { 1140 .is_rssi_enable = ath10k_htt_tx_rssi_enable, 1141 }; 1142 1143 const struct ath10k_hw_ops qca6174_ops = { 1144 .set_coverage_class = ath10k_hw_qca988x_set_coverage_class, 1145 .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock, 1146 .is_rssi_enable = ath10k_htt_tx_rssi_enable, 1147 }; 1148 1149 const struct ath10k_hw_ops qca6174_sdio_ops = { 1150 .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock, 1151 }; 1152 1153 const struct ath10k_hw_ops wcn3990_ops = { 1154 .tx_data_rssi_pad_bytes = ath10k_get_htt_tx_data_rssi_pad, 1155 .is_rssi_enable = ath10k_htt_tx_rssi_enable_wcn3990, 1156 }; 1157