xref: /linux/drivers/net/wireless/ath/ath10k/htt_tx.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/etherdevice.h>
19 #include "htt.h"
20 #include "mac.h"
21 #include "hif.h"
22 #include "txrx.h"
23 #include "debug.h"
24 
25 static u8 ath10k_htt_tx_txq_calc_size(size_t count)
26 {
27 	int exp;
28 	int factor;
29 
30 	exp = 0;
31 	factor = count >> 7;
32 
33 	while (factor >= 64 && exp < 4) {
34 		factor >>= 3;
35 		exp++;
36 	}
37 
38 	if (exp == 4)
39 		return 0xff;
40 
41 	if (count > 0)
42 		factor = max(1, factor);
43 
44 	return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
45 	       SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
46 }
47 
48 static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
49 				       struct ieee80211_txq *txq)
50 {
51 	struct ath10k *ar = hw->priv;
52 	struct ath10k_sta *arsta;
53 	struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
54 	unsigned long frame_cnt;
55 	unsigned long byte_cnt;
56 	int idx;
57 	u32 bit;
58 	u16 peer_id;
59 	u8 tid;
60 	u8 count;
61 
62 	lockdep_assert_held(&ar->htt.tx_lock);
63 
64 	if (!ar->htt.tx_q_state.enabled)
65 		return;
66 
67 	if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
68 		return;
69 
70 	if (txq->sta) {
71 		arsta = (void *)txq->sta->drv_priv;
72 		peer_id = arsta->peer_id;
73 	} else {
74 		peer_id = arvif->peer_id;
75 	}
76 
77 	tid = txq->tid;
78 	bit = BIT(peer_id % 32);
79 	idx = peer_id / 32;
80 
81 	ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
82 	count = ath10k_htt_tx_txq_calc_size(byte_cnt);
83 
84 	if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
85 	    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
86 		ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
87 			    peer_id, tid);
88 		return;
89 	}
90 
91 	ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
92 	ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
93 	ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
94 
95 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
96 		   peer_id, tid, count);
97 }
98 
99 static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
100 {
101 	u32 seq;
102 	size_t size;
103 
104 	lockdep_assert_held(&ar->htt.tx_lock);
105 
106 	if (!ar->htt.tx_q_state.enabled)
107 		return;
108 
109 	if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
110 		return;
111 
112 	seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
113 	seq++;
114 	ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
115 
116 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
117 		   seq);
118 
119 	size = sizeof(*ar->htt.tx_q_state.vaddr);
120 	dma_sync_single_for_device(ar->dev,
121 				   ar->htt.tx_q_state.paddr,
122 				   size,
123 				   DMA_TO_DEVICE);
124 }
125 
126 void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
127 			      struct ieee80211_txq *txq)
128 {
129 	struct ath10k *ar = hw->priv;
130 
131 	spin_lock_bh(&ar->htt.tx_lock);
132 	__ath10k_htt_tx_txq_recalc(hw, txq);
133 	spin_unlock_bh(&ar->htt.tx_lock);
134 }
135 
136 void ath10k_htt_tx_txq_sync(struct ath10k *ar)
137 {
138 	spin_lock_bh(&ar->htt.tx_lock);
139 	__ath10k_htt_tx_txq_sync(ar);
140 	spin_unlock_bh(&ar->htt.tx_lock);
141 }
142 
143 void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
144 			      struct ieee80211_txq *txq)
145 {
146 	struct ath10k *ar = hw->priv;
147 
148 	spin_lock_bh(&ar->htt.tx_lock);
149 	__ath10k_htt_tx_txq_recalc(hw, txq);
150 	__ath10k_htt_tx_txq_sync(ar);
151 	spin_unlock_bh(&ar->htt.tx_lock);
152 }
153 
154 void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
155 {
156 	lockdep_assert_held(&htt->tx_lock);
157 
158 	htt->num_pending_tx--;
159 	if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
160 		ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
161 }
162 
163 int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
164 {
165 	lockdep_assert_held(&htt->tx_lock);
166 
167 	if (htt->num_pending_tx >= htt->max_num_pending_tx)
168 		return -EBUSY;
169 
170 	htt->num_pending_tx++;
171 	if (htt->num_pending_tx == htt->max_num_pending_tx)
172 		ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
173 
174 	return 0;
175 }
176 
177 int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
178 				   bool is_presp)
179 {
180 	struct ath10k *ar = htt->ar;
181 
182 	lockdep_assert_held(&htt->tx_lock);
183 
184 	if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
185 		return 0;
186 
187 	if (is_presp &&
188 	    ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
189 		return -EBUSY;
190 
191 	htt->num_pending_mgmt_tx++;
192 
193 	return 0;
194 }
195 
196 void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
197 {
198 	lockdep_assert_held(&htt->tx_lock);
199 
200 	if (!htt->ar->hw_params.max_probe_resp_desc_thres)
201 		return;
202 
203 	htt->num_pending_mgmt_tx--;
204 }
205 
206 int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
207 {
208 	struct ath10k *ar = htt->ar;
209 	int ret;
210 
211 	lockdep_assert_held(&htt->tx_lock);
212 
213 	ret = idr_alloc(&htt->pending_tx, skb, 0,
214 			htt->max_num_pending_tx, GFP_ATOMIC);
215 
216 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
217 
218 	return ret;
219 }
220 
221 void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
222 {
223 	struct ath10k *ar = htt->ar;
224 
225 	lockdep_assert_held(&htt->tx_lock);
226 
227 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
228 
229 	idr_remove(&htt->pending_tx, msdu_id);
230 }
231 
232 static void ath10k_htt_tx_free_cont_txbuf(struct ath10k_htt *htt)
233 {
234 	struct ath10k *ar = htt->ar;
235 	size_t size;
236 
237 	if (!htt->txbuf.vaddr)
238 		return;
239 
240 	size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
241 	dma_free_coherent(ar->dev, size, htt->txbuf.vaddr, htt->txbuf.paddr);
242 	htt->txbuf.vaddr = NULL;
243 }
244 
245 static int ath10k_htt_tx_alloc_cont_txbuf(struct ath10k_htt *htt)
246 {
247 	struct ath10k *ar = htt->ar;
248 	size_t size;
249 
250 	size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
251 	htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size, &htt->txbuf.paddr,
252 					      GFP_KERNEL);
253 	if (!htt->txbuf.vaddr)
254 		return -ENOMEM;
255 
256 	return 0;
257 }
258 
259 static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
260 {
261 	size_t size;
262 
263 	if (!htt->frag_desc.vaddr)
264 		return;
265 
266 	size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
267 
268 	dma_free_coherent(htt->ar->dev,
269 			  size,
270 			  htt->frag_desc.vaddr,
271 			  htt->frag_desc.paddr);
272 	htt->frag_desc.vaddr = NULL;
273 }
274 
275 static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
276 {
277 	struct ath10k *ar = htt->ar;
278 	size_t size;
279 
280 	if (!ar->hw_params.continuous_frag_desc)
281 		return 0;
282 
283 	size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
284 	htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
285 						  &htt->frag_desc.paddr,
286 						  GFP_KERNEL);
287 	if (!htt->frag_desc.vaddr)
288 		return -ENOMEM;
289 
290 	return 0;
291 }
292 
293 static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
294 {
295 	struct ath10k *ar = htt->ar;
296 	size_t size;
297 
298 	if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
299 		      ar->running_fw->fw_file.fw_features))
300 		return;
301 
302 	size = sizeof(*htt->tx_q_state.vaddr);
303 
304 	dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
305 	kfree(htt->tx_q_state.vaddr);
306 }
307 
308 static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
309 {
310 	struct ath10k *ar = htt->ar;
311 	size_t size;
312 	int ret;
313 
314 	if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
315 		      ar->running_fw->fw_file.fw_features))
316 		return 0;
317 
318 	htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
319 	htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
320 	htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
321 
322 	size = sizeof(*htt->tx_q_state.vaddr);
323 	htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
324 	if (!htt->tx_q_state.vaddr)
325 		return -ENOMEM;
326 
327 	htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
328 					       size, DMA_TO_DEVICE);
329 	ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
330 	if (ret) {
331 		ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
332 		kfree(htt->tx_q_state.vaddr);
333 		return -EIO;
334 	}
335 
336 	return 0;
337 }
338 
339 static void ath10k_htt_tx_free_txdone_fifo(struct ath10k_htt *htt)
340 {
341 	WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
342 	kfifo_free(&htt->txdone_fifo);
343 }
344 
345 static int ath10k_htt_tx_alloc_txdone_fifo(struct ath10k_htt *htt)
346 {
347 	int ret;
348 	size_t size;
349 
350 	size = roundup_pow_of_two(htt->max_num_pending_tx);
351 	ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
352 	return ret;
353 }
354 
355 static int ath10k_htt_tx_alloc_buf(struct ath10k_htt *htt)
356 {
357 	struct ath10k *ar = htt->ar;
358 	int ret;
359 
360 	ret = ath10k_htt_tx_alloc_cont_txbuf(htt);
361 	if (ret) {
362 		ath10k_err(ar, "failed to alloc cont tx buffer: %d\n", ret);
363 		return ret;
364 	}
365 
366 	ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
367 	if (ret) {
368 		ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
369 		goto free_txbuf;
370 	}
371 
372 	ret = ath10k_htt_tx_alloc_txq(htt);
373 	if (ret) {
374 		ath10k_err(ar, "failed to alloc txq: %d\n", ret);
375 		goto free_frag_desc;
376 	}
377 
378 	ret = ath10k_htt_tx_alloc_txdone_fifo(htt);
379 	if (ret) {
380 		ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
381 		goto free_txq;
382 	}
383 
384 	return 0;
385 
386 free_txq:
387 	ath10k_htt_tx_free_txq(htt);
388 
389 free_frag_desc:
390 	ath10k_htt_tx_free_cont_frag_desc(htt);
391 
392 free_txbuf:
393 	ath10k_htt_tx_free_cont_txbuf(htt);
394 
395 	return ret;
396 }
397 
398 int ath10k_htt_tx_start(struct ath10k_htt *htt)
399 {
400 	struct ath10k *ar = htt->ar;
401 	int ret;
402 
403 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
404 		   htt->max_num_pending_tx);
405 
406 	spin_lock_init(&htt->tx_lock);
407 	idr_init(&htt->pending_tx);
408 
409 	if (htt->tx_mem_allocated)
410 		return 0;
411 
412 	ret = ath10k_htt_tx_alloc_buf(htt);
413 	if (ret)
414 		goto free_idr_pending_tx;
415 
416 	htt->tx_mem_allocated = true;
417 
418 	return 0;
419 
420 free_idr_pending_tx:
421 	idr_destroy(&htt->pending_tx);
422 
423 	return ret;
424 }
425 
426 static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
427 {
428 	struct ath10k *ar = ctx;
429 	struct ath10k_htt *htt = &ar->htt;
430 	struct htt_tx_done tx_done = {0};
431 
432 	ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
433 
434 	tx_done.msdu_id = msdu_id;
435 	tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
436 
437 	ath10k_txrx_tx_unref(htt, &tx_done);
438 
439 	return 0;
440 }
441 
442 void ath10k_htt_tx_destroy(struct ath10k_htt *htt)
443 {
444 	if (!htt->tx_mem_allocated)
445 		return;
446 
447 	ath10k_htt_tx_free_cont_txbuf(htt);
448 	ath10k_htt_tx_free_txq(htt);
449 	ath10k_htt_tx_free_cont_frag_desc(htt);
450 	ath10k_htt_tx_free_txdone_fifo(htt);
451 	htt->tx_mem_allocated = false;
452 }
453 
454 void ath10k_htt_tx_stop(struct ath10k_htt *htt)
455 {
456 	idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
457 	idr_destroy(&htt->pending_tx);
458 }
459 
460 void ath10k_htt_tx_free(struct ath10k_htt *htt)
461 {
462 	ath10k_htt_tx_stop(htt);
463 	ath10k_htt_tx_destroy(htt);
464 }
465 
466 void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
467 {
468 	dev_kfree_skb_any(skb);
469 }
470 
471 void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
472 {
473 	dev_kfree_skb_any(skb);
474 }
475 EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
476 
477 int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
478 {
479 	struct ath10k *ar = htt->ar;
480 	struct sk_buff *skb;
481 	struct htt_cmd *cmd;
482 	int len = 0;
483 	int ret;
484 
485 	len += sizeof(cmd->hdr);
486 	len += sizeof(cmd->ver_req);
487 
488 	skb = ath10k_htc_alloc_skb(ar, len);
489 	if (!skb)
490 		return -ENOMEM;
491 
492 	skb_put(skb, len);
493 	cmd = (struct htt_cmd *)skb->data;
494 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
495 
496 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
497 	if (ret) {
498 		dev_kfree_skb_any(skb);
499 		return ret;
500 	}
501 
502 	return 0;
503 }
504 
505 int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
506 {
507 	struct ath10k *ar = htt->ar;
508 	struct htt_stats_req *req;
509 	struct sk_buff *skb;
510 	struct htt_cmd *cmd;
511 	int len = 0, ret;
512 
513 	len += sizeof(cmd->hdr);
514 	len += sizeof(cmd->stats_req);
515 
516 	skb = ath10k_htc_alloc_skb(ar, len);
517 	if (!skb)
518 		return -ENOMEM;
519 
520 	skb_put(skb, len);
521 	cmd = (struct htt_cmd *)skb->data;
522 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
523 
524 	req = &cmd->stats_req;
525 
526 	memset(req, 0, sizeof(*req));
527 
528 	/* currently we support only max 8 bit masks so no need to worry
529 	 * about endian support
530 	 */
531 	req->upload_types[0] = mask;
532 	req->reset_types[0] = mask;
533 	req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
534 	req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
535 	req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
536 
537 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
538 	if (ret) {
539 		ath10k_warn(ar, "failed to send htt type stats request: %d",
540 			    ret);
541 		dev_kfree_skb_any(skb);
542 		return ret;
543 	}
544 
545 	return 0;
546 }
547 
548 int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
549 {
550 	struct ath10k *ar = htt->ar;
551 	struct sk_buff *skb;
552 	struct htt_cmd *cmd;
553 	struct htt_frag_desc_bank_cfg *cfg;
554 	int ret, size;
555 	u8 info;
556 
557 	if (!ar->hw_params.continuous_frag_desc)
558 		return 0;
559 
560 	if (!htt->frag_desc.paddr) {
561 		ath10k_warn(ar, "invalid frag desc memory\n");
562 		return -EINVAL;
563 	}
564 
565 	size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
566 	skb = ath10k_htc_alloc_skb(ar, size);
567 	if (!skb)
568 		return -ENOMEM;
569 
570 	skb_put(skb, size);
571 	cmd = (struct htt_cmd *)skb->data;
572 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
573 
574 	info = 0;
575 	info |= SM(htt->tx_q_state.type,
576 		   HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
577 
578 	if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
579 		     ar->running_fw->fw_file.fw_features))
580 		info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
581 
582 	cfg = &cmd->frag_desc_bank_cfg;
583 	cfg->info = info;
584 	cfg->num_banks = 1;
585 	cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
586 	cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
587 	cfg->bank_id[0].bank_min_id = 0;
588 	cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
589 						    1);
590 
591 	cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
592 	cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
593 	cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
594 	cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
595 	cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
596 
597 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
598 
599 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
600 	if (ret) {
601 		ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
602 			    ret);
603 		dev_kfree_skb_any(skb);
604 		return ret;
605 	}
606 
607 	return 0;
608 }
609 
610 int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
611 {
612 	struct ath10k *ar = htt->ar;
613 	struct sk_buff *skb;
614 	struct htt_cmd *cmd;
615 	struct htt_rx_ring_setup_ring *ring;
616 	const int num_rx_ring = 1;
617 	u16 flags;
618 	u32 fw_idx;
619 	int len;
620 	int ret;
621 
622 	/*
623 	 * the HW expects the buffer to be an integral number of 4-byte
624 	 * "words"
625 	 */
626 	BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
627 	BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
628 
629 	len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
630 	    + (sizeof(*ring) * num_rx_ring);
631 	skb = ath10k_htc_alloc_skb(ar, len);
632 	if (!skb)
633 		return -ENOMEM;
634 
635 	skb_put(skb, len);
636 
637 	cmd = (struct htt_cmd *)skb->data;
638 	ring = &cmd->rx_setup.rings[0];
639 
640 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
641 	cmd->rx_setup.hdr.num_rings = 1;
642 
643 	/* FIXME: do we need all of this? */
644 	flags = 0;
645 	flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
646 	flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
647 	flags |= HTT_RX_RING_FLAGS_PPDU_START;
648 	flags |= HTT_RX_RING_FLAGS_PPDU_END;
649 	flags |= HTT_RX_RING_FLAGS_MPDU_START;
650 	flags |= HTT_RX_RING_FLAGS_MPDU_END;
651 	flags |= HTT_RX_RING_FLAGS_MSDU_START;
652 	flags |= HTT_RX_RING_FLAGS_MSDU_END;
653 	flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
654 	flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
655 	flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
656 	flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
657 	flags |= HTT_RX_RING_FLAGS_CTRL_RX;
658 	flags |= HTT_RX_RING_FLAGS_MGMT_RX;
659 	flags |= HTT_RX_RING_FLAGS_NULL_RX;
660 	flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
661 
662 	fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
663 
664 	ring->fw_idx_shadow_reg_paddr =
665 		__cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
666 	ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
667 	ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
668 	ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
669 	ring->flags = __cpu_to_le16(flags);
670 	ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
671 
672 #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
673 
674 	ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
675 	ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
676 	ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
677 	ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
678 	ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
679 	ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
680 	ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
681 	ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
682 	ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
683 	ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
684 
685 #undef desc_offset
686 
687 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
688 	if (ret) {
689 		dev_kfree_skb_any(skb);
690 		return ret;
691 	}
692 
693 	return 0;
694 }
695 
696 int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
697 				u8 max_subfrms_ampdu,
698 				u8 max_subfrms_amsdu)
699 {
700 	struct ath10k *ar = htt->ar;
701 	struct htt_aggr_conf *aggr_conf;
702 	struct sk_buff *skb;
703 	struct htt_cmd *cmd;
704 	int len;
705 	int ret;
706 
707 	/* Firmware defaults are: amsdu = 3 and ampdu = 64 */
708 
709 	if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
710 		return -EINVAL;
711 
712 	if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
713 		return -EINVAL;
714 
715 	len = sizeof(cmd->hdr);
716 	len += sizeof(cmd->aggr_conf);
717 
718 	skb = ath10k_htc_alloc_skb(ar, len);
719 	if (!skb)
720 		return -ENOMEM;
721 
722 	skb_put(skb, len);
723 	cmd = (struct htt_cmd *)skb->data;
724 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
725 
726 	aggr_conf = &cmd->aggr_conf;
727 	aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
728 	aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
729 
730 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
731 		   aggr_conf->max_num_amsdu_subframes,
732 		   aggr_conf->max_num_ampdu_subframes);
733 
734 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
735 	if (ret) {
736 		dev_kfree_skb_any(skb);
737 		return ret;
738 	}
739 
740 	return 0;
741 }
742 
743 int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
744 			     __le32 token,
745 			     __le16 fetch_seq_num,
746 			     struct htt_tx_fetch_record *records,
747 			     size_t num_records)
748 {
749 	struct sk_buff *skb;
750 	struct htt_cmd *cmd;
751 	const u16 resp_id = 0;
752 	int len = 0;
753 	int ret;
754 
755 	/* Response IDs are echo-ed back only for host driver convienence
756 	 * purposes. They aren't used for anything in the driver yet so use 0.
757 	 */
758 
759 	len += sizeof(cmd->hdr);
760 	len += sizeof(cmd->tx_fetch_resp);
761 	len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
762 
763 	skb = ath10k_htc_alloc_skb(ar, len);
764 	if (!skb)
765 		return -ENOMEM;
766 
767 	skb_put(skb, len);
768 	cmd = (struct htt_cmd *)skb->data;
769 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
770 	cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
771 	cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
772 	cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
773 	cmd->tx_fetch_resp.token = token;
774 
775 	memcpy(cmd->tx_fetch_resp.records, records,
776 	       sizeof(records[0]) * num_records);
777 
778 	ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
779 	if (ret) {
780 		ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
781 		goto err_free_skb;
782 	}
783 
784 	return 0;
785 
786 err_free_skb:
787 	dev_kfree_skb_any(skb);
788 
789 	return ret;
790 }
791 
792 static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
793 {
794 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
795 	struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
796 	struct ath10k_vif *arvif;
797 
798 	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
799 		return ar->scan.vdev_id;
800 	} else if (cb->vif) {
801 		arvif = (void *)cb->vif->drv_priv;
802 		return arvif->vdev_id;
803 	} else if (ar->monitor_started) {
804 		return ar->monitor_vdev_id;
805 	} else {
806 		return 0;
807 	}
808 }
809 
810 static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
811 {
812 	struct ieee80211_hdr *hdr = (void *)skb->data;
813 	struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
814 
815 	if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
816 		return HTT_DATA_TX_EXT_TID_MGMT;
817 	else if (cb->flags & ATH10K_SKB_F_QOS)
818 		return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
819 	else
820 		return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
821 }
822 
823 int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
824 {
825 	struct ath10k *ar = htt->ar;
826 	struct device *dev = ar->dev;
827 	struct sk_buff *txdesc = NULL;
828 	struct htt_cmd *cmd;
829 	struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
830 	u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
831 	int len = 0;
832 	int msdu_id = -1;
833 	int res;
834 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
835 
836 	len += sizeof(cmd->hdr);
837 	len += sizeof(cmd->mgmt_tx);
838 
839 	spin_lock_bh(&htt->tx_lock);
840 	res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
841 	spin_unlock_bh(&htt->tx_lock);
842 	if (res < 0)
843 		goto err;
844 
845 	msdu_id = res;
846 
847 	if ((ieee80211_is_action(hdr->frame_control) ||
848 	     ieee80211_is_deauth(hdr->frame_control) ||
849 	     ieee80211_is_disassoc(hdr->frame_control)) &&
850 	     ieee80211_has_protected(hdr->frame_control)) {
851 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
852 	}
853 
854 	txdesc = ath10k_htc_alloc_skb(ar, len);
855 	if (!txdesc) {
856 		res = -ENOMEM;
857 		goto err_free_msdu_id;
858 	}
859 
860 	skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
861 				       DMA_TO_DEVICE);
862 	res = dma_mapping_error(dev, skb_cb->paddr);
863 	if (res) {
864 		res = -EIO;
865 		goto err_free_txdesc;
866 	}
867 
868 	skb_put(txdesc, len);
869 	cmd = (struct htt_cmd *)txdesc->data;
870 	memset(cmd, 0, len);
871 
872 	cmd->hdr.msg_type         = HTT_H2T_MSG_TYPE_MGMT_TX;
873 	cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
874 	cmd->mgmt_tx.len        = __cpu_to_le32(msdu->len);
875 	cmd->mgmt_tx.desc_id    = __cpu_to_le32(msdu_id);
876 	cmd->mgmt_tx.vdev_id    = __cpu_to_le32(vdev_id);
877 	memcpy(cmd->mgmt_tx.hdr, msdu->data,
878 	       min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
879 
880 	res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
881 	if (res)
882 		goto err_unmap_msdu;
883 
884 	return 0;
885 
886 err_unmap_msdu:
887 	dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
888 err_free_txdesc:
889 	dev_kfree_skb_any(txdesc);
890 err_free_msdu_id:
891 	spin_lock_bh(&htt->tx_lock);
892 	ath10k_htt_tx_free_msdu_id(htt, msdu_id);
893 	spin_unlock_bh(&htt->tx_lock);
894 err:
895 	return res;
896 }
897 
898 int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
899 		  struct sk_buff *msdu)
900 {
901 	struct ath10k *ar = htt->ar;
902 	struct device *dev = ar->dev;
903 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
904 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
905 	struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
906 	struct ath10k_hif_sg_item sg_items[2];
907 	struct ath10k_htt_txbuf *txbuf;
908 	struct htt_data_tx_desc_frag *frags;
909 	bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
910 	u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
911 	u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
912 	int prefetch_len;
913 	int res;
914 	u8 flags0 = 0;
915 	u16 msdu_id, flags1 = 0;
916 	u16 freq = 0;
917 	u32 frags_paddr = 0;
918 	u32 txbuf_paddr;
919 	struct htt_msdu_ext_desc *ext_desc = NULL;
920 
921 	spin_lock_bh(&htt->tx_lock);
922 	res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
923 	spin_unlock_bh(&htt->tx_lock);
924 	if (res < 0)
925 		goto err;
926 
927 	msdu_id = res;
928 
929 	prefetch_len = min(htt->prefetch_len, msdu->len);
930 	prefetch_len = roundup(prefetch_len, 4);
931 
932 	txbuf = &htt->txbuf.vaddr[msdu_id];
933 	txbuf_paddr = htt->txbuf.paddr +
934 		      (sizeof(struct ath10k_htt_txbuf) * msdu_id);
935 
936 	if ((ieee80211_is_action(hdr->frame_control) ||
937 	     ieee80211_is_deauth(hdr->frame_control) ||
938 	     ieee80211_is_disassoc(hdr->frame_control)) &&
939 	     ieee80211_has_protected(hdr->frame_control)) {
940 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
941 	} else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
942 		   txmode == ATH10K_HW_TXRX_RAW &&
943 		   ieee80211_has_protected(hdr->frame_control)) {
944 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
945 	}
946 
947 	skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
948 				       DMA_TO_DEVICE);
949 	res = dma_mapping_error(dev, skb_cb->paddr);
950 	if (res) {
951 		res = -EIO;
952 		goto err_free_msdu_id;
953 	}
954 
955 	if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
956 		freq = ar->scan.roc_freq;
957 
958 	switch (txmode) {
959 	case ATH10K_HW_TXRX_RAW:
960 	case ATH10K_HW_TXRX_NATIVE_WIFI:
961 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
962 		/* pass through */
963 	case ATH10K_HW_TXRX_ETHERNET:
964 		if (ar->hw_params.continuous_frag_desc) {
965 			memset(&htt->frag_desc.vaddr[msdu_id], 0,
966 			       sizeof(struct htt_msdu_ext_desc));
967 			frags = (struct htt_data_tx_desc_frag *)
968 				&htt->frag_desc.vaddr[msdu_id].frags;
969 			ext_desc = &htt->frag_desc.vaddr[msdu_id];
970 			frags[0].tword_addr.paddr_lo =
971 				__cpu_to_le32(skb_cb->paddr);
972 			frags[0].tword_addr.paddr_hi = 0;
973 			frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
974 
975 			frags_paddr =  htt->frag_desc.paddr +
976 				(sizeof(struct htt_msdu_ext_desc) * msdu_id);
977 		} else {
978 			frags = txbuf->frags;
979 			frags[0].dword_addr.paddr =
980 				__cpu_to_le32(skb_cb->paddr);
981 			frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
982 			frags[1].dword_addr.paddr = 0;
983 			frags[1].dword_addr.len = 0;
984 
985 			frags_paddr = txbuf_paddr;
986 		}
987 		flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
988 		break;
989 	case ATH10K_HW_TXRX_MGMT:
990 		flags0 |= SM(ATH10K_HW_TXRX_MGMT,
991 			     HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
992 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
993 
994 		frags_paddr = skb_cb->paddr;
995 		break;
996 	}
997 
998 	/* Normally all commands go through HTC which manages tx credits for
999 	 * each endpoint and notifies when tx is completed.
1000 	 *
1001 	 * HTT endpoint is creditless so there's no need to care about HTC
1002 	 * flags. In that case it is trivial to fill the HTC header here.
1003 	 *
1004 	 * MSDU transmission is considered completed upon HTT event. This
1005 	 * implies no relevant resources can be freed until after the event is
1006 	 * received. That's why HTC tx completion handler itself is ignored by
1007 	 * setting NULL to transfer_context for all sg items.
1008 	 *
1009 	 * There is simply no point in pushing HTT TX_FRM through HTC tx path
1010 	 * as it's a waste of resources. By bypassing HTC it is possible to
1011 	 * avoid extra memory allocations, compress data structures and thus
1012 	 * improve performance.
1013 	 */
1014 
1015 	txbuf->htc_hdr.eid = htt->eid;
1016 	txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
1017 					   sizeof(txbuf->cmd_tx) +
1018 					   prefetch_len);
1019 	txbuf->htc_hdr.flags = 0;
1020 
1021 	if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
1022 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
1023 
1024 	flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
1025 	flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
1026 	if (msdu->ip_summed == CHECKSUM_PARTIAL &&
1027 	    !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
1028 		flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
1029 		flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
1030 		if (ar->hw_params.continuous_frag_desc)
1031 			ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
1032 	}
1033 
1034 	/* Prevent firmware from sending up tx inspection requests. There's
1035 	 * nothing ath10k can do with frames requested for inspection so force
1036 	 * it to simply rely a regular tx completion with discard status.
1037 	 */
1038 	flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
1039 
1040 	txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
1041 	txbuf->cmd_tx.flags0 = flags0;
1042 	txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
1043 	txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
1044 	txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
1045 	txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
1046 	if (ath10k_mac_tx_frm_has_freq(ar)) {
1047 		txbuf->cmd_tx.offchan_tx.peerid =
1048 				__cpu_to_le16(HTT_INVALID_PEERID);
1049 		txbuf->cmd_tx.offchan_tx.freq =
1050 				__cpu_to_le16(freq);
1051 	} else {
1052 		txbuf->cmd_tx.peerid =
1053 				__cpu_to_le32(HTT_INVALID_PEERID);
1054 	}
1055 
1056 	trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
1057 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1058 		   "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
1059 		   flags0, flags1, msdu->len, msdu_id, frags_paddr,
1060 		   (u32)skb_cb->paddr, vdev_id, tid, freq);
1061 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
1062 			msdu->data, msdu->len);
1063 	trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
1064 	trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
1065 
1066 	sg_items[0].transfer_id = 0;
1067 	sg_items[0].transfer_context = NULL;
1068 	sg_items[0].vaddr = &txbuf->htc_hdr;
1069 	sg_items[0].paddr = txbuf_paddr +
1070 			    sizeof(txbuf->frags);
1071 	sg_items[0].len = sizeof(txbuf->htc_hdr) +
1072 			  sizeof(txbuf->cmd_hdr) +
1073 			  sizeof(txbuf->cmd_tx);
1074 
1075 	sg_items[1].transfer_id = 0;
1076 	sg_items[1].transfer_context = NULL;
1077 	sg_items[1].vaddr = msdu->data;
1078 	sg_items[1].paddr = skb_cb->paddr;
1079 	sg_items[1].len = prefetch_len;
1080 
1081 	res = ath10k_hif_tx_sg(htt->ar,
1082 			       htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
1083 			       sg_items, ARRAY_SIZE(sg_items));
1084 	if (res)
1085 		goto err_unmap_msdu;
1086 
1087 	return 0;
1088 
1089 err_unmap_msdu:
1090 	dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
1091 err_free_msdu_id:
1092 	ath10k_htt_tx_free_msdu_id(htt, msdu_id);
1093 err:
1094 	return res;
1095 }
1096