xref: /linux/drivers/net/wireless/ath/ath10k/htt_tx.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/etherdevice.h>
19 #include "htt.h"
20 #include "mac.h"
21 #include "hif.h"
22 #include "txrx.h"
23 #include "debug.h"
24 
25 static u8 ath10k_htt_tx_txq_calc_size(size_t count)
26 {
27 	int exp;
28 	int factor;
29 
30 	exp = 0;
31 	factor = count >> 7;
32 
33 	while (factor >= 64 && exp < 4) {
34 		factor >>= 3;
35 		exp++;
36 	}
37 
38 	if (exp == 4)
39 		return 0xff;
40 
41 	if (count > 0)
42 		factor = max(1, factor);
43 
44 	return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
45 	       SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
46 }
47 
48 static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
49 				       struct ieee80211_txq *txq)
50 {
51 	struct ath10k *ar = hw->priv;
52 	struct ath10k_sta *arsta = (void *)txq->sta->drv_priv;
53 	struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
54 	unsigned long frame_cnt;
55 	unsigned long byte_cnt;
56 	int idx;
57 	u32 bit;
58 	u16 peer_id;
59 	u8 tid;
60 	u8 count;
61 
62 	lockdep_assert_held(&ar->htt.tx_lock);
63 
64 	if (!ar->htt.tx_q_state.enabled)
65 		return;
66 
67 	if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
68 		return;
69 
70 	if (txq->sta)
71 		peer_id = arsta->peer_id;
72 	else
73 		peer_id = arvif->peer_id;
74 
75 	tid = txq->tid;
76 	bit = BIT(peer_id % 32);
77 	idx = peer_id / 32;
78 
79 	ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
80 	count = ath10k_htt_tx_txq_calc_size(byte_cnt);
81 
82 	if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
83 	    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
84 		ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
85 			    peer_id, tid);
86 		return;
87 	}
88 
89 	ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
90 	ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
91 	ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
92 
93 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
94 		   peer_id, tid, count);
95 }
96 
97 static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
98 {
99 	u32 seq;
100 	size_t size;
101 
102 	lockdep_assert_held(&ar->htt.tx_lock);
103 
104 	if (!ar->htt.tx_q_state.enabled)
105 		return;
106 
107 	if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
108 		return;
109 
110 	seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
111 	seq++;
112 	ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
113 
114 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
115 		   seq);
116 
117 	size = sizeof(*ar->htt.tx_q_state.vaddr);
118 	dma_sync_single_for_device(ar->dev,
119 				   ar->htt.tx_q_state.paddr,
120 				   size,
121 				   DMA_TO_DEVICE);
122 }
123 
124 void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
125 			      struct ieee80211_txq *txq)
126 {
127 	struct ath10k *ar = hw->priv;
128 
129 	spin_lock_bh(&ar->htt.tx_lock);
130 	__ath10k_htt_tx_txq_recalc(hw, txq);
131 	spin_unlock_bh(&ar->htt.tx_lock);
132 }
133 
134 void ath10k_htt_tx_txq_sync(struct ath10k *ar)
135 {
136 	spin_lock_bh(&ar->htt.tx_lock);
137 	__ath10k_htt_tx_txq_sync(ar);
138 	spin_unlock_bh(&ar->htt.tx_lock);
139 }
140 
141 void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
142 			      struct ieee80211_txq *txq)
143 {
144 	struct ath10k *ar = hw->priv;
145 
146 	spin_lock_bh(&ar->htt.tx_lock);
147 	__ath10k_htt_tx_txq_recalc(hw, txq);
148 	__ath10k_htt_tx_txq_sync(ar);
149 	spin_unlock_bh(&ar->htt.tx_lock);
150 }
151 
152 void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
153 {
154 	lockdep_assert_held(&htt->tx_lock);
155 
156 	htt->num_pending_tx--;
157 	if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
158 		ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
159 }
160 
161 int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
162 {
163 	lockdep_assert_held(&htt->tx_lock);
164 
165 	if (htt->num_pending_tx >= htt->max_num_pending_tx)
166 		return -EBUSY;
167 
168 	htt->num_pending_tx++;
169 	if (htt->num_pending_tx == htt->max_num_pending_tx)
170 		ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
171 
172 	return 0;
173 }
174 
175 int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
176 				   bool is_presp)
177 {
178 	struct ath10k *ar = htt->ar;
179 
180 	lockdep_assert_held(&htt->tx_lock);
181 
182 	if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
183 		return 0;
184 
185 	if (is_presp &&
186 	    ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
187 		return -EBUSY;
188 
189 	htt->num_pending_mgmt_tx++;
190 
191 	return 0;
192 }
193 
194 void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
195 {
196 	lockdep_assert_held(&htt->tx_lock);
197 
198 	if (!htt->ar->hw_params.max_probe_resp_desc_thres)
199 		return;
200 
201 	htt->num_pending_mgmt_tx--;
202 }
203 
204 int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
205 {
206 	struct ath10k *ar = htt->ar;
207 	int ret;
208 
209 	lockdep_assert_held(&htt->tx_lock);
210 
211 	ret = idr_alloc(&htt->pending_tx, skb, 0,
212 			htt->max_num_pending_tx, GFP_ATOMIC);
213 
214 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
215 
216 	return ret;
217 }
218 
219 void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
220 {
221 	struct ath10k *ar = htt->ar;
222 
223 	lockdep_assert_held(&htt->tx_lock);
224 
225 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
226 
227 	idr_remove(&htt->pending_tx, msdu_id);
228 }
229 
230 static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
231 {
232 	size_t size;
233 
234 	if (!htt->frag_desc.vaddr)
235 		return;
236 
237 	size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
238 
239 	dma_free_coherent(htt->ar->dev,
240 			  size,
241 			  htt->frag_desc.vaddr,
242 			  htt->frag_desc.paddr);
243 }
244 
245 static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
246 {
247 	struct ath10k *ar = htt->ar;
248 	size_t size;
249 
250 	if (!ar->hw_params.continuous_frag_desc)
251 		return 0;
252 
253 	size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
254 	htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
255 						  &htt->frag_desc.paddr,
256 						  GFP_KERNEL);
257 	if (!htt->frag_desc.vaddr) {
258 		ath10k_err(ar, "failed to alloc fragment desc memory\n");
259 		return -ENOMEM;
260 	}
261 
262 	return 0;
263 }
264 
265 static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
266 {
267 	struct ath10k *ar = htt->ar;
268 	size_t size;
269 
270 	if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
271 		      ar->running_fw->fw_file.fw_features))
272 		return;
273 
274 	size = sizeof(*htt->tx_q_state.vaddr);
275 
276 	dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
277 	kfree(htt->tx_q_state.vaddr);
278 }
279 
280 static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
281 {
282 	struct ath10k *ar = htt->ar;
283 	size_t size;
284 	int ret;
285 
286 	if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
287 		      ar->running_fw->fw_file.fw_features))
288 		return 0;
289 
290 	htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
291 	htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
292 	htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
293 
294 	size = sizeof(*htt->tx_q_state.vaddr);
295 	htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
296 	if (!htt->tx_q_state.vaddr)
297 		return -ENOMEM;
298 
299 	htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
300 					       size, DMA_TO_DEVICE);
301 	ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
302 	if (ret) {
303 		ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
304 		kfree(htt->tx_q_state.vaddr);
305 		return -EIO;
306 	}
307 
308 	return 0;
309 }
310 
311 int ath10k_htt_tx_alloc(struct ath10k_htt *htt)
312 {
313 	struct ath10k *ar = htt->ar;
314 	int ret, size;
315 
316 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
317 		   htt->max_num_pending_tx);
318 
319 	spin_lock_init(&htt->tx_lock);
320 	idr_init(&htt->pending_tx);
321 
322 	size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
323 	htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size,
324 						  &htt->txbuf.paddr,
325 						  GFP_KERNEL);
326 	if (!htt->txbuf.vaddr) {
327 		ath10k_err(ar, "failed to alloc tx buffer\n");
328 		ret = -ENOMEM;
329 		goto free_idr_pending_tx;
330 	}
331 
332 	ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
333 	if (ret) {
334 		ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
335 		goto free_txbuf;
336 	}
337 
338 	ret = ath10k_htt_tx_alloc_txq(htt);
339 	if (ret) {
340 		ath10k_err(ar, "failed to alloc txq: %d\n", ret);
341 		goto free_frag_desc;
342 	}
343 
344 	size = roundup_pow_of_two(htt->max_num_pending_tx);
345 	ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
346 	if (ret) {
347 		ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
348 		goto free_txq;
349 	}
350 
351 	return 0;
352 
353 free_txq:
354 	ath10k_htt_tx_free_txq(htt);
355 
356 free_frag_desc:
357 	ath10k_htt_tx_free_cont_frag_desc(htt);
358 
359 free_txbuf:
360 	size = htt->max_num_pending_tx *
361 			  sizeof(struct ath10k_htt_txbuf);
362 	dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
363 			  htt->txbuf.paddr);
364 
365 free_idr_pending_tx:
366 	idr_destroy(&htt->pending_tx);
367 
368 	return ret;
369 }
370 
371 static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
372 {
373 	struct ath10k *ar = ctx;
374 	struct ath10k_htt *htt = &ar->htt;
375 	struct htt_tx_done tx_done = {0};
376 
377 	ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
378 
379 	tx_done.msdu_id = msdu_id;
380 	tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
381 
382 	ath10k_txrx_tx_unref(htt, &tx_done);
383 
384 	return 0;
385 }
386 
387 void ath10k_htt_tx_free(struct ath10k_htt *htt)
388 {
389 	int size;
390 
391 	idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
392 	idr_destroy(&htt->pending_tx);
393 
394 	if (htt->txbuf.vaddr) {
395 		size = htt->max_num_pending_tx *
396 				  sizeof(struct ath10k_htt_txbuf);
397 		dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
398 				  htt->txbuf.paddr);
399 	}
400 
401 	ath10k_htt_tx_free_txq(htt);
402 	ath10k_htt_tx_free_cont_frag_desc(htt);
403 	WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
404 	kfifo_free(&htt->txdone_fifo);
405 }
406 
407 void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
408 {
409 	dev_kfree_skb_any(skb);
410 }
411 
412 void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
413 {
414 	dev_kfree_skb_any(skb);
415 }
416 EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
417 
418 int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
419 {
420 	struct ath10k *ar = htt->ar;
421 	struct sk_buff *skb;
422 	struct htt_cmd *cmd;
423 	int len = 0;
424 	int ret;
425 
426 	len += sizeof(cmd->hdr);
427 	len += sizeof(cmd->ver_req);
428 
429 	skb = ath10k_htc_alloc_skb(ar, len);
430 	if (!skb)
431 		return -ENOMEM;
432 
433 	skb_put(skb, len);
434 	cmd = (struct htt_cmd *)skb->data;
435 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
436 
437 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
438 	if (ret) {
439 		dev_kfree_skb_any(skb);
440 		return ret;
441 	}
442 
443 	return 0;
444 }
445 
446 int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
447 {
448 	struct ath10k *ar = htt->ar;
449 	struct htt_stats_req *req;
450 	struct sk_buff *skb;
451 	struct htt_cmd *cmd;
452 	int len = 0, ret;
453 
454 	len += sizeof(cmd->hdr);
455 	len += sizeof(cmd->stats_req);
456 
457 	skb = ath10k_htc_alloc_skb(ar, len);
458 	if (!skb)
459 		return -ENOMEM;
460 
461 	skb_put(skb, len);
462 	cmd = (struct htt_cmd *)skb->data;
463 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
464 
465 	req = &cmd->stats_req;
466 
467 	memset(req, 0, sizeof(*req));
468 
469 	/* currently we support only max 8 bit masks so no need to worry
470 	 * about endian support */
471 	req->upload_types[0] = mask;
472 	req->reset_types[0] = mask;
473 	req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
474 	req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
475 	req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
476 
477 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
478 	if (ret) {
479 		ath10k_warn(ar, "failed to send htt type stats request: %d",
480 			    ret);
481 		dev_kfree_skb_any(skb);
482 		return ret;
483 	}
484 
485 	return 0;
486 }
487 
488 int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
489 {
490 	struct ath10k *ar = htt->ar;
491 	struct sk_buff *skb;
492 	struct htt_cmd *cmd;
493 	struct htt_frag_desc_bank_cfg *cfg;
494 	int ret, size;
495 	u8 info;
496 
497 	if (!ar->hw_params.continuous_frag_desc)
498 		return 0;
499 
500 	if (!htt->frag_desc.paddr) {
501 		ath10k_warn(ar, "invalid frag desc memory\n");
502 		return -EINVAL;
503 	}
504 
505 	size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
506 	skb = ath10k_htc_alloc_skb(ar, size);
507 	if (!skb)
508 		return -ENOMEM;
509 
510 	skb_put(skb, size);
511 	cmd = (struct htt_cmd *)skb->data;
512 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
513 
514 	info = 0;
515 	info |= SM(htt->tx_q_state.type,
516 		   HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
517 
518 	if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
519 		     ar->running_fw->fw_file.fw_features))
520 		info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
521 
522 	cfg = &cmd->frag_desc_bank_cfg;
523 	cfg->info = info;
524 	cfg->num_banks = 1;
525 	cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
526 	cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
527 	cfg->bank_id[0].bank_min_id = 0;
528 	cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
529 						    1);
530 
531 	cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
532 	cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
533 	cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
534 	cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
535 	cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
536 
537 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
538 
539 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
540 	if (ret) {
541 		ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
542 			    ret);
543 		dev_kfree_skb_any(skb);
544 		return ret;
545 	}
546 
547 	return 0;
548 }
549 
550 int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
551 {
552 	struct ath10k *ar = htt->ar;
553 	struct sk_buff *skb;
554 	struct htt_cmd *cmd;
555 	struct htt_rx_ring_setup_ring *ring;
556 	const int num_rx_ring = 1;
557 	u16 flags;
558 	u32 fw_idx;
559 	int len;
560 	int ret;
561 
562 	/*
563 	 * the HW expects the buffer to be an integral number of 4-byte
564 	 * "words"
565 	 */
566 	BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
567 	BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
568 
569 	len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
570 	    + (sizeof(*ring) * num_rx_ring);
571 	skb = ath10k_htc_alloc_skb(ar, len);
572 	if (!skb)
573 		return -ENOMEM;
574 
575 	skb_put(skb, len);
576 
577 	cmd = (struct htt_cmd *)skb->data;
578 	ring = &cmd->rx_setup.rings[0];
579 
580 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
581 	cmd->rx_setup.hdr.num_rings = 1;
582 
583 	/* FIXME: do we need all of this? */
584 	flags = 0;
585 	flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
586 	flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
587 	flags |= HTT_RX_RING_FLAGS_PPDU_START;
588 	flags |= HTT_RX_RING_FLAGS_PPDU_END;
589 	flags |= HTT_RX_RING_FLAGS_MPDU_START;
590 	flags |= HTT_RX_RING_FLAGS_MPDU_END;
591 	flags |= HTT_RX_RING_FLAGS_MSDU_START;
592 	flags |= HTT_RX_RING_FLAGS_MSDU_END;
593 	flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
594 	flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
595 	flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
596 	flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
597 	flags |= HTT_RX_RING_FLAGS_CTRL_RX;
598 	flags |= HTT_RX_RING_FLAGS_MGMT_RX;
599 	flags |= HTT_RX_RING_FLAGS_NULL_RX;
600 	flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
601 
602 	fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
603 
604 	ring->fw_idx_shadow_reg_paddr =
605 		__cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
606 	ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
607 	ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
608 	ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
609 	ring->flags = __cpu_to_le16(flags);
610 	ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
611 
612 #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
613 
614 	ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
615 	ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
616 	ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
617 	ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
618 	ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
619 	ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
620 	ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
621 	ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
622 	ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
623 	ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
624 
625 #undef desc_offset
626 
627 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
628 	if (ret) {
629 		dev_kfree_skb_any(skb);
630 		return ret;
631 	}
632 
633 	return 0;
634 }
635 
636 int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
637 				u8 max_subfrms_ampdu,
638 				u8 max_subfrms_amsdu)
639 {
640 	struct ath10k *ar = htt->ar;
641 	struct htt_aggr_conf *aggr_conf;
642 	struct sk_buff *skb;
643 	struct htt_cmd *cmd;
644 	int len;
645 	int ret;
646 
647 	/* Firmware defaults are: amsdu = 3 and ampdu = 64 */
648 
649 	if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
650 		return -EINVAL;
651 
652 	if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
653 		return -EINVAL;
654 
655 	len = sizeof(cmd->hdr);
656 	len += sizeof(cmd->aggr_conf);
657 
658 	skb = ath10k_htc_alloc_skb(ar, len);
659 	if (!skb)
660 		return -ENOMEM;
661 
662 	skb_put(skb, len);
663 	cmd = (struct htt_cmd *)skb->data;
664 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
665 
666 	aggr_conf = &cmd->aggr_conf;
667 	aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
668 	aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
669 
670 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
671 		   aggr_conf->max_num_amsdu_subframes,
672 		   aggr_conf->max_num_ampdu_subframes);
673 
674 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
675 	if (ret) {
676 		dev_kfree_skb_any(skb);
677 		return ret;
678 	}
679 
680 	return 0;
681 }
682 
683 int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
684 			     __le32 token,
685 			     __le16 fetch_seq_num,
686 			     struct htt_tx_fetch_record *records,
687 			     size_t num_records)
688 {
689 	struct sk_buff *skb;
690 	struct htt_cmd *cmd;
691 	const u16 resp_id = 0;
692 	int len = 0;
693 	int ret;
694 
695 	/* Response IDs are echo-ed back only for host driver convienence
696 	 * purposes. They aren't used for anything in the driver yet so use 0.
697 	 */
698 
699 	len += sizeof(cmd->hdr);
700 	len += sizeof(cmd->tx_fetch_resp);
701 	len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
702 
703 	skb = ath10k_htc_alloc_skb(ar, len);
704 	if (!skb)
705 		return -ENOMEM;
706 
707 	skb_put(skb, len);
708 	cmd = (struct htt_cmd *)skb->data;
709 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
710 	cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
711 	cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
712 	cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
713 	cmd->tx_fetch_resp.token = token;
714 
715 	memcpy(cmd->tx_fetch_resp.records, records,
716 	       sizeof(records[0]) * num_records);
717 
718 	ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
719 	if (ret) {
720 		ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
721 		goto err_free_skb;
722 	}
723 
724 	return 0;
725 
726 err_free_skb:
727 	dev_kfree_skb_any(skb);
728 
729 	return ret;
730 }
731 
732 static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
733 {
734 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
735 	struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
736 	struct ath10k_vif *arvif = (void *)cb->vif->drv_priv;
737 
738 	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
739 		return ar->scan.vdev_id;
740 	else if (cb->vif)
741 		return arvif->vdev_id;
742 	else if (ar->monitor_started)
743 		return ar->monitor_vdev_id;
744 	else
745 		return 0;
746 }
747 
748 static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
749 {
750 	struct ieee80211_hdr *hdr = (void *)skb->data;
751 	struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
752 
753 	if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
754 		return HTT_DATA_TX_EXT_TID_MGMT;
755 	else if (cb->flags & ATH10K_SKB_F_QOS)
756 		return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
757 	else
758 		return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
759 }
760 
761 int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
762 {
763 	struct ath10k *ar = htt->ar;
764 	struct device *dev = ar->dev;
765 	struct sk_buff *txdesc = NULL;
766 	struct htt_cmd *cmd;
767 	struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
768 	u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
769 	int len = 0;
770 	int msdu_id = -1;
771 	int res;
772 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
773 
774 	len += sizeof(cmd->hdr);
775 	len += sizeof(cmd->mgmt_tx);
776 
777 	spin_lock_bh(&htt->tx_lock);
778 	res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
779 	spin_unlock_bh(&htt->tx_lock);
780 	if (res < 0)
781 		goto err;
782 
783 	msdu_id = res;
784 
785 	if ((ieee80211_is_action(hdr->frame_control) ||
786 	     ieee80211_is_deauth(hdr->frame_control) ||
787 	     ieee80211_is_disassoc(hdr->frame_control)) &&
788 	     ieee80211_has_protected(hdr->frame_control)) {
789 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
790 	}
791 
792 	txdesc = ath10k_htc_alloc_skb(ar, len);
793 	if (!txdesc) {
794 		res = -ENOMEM;
795 		goto err_free_msdu_id;
796 	}
797 
798 	skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
799 				       DMA_TO_DEVICE);
800 	res = dma_mapping_error(dev, skb_cb->paddr);
801 	if (res) {
802 		res = -EIO;
803 		goto err_free_txdesc;
804 	}
805 
806 	skb_put(txdesc, len);
807 	cmd = (struct htt_cmd *)txdesc->data;
808 	memset(cmd, 0, len);
809 
810 	cmd->hdr.msg_type         = HTT_H2T_MSG_TYPE_MGMT_TX;
811 	cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
812 	cmd->mgmt_tx.len        = __cpu_to_le32(msdu->len);
813 	cmd->mgmt_tx.desc_id    = __cpu_to_le32(msdu_id);
814 	cmd->mgmt_tx.vdev_id    = __cpu_to_le32(vdev_id);
815 	memcpy(cmd->mgmt_tx.hdr, msdu->data,
816 	       min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
817 
818 	res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
819 	if (res)
820 		goto err_unmap_msdu;
821 
822 	return 0;
823 
824 err_unmap_msdu:
825 	dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
826 err_free_txdesc:
827 	dev_kfree_skb_any(txdesc);
828 err_free_msdu_id:
829 	spin_lock_bh(&htt->tx_lock);
830 	ath10k_htt_tx_free_msdu_id(htt, msdu_id);
831 	spin_unlock_bh(&htt->tx_lock);
832 err:
833 	return res;
834 }
835 
836 int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
837 		  struct sk_buff *msdu)
838 {
839 	struct ath10k *ar = htt->ar;
840 	struct device *dev = ar->dev;
841 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
842 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
843 	struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
844 	struct ath10k_hif_sg_item sg_items[2];
845 	struct ath10k_htt_txbuf *txbuf;
846 	struct htt_data_tx_desc_frag *frags;
847 	bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
848 	u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
849 	u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
850 	int prefetch_len;
851 	int res;
852 	u8 flags0 = 0;
853 	u16 msdu_id, flags1 = 0;
854 	u16 freq = 0;
855 	u32 frags_paddr = 0;
856 	u32 txbuf_paddr;
857 	struct htt_msdu_ext_desc *ext_desc = NULL;
858 
859 	spin_lock_bh(&htt->tx_lock);
860 	res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
861 	spin_unlock_bh(&htt->tx_lock);
862 	if (res < 0)
863 		goto err;
864 
865 	msdu_id = res;
866 
867 	prefetch_len = min(htt->prefetch_len, msdu->len);
868 	prefetch_len = roundup(prefetch_len, 4);
869 
870 	txbuf = &htt->txbuf.vaddr[msdu_id];
871 	txbuf_paddr = htt->txbuf.paddr +
872 		      (sizeof(struct ath10k_htt_txbuf) * msdu_id);
873 
874 	if ((ieee80211_is_action(hdr->frame_control) ||
875 	     ieee80211_is_deauth(hdr->frame_control) ||
876 	     ieee80211_is_disassoc(hdr->frame_control)) &&
877 	     ieee80211_has_protected(hdr->frame_control)) {
878 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
879 	} else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
880 		   txmode == ATH10K_HW_TXRX_RAW &&
881 		   ieee80211_has_protected(hdr->frame_control)) {
882 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
883 	}
884 
885 	skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
886 				       DMA_TO_DEVICE);
887 	res = dma_mapping_error(dev, skb_cb->paddr);
888 	if (res) {
889 		res = -EIO;
890 		goto err_free_msdu_id;
891 	}
892 
893 	if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
894 		freq = ar->scan.roc_freq;
895 
896 	switch (txmode) {
897 	case ATH10K_HW_TXRX_RAW:
898 	case ATH10K_HW_TXRX_NATIVE_WIFI:
899 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
900 		/* pass through */
901 	case ATH10K_HW_TXRX_ETHERNET:
902 		if (ar->hw_params.continuous_frag_desc) {
903 			memset(&htt->frag_desc.vaddr[msdu_id], 0,
904 			       sizeof(struct htt_msdu_ext_desc));
905 			frags = (struct htt_data_tx_desc_frag *)
906 				&htt->frag_desc.vaddr[msdu_id].frags;
907 			ext_desc = &htt->frag_desc.vaddr[msdu_id];
908 			frags[0].tword_addr.paddr_lo =
909 				__cpu_to_le32(skb_cb->paddr);
910 			frags[0].tword_addr.paddr_hi = 0;
911 			frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
912 
913 			frags_paddr =  htt->frag_desc.paddr +
914 				(sizeof(struct htt_msdu_ext_desc) * msdu_id);
915 		} else {
916 			frags = txbuf->frags;
917 			frags[0].dword_addr.paddr =
918 				__cpu_to_le32(skb_cb->paddr);
919 			frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
920 			frags[1].dword_addr.paddr = 0;
921 			frags[1].dword_addr.len = 0;
922 
923 			frags_paddr = txbuf_paddr;
924 		}
925 		flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
926 		break;
927 	case ATH10K_HW_TXRX_MGMT:
928 		flags0 |= SM(ATH10K_HW_TXRX_MGMT,
929 			     HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
930 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
931 
932 		frags_paddr = skb_cb->paddr;
933 		break;
934 	}
935 
936 	/* Normally all commands go through HTC which manages tx credits for
937 	 * each endpoint and notifies when tx is completed.
938 	 *
939 	 * HTT endpoint is creditless so there's no need to care about HTC
940 	 * flags. In that case it is trivial to fill the HTC header here.
941 	 *
942 	 * MSDU transmission is considered completed upon HTT event. This
943 	 * implies no relevant resources can be freed until after the event is
944 	 * received. That's why HTC tx completion handler itself is ignored by
945 	 * setting NULL to transfer_context for all sg items.
946 	 *
947 	 * There is simply no point in pushing HTT TX_FRM through HTC tx path
948 	 * as it's a waste of resources. By bypassing HTC it is possible to
949 	 * avoid extra memory allocations, compress data structures and thus
950 	 * improve performance. */
951 
952 	txbuf->htc_hdr.eid = htt->eid;
953 	txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
954 					   sizeof(txbuf->cmd_tx) +
955 					   prefetch_len);
956 	txbuf->htc_hdr.flags = 0;
957 
958 	if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
959 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
960 
961 	flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
962 	flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
963 	if (msdu->ip_summed == CHECKSUM_PARTIAL &&
964 	    !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
965 		flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
966 		flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
967 		if (ar->hw_params.continuous_frag_desc)
968 			ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
969 	}
970 
971 	/* Prevent firmware from sending up tx inspection requests. There's
972 	 * nothing ath10k can do with frames requested for inspection so force
973 	 * it to simply rely a regular tx completion with discard status.
974 	 */
975 	flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
976 
977 	txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
978 	txbuf->cmd_tx.flags0 = flags0;
979 	txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
980 	txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
981 	txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
982 	txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
983 	if (ath10k_mac_tx_frm_has_freq(ar)) {
984 		txbuf->cmd_tx.offchan_tx.peerid =
985 				__cpu_to_le16(HTT_INVALID_PEERID);
986 		txbuf->cmd_tx.offchan_tx.freq =
987 				__cpu_to_le16(freq);
988 	} else {
989 		txbuf->cmd_tx.peerid =
990 				__cpu_to_le32(HTT_INVALID_PEERID);
991 	}
992 
993 	trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
994 	ath10k_dbg(ar, ATH10K_DBG_HTT,
995 		   "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
996 		   flags0, flags1, msdu->len, msdu_id, frags_paddr,
997 		   (u32)skb_cb->paddr, vdev_id, tid, freq);
998 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
999 			msdu->data, msdu->len);
1000 	trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
1001 	trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
1002 
1003 	sg_items[0].transfer_id = 0;
1004 	sg_items[0].transfer_context = NULL;
1005 	sg_items[0].vaddr = &txbuf->htc_hdr;
1006 	sg_items[0].paddr = txbuf_paddr +
1007 			    sizeof(txbuf->frags);
1008 	sg_items[0].len = sizeof(txbuf->htc_hdr) +
1009 			  sizeof(txbuf->cmd_hdr) +
1010 			  sizeof(txbuf->cmd_tx);
1011 
1012 	sg_items[1].transfer_id = 0;
1013 	sg_items[1].transfer_context = NULL;
1014 	sg_items[1].vaddr = msdu->data;
1015 	sg_items[1].paddr = skb_cb->paddr;
1016 	sg_items[1].len = prefetch_len;
1017 
1018 	res = ath10k_hif_tx_sg(htt->ar,
1019 			       htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
1020 			       sg_items, ARRAY_SIZE(sg_items));
1021 	if (res)
1022 		goto err_unmap_msdu;
1023 
1024 	return 0;
1025 
1026 err_unmap_msdu:
1027 	dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
1028 err_free_msdu_id:
1029 	ath10k_htt_tx_free_msdu_id(htt, msdu_id);
1030 err:
1031 	return res;
1032 }
1033