xref: /linux/drivers/net/wireless/ath/ath10k/htt_rx.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
6  */
7 
8 #include "core.h"
9 #include "htc.h"
10 #include "htt.h"
11 #include "txrx.h"
12 #include "debug.h"
13 #include "trace.h"
14 #include "mac.h"
15 
16 #include <linux/log2.h>
17 #include <linux/bitfield.h>
18 
19 /* when under memory pressure rx ring refill may fail and needs a retry */
20 #define HTT_RX_RING_REFILL_RETRY_MS 50
21 
22 #define HTT_RX_RING_REFILL_RESCHED_MS 5
23 
24 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
25 
26 static struct sk_buff *
27 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
28 {
29 	struct ath10k_skb_rxcb *rxcb;
30 
31 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
32 		if (rxcb->paddr == paddr)
33 			return ATH10K_RXCB_SKB(rxcb);
34 
35 	WARN_ON_ONCE(1);
36 	return NULL;
37 }
38 
39 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
40 {
41 	struct sk_buff *skb;
42 	struct ath10k_skb_rxcb *rxcb;
43 	struct hlist_node *n;
44 	int i;
45 
46 	if (htt->rx_ring.in_ord_rx) {
47 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
48 			skb = ATH10K_RXCB_SKB(rxcb);
49 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
50 					 skb->len + skb_tailroom(skb),
51 					 DMA_FROM_DEVICE);
52 			hash_del(&rxcb->hlist);
53 			dev_kfree_skb_any(skb);
54 		}
55 	} else {
56 		for (i = 0; i < htt->rx_ring.size; i++) {
57 			skb = htt->rx_ring.netbufs_ring[i];
58 			if (!skb)
59 				continue;
60 
61 			rxcb = ATH10K_SKB_RXCB(skb);
62 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
63 					 skb->len + skb_tailroom(skb),
64 					 DMA_FROM_DEVICE);
65 			dev_kfree_skb_any(skb);
66 		}
67 	}
68 
69 	htt->rx_ring.fill_cnt = 0;
70 	hash_init(htt->rx_ring.skb_table);
71 	memset(htt->rx_ring.netbufs_ring, 0,
72 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
73 }
74 
75 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
76 {
77 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
78 }
79 
80 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
81 {
82 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
83 }
84 
85 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
86 					     void *vaddr)
87 {
88 	htt->rx_ring.paddrs_ring_32 = vaddr;
89 }
90 
91 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
92 					     void *vaddr)
93 {
94 	htt->rx_ring.paddrs_ring_64 = vaddr;
95 }
96 
97 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
98 					  dma_addr_t paddr, int idx)
99 {
100 	htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
101 }
102 
103 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
104 					  dma_addr_t paddr, int idx)
105 {
106 	htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
107 }
108 
109 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
110 {
111 	htt->rx_ring.paddrs_ring_32[idx] = 0;
112 }
113 
114 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
115 {
116 	htt->rx_ring.paddrs_ring_64[idx] = 0;
117 }
118 
119 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
120 {
121 	return (void *)htt->rx_ring.paddrs_ring_32;
122 }
123 
124 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
125 {
126 	return (void *)htt->rx_ring.paddrs_ring_64;
127 }
128 
129 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
130 {
131 	struct htt_rx_desc *rx_desc;
132 	struct ath10k_skb_rxcb *rxcb;
133 	struct sk_buff *skb;
134 	dma_addr_t paddr;
135 	int ret = 0, idx;
136 
137 	/* The Full Rx Reorder firmware has no way of telling the host
138 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
139 	 * To keep things simple make sure ring is always half empty. This
140 	 * guarantees there'll be no replenishment overruns possible.
141 	 */
142 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
143 
144 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
145 
146 	if (idx < 0 || idx >= htt->rx_ring.size) {
147 		ath10k_err(htt->ar, "rx ring index is not valid, firmware malfunctioning?\n");
148 		idx &= htt->rx_ring.size_mask;
149 		ret = -ENOMEM;
150 		goto fail;
151 	}
152 
153 	while (num > 0) {
154 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
155 		if (!skb) {
156 			ret = -ENOMEM;
157 			goto fail;
158 		}
159 
160 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
161 			skb_pull(skb,
162 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
163 				 skb->data);
164 
165 		/* Clear rx_desc attention word before posting to Rx ring */
166 		rx_desc = (struct htt_rx_desc *)skb->data;
167 		rx_desc->attention.flags = __cpu_to_le32(0);
168 
169 		paddr = dma_map_single(htt->ar->dev, skb->data,
170 				       skb->len + skb_tailroom(skb),
171 				       DMA_FROM_DEVICE);
172 
173 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
174 			dev_kfree_skb_any(skb);
175 			ret = -ENOMEM;
176 			goto fail;
177 		}
178 
179 		rxcb = ATH10K_SKB_RXCB(skb);
180 		rxcb->paddr = paddr;
181 		htt->rx_ring.netbufs_ring[idx] = skb;
182 		ath10k_htt_set_paddrs_ring(htt, paddr, idx);
183 		htt->rx_ring.fill_cnt++;
184 
185 		if (htt->rx_ring.in_ord_rx) {
186 			hash_add(htt->rx_ring.skb_table,
187 				 &ATH10K_SKB_RXCB(skb)->hlist,
188 				 paddr);
189 		}
190 
191 		num--;
192 		idx++;
193 		idx &= htt->rx_ring.size_mask;
194 	}
195 
196 fail:
197 	/*
198 	 * Make sure the rx buffer is updated before available buffer
199 	 * index to avoid any potential rx ring corruption.
200 	 */
201 	mb();
202 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
203 	return ret;
204 }
205 
206 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
207 {
208 	lockdep_assert_held(&htt->rx_ring.lock);
209 	return __ath10k_htt_rx_ring_fill_n(htt, num);
210 }
211 
212 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
213 {
214 	int ret, num_deficit, num_to_fill;
215 
216 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
217 	 * reason is RX may take up significant amount of CPU cycles and starve
218 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
219 	 * with ath10k wlan interface. This ended up with very poor performance
220 	 * once CPU the host system was overwhelmed with RX on ath10k.
221 	 *
222 	 * By limiting the number of refills the replenishing occurs
223 	 * progressively. This in turns makes use of the fact tasklets are
224 	 * processed in FIFO order. This means actual RX processing can starve
225 	 * out refilling. If there's not enough buffers on RX ring FW will not
226 	 * report RX until it is refilled with enough buffers. This
227 	 * automatically balances load wrt to CPU power.
228 	 *
229 	 * This probably comes at a cost of lower maximum throughput but
230 	 * improves the average and stability.
231 	 */
232 	spin_lock_bh(&htt->rx_ring.lock);
233 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
234 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
235 	num_deficit -= num_to_fill;
236 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
237 	if (ret == -ENOMEM) {
238 		/*
239 		 * Failed to fill it to the desired level -
240 		 * we'll start a timer and try again next time.
241 		 * As long as enough buffers are left in the ring for
242 		 * another A-MPDU rx, no special recovery is needed.
243 		 */
244 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
245 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
246 	} else if (num_deficit > 0) {
247 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
248 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
249 	}
250 	spin_unlock_bh(&htt->rx_ring.lock);
251 }
252 
253 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
254 {
255 	struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
256 
257 	ath10k_htt_rx_msdu_buff_replenish(htt);
258 }
259 
260 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
261 {
262 	struct ath10k_htt *htt = &ar->htt;
263 	int ret;
264 
265 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
266 		return 0;
267 
268 	spin_lock_bh(&htt->rx_ring.lock);
269 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
270 					      htt->rx_ring.fill_cnt));
271 
272 	if (ret)
273 		ath10k_htt_rx_ring_free(htt);
274 
275 	spin_unlock_bh(&htt->rx_ring.lock);
276 
277 	return ret;
278 }
279 
280 void ath10k_htt_rx_free(struct ath10k_htt *htt)
281 {
282 	if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
283 		return;
284 
285 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
286 
287 	skb_queue_purge(&htt->rx_msdus_q);
288 	skb_queue_purge(&htt->rx_in_ord_compl_q);
289 	skb_queue_purge(&htt->tx_fetch_ind_q);
290 
291 	spin_lock_bh(&htt->rx_ring.lock);
292 	ath10k_htt_rx_ring_free(htt);
293 	spin_unlock_bh(&htt->rx_ring.lock);
294 
295 	dma_free_coherent(htt->ar->dev,
296 			  ath10k_htt_get_rx_ring_size(htt),
297 			  ath10k_htt_get_vaddr_ring(htt),
298 			  htt->rx_ring.base_paddr);
299 
300 	dma_free_coherent(htt->ar->dev,
301 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
302 			  htt->rx_ring.alloc_idx.vaddr,
303 			  htt->rx_ring.alloc_idx.paddr);
304 
305 	kfree(htt->rx_ring.netbufs_ring);
306 }
307 
308 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
309 {
310 	struct ath10k *ar = htt->ar;
311 	int idx;
312 	struct sk_buff *msdu;
313 
314 	lockdep_assert_held(&htt->rx_ring.lock);
315 
316 	if (htt->rx_ring.fill_cnt == 0) {
317 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
318 		return NULL;
319 	}
320 
321 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
322 	msdu = htt->rx_ring.netbufs_ring[idx];
323 	htt->rx_ring.netbufs_ring[idx] = NULL;
324 	ath10k_htt_reset_paddrs_ring(htt, idx);
325 
326 	idx++;
327 	idx &= htt->rx_ring.size_mask;
328 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
329 	htt->rx_ring.fill_cnt--;
330 
331 	dma_unmap_single(htt->ar->dev,
332 			 ATH10K_SKB_RXCB(msdu)->paddr,
333 			 msdu->len + skb_tailroom(msdu),
334 			 DMA_FROM_DEVICE);
335 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
336 			msdu->data, msdu->len + skb_tailroom(msdu));
337 
338 	return msdu;
339 }
340 
341 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
342 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
343 				   struct sk_buff_head *amsdu)
344 {
345 	struct ath10k *ar = htt->ar;
346 	int msdu_len, msdu_chaining = 0;
347 	struct sk_buff *msdu;
348 	struct htt_rx_desc *rx_desc;
349 
350 	lockdep_assert_held(&htt->rx_ring.lock);
351 
352 	for (;;) {
353 		int last_msdu, msdu_len_invalid, msdu_chained;
354 
355 		msdu = ath10k_htt_rx_netbuf_pop(htt);
356 		if (!msdu) {
357 			__skb_queue_purge(amsdu);
358 			return -ENOENT;
359 		}
360 
361 		__skb_queue_tail(amsdu, msdu);
362 
363 		rx_desc = (struct htt_rx_desc *)msdu->data;
364 
365 		/* FIXME: we must report msdu payload since this is what caller
366 		 * expects now
367 		 */
368 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
369 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
370 
371 		/*
372 		 * Sanity check - confirm the HW is finished filling in the
373 		 * rx data.
374 		 * If the HW and SW are working correctly, then it's guaranteed
375 		 * that the HW's MAC DMA is done before this point in the SW.
376 		 * To prevent the case that we handle a stale Rx descriptor,
377 		 * just assert for now until we have a way to recover.
378 		 */
379 		if (!(__le32_to_cpu(rx_desc->attention.flags)
380 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
381 			__skb_queue_purge(amsdu);
382 			return -EIO;
383 		}
384 
385 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
386 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
387 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
388 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
389 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
390 		msdu_chained = rx_desc->frag_info.ring2_more_count;
391 
392 		if (msdu_len_invalid)
393 			msdu_len = 0;
394 
395 		skb_trim(msdu, 0);
396 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
397 		msdu_len -= msdu->len;
398 
399 		/* Note: Chained buffers do not contain rx descriptor */
400 		while (msdu_chained--) {
401 			msdu = ath10k_htt_rx_netbuf_pop(htt);
402 			if (!msdu) {
403 				__skb_queue_purge(amsdu);
404 				return -ENOENT;
405 			}
406 
407 			__skb_queue_tail(amsdu, msdu);
408 			skb_trim(msdu, 0);
409 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
410 			msdu_len -= msdu->len;
411 			msdu_chaining = 1;
412 		}
413 
414 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
415 				RX_MSDU_END_INFO0_LAST_MSDU;
416 
417 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
418 					 sizeof(*rx_desc) - sizeof(u32));
419 
420 		if (last_msdu)
421 			break;
422 	}
423 
424 	if (skb_queue_empty(amsdu))
425 		msdu_chaining = -1;
426 
427 	/*
428 	 * Don't refill the ring yet.
429 	 *
430 	 * First, the elements popped here are still in use - it is not
431 	 * safe to overwrite them until the matching call to
432 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
433 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
434 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
435 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
436 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
437 	 * out of the rx ring, and then refill it just once.
438 	 */
439 
440 	return msdu_chaining;
441 }
442 
443 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
444 					       u64 paddr)
445 {
446 	struct ath10k *ar = htt->ar;
447 	struct ath10k_skb_rxcb *rxcb;
448 	struct sk_buff *msdu;
449 
450 	lockdep_assert_held(&htt->rx_ring.lock);
451 
452 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
453 	if (!msdu)
454 		return NULL;
455 
456 	rxcb = ATH10K_SKB_RXCB(msdu);
457 	hash_del(&rxcb->hlist);
458 	htt->rx_ring.fill_cnt--;
459 
460 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
461 			 msdu->len + skb_tailroom(msdu),
462 			 DMA_FROM_DEVICE);
463 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
464 			msdu->data, msdu->len + skb_tailroom(msdu));
465 
466 	return msdu;
467 }
468 
469 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head,
470 					       struct sk_buff *frag_list,
471 					       unsigned int frag_len)
472 {
473 	skb_shinfo(skb_head)->frag_list = frag_list;
474 	skb_head->data_len = frag_len;
475 	skb_head->len += skb_head->data_len;
476 }
477 
478 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt,
479 					     struct sk_buff *msdu,
480 					     struct htt_rx_in_ord_msdu_desc **msdu_desc)
481 {
482 	struct ath10k *ar = htt->ar;
483 	u32 paddr;
484 	struct sk_buff *frag_buf;
485 	struct sk_buff *prev_frag_buf;
486 	u8 last_frag;
487 	struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc;
488 	struct htt_rx_desc *rxd;
489 	int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
490 
491 	rxd = (void *)msdu->data;
492 	trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
493 
494 	skb_put(msdu, sizeof(struct htt_rx_desc));
495 	skb_pull(msdu, sizeof(struct htt_rx_desc));
496 	skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
497 	amsdu_len -= msdu->len;
498 
499 	last_frag = ind_desc->reserved;
500 	if (last_frag) {
501 		if (amsdu_len) {
502 			ath10k_warn(ar, "invalid amsdu len %u, left %d",
503 				    __le16_to_cpu(ind_desc->msdu_len),
504 				    amsdu_len);
505 		}
506 		return 0;
507 	}
508 
509 	ind_desc++;
510 	paddr = __le32_to_cpu(ind_desc->msdu_paddr);
511 	frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
512 	if (!frag_buf) {
513 		ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr);
514 		return -ENOENT;
515 	}
516 
517 	skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
518 	ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
519 
520 	amsdu_len -= frag_buf->len;
521 	prev_frag_buf = frag_buf;
522 	last_frag = ind_desc->reserved;
523 	while (!last_frag) {
524 		ind_desc++;
525 		paddr = __le32_to_cpu(ind_desc->msdu_paddr);
526 		frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
527 		if (!frag_buf) {
528 			ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x",
529 				    paddr);
530 			prev_frag_buf->next = NULL;
531 			return -ENOENT;
532 		}
533 
534 		skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
535 		last_frag = ind_desc->reserved;
536 		amsdu_len -= frag_buf->len;
537 
538 		prev_frag_buf->next = frag_buf;
539 		prev_frag_buf = frag_buf;
540 	}
541 
542 	if (amsdu_len) {
543 		ath10k_warn(ar, "invalid amsdu len %u, left %d",
544 			    __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
545 	}
546 
547 	*msdu_desc = ind_desc;
548 
549 	prev_frag_buf->next = NULL;
550 	return 0;
551 }
552 
553 static int
554 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt,
555 				  struct sk_buff *msdu,
556 				  struct htt_rx_in_ord_msdu_desc_ext **msdu_desc)
557 {
558 	struct ath10k *ar = htt->ar;
559 	u64 paddr;
560 	struct sk_buff *frag_buf;
561 	struct sk_buff *prev_frag_buf;
562 	u8 last_frag;
563 	struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc;
564 	struct htt_rx_desc *rxd;
565 	int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
566 
567 	rxd = (void *)msdu->data;
568 	trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
569 
570 	skb_put(msdu, sizeof(struct htt_rx_desc));
571 	skb_pull(msdu, sizeof(struct htt_rx_desc));
572 	skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
573 	amsdu_len -= msdu->len;
574 
575 	last_frag = ind_desc->reserved;
576 	if (last_frag) {
577 		if (amsdu_len) {
578 			ath10k_warn(ar, "invalid amsdu len %u, left %d",
579 				    __le16_to_cpu(ind_desc->msdu_len),
580 				    amsdu_len);
581 		}
582 		return 0;
583 	}
584 
585 	ind_desc++;
586 	paddr = __le64_to_cpu(ind_desc->msdu_paddr);
587 	frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
588 	if (!frag_buf) {
589 		ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr);
590 		return -ENOENT;
591 	}
592 
593 	skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
594 	ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
595 
596 	amsdu_len -= frag_buf->len;
597 	prev_frag_buf = frag_buf;
598 	last_frag = ind_desc->reserved;
599 	while (!last_frag) {
600 		ind_desc++;
601 		paddr = __le64_to_cpu(ind_desc->msdu_paddr);
602 		frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
603 		if (!frag_buf) {
604 			ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx",
605 				    paddr);
606 			prev_frag_buf->next = NULL;
607 			return -ENOENT;
608 		}
609 
610 		skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
611 		last_frag = ind_desc->reserved;
612 		amsdu_len -= frag_buf->len;
613 
614 		prev_frag_buf->next = frag_buf;
615 		prev_frag_buf = frag_buf;
616 	}
617 
618 	if (amsdu_len) {
619 		ath10k_warn(ar, "invalid amsdu len %u, left %d",
620 			    __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
621 	}
622 
623 	*msdu_desc = ind_desc;
624 
625 	prev_frag_buf->next = NULL;
626 	return 0;
627 }
628 
629 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
630 					  struct htt_rx_in_ord_ind *ev,
631 					  struct sk_buff_head *list)
632 {
633 	struct ath10k *ar = htt->ar;
634 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
635 	struct htt_rx_desc *rxd;
636 	struct sk_buff *msdu;
637 	int msdu_count, ret;
638 	bool is_offload;
639 	u32 paddr;
640 
641 	lockdep_assert_held(&htt->rx_ring.lock);
642 
643 	msdu_count = __le16_to_cpu(ev->msdu_count);
644 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
645 
646 	while (msdu_count--) {
647 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
648 
649 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
650 		if (!msdu) {
651 			__skb_queue_purge(list);
652 			return -ENOENT;
653 		}
654 
655 		if (!is_offload && ar->monitor_arvif) {
656 			ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu,
657 								&msdu_desc);
658 			if (ret) {
659 				__skb_queue_purge(list);
660 				return ret;
661 			}
662 			__skb_queue_tail(list, msdu);
663 			msdu_desc++;
664 			continue;
665 		}
666 
667 		__skb_queue_tail(list, msdu);
668 
669 		if (!is_offload) {
670 			rxd = (void *)msdu->data;
671 
672 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
673 
674 			skb_put(msdu, sizeof(*rxd));
675 			skb_pull(msdu, sizeof(*rxd));
676 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
677 
678 			if (!(__le32_to_cpu(rxd->attention.flags) &
679 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
680 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
681 				return -EIO;
682 			}
683 		}
684 
685 		msdu_desc++;
686 	}
687 
688 	return 0;
689 }
690 
691 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
692 					  struct htt_rx_in_ord_ind *ev,
693 					  struct sk_buff_head *list)
694 {
695 	struct ath10k *ar = htt->ar;
696 	struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
697 	struct htt_rx_desc *rxd;
698 	struct sk_buff *msdu;
699 	int msdu_count, ret;
700 	bool is_offload;
701 	u64 paddr;
702 
703 	lockdep_assert_held(&htt->rx_ring.lock);
704 
705 	msdu_count = __le16_to_cpu(ev->msdu_count);
706 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
707 
708 	while (msdu_count--) {
709 		paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
710 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
711 		if (!msdu) {
712 			__skb_queue_purge(list);
713 			return -ENOENT;
714 		}
715 
716 		if (!is_offload && ar->monitor_arvif) {
717 			ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu,
718 								&msdu_desc);
719 			if (ret) {
720 				__skb_queue_purge(list);
721 				return ret;
722 			}
723 			__skb_queue_tail(list, msdu);
724 			msdu_desc++;
725 			continue;
726 		}
727 
728 		__skb_queue_tail(list, msdu);
729 
730 		if (!is_offload) {
731 			rxd = (void *)msdu->data;
732 
733 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
734 
735 			skb_put(msdu, sizeof(*rxd));
736 			skb_pull(msdu, sizeof(*rxd));
737 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
738 
739 			if (!(__le32_to_cpu(rxd->attention.flags) &
740 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
741 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
742 				return -EIO;
743 			}
744 		}
745 
746 		msdu_desc++;
747 	}
748 
749 	return 0;
750 }
751 
752 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
753 {
754 	struct ath10k *ar = htt->ar;
755 	dma_addr_t paddr;
756 	void *vaddr, *vaddr_ring;
757 	size_t size;
758 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
759 
760 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
761 		return 0;
762 
763 	htt->rx_confused = false;
764 
765 	/* XXX: The fill level could be changed during runtime in response to
766 	 * the host processing latency. Is this really worth it?
767 	 */
768 	htt->rx_ring.size = HTT_RX_RING_SIZE;
769 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
770 	htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
771 
772 	if (!is_power_of_2(htt->rx_ring.size)) {
773 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
774 		return -EINVAL;
775 	}
776 
777 	htt->rx_ring.netbufs_ring =
778 		kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
779 			GFP_KERNEL);
780 	if (!htt->rx_ring.netbufs_ring)
781 		goto err_netbuf;
782 
783 	size = ath10k_htt_get_rx_ring_size(htt);
784 
785 	vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
786 	if (!vaddr_ring)
787 		goto err_dma_ring;
788 
789 	ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
790 	htt->rx_ring.base_paddr = paddr;
791 
792 	vaddr = dma_alloc_coherent(htt->ar->dev,
793 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
794 				   &paddr, GFP_KERNEL);
795 	if (!vaddr)
796 		goto err_dma_idx;
797 
798 	htt->rx_ring.alloc_idx.vaddr = vaddr;
799 	htt->rx_ring.alloc_idx.paddr = paddr;
800 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
801 	*htt->rx_ring.alloc_idx.vaddr = 0;
802 
803 	/* Initialize the Rx refill retry timer */
804 	timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
805 
806 	spin_lock_init(&htt->rx_ring.lock);
807 
808 	htt->rx_ring.fill_cnt = 0;
809 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
810 	hash_init(htt->rx_ring.skb_table);
811 
812 	skb_queue_head_init(&htt->rx_msdus_q);
813 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
814 	skb_queue_head_init(&htt->tx_fetch_ind_q);
815 	atomic_set(&htt->num_mpdus_ready, 0);
816 
817 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
818 		   htt->rx_ring.size, htt->rx_ring.fill_level);
819 	return 0;
820 
821 err_dma_idx:
822 	dma_free_coherent(htt->ar->dev,
823 			  ath10k_htt_get_rx_ring_size(htt),
824 			  vaddr_ring,
825 			  htt->rx_ring.base_paddr);
826 err_dma_ring:
827 	kfree(htt->rx_ring.netbufs_ring);
828 err_netbuf:
829 	return -ENOMEM;
830 }
831 
832 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
833 					  enum htt_rx_mpdu_encrypt_type type)
834 {
835 	switch (type) {
836 	case HTT_RX_MPDU_ENCRYPT_NONE:
837 		return 0;
838 	case HTT_RX_MPDU_ENCRYPT_WEP40:
839 	case HTT_RX_MPDU_ENCRYPT_WEP104:
840 		return IEEE80211_WEP_IV_LEN;
841 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
842 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
843 		return IEEE80211_TKIP_IV_LEN;
844 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
845 		return IEEE80211_CCMP_HDR_LEN;
846 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
847 		return IEEE80211_CCMP_256_HDR_LEN;
848 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
849 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
850 		return IEEE80211_GCMP_HDR_LEN;
851 	case HTT_RX_MPDU_ENCRYPT_WEP128:
852 	case HTT_RX_MPDU_ENCRYPT_WAPI:
853 		break;
854 	}
855 
856 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
857 	return 0;
858 }
859 
860 #define MICHAEL_MIC_LEN 8
861 
862 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
863 					enum htt_rx_mpdu_encrypt_type type)
864 {
865 	switch (type) {
866 	case HTT_RX_MPDU_ENCRYPT_NONE:
867 	case HTT_RX_MPDU_ENCRYPT_WEP40:
868 	case HTT_RX_MPDU_ENCRYPT_WEP104:
869 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
870 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
871 		return 0;
872 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
873 		return IEEE80211_CCMP_MIC_LEN;
874 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
875 		return IEEE80211_CCMP_256_MIC_LEN;
876 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
877 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
878 		return IEEE80211_GCMP_MIC_LEN;
879 	case HTT_RX_MPDU_ENCRYPT_WEP128:
880 	case HTT_RX_MPDU_ENCRYPT_WAPI:
881 		break;
882 	}
883 
884 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
885 	return 0;
886 }
887 
888 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
889 					enum htt_rx_mpdu_encrypt_type type)
890 {
891 	switch (type) {
892 	case HTT_RX_MPDU_ENCRYPT_NONE:
893 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
894 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
895 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
896 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
897 		return 0;
898 	case HTT_RX_MPDU_ENCRYPT_WEP40:
899 	case HTT_RX_MPDU_ENCRYPT_WEP104:
900 		return IEEE80211_WEP_ICV_LEN;
901 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
902 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
903 		return IEEE80211_TKIP_ICV_LEN;
904 	case HTT_RX_MPDU_ENCRYPT_WEP128:
905 	case HTT_RX_MPDU_ENCRYPT_WAPI:
906 		break;
907 	}
908 
909 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
910 	return 0;
911 }
912 
913 struct amsdu_subframe_hdr {
914 	u8 dst[ETH_ALEN];
915 	u8 src[ETH_ALEN];
916 	__be16 len;
917 } __packed;
918 
919 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
920 
921 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
922 {
923 	u8 ret = 0;
924 
925 	switch (bw) {
926 	case 0:
927 		ret = RATE_INFO_BW_20;
928 		break;
929 	case 1:
930 		ret = RATE_INFO_BW_40;
931 		break;
932 	case 2:
933 		ret = RATE_INFO_BW_80;
934 		break;
935 	case 3:
936 		ret = RATE_INFO_BW_160;
937 		break;
938 	}
939 
940 	return ret;
941 }
942 
943 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
944 				  struct ieee80211_rx_status *status,
945 				  struct htt_rx_desc *rxd)
946 {
947 	struct ieee80211_supported_band *sband;
948 	u8 cck, rate, bw, sgi, mcs, nss;
949 	u8 preamble = 0;
950 	u8 group_id;
951 	u32 info1, info2, info3;
952 	u32 stbc, nsts_su;
953 
954 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
955 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
956 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
957 
958 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
959 
960 	switch (preamble) {
961 	case HTT_RX_LEGACY:
962 		/* To get legacy rate index band is required. Since band can't
963 		 * be undefined check if freq is non-zero.
964 		 */
965 		if (!status->freq)
966 			return;
967 
968 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
969 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
970 		rate &= ~RX_PPDU_START_RATE_FLAG;
971 
972 		sband = &ar->mac.sbands[status->band];
973 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
974 		break;
975 	case HTT_RX_HT:
976 	case HTT_RX_HT_WITH_TXBF:
977 		/* HT-SIG - Table 20-11 in info2 and info3 */
978 		mcs = info2 & 0x1F;
979 		nss = mcs >> 3;
980 		bw = (info2 >> 7) & 1;
981 		sgi = (info3 >> 7) & 1;
982 
983 		status->rate_idx = mcs;
984 		status->encoding = RX_ENC_HT;
985 		if (sgi)
986 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
987 		if (bw)
988 			status->bw = RATE_INFO_BW_40;
989 		break;
990 	case HTT_RX_VHT:
991 	case HTT_RX_VHT_WITH_TXBF:
992 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
993 		 * TODO check this
994 		 */
995 		bw = info2 & 3;
996 		sgi = info3 & 1;
997 		stbc = (info2 >> 3) & 1;
998 		group_id = (info2 >> 4) & 0x3F;
999 
1000 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
1001 			mcs = (info3 >> 4) & 0x0F;
1002 			nsts_su = ((info2 >> 10) & 0x07);
1003 			if (stbc)
1004 				nss = (nsts_su >> 2) + 1;
1005 			else
1006 				nss = (nsts_su + 1);
1007 		} else {
1008 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
1009 			 * so it's impossible to decode MCS. Also since
1010 			 * firmware consumes Group Id Management frames host
1011 			 * has no knowledge regarding group/user position
1012 			 * mapping so it's impossible to pick the correct Nsts
1013 			 * from VHT-SIG-A1.
1014 			 *
1015 			 * Bandwidth and SGI are valid so report the rateinfo
1016 			 * on best-effort basis.
1017 			 */
1018 			mcs = 0;
1019 			nss = 1;
1020 		}
1021 
1022 		if (mcs > 0x09) {
1023 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
1024 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
1025 				    __le32_to_cpu(rxd->attention.flags),
1026 				    __le32_to_cpu(rxd->mpdu_start.info0),
1027 				    __le32_to_cpu(rxd->mpdu_start.info1),
1028 				    __le32_to_cpu(rxd->msdu_start.common.info0),
1029 				    __le32_to_cpu(rxd->msdu_start.common.info1),
1030 				    rxd->ppdu_start.info0,
1031 				    __le32_to_cpu(rxd->ppdu_start.info1),
1032 				    __le32_to_cpu(rxd->ppdu_start.info2),
1033 				    __le32_to_cpu(rxd->ppdu_start.info3),
1034 				    __le32_to_cpu(rxd->ppdu_start.info4));
1035 
1036 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
1037 				    __le32_to_cpu(rxd->msdu_end.common.info0),
1038 				    __le32_to_cpu(rxd->mpdu_end.info0));
1039 
1040 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
1041 					"rx desc msdu payload: ",
1042 					rxd->msdu_payload, 50);
1043 		}
1044 
1045 		status->rate_idx = mcs;
1046 		status->nss = nss;
1047 
1048 		if (sgi)
1049 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1050 
1051 		status->bw = ath10k_bw_to_mac80211_bw(bw);
1052 		status->encoding = RX_ENC_VHT;
1053 		break;
1054 	default:
1055 		break;
1056 	}
1057 }
1058 
1059 static struct ieee80211_channel *
1060 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
1061 {
1062 	struct ath10k_peer *peer;
1063 	struct ath10k_vif *arvif;
1064 	struct cfg80211_chan_def def;
1065 	u16 peer_id;
1066 
1067 	lockdep_assert_held(&ar->data_lock);
1068 
1069 	if (!rxd)
1070 		return NULL;
1071 
1072 	if (rxd->attention.flags &
1073 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
1074 		return NULL;
1075 
1076 	if (!(rxd->msdu_end.common.info0 &
1077 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
1078 		return NULL;
1079 
1080 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1081 		     RX_MPDU_START_INFO0_PEER_IDX);
1082 
1083 	peer = ath10k_peer_find_by_id(ar, peer_id);
1084 	if (!peer)
1085 		return NULL;
1086 
1087 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1088 	if (WARN_ON_ONCE(!arvif))
1089 		return NULL;
1090 
1091 	if (ath10k_mac_vif_chan(arvif->vif, &def))
1092 		return NULL;
1093 
1094 	return def.chan;
1095 }
1096 
1097 static struct ieee80211_channel *
1098 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
1099 {
1100 	struct ath10k_vif *arvif;
1101 	struct cfg80211_chan_def def;
1102 
1103 	lockdep_assert_held(&ar->data_lock);
1104 
1105 	list_for_each_entry(arvif, &ar->arvifs, list) {
1106 		if (arvif->vdev_id == vdev_id &&
1107 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
1108 			return def.chan;
1109 	}
1110 
1111 	return NULL;
1112 }
1113 
1114 static void
1115 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
1116 			      struct ieee80211_chanctx_conf *conf,
1117 			      void *data)
1118 {
1119 	struct cfg80211_chan_def *def = data;
1120 
1121 	*def = conf->def;
1122 }
1123 
1124 static struct ieee80211_channel *
1125 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
1126 {
1127 	struct cfg80211_chan_def def = {};
1128 
1129 	ieee80211_iter_chan_contexts_atomic(ar->hw,
1130 					    ath10k_htt_rx_h_any_chan_iter,
1131 					    &def);
1132 
1133 	return def.chan;
1134 }
1135 
1136 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
1137 				    struct ieee80211_rx_status *status,
1138 				    struct htt_rx_desc *rxd,
1139 				    u32 vdev_id)
1140 {
1141 	struct ieee80211_channel *ch;
1142 
1143 	spin_lock_bh(&ar->data_lock);
1144 	ch = ar->scan_channel;
1145 	if (!ch)
1146 		ch = ar->rx_channel;
1147 	if (!ch)
1148 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
1149 	if (!ch)
1150 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
1151 	if (!ch)
1152 		ch = ath10k_htt_rx_h_any_channel(ar);
1153 	if (!ch)
1154 		ch = ar->tgt_oper_chan;
1155 	spin_unlock_bh(&ar->data_lock);
1156 
1157 	if (!ch)
1158 		return false;
1159 
1160 	status->band = ch->band;
1161 	status->freq = ch->center_freq;
1162 
1163 	return true;
1164 }
1165 
1166 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
1167 				   struct ieee80211_rx_status *status,
1168 				   struct htt_rx_desc *rxd)
1169 {
1170 	int i;
1171 
1172 	for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
1173 		status->chains &= ~BIT(i);
1174 
1175 		if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
1176 			status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
1177 				rxd->ppdu_start.rssi_chains[i].pri20_mhz;
1178 
1179 			status->chains |= BIT(i);
1180 		}
1181 	}
1182 
1183 	/* FIXME: Get real NF */
1184 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
1185 			 rxd->ppdu_start.rssi_comb;
1186 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1187 }
1188 
1189 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
1190 				    struct ieee80211_rx_status *status,
1191 				    struct htt_rx_desc *rxd)
1192 {
1193 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
1194 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
1195 	 * TSF. Is it worth holding frames until end of PPDU is known?
1196 	 *
1197 	 * FIXME: Can we get/compute 64bit TSF?
1198 	 */
1199 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1200 	status->flag |= RX_FLAG_MACTIME_END;
1201 }
1202 
1203 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1204 				 struct sk_buff_head *amsdu,
1205 				 struct ieee80211_rx_status *status,
1206 				 u32 vdev_id)
1207 {
1208 	struct sk_buff *first;
1209 	struct htt_rx_desc *rxd;
1210 	bool is_first_ppdu;
1211 	bool is_last_ppdu;
1212 
1213 	if (skb_queue_empty(amsdu))
1214 		return;
1215 
1216 	first = skb_peek(amsdu);
1217 	rxd = (void *)first->data - sizeof(*rxd);
1218 
1219 	is_first_ppdu = !!(rxd->attention.flags &
1220 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1221 	is_last_ppdu = !!(rxd->attention.flags &
1222 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1223 
1224 	if (is_first_ppdu) {
1225 		/* New PPDU starts so clear out the old per-PPDU status. */
1226 		status->freq = 0;
1227 		status->rate_idx = 0;
1228 		status->nss = 0;
1229 		status->encoding = RX_ENC_LEGACY;
1230 		status->bw = RATE_INFO_BW_20;
1231 
1232 		status->flag &= ~RX_FLAG_MACTIME_END;
1233 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1234 
1235 		status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1236 		status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1237 		status->ampdu_reference = ar->ampdu_reference;
1238 
1239 		ath10k_htt_rx_h_signal(ar, status, rxd);
1240 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1241 		ath10k_htt_rx_h_rates(ar, status, rxd);
1242 	}
1243 
1244 	if (is_last_ppdu) {
1245 		ath10k_htt_rx_h_mactime(ar, status, rxd);
1246 
1247 		/* set ampdu last segment flag */
1248 		status->flag |= RX_FLAG_AMPDU_IS_LAST;
1249 		ar->ampdu_reference++;
1250 	}
1251 }
1252 
1253 static const char * const tid_to_ac[] = {
1254 	"BE",
1255 	"BK",
1256 	"BK",
1257 	"BE",
1258 	"VI",
1259 	"VI",
1260 	"VO",
1261 	"VO",
1262 };
1263 
1264 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1265 {
1266 	u8 *qc;
1267 	int tid;
1268 
1269 	if (!ieee80211_is_data_qos(hdr->frame_control))
1270 		return "";
1271 
1272 	qc = ieee80211_get_qos_ctl(hdr);
1273 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1274 	if (tid < 8)
1275 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1276 	else
1277 		snprintf(out, size, "tid %d", tid);
1278 
1279 	return out;
1280 }
1281 
1282 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1283 				       struct ieee80211_rx_status *rx_status,
1284 				       struct sk_buff *skb)
1285 {
1286 	struct ieee80211_rx_status *status;
1287 
1288 	status = IEEE80211_SKB_RXCB(skb);
1289 	*status = *rx_status;
1290 
1291 	skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1292 }
1293 
1294 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1295 {
1296 	struct ieee80211_rx_status *status;
1297 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1298 	char tid[32];
1299 
1300 	status = IEEE80211_SKB_RXCB(skb);
1301 
1302 	if (!(ar->filter_flags & FIF_FCSFAIL) &&
1303 	    status->flag & RX_FLAG_FAILED_FCS_CRC) {
1304 		ar->stats.rx_crc_err_drop++;
1305 		dev_kfree_skb_any(skb);
1306 		return;
1307 	}
1308 
1309 	ath10k_dbg(ar, ATH10K_DBG_DATA,
1310 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1311 		   skb,
1312 		   skb->len,
1313 		   ieee80211_get_SA(hdr),
1314 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
1315 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1316 							"mcast" : "ucast",
1317 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1318 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1319 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
1320 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
1321 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
1322 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
1323 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
1324 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1325 		   status->rate_idx,
1326 		   status->nss,
1327 		   status->freq,
1328 		   status->band, status->flag,
1329 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1330 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
1331 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
1332 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1333 			skb->data, skb->len);
1334 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1335 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
1336 
1337 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1338 }
1339 
1340 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1341 				      struct ieee80211_hdr *hdr)
1342 {
1343 	int len = ieee80211_hdrlen(hdr->frame_control);
1344 
1345 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1346 		      ar->running_fw->fw_file.fw_features))
1347 		len = round_up(len, 4);
1348 
1349 	return len;
1350 }
1351 
1352 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1353 					struct sk_buff *msdu,
1354 					struct ieee80211_rx_status *status,
1355 					enum htt_rx_mpdu_encrypt_type enctype,
1356 					bool is_decrypted,
1357 					const u8 first_hdr[64])
1358 {
1359 	struct ieee80211_hdr *hdr;
1360 	struct htt_rx_desc *rxd;
1361 	size_t hdr_len;
1362 	size_t crypto_len;
1363 	bool is_first;
1364 	bool is_last;
1365 	bool msdu_limit_err;
1366 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1367 	u8 *qos;
1368 
1369 	rxd = (void *)msdu->data - sizeof(*rxd);
1370 	is_first = !!(rxd->msdu_end.common.info0 &
1371 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1372 	is_last = !!(rxd->msdu_end.common.info0 &
1373 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1374 
1375 	/* Delivered decapped frame:
1376 	 * [802.11 header]
1377 	 * [crypto param] <-- can be trimmed if !fcs_err &&
1378 	 *                    !decrypt_err && !peer_idx_invalid
1379 	 * [amsdu header] <-- only if A-MSDU
1380 	 * [rfc1042/llc]
1381 	 * [payload]
1382 	 * [FCS] <-- at end, needs to be trimmed
1383 	 */
1384 
1385 	/* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when
1386 	 * deaggregate, so that unwanted MSDU-deaggregation is avoided for
1387 	 * error packets. If limit exceeds, hw sends all remaining MSDUs as
1388 	 * a single last MSDU with this msdu limit error set.
1389 	 */
1390 	msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd);
1391 
1392 	/* If MSDU limit error happens, then don't warn on, the partial raw MSDU
1393 	 * without first MSDU is expected in that case, and handled later here.
1394 	 */
1395 	/* This probably shouldn't happen but warn just in case */
1396 	if (WARN_ON_ONCE(!is_first && !msdu_limit_err))
1397 		return;
1398 
1399 	/* This probably shouldn't happen but warn just in case */
1400 	if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err))
1401 		return;
1402 
1403 	skb_trim(msdu, msdu->len - FCS_LEN);
1404 
1405 	/* Push original 80211 header */
1406 	if (unlikely(msdu_limit_err)) {
1407 		hdr = (struct ieee80211_hdr *)first_hdr;
1408 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1409 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1410 
1411 		if (ieee80211_is_data_qos(hdr->frame_control)) {
1412 			qos = ieee80211_get_qos_ctl(hdr);
1413 			qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1414 		}
1415 
1416 		if (crypto_len)
1417 			memcpy(skb_push(msdu, crypto_len),
1418 			       (void *)hdr + round_up(hdr_len, bytes_aligned),
1419 			       crypto_len);
1420 
1421 		memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1422 	}
1423 
1424 	/* In most cases this will be true for sniffed frames. It makes sense
1425 	 * to deliver them as-is without stripping the crypto param. This is
1426 	 * necessary for software based decryption.
1427 	 *
1428 	 * If there's no error then the frame is decrypted. At least that is
1429 	 * the case for frames that come in via fragmented rx indication.
1430 	 */
1431 	if (!is_decrypted)
1432 		return;
1433 
1434 	/* The payload is decrypted so strip crypto params. Start from tail
1435 	 * since hdr is used to compute some stuff.
1436 	 */
1437 
1438 	hdr = (void *)msdu->data;
1439 
1440 	/* Tail */
1441 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1442 		skb_trim(msdu, msdu->len -
1443 			 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1444 
1445 		skb_trim(msdu, msdu->len -
1446 			 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1447 	} else {
1448 		/* MIC */
1449 		if (status->flag & RX_FLAG_MIC_STRIPPED)
1450 			skb_trim(msdu, msdu->len -
1451 				 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1452 
1453 		/* ICV */
1454 		if (status->flag & RX_FLAG_ICV_STRIPPED)
1455 			skb_trim(msdu, msdu->len -
1456 				 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1457 	}
1458 
1459 	/* MMIC */
1460 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1461 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1462 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1463 		skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1464 
1465 	/* Head */
1466 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1467 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1468 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1469 
1470 		memmove((void *)msdu->data + crypto_len,
1471 			(void *)msdu->data, hdr_len);
1472 		skb_pull(msdu, crypto_len);
1473 	}
1474 }
1475 
1476 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1477 					  struct sk_buff *msdu,
1478 					  struct ieee80211_rx_status *status,
1479 					  const u8 first_hdr[64],
1480 					  enum htt_rx_mpdu_encrypt_type enctype)
1481 {
1482 	struct ieee80211_hdr *hdr;
1483 	struct htt_rx_desc *rxd;
1484 	size_t hdr_len;
1485 	u8 da[ETH_ALEN];
1486 	u8 sa[ETH_ALEN];
1487 	int l3_pad_bytes;
1488 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1489 
1490 	/* Delivered decapped frame:
1491 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1492 	 * [rfc1042/llc]
1493 	 *
1494 	 * Note: The nwifi header doesn't have QoS Control and is
1495 	 * (always?) a 3addr frame.
1496 	 *
1497 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1498 	 * of an A-MSDU.
1499 	 */
1500 
1501 	/* pull decapped header and copy SA & DA */
1502 	rxd = (void *)msdu->data - sizeof(*rxd);
1503 
1504 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1505 	skb_put(msdu, l3_pad_bytes);
1506 
1507 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1508 
1509 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1510 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1511 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1512 	skb_pull(msdu, hdr_len);
1513 
1514 	/* push original 802.11 header */
1515 	hdr = (struct ieee80211_hdr *)first_hdr;
1516 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1517 
1518 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1519 		memcpy(skb_push(msdu,
1520 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1521 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1522 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1523 	}
1524 
1525 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1526 
1527 	/* original 802.11 header has a different DA and in
1528 	 * case of 4addr it may also have different SA
1529 	 */
1530 	hdr = (struct ieee80211_hdr *)msdu->data;
1531 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1532 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1533 }
1534 
1535 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1536 					  struct sk_buff *msdu,
1537 					  enum htt_rx_mpdu_encrypt_type enctype)
1538 {
1539 	struct ieee80211_hdr *hdr;
1540 	struct htt_rx_desc *rxd;
1541 	size_t hdr_len, crypto_len;
1542 	void *rfc1042;
1543 	bool is_first, is_last, is_amsdu;
1544 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1545 
1546 	rxd = (void *)msdu->data - sizeof(*rxd);
1547 	hdr = (void *)rxd->rx_hdr_status;
1548 
1549 	is_first = !!(rxd->msdu_end.common.info0 &
1550 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1551 	is_last = !!(rxd->msdu_end.common.info0 &
1552 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1553 	is_amsdu = !(is_first && is_last);
1554 
1555 	rfc1042 = hdr;
1556 
1557 	if (is_first) {
1558 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1559 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1560 
1561 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1562 			   round_up(crypto_len, bytes_aligned);
1563 	}
1564 
1565 	if (is_amsdu)
1566 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1567 
1568 	return rfc1042;
1569 }
1570 
1571 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1572 					struct sk_buff *msdu,
1573 					struct ieee80211_rx_status *status,
1574 					const u8 first_hdr[64],
1575 					enum htt_rx_mpdu_encrypt_type enctype)
1576 {
1577 	struct ieee80211_hdr *hdr;
1578 	struct ethhdr *eth;
1579 	size_t hdr_len;
1580 	void *rfc1042;
1581 	u8 da[ETH_ALEN];
1582 	u8 sa[ETH_ALEN];
1583 	int l3_pad_bytes;
1584 	struct htt_rx_desc *rxd;
1585 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1586 
1587 	/* Delivered decapped frame:
1588 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1589 	 * [payload]
1590 	 */
1591 
1592 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1593 	if (WARN_ON_ONCE(!rfc1042))
1594 		return;
1595 
1596 	rxd = (void *)msdu->data - sizeof(*rxd);
1597 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1598 	skb_put(msdu, l3_pad_bytes);
1599 	skb_pull(msdu, l3_pad_bytes);
1600 
1601 	/* pull decapped header and copy SA & DA */
1602 	eth = (struct ethhdr *)msdu->data;
1603 	ether_addr_copy(da, eth->h_dest);
1604 	ether_addr_copy(sa, eth->h_source);
1605 	skb_pull(msdu, sizeof(struct ethhdr));
1606 
1607 	/* push rfc1042/llc/snap */
1608 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1609 	       sizeof(struct rfc1042_hdr));
1610 
1611 	/* push original 802.11 header */
1612 	hdr = (struct ieee80211_hdr *)first_hdr;
1613 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1614 
1615 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1616 		memcpy(skb_push(msdu,
1617 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1618 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1619 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1620 	}
1621 
1622 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1623 
1624 	/* original 802.11 header has a different DA and in
1625 	 * case of 4addr it may also have different SA
1626 	 */
1627 	hdr = (struct ieee80211_hdr *)msdu->data;
1628 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1629 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1630 }
1631 
1632 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1633 					 struct sk_buff *msdu,
1634 					 struct ieee80211_rx_status *status,
1635 					 const u8 first_hdr[64],
1636 					 enum htt_rx_mpdu_encrypt_type enctype)
1637 {
1638 	struct ieee80211_hdr *hdr;
1639 	size_t hdr_len;
1640 	int l3_pad_bytes;
1641 	struct htt_rx_desc *rxd;
1642 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1643 
1644 	/* Delivered decapped frame:
1645 	 * [amsdu header] <-- replaced with 802.11 hdr
1646 	 * [rfc1042/llc]
1647 	 * [payload]
1648 	 */
1649 
1650 	rxd = (void *)msdu->data - sizeof(*rxd);
1651 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1652 
1653 	skb_put(msdu, l3_pad_bytes);
1654 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1655 
1656 	hdr = (struct ieee80211_hdr *)first_hdr;
1657 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1658 
1659 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1660 		memcpy(skb_push(msdu,
1661 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1662 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1663 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1664 	}
1665 
1666 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1667 }
1668 
1669 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1670 				    struct sk_buff *msdu,
1671 				    struct ieee80211_rx_status *status,
1672 				    u8 first_hdr[64],
1673 				    enum htt_rx_mpdu_encrypt_type enctype,
1674 				    bool is_decrypted)
1675 {
1676 	struct htt_rx_desc *rxd;
1677 	enum rx_msdu_decap_format decap;
1678 
1679 	/* First msdu's decapped header:
1680 	 * [802.11 header] <-- padded to 4 bytes long
1681 	 * [crypto param] <-- padded to 4 bytes long
1682 	 * [amsdu header] <-- only if A-MSDU
1683 	 * [rfc1042/llc]
1684 	 *
1685 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1686 	 * [amsdu header] <-- only if A-MSDU
1687 	 * [rfc1042/llc]
1688 	 */
1689 
1690 	rxd = (void *)msdu->data - sizeof(*rxd);
1691 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1692 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1693 
1694 	switch (decap) {
1695 	case RX_MSDU_DECAP_RAW:
1696 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1697 					    is_decrypted, first_hdr);
1698 		break;
1699 	case RX_MSDU_DECAP_NATIVE_WIFI:
1700 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1701 					      enctype);
1702 		break;
1703 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1704 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1705 		break;
1706 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1707 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1708 					     enctype);
1709 		break;
1710 	}
1711 }
1712 
1713 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1714 {
1715 	struct htt_rx_desc *rxd;
1716 	u32 flags, info;
1717 	bool is_ip4, is_ip6;
1718 	bool is_tcp, is_udp;
1719 	bool ip_csum_ok, tcpudp_csum_ok;
1720 
1721 	rxd = (void *)skb->data - sizeof(*rxd);
1722 	flags = __le32_to_cpu(rxd->attention.flags);
1723 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1724 
1725 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1726 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1727 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1728 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1729 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1730 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1731 
1732 	if (!is_ip4 && !is_ip6)
1733 		return CHECKSUM_NONE;
1734 	if (!is_tcp && !is_udp)
1735 		return CHECKSUM_NONE;
1736 	if (!ip_csum_ok)
1737 		return CHECKSUM_NONE;
1738 	if (!tcpudp_csum_ok)
1739 		return CHECKSUM_NONE;
1740 
1741 	return CHECKSUM_UNNECESSARY;
1742 }
1743 
1744 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1745 {
1746 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1747 }
1748 
1749 static u64 ath10k_htt_rx_h_get_pn(struct ath10k *ar, struct sk_buff *skb,
1750 				  u16 offset,
1751 				  enum htt_rx_mpdu_encrypt_type enctype)
1752 {
1753 	struct ieee80211_hdr *hdr;
1754 	u64 pn = 0;
1755 	u8 *ehdr;
1756 
1757 	hdr = (struct ieee80211_hdr *)(skb->data + offset);
1758 	ehdr = skb->data + offset + ieee80211_hdrlen(hdr->frame_control);
1759 
1760 	if (enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2) {
1761 		pn = ehdr[0];
1762 		pn |= (u64)ehdr[1] << 8;
1763 		pn |= (u64)ehdr[4] << 16;
1764 		pn |= (u64)ehdr[5] << 24;
1765 		pn |= (u64)ehdr[6] << 32;
1766 		pn |= (u64)ehdr[7] << 40;
1767 	}
1768 	return pn;
1769 }
1770 
1771 static bool ath10k_htt_rx_h_frag_multicast_check(struct ath10k *ar,
1772 						 struct sk_buff *skb,
1773 						 u16 offset)
1774 {
1775 	struct ieee80211_hdr *hdr;
1776 
1777 	hdr = (struct ieee80211_hdr *)(skb->data + offset);
1778 	return !is_multicast_ether_addr(hdr->addr1);
1779 }
1780 
1781 static bool ath10k_htt_rx_h_frag_pn_check(struct ath10k *ar,
1782 					  struct sk_buff *skb,
1783 					  u16 peer_id,
1784 					  u16 offset,
1785 					  enum htt_rx_mpdu_encrypt_type enctype)
1786 {
1787 	struct ath10k_peer *peer;
1788 	union htt_rx_pn_t *last_pn, new_pn = {0};
1789 	struct ieee80211_hdr *hdr;
1790 	u8 tid, frag_number;
1791 	u32 seq;
1792 
1793 	peer = ath10k_peer_find_by_id(ar, peer_id);
1794 	if (!peer) {
1795 		ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer for frag pn check\n");
1796 		return false;
1797 	}
1798 
1799 	hdr = (struct ieee80211_hdr *)(skb->data + offset);
1800 	if (ieee80211_is_data_qos(hdr->frame_control))
1801 		tid = ieee80211_get_tid(hdr);
1802 	else
1803 		tid = ATH10K_TXRX_NON_QOS_TID;
1804 
1805 	last_pn = &peer->frag_tids_last_pn[tid];
1806 	new_pn.pn48 = ath10k_htt_rx_h_get_pn(ar, skb, offset, enctype);
1807 	frag_number = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1808 	seq = (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4;
1809 
1810 	if (frag_number == 0) {
1811 		last_pn->pn48 = new_pn.pn48;
1812 		peer->frag_tids_seq[tid] = seq;
1813 	} else {
1814 		if (seq != peer->frag_tids_seq[tid])
1815 			return false;
1816 
1817 		if (new_pn.pn48 != last_pn->pn48 + 1)
1818 			return false;
1819 
1820 		last_pn->pn48 = new_pn.pn48;
1821 	}
1822 
1823 	return true;
1824 }
1825 
1826 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1827 				 struct sk_buff_head *amsdu,
1828 				 struct ieee80211_rx_status *status,
1829 				 bool fill_crypt_header,
1830 				 u8 *rx_hdr,
1831 				 enum ath10k_pkt_rx_err *err,
1832 				 u16 peer_id,
1833 				 bool frag)
1834 {
1835 	struct sk_buff *first;
1836 	struct sk_buff *last;
1837 	struct sk_buff *msdu, *temp;
1838 	struct htt_rx_desc *rxd;
1839 	struct ieee80211_hdr *hdr;
1840 	enum htt_rx_mpdu_encrypt_type enctype;
1841 	u8 first_hdr[64];
1842 	u8 *qos;
1843 	bool has_fcs_err;
1844 	bool has_crypto_err;
1845 	bool has_tkip_err;
1846 	bool has_peer_idx_invalid;
1847 	bool is_decrypted;
1848 	bool is_mgmt;
1849 	u32 attention;
1850 	bool frag_pn_check = true, multicast_check = true;
1851 
1852 	if (skb_queue_empty(amsdu))
1853 		return;
1854 
1855 	first = skb_peek(amsdu);
1856 	rxd = (void *)first->data - sizeof(*rxd);
1857 
1858 	is_mgmt = !!(rxd->attention.flags &
1859 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1860 
1861 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1862 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1863 
1864 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1865 	 * decapped header. It'll be used for undecapping of each MSDU.
1866 	 */
1867 	hdr = (void *)rxd->rx_hdr_status;
1868 	memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1869 
1870 	if (rx_hdr)
1871 		memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1872 
1873 	/* Each A-MSDU subframe will use the original header as the base and be
1874 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1875 	 */
1876 	hdr = (void *)first_hdr;
1877 
1878 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1879 		qos = ieee80211_get_qos_ctl(hdr);
1880 		qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1881 	}
1882 
1883 	/* Some attention flags are valid only in the last MSDU. */
1884 	last = skb_peek_tail(amsdu);
1885 	rxd = (void *)last->data - sizeof(*rxd);
1886 	attention = __le32_to_cpu(rxd->attention.flags);
1887 
1888 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1889 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1890 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1891 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1892 
1893 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1894 	 * e.g. due to fcs error, missing peer or invalid key data it will
1895 	 * report the frame as raw.
1896 	 */
1897 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1898 			!has_fcs_err &&
1899 			!has_crypto_err &&
1900 			!has_peer_idx_invalid);
1901 
1902 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1903 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1904 			  RX_FLAG_MMIC_ERROR |
1905 			  RX_FLAG_DECRYPTED |
1906 			  RX_FLAG_IV_STRIPPED |
1907 			  RX_FLAG_ONLY_MONITOR |
1908 			  RX_FLAG_MMIC_STRIPPED);
1909 
1910 	if (has_fcs_err)
1911 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1912 
1913 	if (has_tkip_err)
1914 		status->flag |= RX_FLAG_MMIC_ERROR;
1915 
1916 	if (err) {
1917 		if (has_fcs_err)
1918 			*err = ATH10K_PKT_RX_ERR_FCS;
1919 		else if (has_tkip_err)
1920 			*err = ATH10K_PKT_RX_ERR_TKIP;
1921 		else if (has_crypto_err)
1922 			*err = ATH10K_PKT_RX_ERR_CRYPT;
1923 		else if (has_peer_idx_invalid)
1924 			*err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1925 	}
1926 
1927 	/* Firmware reports all necessary management frames via WMI already.
1928 	 * They are not reported to monitor interfaces at all so pass the ones
1929 	 * coming via HTT to monitor interfaces instead. This simplifies
1930 	 * matters a lot.
1931 	 */
1932 	if (is_mgmt)
1933 		status->flag |= RX_FLAG_ONLY_MONITOR;
1934 
1935 	if (is_decrypted) {
1936 		status->flag |= RX_FLAG_DECRYPTED;
1937 
1938 		if (likely(!is_mgmt))
1939 			status->flag |= RX_FLAG_MMIC_STRIPPED;
1940 
1941 		if (fill_crypt_header)
1942 			status->flag |= RX_FLAG_MIC_STRIPPED |
1943 					RX_FLAG_ICV_STRIPPED;
1944 		else
1945 			status->flag |= RX_FLAG_IV_STRIPPED;
1946 	}
1947 
1948 	skb_queue_walk(amsdu, msdu) {
1949 		if (frag && !fill_crypt_header && is_decrypted &&
1950 		    enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2)
1951 			frag_pn_check = ath10k_htt_rx_h_frag_pn_check(ar,
1952 								      msdu,
1953 								      peer_id,
1954 								      0,
1955 								      enctype);
1956 
1957 		if (frag)
1958 			multicast_check = ath10k_htt_rx_h_frag_multicast_check(ar,
1959 									       msdu,
1960 									       0);
1961 
1962 		if (!frag_pn_check || !multicast_check) {
1963 			/* Discard the fragment with invalid PN or multicast DA
1964 			 */
1965 			temp = msdu->prev;
1966 			__skb_unlink(msdu, amsdu);
1967 			dev_kfree_skb_any(msdu);
1968 			msdu = temp;
1969 			frag_pn_check = true;
1970 			multicast_check = true;
1971 			continue;
1972 		}
1973 
1974 		ath10k_htt_rx_h_csum_offload(msdu);
1975 
1976 		if (frag && !fill_crypt_header &&
1977 		    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1978 			status->flag &= ~RX_FLAG_MMIC_STRIPPED;
1979 
1980 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1981 					is_decrypted);
1982 
1983 		/* Undecapping involves copying the original 802.11 header back
1984 		 * to sk_buff. If frame is protected and hardware has decrypted
1985 		 * it then remove the protected bit.
1986 		 */
1987 		if (!is_decrypted)
1988 			continue;
1989 		if (is_mgmt)
1990 			continue;
1991 
1992 		if (fill_crypt_header)
1993 			continue;
1994 
1995 		hdr = (void *)msdu->data;
1996 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1997 
1998 		if (frag && !fill_crypt_header &&
1999 		    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
2000 			status->flag &= ~RX_FLAG_IV_STRIPPED &
2001 					~RX_FLAG_MMIC_STRIPPED;
2002 	}
2003 }
2004 
2005 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
2006 				    struct sk_buff_head *amsdu,
2007 				    struct ieee80211_rx_status *status)
2008 {
2009 	struct sk_buff *msdu;
2010 	struct sk_buff *first_subframe;
2011 
2012 	first_subframe = skb_peek(amsdu);
2013 
2014 	while ((msdu = __skb_dequeue(amsdu))) {
2015 		/* Setup per-MSDU flags */
2016 		if (skb_queue_empty(amsdu))
2017 			status->flag &= ~RX_FLAG_AMSDU_MORE;
2018 		else
2019 			status->flag |= RX_FLAG_AMSDU_MORE;
2020 
2021 		if (msdu == first_subframe) {
2022 			first_subframe = NULL;
2023 			status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
2024 		} else {
2025 			status->flag |= RX_FLAG_ALLOW_SAME_PN;
2026 		}
2027 
2028 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2029 	}
2030 }
2031 
2032 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
2033 			       unsigned long *unchain_cnt)
2034 {
2035 	struct sk_buff *skb, *first;
2036 	int space;
2037 	int total_len = 0;
2038 	int amsdu_len = skb_queue_len(amsdu);
2039 
2040 	/* TODO:  Might could optimize this by using
2041 	 * skb_try_coalesce or similar method to
2042 	 * decrease copying, or maybe get mac80211 to
2043 	 * provide a way to just receive a list of
2044 	 * skb?
2045 	 */
2046 
2047 	first = __skb_dequeue(amsdu);
2048 
2049 	/* Allocate total length all at once. */
2050 	skb_queue_walk(amsdu, skb)
2051 		total_len += skb->len;
2052 
2053 	space = total_len - skb_tailroom(first);
2054 	if ((space > 0) &&
2055 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
2056 		/* TODO:  bump some rx-oom error stat */
2057 		/* put it back together so we can free the
2058 		 * whole list at once.
2059 		 */
2060 		__skb_queue_head(amsdu, first);
2061 		return -1;
2062 	}
2063 
2064 	/* Walk list again, copying contents into
2065 	 * msdu_head
2066 	 */
2067 	while ((skb = __skb_dequeue(amsdu))) {
2068 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
2069 					  skb->len);
2070 		dev_kfree_skb_any(skb);
2071 	}
2072 
2073 	__skb_queue_head(amsdu, first);
2074 
2075 	*unchain_cnt += amsdu_len - 1;
2076 
2077 	return 0;
2078 }
2079 
2080 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
2081 				    struct sk_buff_head *amsdu,
2082 				    unsigned long *drop_cnt,
2083 				    unsigned long *unchain_cnt)
2084 {
2085 	struct sk_buff *first;
2086 	struct htt_rx_desc *rxd;
2087 	enum rx_msdu_decap_format decap;
2088 
2089 	first = skb_peek(amsdu);
2090 	rxd = (void *)first->data - sizeof(*rxd);
2091 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
2092 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
2093 
2094 	/* FIXME: Current unchaining logic can only handle simple case of raw
2095 	 * msdu chaining. If decapping is other than raw the chaining may be
2096 	 * more complex and this isn't handled by the current code. Don't even
2097 	 * try re-constructing such frames - it'll be pretty much garbage.
2098 	 */
2099 	if (decap != RX_MSDU_DECAP_RAW ||
2100 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
2101 		*drop_cnt += skb_queue_len(amsdu);
2102 		__skb_queue_purge(amsdu);
2103 		return;
2104 	}
2105 
2106 	ath10k_unchain_msdu(amsdu, unchain_cnt);
2107 }
2108 
2109 static bool ath10k_htt_rx_validate_amsdu(struct ath10k *ar,
2110 					 struct sk_buff_head *amsdu)
2111 {
2112 	u8 *subframe_hdr;
2113 	struct sk_buff *first;
2114 	bool is_first, is_last;
2115 	struct htt_rx_desc *rxd;
2116 	struct ieee80211_hdr *hdr;
2117 	size_t hdr_len, crypto_len;
2118 	enum htt_rx_mpdu_encrypt_type enctype;
2119 	int bytes_aligned = ar->hw_params.decap_align_bytes;
2120 
2121 	first = skb_peek(amsdu);
2122 
2123 	rxd = (void *)first->data - sizeof(*rxd);
2124 	hdr = (void *)rxd->rx_hdr_status;
2125 
2126 	is_first = !!(rxd->msdu_end.common.info0 &
2127 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
2128 	is_last = !!(rxd->msdu_end.common.info0 &
2129 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
2130 
2131 	/* Return in case of non-aggregated msdu */
2132 	if (is_first && is_last)
2133 		return true;
2134 
2135 	/* First msdu flag is not set for the first msdu of the list */
2136 	if (!is_first)
2137 		return false;
2138 
2139 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
2140 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
2141 
2142 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
2143 	crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
2144 
2145 	subframe_hdr = (u8 *)hdr + round_up(hdr_len, bytes_aligned) +
2146 		       crypto_len;
2147 
2148 	/* Validate if the amsdu has a proper first subframe.
2149 	 * There are chances a single msdu can be received as amsdu when
2150 	 * the unauthenticated amsdu flag of a QoS header
2151 	 * gets flipped in non-SPP AMSDU's, in such cases the first
2152 	 * subframe has llc/snap header in place of a valid da.
2153 	 * return false if the da matches rfc1042 pattern
2154 	 */
2155 	if (ether_addr_equal(subframe_hdr, rfc1042_header))
2156 		return false;
2157 
2158 	return true;
2159 }
2160 
2161 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
2162 					struct sk_buff_head *amsdu,
2163 					struct ieee80211_rx_status *rx_status)
2164 {
2165 	if (!rx_status->freq) {
2166 		ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
2167 		return false;
2168 	}
2169 
2170 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
2171 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
2172 		return false;
2173 	}
2174 
2175 	if (!ath10k_htt_rx_validate_amsdu(ar, amsdu)) {
2176 		ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid amsdu received\n");
2177 		return false;
2178 	}
2179 
2180 	return true;
2181 }
2182 
2183 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
2184 				   struct sk_buff_head *amsdu,
2185 				   struct ieee80211_rx_status *rx_status,
2186 				   unsigned long *drop_cnt)
2187 {
2188 	if (skb_queue_empty(amsdu))
2189 		return;
2190 
2191 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
2192 		return;
2193 
2194 	if (drop_cnt)
2195 		*drop_cnt += skb_queue_len(amsdu);
2196 
2197 	__skb_queue_purge(amsdu);
2198 }
2199 
2200 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
2201 {
2202 	struct ath10k *ar = htt->ar;
2203 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
2204 	struct sk_buff_head amsdu;
2205 	int ret;
2206 	unsigned long drop_cnt = 0;
2207 	unsigned long unchain_cnt = 0;
2208 	unsigned long drop_cnt_filter = 0;
2209 	unsigned long msdus_to_queue, num_msdus;
2210 	enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
2211 	u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
2212 
2213 	__skb_queue_head_init(&amsdu);
2214 
2215 	spin_lock_bh(&htt->rx_ring.lock);
2216 	if (htt->rx_confused) {
2217 		spin_unlock_bh(&htt->rx_ring.lock);
2218 		return -EIO;
2219 	}
2220 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
2221 	spin_unlock_bh(&htt->rx_ring.lock);
2222 
2223 	if (ret < 0) {
2224 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
2225 		__skb_queue_purge(&amsdu);
2226 		/* FIXME: It's probably a good idea to reboot the
2227 		 * device instead of leaving it inoperable.
2228 		 */
2229 		htt->rx_confused = true;
2230 		return ret;
2231 	}
2232 
2233 	num_msdus = skb_queue_len(&amsdu);
2234 
2235 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
2236 
2237 	/* only for ret = 1 indicates chained msdus */
2238 	if (ret > 0)
2239 		ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
2240 
2241 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
2242 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err, 0,
2243 			     false);
2244 	msdus_to_queue = skb_queue_len(&amsdu);
2245 	ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
2246 
2247 	ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
2248 				       unchain_cnt, drop_cnt, drop_cnt_filter,
2249 				       msdus_to_queue);
2250 
2251 	return 0;
2252 }
2253 
2254 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc,
2255 					  union htt_rx_pn_t *pn,
2256 					  int pn_len_bits)
2257 {
2258 	switch (pn_len_bits) {
2259 	case 48:
2260 		pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) +
2261 			   ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32);
2262 		break;
2263 	case 24:
2264 		pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0);
2265 		break;
2266 	}
2267 }
2268 
2269 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn,
2270 				   union htt_rx_pn_t *old_pn)
2271 {
2272 	return ((new_pn->pn48 & 0xffffffffffffULL) <=
2273 		(old_pn->pn48 & 0xffffffffffffULL));
2274 }
2275 
2276 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar,
2277 					     struct ath10k_peer *peer,
2278 					     struct htt_rx_indication_hl *rx)
2279 {
2280 	bool last_pn_valid, pn_invalid = false;
2281 	enum htt_txrx_sec_cast_type sec_index;
2282 	enum htt_security_types sec_type;
2283 	union htt_rx_pn_t new_pn = {0};
2284 	struct htt_hl_rx_desc *rx_desc;
2285 	union htt_rx_pn_t *last_pn;
2286 	u32 rx_desc_info, tid;
2287 	int num_mpdu_ranges;
2288 
2289 	lockdep_assert_held(&ar->data_lock);
2290 
2291 	if (!peer)
2292 		return false;
2293 
2294 	if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU))
2295 		return false;
2296 
2297 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2298 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2299 
2300 	rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2301 	rx_desc_info = __le32_to_cpu(rx_desc->info);
2302 
2303 	if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED))
2304 		return false;
2305 
2306 	tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2307 	last_pn_valid = peer->tids_last_pn_valid[tid];
2308 	last_pn = &peer->tids_last_pn[tid];
2309 
2310 	if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2311 		sec_index = HTT_TXRX_SEC_MCAST;
2312 	else
2313 		sec_index = HTT_TXRX_SEC_UCAST;
2314 
2315 	sec_type = peer->rx_pn[sec_index].sec_type;
2316 	ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2317 
2318 	if (sec_type != HTT_SECURITY_AES_CCMP &&
2319 	    sec_type != HTT_SECURITY_TKIP &&
2320 	    sec_type != HTT_SECURITY_TKIP_NOMIC)
2321 		return false;
2322 
2323 	if (last_pn_valid)
2324 		pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn);
2325 	else
2326 		peer->tids_last_pn_valid[tid] = true;
2327 
2328 	if (!pn_invalid)
2329 		last_pn->pn48 = new_pn.pn48;
2330 
2331 	return pn_invalid;
2332 }
2333 
2334 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
2335 					 struct htt_rx_indication_hl *rx,
2336 					 struct sk_buff *skb,
2337 					 enum htt_rx_pn_check_type check_pn_type,
2338 					 enum htt_rx_tkip_demic_type tkip_mic_type)
2339 {
2340 	struct ath10k *ar = htt->ar;
2341 	struct ath10k_peer *peer;
2342 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
2343 	struct fw_rx_desc_hl *fw_desc;
2344 	enum htt_txrx_sec_cast_type sec_index;
2345 	enum htt_security_types sec_type;
2346 	union htt_rx_pn_t new_pn = {0};
2347 	struct htt_hl_rx_desc *rx_desc;
2348 	struct ieee80211_hdr *hdr;
2349 	struct ieee80211_rx_status *rx_status;
2350 	u16 peer_id;
2351 	u8 rx_desc_len;
2352 	int num_mpdu_ranges;
2353 	size_t tot_hdr_len;
2354 	struct ieee80211_channel *ch;
2355 	bool pn_invalid, qos, first_msdu;
2356 	u32 tid, rx_desc_info;
2357 
2358 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
2359 	tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2360 
2361 	spin_lock_bh(&ar->data_lock);
2362 	peer = ath10k_peer_find_by_id(ar, peer_id);
2363 	spin_unlock_bh(&ar->data_lock);
2364 	if (!peer && peer_id != HTT_INVALID_PEERID)
2365 		ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
2366 
2367 	if (!peer)
2368 		return true;
2369 
2370 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2371 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2372 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
2373 	fw_desc = &rx->fw_desc;
2374 	rx_desc_len = fw_desc->len;
2375 
2376 	if (fw_desc->u.bits.discard) {
2377 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt discard mpdu\n");
2378 		goto err;
2379 	}
2380 
2381 	/* I have not yet seen any case where num_mpdu_ranges > 1.
2382 	 * qcacld does not seem handle that case either, so we introduce the
2383 	 * same limitiation here as well.
2384 	 */
2385 	if (num_mpdu_ranges > 1)
2386 		ath10k_warn(ar,
2387 			    "Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
2388 			    num_mpdu_ranges);
2389 
2390 	if (mpdu_ranges->mpdu_range_status !=
2391 	    HTT_RX_IND_MPDU_STATUS_OK &&
2392 	    mpdu_ranges->mpdu_range_status !=
2393 	    HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) {
2394 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt mpdu_range_status %d\n",
2395 			   mpdu_ranges->mpdu_range_status);
2396 		goto err;
2397 	}
2398 
2399 	rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2400 	rx_desc_info = __le32_to_cpu(rx_desc->info);
2401 
2402 	if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2403 		sec_index = HTT_TXRX_SEC_MCAST;
2404 	else
2405 		sec_index = HTT_TXRX_SEC_UCAST;
2406 
2407 	sec_type = peer->rx_pn[sec_index].sec_type;
2408 	first_msdu = rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU;
2409 
2410 	ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2411 
2412 	if (check_pn_type == HTT_RX_PN_CHECK && tid >= IEEE80211_NUM_TIDS) {
2413 		spin_lock_bh(&ar->data_lock);
2414 		pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx);
2415 		spin_unlock_bh(&ar->data_lock);
2416 
2417 		if (pn_invalid)
2418 			goto err;
2419 	}
2420 
2421 	/* Strip off all headers before the MAC header before delivery to
2422 	 * mac80211
2423 	 */
2424 	tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
2425 		      sizeof(rx->ppdu) + sizeof(rx->prefix) +
2426 		      sizeof(rx->fw_desc) +
2427 		      sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
2428 
2429 	skb_pull(skb, tot_hdr_len);
2430 
2431 	hdr = (struct ieee80211_hdr *)skb->data;
2432 	qos = ieee80211_is_data_qos(hdr->frame_control);
2433 
2434 	rx_status = IEEE80211_SKB_RXCB(skb);
2435 	memset(rx_status, 0, sizeof(*rx_status));
2436 
2437 	if (rx->ppdu.combined_rssi == 0) {
2438 		/* SDIO firmware does not provide signal */
2439 		rx_status->signal = 0;
2440 		rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2441 	} else {
2442 		rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
2443 			rx->ppdu.combined_rssi;
2444 		rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
2445 	}
2446 
2447 	spin_lock_bh(&ar->data_lock);
2448 	ch = ar->scan_channel;
2449 	if (!ch)
2450 		ch = ar->rx_channel;
2451 	if (!ch)
2452 		ch = ath10k_htt_rx_h_any_channel(ar);
2453 	if (!ch)
2454 		ch = ar->tgt_oper_chan;
2455 	spin_unlock_bh(&ar->data_lock);
2456 
2457 	if (ch) {
2458 		rx_status->band = ch->band;
2459 		rx_status->freq = ch->center_freq;
2460 	}
2461 	if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
2462 		rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
2463 	else
2464 		rx_status->flag |= RX_FLAG_AMSDU_MORE;
2465 
2466 	/* Not entirely sure about this, but all frames from the chipset has
2467 	 * the protected flag set even though they have already been decrypted.
2468 	 * Unmasking this flag is necessary in order for mac80211 not to drop
2469 	 * the frame.
2470 	 * TODO: Verify this is always the case or find out a way to check
2471 	 * if there has been hw decryption.
2472 	 */
2473 	if (ieee80211_has_protected(hdr->frame_control)) {
2474 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2475 		rx_status->flag |= RX_FLAG_DECRYPTED |
2476 				   RX_FLAG_IV_STRIPPED |
2477 				   RX_FLAG_MMIC_STRIPPED;
2478 
2479 		if (tid < IEEE80211_NUM_TIDS &&
2480 		    first_msdu &&
2481 		    check_pn_type == HTT_RX_PN_CHECK &&
2482 		   (sec_type == HTT_SECURITY_AES_CCMP ||
2483 		    sec_type == HTT_SECURITY_TKIP ||
2484 		    sec_type == HTT_SECURITY_TKIP_NOMIC)) {
2485 			u8 offset, *ivp, i;
2486 			s8 keyidx = 0;
2487 			__le64 pn48 = cpu_to_le64(new_pn.pn48);
2488 
2489 			hdr = (struct ieee80211_hdr *)skb->data;
2490 			offset = ieee80211_hdrlen(hdr->frame_control);
2491 			hdr->frame_control |= __cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2492 			rx_status->flag &= ~RX_FLAG_IV_STRIPPED;
2493 
2494 			memmove(skb->data - IEEE80211_CCMP_HDR_LEN,
2495 				skb->data, offset);
2496 			skb_push(skb, IEEE80211_CCMP_HDR_LEN);
2497 			ivp = skb->data + offset;
2498 			memset(skb->data + offset, 0, IEEE80211_CCMP_HDR_LEN);
2499 			/* Ext IV */
2500 			ivp[IEEE80211_WEP_IV_LEN - 1] |= ATH10K_IEEE80211_EXTIV;
2501 
2502 			for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
2503 				if (peer->keys[i] &&
2504 				    peer->keys[i]->flags & IEEE80211_KEY_FLAG_PAIRWISE)
2505 					keyidx = peer->keys[i]->keyidx;
2506 			}
2507 
2508 			/* Key ID */
2509 			ivp[IEEE80211_WEP_IV_LEN - 1] |= keyidx << 6;
2510 
2511 			if (sec_type == HTT_SECURITY_AES_CCMP) {
2512 				rx_status->flag |= RX_FLAG_MIC_STRIPPED;
2513 				/* pn 0, pn 1 */
2514 				memcpy(skb->data + offset, &pn48, 2);
2515 				/* pn 1, pn 3 , pn 34 , pn 5 */
2516 				memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4);
2517 			} else {
2518 				rx_status->flag |= RX_FLAG_ICV_STRIPPED;
2519 				/* TSC 0 */
2520 				memcpy(skb->data + offset + 2, &pn48, 1);
2521 				/* TSC 1 */
2522 				memcpy(skb->data + offset, ((u8 *)&pn48) + 1, 1);
2523 				/* TSC 2 , TSC 3 , TSC 4 , TSC 5*/
2524 				memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4);
2525 			}
2526 		}
2527 	}
2528 
2529 	if (tkip_mic_type == HTT_RX_TKIP_MIC)
2530 		rx_status->flag &= ~RX_FLAG_IV_STRIPPED &
2531 				   ~RX_FLAG_MMIC_STRIPPED;
2532 
2533 	if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR)
2534 		rx_status->flag |= RX_FLAG_MMIC_ERROR;
2535 
2536 	if (!qos && tid < IEEE80211_NUM_TIDS) {
2537 		u8 offset;
2538 		__le16 qos_ctrl = 0;
2539 
2540 		hdr = (struct ieee80211_hdr *)skb->data;
2541 		offset = ieee80211_hdrlen(hdr->frame_control);
2542 
2543 		hdr->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
2544 		memmove(skb->data - IEEE80211_QOS_CTL_LEN, skb->data, offset);
2545 		skb_push(skb, IEEE80211_QOS_CTL_LEN);
2546 		qos_ctrl = cpu_to_le16(tid);
2547 		memcpy(skb->data + offset, &qos_ctrl, IEEE80211_QOS_CTL_LEN);
2548 	}
2549 
2550 	if (ar->napi.dev)
2551 		ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
2552 	else
2553 		ieee80211_rx_ni(ar->hw, skb);
2554 
2555 	/* We have delivered the skb to the upper layers (mac80211) so we
2556 	 * must not free it.
2557 	 */
2558 	return false;
2559 err:
2560 	/* Tell the caller that it must free the skb since we have not
2561 	 * consumed it
2562 	 */
2563 	return true;
2564 }
2565 
2566 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb,
2567 					       u16 head_len,
2568 					       u16 hdr_len)
2569 {
2570 	u8 *ivp, *orig_hdr;
2571 
2572 	orig_hdr = skb->data;
2573 	ivp = orig_hdr + hdr_len + head_len;
2574 
2575 	/* the ExtIV bit is always set to 1 for TKIP */
2576 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2577 		return -EINVAL;
2578 
2579 	memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2580 	skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2581 	skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN);
2582 	return 0;
2583 }
2584 
2585 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb,
2586 						 u16 head_len,
2587 						 u16 hdr_len)
2588 {
2589 	u8 *ivp, *orig_hdr;
2590 
2591 	orig_hdr = skb->data;
2592 	ivp = orig_hdr + hdr_len + head_len;
2593 
2594 	/* the ExtIV bit is always set to 1 for TKIP */
2595 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2596 		return -EINVAL;
2597 
2598 	memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2599 	skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2600 	skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN);
2601 	return 0;
2602 }
2603 
2604 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb,
2605 					 u16 head_len,
2606 					 u16 hdr_len)
2607 {
2608 	u8 *ivp, *orig_hdr;
2609 
2610 	orig_hdr = skb->data;
2611 	ivp = orig_hdr + hdr_len + head_len;
2612 
2613 	/* the ExtIV bit is always set to 1 for CCMP */
2614 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2615 		return -EINVAL;
2616 
2617 	skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN);
2618 	memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len);
2619 	skb_pull(skb, IEEE80211_CCMP_HDR_LEN);
2620 	return 0;
2621 }
2622 
2623 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb,
2624 					u16 head_len,
2625 					u16 hdr_len)
2626 {
2627 	u8 *orig_hdr;
2628 
2629 	orig_hdr = skb->data;
2630 
2631 	memmove(orig_hdr + IEEE80211_WEP_IV_LEN,
2632 		orig_hdr, head_len + hdr_len);
2633 	skb_pull(skb, IEEE80211_WEP_IV_LEN);
2634 	skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN);
2635 	return 0;
2636 }
2637 
2638 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt,
2639 					      struct htt_rx_fragment_indication *rx,
2640 					      struct sk_buff *skb)
2641 {
2642 	struct ath10k *ar = htt->ar;
2643 	enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC;
2644 	enum htt_txrx_sec_cast_type sec_index;
2645 	struct htt_rx_indication_hl *rx_hl;
2646 	enum htt_security_types sec_type;
2647 	u32 tid, frag, seq, rx_desc_info;
2648 	union htt_rx_pn_t new_pn = {0};
2649 	struct htt_hl_rx_desc *rx_desc;
2650 	u16 peer_id, sc, hdr_space;
2651 	union htt_rx_pn_t *last_pn;
2652 	struct ieee80211_hdr *hdr;
2653 	int ret, num_mpdu_ranges;
2654 	struct ath10k_peer *peer;
2655 	struct htt_resp *resp;
2656 	size_t tot_hdr_len;
2657 
2658 	resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2659 	skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2660 	skb_trim(skb, skb->len - FCS_LEN);
2661 
2662 	peer_id = __le16_to_cpu(rx->peer_id);
2663 	rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl);
2664 
2665 	spin_lock_bh(&ar->data_lock);
2666 	peer = ath10k_peer_find_by_id(ar, peer_id);
2667 	if (!peer) {
2668 		ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id);
2669 		goto err;
2670 	}
2671 
2672 	num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1),
2673 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2674 
2675 	tot_hdr_len = sizeof(struct htt_resp_hdr) +
2676 		      sizeof(rx_hl->hdr) +
2677 		      sizeof(rx_hl->ppdu) +
2678 		      sizeof(rx_hl->prefix) +
2679 		      sizeof(rx_hl->fw_desc) +
2680 		      sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges;
2681 
2682 	tid =  MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2683 	rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len);
2684 	rx_desc_info = __le32_to_cpu(rx_desc->info);
2685 
2686 	hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len);
2687 
2688 	if (is_multicast_ether_addr(hdr->addr1)) {
2689 		/* Discard the fragment with multicast DA */
2690 		goto err;
2691 	}
2692 
2693 	if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) {
2694 		spin_unlock_bh(&ar->data_lock);
2695 		return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2696 						    HTT_RX_NON_PN_CHECK,
2697 						    HTT_RX_NON_TKIP_MIC);
2698 	}
2699 
2700 	if (ieee80211_has_retry(hdr->frame_control))
2701 		goto err;
2702 
2703 	hdr_space = ieee80211_hdrlen(hdr->frame_control);
2704 	sc = __le16_to_cpu(hdr->seq_ctrl);
2705 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2706 	frag = sc & IEEE80211_SCTL_FRAG;
2707 
2708 	sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ?
2709 		    HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST;
2710 	sec_type = peer->rx_pn[sec_index].sec_type;
2711 	ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2712 
2713 	switch (sec_type) {
2714 	case HTT_SECURITY_TKIP:
2715 		tkip_mic = HTT_RX_TKIP_MIC;
2716 		ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb,
2717 							    tot_hdr_len +
2718 							    rx_hl->fw_desc.len,
2719 							    hdr_space);
2720 		if (ret)
2721 			goto err;
2722 		break;
2723 	case HTT_SECURITY_TKIP_NOMIC:
2724 		ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb,
2725 							  tot_hdr_len +
2726 							  rx_hl->fw_desc.len,
2727 							  hdr_space);
2728 		if (ret)
2729 			goto err;
2730 		break;
2731 	case HTT_SECURITY_AES_CCMP:
2732 		ret = ath10k_htt_rx_frag_ccmp_decap(skb,
2733 						    tot_hdr_len + rx_hl->fw_desc.len,
2734 						    hdr_space);
2735 		if (ret)
2736 			goto err;
2737 		break;
2738 	case HTT_SECURITY_WEP128:
2739 	case HTT_SECURITY_WEP104:
2740 	case HTT_SECURITY_WEP40:
2741 		ret = ath10k_htt_rx_frag_wep_decap(skb,
2742 						   tot_hdr_len + rx_hl->fw_desc.len,
2743 						   hdr_space);
2744 		if (ret)
2745 			goto err;
2746 		break;
2747 	default:
2748 		break;
2749 	}
2750 
2751 	resp = (struct htt_resp *)(skb->data);
2752 
2753 	if (sec_type != HTT_SECURITY_AES_CCMP &&
2754 	    sec_type != HTT_SECURITY_TKIP &&
2755 	    sec_type != HTT_SECURITY_TKIP_NOMIC) {
2756 		spin_unlock_bh(&ar->data_lock);
2757 		return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2758 						    HTT_RX_NON_PN_CHECK,
2759 						    HTT_RX_NON_TKIP_MIC);
2760 	}
2761 
2762 	last_pn = &peer->frag_tids_last_pn[tid];
2763 
2764 	if (frag == 0) {
2765 		if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl))
2766 			goto err;
2767 
2768 		last_pn->pn48 = new_pn.pn48;
2769 		peer->frag_tids_seq[tid] = seq;
2770 	} else if (sec_type == HTT_SECURITY_AES_CCMP) {
2771 		if (seq != peer->frag_tids_seq[tid])
2772 			goto err;
2773 
2774 		if (new_pn.pn48 != last_pn->pn48 + 1)
2775 			goto err;
2776 
2777 		last_pn->pn48 = new_pn.pn48;
2778 		last_pn = &peer->tids_last_pn[tid];
2779 		last_pn->pn48 = new_pn.pn48;
2780 	}
2781 
2782 	spin_unlock_bh(&ar->data_lock);
2783 
2784 	return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2785 					    HTT_RX_NON_PN_CHECK, tkip_mic);
2786 
2787 err:
2788 	spin_unlock_bh(&ar->data_lock);
2789 
2790 	/* Tell the caller that it must free the skb since we have not
2791 	 * consumed it
2792 	 */
2793 	return true;
2794 }
2795 
2796 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
2797 					 struct htt_rx_indication *rx)
2798 {
2799 	struct ath10k *ar = htt->ar;
2800 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
2801 	int num_mpdu_ranges;
2802 	int i, mpdu_count = 0;
2803 	u16 peer_id;
2804 	u8 tid;
2805 
2806 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2807 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2808 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
2809 	tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2810 
2811 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
2812 
2813 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
2814 			rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges));
2815 
2816 	for (i = 0; i < num_mpdu_ranges; i++)
2817 		mpdu_count += mpdu_ranges[i].mpdu_count;
2818 
2819 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
2820 
2821 	ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
2822 					     num_mpdu_ranges);
2823 }
2824 
2825 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
2826 				       struct sk_buff *skb)
2827 {
2828 	struct ath10k_htt *htt = &ar->htt;
2829 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2830 	struct htt_tx_done tx_done = {};
2831 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
2832 	__le16 msdu_id, *msdus;
2833 	bool rssi_enabled = false;
2834 	u8 msdu_count = 0, num_airtime_records, tid;
2835 	int i, htt_pad = 0;
2836 	struct htt_data_tx_compl_ppdu_dur *ppdu_info;
2837 	struct ath10k_peer *peer;
2838 	u16 ppdu_info_offset = 0, peer_id;
2839 	u32 tx_duration;
2840 
2841 	switch (status) {
2842 	case HTT_DATA_TX_STATUS_NO_ACK:
2843 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2844 		break;
2845 	case HTT_DATA_TX_STATUS_OK:
2846 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
2847 		break;
2848 	case HTT_DATA_TX_STATUS_DISCARD:
2849 	case HTT_DATA_TX_STATUS_POSTPONE:
2850 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
2851 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2852 		break;
2853 	default:
2854 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
2855 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2856 		break;
2857 	}
2858 
2859 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
2860 		   resp->data_tx_completion.num_msdus);
2861 
2862 	msdu_count = resp->data_tx_completion.num_msdus;
2863 	msdus = resp->data_tx_completion.msdus;
2864 	rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp);
2865 
2866 	if (rssi_enabled)
2867 		htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params,
2868 							    resp);
2869 
2870 	for (i = 0; i < msdu_count; i++) {
2871 		msdu_id = msdus[i];
2872 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
2873 
2874 		if (rssi_enabled) {
2875 			/* Total no of MSDUs should be even,
2876 			 * if odd MSDUs are sent firmware fills
2877 			 * last msdu id with 0xffff
2878 			 */
2879 			if (msdu_count & 0x01) {
2880 				msdu_id = msdus[msdu_count +  i + 1 + htt_pad];
2881 				tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2882 			} else {
2883 				msdu_id = msdus[msdu_count +  i + htt_pad];
2884 				tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2885 			}
2886 		}
2887 
2888 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
2889 		 * interrupt and main interrupt (MSI/-X range case) for the same
2890 		 * HTC service so it should be safe to use kfifo_put w/o lock.
2891 		 *
2892 		 * From kfifo_put() documentation:
2893 		 *  Note that with only one concurrent reader and one concurrent
2894 		 *  writer, you don't need extra locking to use these macro.
2895 		 */
2896 		if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) {
2897 			ath10k_txrx_tx_unref(htt, &tx_done);
2898 		} else if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
2899 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
2900 				    tx_done.msdu_id, tx_done.status);
2901 			ath10k_txrx_tx_unref(htt, &tx_done);
2902 		}
2903 	}
2904 
2905 	if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT))
2906 		return;
2907 
2908 	ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count;
2909 
2910 	if (rssi_enabled)
2911 		ppdu_info_offset += ppdu_info_offset;
2912 
2913 	if (resp->data_tx_completion.flags2 &
2914 	    (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT))
2915 		ppdu_info_offset += 2;
2916 
2917 	ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset];
2918 	num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK,
2919 					__le32_to_cpu(ppdu_info->info0));
2920 
2921 	for (i = 0; i < num_airtime_records; i++) {
2922 		struct htt_data_tx_ppdu_dur *ppdu_dur;
2923 		u32 info0;
2924 
2925 		ppdu_dur = &ppdu_info->ppdu_dur[i];
2926 		info0 = __le32_to_cpu(ppdu_dur->info0);
2927 
2928 		peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK,
2929 				    info0);
2930 		rcu_read_lock();
2931 		spin_lock_bh(&ar->data_lock);
2932 
2933 		peer = ath10k_peer_find_by_id(ar, peer_id);
2934 		if (!peer || !peer->sta) {
2935 			spin_unlock_bh(&ar->data_lock);
2936 			rcu_read_unlock();
2937 			continue;
2938 		}
2939 
2940 		tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0) &
2941 						IEEE80211_QOS_CTL_TID_MASK;
2942 		tx_duration = __le32_to_cpu(ppdu_dur->tx_duration);
2943 
2944 		ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0);
2945 
2946 		spin_unlock_bh(&ar->data_lock);
2947 		rcu_read_unlock();
2948 	}
2949 }
2950 
2951 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
2952 {
2953 	struct htt_rx_addba *ev = &resp->rx_addba;
2954 	struct ath10k_peer *peer;
2955 	struct ath10k_vif *arvif;
2956 	u16 info0, tid, peer_id;
2957 
2958 	info0 = __le16_to_cpu(ev->info0);
2959 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
2960 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2961 
2962 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2963 		   "htt rx addba tid %u peer_id %u size %u\n",
2964 		   tid, peer_id, ev->window_size);
2965 
2966 	spin_lock_bh(&ar->data_lock);
2967 	peer = ath10k_peer_find_by_id(ar, peer_id);
2968 	if (!peer) {
2969 		ath10k_warn(ar, "received addba event for invalid peer_id: %u\n",
2970 			    peer_id);
2971 		spin_unlock_bh(&ar->data_lock);
2972 		return;
2973 	}
2974 
2975 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
2976 	if (!arvif) {
2977 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2978 			    peer->vdev_id);
2979 		spin_unlock_bh(&ar->data_lock);
2980 		return;
2981 	}
2982 
2983 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2984 		   "htt rx start rx ba session sta %pM tid %u size %u\n",
2985 		   peer->addr, tid, ev->window_size);
2986 
2987 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2988 	spin_unlock_bh(&ar->data_lock);
2989 }
2990 
2991 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
2992 {
2993 	struct htt_rx_delba *ev = &resp->rx_delba;
2994 	struct ath10k_peer *peer;
2995 	struct ath10k_vif *arvif;
2996 	u16 info0, tid, peer_id;
2997 
2998 	info0 = __le16_to_cpu(ev->info0);
2999 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
3000 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
3001 
3002 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3003 		   "htt rx delba tid %u peer_id %u\n",
3004 		   tid, peer_id);
3005 
3006 	spin_lock_bh(&ar->data_lock);
3007 	peer = ath10k_peer_find_by_id(ar, peer_id);
3008 	if (!peer) {
3009 		ath10k_warn(ar, "received addba event for invalid peer_id: %u\n",
3010 			    peer_id);
3011 		spin_unlock_bh(&ar->data_lock);
3012 		return;
3013 	}
3014 
3015 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
3016 	if (!arvif) {
3017 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
3018 			    peer->vdev_id);
3019 		spin_unlock_bh(&ar->data_lock);
3020 		return;
3021 	}
3022 
3023 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3024 		   "htt rx stop rx ba session sta %pM tid %u\n",
3025 		   peer->addr, tid);
3026 
3027 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
3028 	spin_unlock_bh(&ar->data_lock);
3029 }
3030 
3031 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
3032 				       struct sk_buff_head *amsdu)
3033 {
3034 	struct sk_buff *msdu;
3035 	struct htt_rx_desc *rxd;
3036 
3037 	if (skb_queue_empty(list))
3038 		return -ENOBUFS;
3039 
3040 	if (WARN_ON(!skb_queue_empty(amsdu)))
3041 		return -EINVAL;
3042 
3043 	while ((msdu = __skb_dequeue(list))) {
3044 		__skb_queue_tail(amsdu, msdu);
3045 
3046 		rxd = (void *)msdu->data - sizeof(*rxd);
3047 		if (rxd->msdu_end.common.info0 &
3048 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
3049 			break;
3050 	}
3051 
3052 	msdu = skb_peek_tail(amsdu);
3053 	rxd = (void *)msdu->data - sizeof(*rxd);
3054 	if (!(rxd->msdu_end.common.info0 &
3055 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
3056 		skb_queue_splice_init(amsdu, list);
3057 		return -EAGAIN;
3058 	}
3059 
3060 	return 0;
3061 }
3062 
3063 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
3064 					    struct sk_buff *skb)
3065 {
3066 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
3067 
3068 	if (!ieee80211_has_protected(hdr->frame_control))
3069 		return;
3070 
3071 	/* Offloaded frames are already decrypted but firmware insists they are
3072 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
3073 	 * will drop the frame.
3074 	 */
3075 
3076 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
3077 	status->flag |= RX_FLAG_DECRYPTED |
3078 			RX_FLAG_IV_STRIPPED |
3079 			RX_FLAG_MMIC_STRIPPED;
3080 }
3081 
3082 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
3083 				       struct sk_buff_head *list)
3084 {
3085 	struct ath10k_htt *htt = &ar->htt;
3086 	struct ieee80211_rx_status *status = &htt->rx_status;
3087 	struct htt_rx_offload_msdu *rx;
3088 	struct sk_buff *msdu;
3089 	size_t offset;
3090 
3091 	while ((msdu = __skb_dequeue(list))) {
3092 		/* Offloaded frames don't have Rx descriptor. Instead they have
3093 		 * a short meta information header.
3094 		 */
3095 
3096 		rx = (void *)msdu->data;
3097 
3098 		skb_put(msdu, sizeof(*rx));
3099 		skb_pull(msdu, sizeof(*rx));
3100 
3101 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
3102 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
3103 			dev_kfree_skb_any(msdu);
3104 			continue;
3105 		}
3106 
3107 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
3108 
3109 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
3110 		 * actual payload is unaligned. Align the frame.  Otherwise
3111 		 * mac80211 complains.  This shouldn't reduce performance much
3112 		 * because these offloaded frames are rare.
3113 		 */
3114 		offset = 4 - ((unsigned long)msdu->data & 3);
3115 		skb_put(msdu, offset);
3116 		memmove(msdu->data + offset, msdu->data, msdu->len);
3117 		skb_pull(msdu, offset);
3118 
3119 		/* FIXME: The frame is NWifi. Re-construct QoS Control
3120 		 * if possible later.
3121 		 */
3122 
3123 		memset(status, 0, sizeof(*status));
3124 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
3125 
3126 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
3127 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
3128 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
3129 	}
3130 }
3131 
3132 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
3133 {
3134 	struct ath10k_htt *htt = &ar->htt;
3135 	struct htt_resp *resp = (void *)skb->data;
3136 	struct ieee80211_rx_status *status = &htt->rx_status;
3137 	struct sk_buff_head list;
3138 	struct sk_buff_head amsdu;
3139 	u16 peer_id;
3140 	u16 msdu_count;
3141 	u8 vdev_id;
3142 	u8 tid;
3143 	bool offload;
3144 	bool frag;
3145 	int ret;
3146 
3147 	lockdep_assert_held(&htt->rx_ring.lock);
3148 
3149 	if (htt->rx_confused)
3150 		return -EIO;
3151 
3152 	skb_pull(skb, sizeof(resp->hdr));
3153 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
3154 
3155 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
3156 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
3157 	vdev_id = resp->rx_in_ord_ind.vdev_id;
3158 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
3159 	offload = !!(resp->rx_in_ord_ind.info &
3160 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
3161 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
3162 
3163 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3164 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
3165 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
3166 
3167 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
3168 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
3169 		return -EINVAL;
3170 	}
3171 
3172 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
3173 	 * extracted and processed.
3174 	 */
3175 	__skb_queue_head_init(&list);
3176 	if (ar->hw_params.target_64bit)
3177 		ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
3178 						     &list);
3179 	else
3180 		ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
3181 						     &list);
3182 
3183 	if (ret < 0) {
3184 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
3185 		htt->rx_confused = true;
3186 		return -EIO;
3187 	}
3188 
3189 	/* Offloaded frames are very different and need to be handled
3190 	 * separately.
3191 	 */
3192 	if (offload)
3193 		ath10k_htt_rx_h_rx_offload(ar, &list);
3194 
3195 	while (!skb_queue_empty(&list)) {
3196 		__skb_queue_head_init(&amsdu);
3197 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
3198 		switch (ret) {
3199 		case 0:
3200 			/* Note: The in-order indication may report interleaved
3201 			 * frames from different PPDUs meaning reported rx rate
3202 			 * to mac80211 isn't accurate/reliable. It's still
3203 			 * better to report something than nothing though. This
3204 			 * should still give an idea about rx rate to the user.
3205 			 */
3206 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
3207 			ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
3208 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
3209 					     NULL, peer_id, frag);
3210 			ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
3211 			break;
3212 		case -EAGAIN:
3213 			fallthrough;
3214 		default:
3215 			/* Should not happen. */
3216 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
3217 			htt->rx_confused = true;
3218 			__skb_queue_purge(&list);
3219 			return -EIO;
3220 		}
3221 	}
3222 	return ret;
3223 }
3224 
3225 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
3226 						   const __le32 *resp_ids,
3227 						   int num_resp_ids)
3228 {
3229 	int i;
3230 	u32 resp_id;
3231 
3232 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
3233 		   num_resp_ids);
3234 
3235 	for (i = 0; i < num_resp_ids; i++) {
3236 		resp_id = le32_to_cpu(resp_ids[i]);
3237 
3238 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
3239 			   resp_id);
3240 
3241 		/* TODO: free resp_id */
3242 	}
3243 }
3244 
3245 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
3246 {
3247 	struct ieee80211_hw *hw = ar->hw;
3248 	struct ieee80211_txq *txq;
3249 	struct htt_resp *resp = (struct htt_resp *)skb->data;
3250 	struct htt_tx_fetch_record *record;
3251 	size_t len;
3252 	size_t max_num_bytes;
3253 	size_t max_num_msdus;
3254 	size_t num_bytes;
3255 	size_t num_msdus;
3256 	const __le32 *resp_ids;
3257 	u16 num_records;
3258 	u16 num_resp_ids;
3259 	u16 peer_id;
3260 	u8 tid;
3261 	int ret;
3262 	int i;
3263 	bool may_tx;
3264 
3265 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
3266 
3267 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
3268 	if (unlikely(skb->len < len)) {
3269 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
3270 		return;
3271 	}
3272 
3273 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
3274 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
3275 
3276 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
3277 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
3278 
3279 	if (unlikely(skb->len < len)) {
3280 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
3281 		return;
3282 	}
3283 
3284 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %u num resps %u seq %u\n",
3285 		   num_records, num_resp_ids,
3286 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
3287 
3288 	if (!ar->htt.tx_q_state.enabled) {
3289 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
3290 		return;
3291 	}
3292 
3293 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
3294 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
3295 		return;
3296 	}
3297 
3298 	rcu_read_lock();
3299 
3300 	for (i = 0; i < num_records; i++) {
3301 		record = &resp->tx_fetch_ind.records[i];
3302 		peer_id = MS(le16_to_cpu(record->info),
3303 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
3304 		tid = MS(le16_to_cpu(record->info),
3305 			 HTT_TX_FETCH_RECORD_INFO_TID);
3306 		max_num_msdus = le16_to_cpu(record->num_msdus);
3307 		max_num_bytes = le32_to_cpu(record->num_bytes);
3308 
3309 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %u tid %u msdus %zu bytes %zu\n",
3310 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
3311 
3312 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3313 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3314 			ath10k_warn(ar, "received out of range peer_id %u tid %u\n",
3315 				    peer_id, tid);
3316 			continue;
3317 		}
3318 
3319 		spin_lock_bh(&ar->data_lock);
3320 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3321 		spin_unlock_bh(&ar->data_lock);
3322 
3323 		/* It is okay to release the lock and use txq because RCU read
3324 		 * lock is held.
3325 		 */
3326 
3327 		if (unlikely(!txq)) {
3328 			ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n",
3329 				    peer_id, tid);
3330 			continue;
3331 		}
3332 
3333 		num_msdus = 0;
3334 		num_bytes = 0;
3335 
3336 		ieee80211_txq_schedule_start(hw, txq->ac);
3337 		may_tx = ieee80211_txq_may_transmit(hw, txq);
3338 		while (num_msdus < max_num_msdus &&
3339 		       num_bytes < max_num_bytes) {
3340 			if (!may_tx)
3341 				break;
3342 
3343 			ret = ath10k_mac_tx_push_txq(hw, txq);
3344 			if (ret < 0)
3345 				break;
3346 
3347 			num_msdus++;
3348 			num_bytes += ret;
3349 		}
3350 		ieee80211_return_txq(hw, txq, false);
3351 		ieee80211_txq_schedule_end(hw, txq->ac);
3352 
3353 		record->num_msdus = cpu_to_le16(num_msdus);
3354 		record->num_bytes = cpu_to_le32(num_bytes);
3355 
3356 		ath10k_htt_tx_txq_recalc(hw, txq);
3357 	}
3358 
3359 	rcu_read_unlock();
3360 
3361 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
3362 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
3363 
3364 	ret = ath10k_htt_tx_fetch_resp(ar,
3365 				       resp->tx_fetch_ind.token,
3366 				       resp->tx_fetch_ind.fetch_seq_num,
3367 				       resp->tx_fetch_ind.records,
3368 				       num_records);
3369 	if (unlikely(ret)) {
3370 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
3371 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
3372 		/* FIXME: request fw restart */
3373 	}
3374 
3375 	ath10k_htt_tx_txq_sync(ar);
3376 }
3377 
3378 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
3379 					   struct sk_buff *skb)
3380 {
3381 	const struct htt_resp *resp = (void *)skb->data;
3382 	size_t len;
3383 	int num_resp_ids;
3384 
3385 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
3386 
3387 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
3388 	if (unlikely(skb->len < len)) {
3389 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
3390 		return;
3391 	}
3392 
3393 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
3394 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
3395 
3396 	if (unlikely(skb->len < len)) {
3397 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
3398 		return;
3399 	}
3400 
3401 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
3402 					       resp->tx_fetch_confirm.resp_ids,
3403 					       num_resp_ids);
3404 }
3405 
3406 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
3407 					     struct sk_buff *skb)
3408 {
3409 	const struct htt_resp *resp = (void *)skb->data;
3410 	const struct htt_tx_mode_switch_record *record;
3411 	struct ieee80211_txq *txq;
3412 	struct ath10k_txq *artxq;
3413 	size_t len;
3414 	size_t num_records;
3415 	enum htt_tx_mode_switch_mode mode;
3416 	bool enable;
3417 	u16 info0;
3418 	u16 info1;
3419 	u16 threshold;
3420 	u16 peer_id;
3421 	u8 tid;
3422 	int i;
3423 
3424 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
3425 
3426 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
3427 	if (unlikely(skb->len < len)) {
3428 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
3429 		return;
3430 	}
3431 
3432 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
3433 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
3434 
3435 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
3436 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3437 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
3438 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3439 
3440 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3441 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04x enable %d num records %zd mode %d threshold %u\n",
3442 		   info0, info1, enable, num_records, mode, threshold);
3443 
3444 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
3445 
3446 	if (unlikely(skb->len < len)) {
3447 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
3448 		return;
3449 	}
3450 
3451 	switch (mode) {
3452 	case HTT_TX_MODE_SWITCH_PUSH:
3453 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
3454 		break;
3455 	default:
3456 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
3457 			    mode);
3458 		return;
3459 	}
3460 
3461 	if (!enable)
3462 		return;
3463 
3464 	ar->htt.tx_q_state.enabled = enable;
3465 	ar->htt.tx_q_state.mode = mode;
3466 	ar->htt.tx_q_state.num_push_allowed = threshold;
3467 
3468 	rcu_read_lock();
3469 
3470 	for (i = 0; i < num_records; i++) {
3471 		record = &resp->tx_mode_switch_ind.records[i];
3472 		info0 = le16_to_cpu(record->info0);
3473 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
3474 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
3475 
3476 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3477 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3478 			ath10k_warn(ar, "received out of range peer_id %u tid %u\n",
3479 				    peer_id, tid);
3480 			continue;
3481 		}
3482 
3483 		spin_lock_bh(&ar->data_lock);
3484 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3485 		spin_unlock_bh(&ar->data_lock);
3486 
3487 		/* It is okay to release the lock and use txq because RCU read
3488 		 * lock is held.
3489 		 */
3490 
3491 		if (unlikely(!txq)) {
3492 			ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n",
3493 				    peer_id, tid);
3494 			continue;
3495 		}
3496 
3497 		spin_lock_bh(&ar->htt.tx_lock);
3498 		artxq = (void *)txq->drv_priv;
3499 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
3500 		spin_unlock_bh(&ar->htt.tx_lock);
3501 	}
3502 
3503 	rcu_read_unlock();
3504 
3505 	ath10k_mac_tx_push_pending(ar);
3506 }
3507 
3508 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3509 {
3510 	bool release;
3511 
3512 	release = ath10k_htt_t2h_msg_handler(ar, skb);
3513 
3514 	/* Free the indication buffer */
3515 	if (release)
3516 		dev_kfree_skb_any(skb);
3517 }
3518 
3519 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
3520 {
3521 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
3522 					  18, 24, 36, 48, 54};
3523 	int i;
3524 
3525 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
3526 		if (rate == legacy_rates[i])
3527 			return i;
3528 	}
3529 
3530 	ath10k_warn(ar, "Invalid legacy rate %d peer stats", rate);
3531 	return -EINVAL;
3532 }
3533 
3534 static void
3535 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
3536 				    struct ath10k_sta *arsta,
3537 				    struct ath10k_per_peer_tx_stats *pstats,
3538 				    s8 legacy_rate_idx)
3539 {
3540 	struct rate_info *txrate = &arsta->txrate;
3541 	struct ath10k_htt_tx_stats *tx_stats;
3542 	int idx, ht_idx, gi, mcs, bw, nss;
3543 	unsigned long flags;
3544 
3545 	if (!arsta->tx_stats)
3546 		return;
3547 
3548 	tx_stats = arsta->tx_stats;
3549 	flags = txrate->flags;
3550 	gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags);
3551 	mcs = ATH10K_HW_MCS_RATE(pstats->ratecode);
3552 	bw = txrate->bw;
3553 	nss = txrate->nss;
3554 	ht_idx = mcs + (nss - 1) * 8;
3555 	idx = mcs * 8 + 8 * 10 * (nss - 1);
3556 	idx += bw * 2 + gi;
3557 
3558 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
3559 
3560 	if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) {
3561 		STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
3562 		STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
3563 		STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
3564 		STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
3565 		STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
3566 		STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
3567 	} else if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3568 		STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
3569 		STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
3570 		STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
3571 		STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
3572 		STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
3573 		STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
3574 	} else {
3575 		mcs = legacy_rate_idx;
3576 
3577 		STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
3578 		STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
3579 		STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
3580 		STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
3581 		STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
3582 		STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
3583 	}
3584 
3585 	if (ATH10K_HW_AMPDU(pstats->flags)) {
3586 		tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
3587 
3588 		if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3589 			STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
3590 				pstats->succ_bytes + pstats->retry_bytes;
3591 			STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
3592 				pstats->succ_pkts + pstats->retry_pkts;
3593 		} else {
3594 			STATS_OP_FMT(AMPDU).vht[0][mcs] +=
3595 				pstats->succ_bytes + pstats->retry_bytes;
3596 			STATS_OP_FMT(AMPDU).vht[1][mcs] +=
3597 				pstats->succ_pkts + pstats->retry_pkts;
3598 		}
3599 		STATS_OP_FMT(AMPDU).bw[0][bw] +=
3600 			pstats->succ_bytes + pstats->retry_bytes;
3601 		STATS_OP_FMT(AMPDU).nss[0][nss - 1] +=
3602 			pstats->succ_bytes + pstats->retry_bytes;
3603 		STATS_OP_FMT(AMPDU).gi[0][gi] +=
3604 			pstats->succ_bytes + pstats->retry_bytes;
3605 		STATS_OP_FMT(AMPDU).rate_table[0][idx] +=
3606 			pstats->succ_bytes + pstats->retry_bytes;
3607 		STATS_OP_FMT(AMPDU).bw[1][bw] +=
3608 			pstats->succ_pkts + pstats->retry_pkts;
3609 		STATS_OP_FMT(AMPDU).nss[1][nss - 1] +=
3610 			pstats->succ_pkts + pstats->retry_pkts;
3611 		STATS_OP_FMT(AMPDU).gi[1][gi] +=
3612 			pstats->succ_pkts + pstats->retry_pkts;
3613 		STATS_OP_FMT(AMPDU).rate_table[1][idx] +=
3614 			pstats->succ_pkts + pstats->retry_pkts;
3615 	} else {
3616 		tx_stats->ack_fails +=
3617 				ATH10K_HW_BA_FAIL(pstats->flags);
3618 	}
3619 
3620 	STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
3621 	STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes;
3622 	STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
3623 
3624 	STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
3625 	STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts;
3626 	STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
3627 
3628 	STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
3629 	STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes;
3630 	STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
3631 
3632 	STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
3633 	STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts;
3634 	STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
3635 
3636 	STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
3637 	STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes;
3638 	STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
3639 
3640 	STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
3641 	STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts;
3642 	STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
3643 
3644 	if (txrate->flags >= RATE_INFO_FLAGS_MCS) {
3645 		STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes;
3646 		STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts;
3647 		STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes;
3648 		STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts;
3649 		STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes;
3650 		STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts;
3651 	}
3652 
3653 	tx_stats->tx_duration += pstats->duration;
3654 }
3655 
3656 static void
3657 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
3658 				struct ieee80211_sta *sta,
3659 				struct ath10k_per_peer_tx_stats *peer_stats)
3660 {
3661 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
3662 	struct ieee80211_chanctx_conf *conf = NULL;
3663 	u8 rate = 0, sgi;
3664 	s8 rate_idx = 0;
3665 	bool skip_auto_rate;
3666 	struct rate_info txrate;
3667 
3668 	lockdep_assert_held(&ar->data_lock);
3669 
3670 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
3671 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
3672 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
3673 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
3674 	sgi = ATH10K_HW_GI(peer_stats->flags);
3675 	skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags);
3676 
3677 	/* Firmware's rate control skips broadcast/management frames,
3678 	 * if host has configure fixed rates and in some other special cases.
3679 	 */
3680 	if (skip_auto_rate)
3681 		return;
3682 
3683 	if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
3684 		ath10k_warn(ar, "Invalid VHT mcs %d peer stats",  txrate.mcs);
3685 		return;
3686 	}
3687 
3688 	if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
3689 	    (txrate.mcs > 7 || txrate.nss < 1)) {
3690 		ath10k_warn(ar, "Invalid HT mcs %d nss %d peer stats",
3691 			    txrate.mcs, txrate.nss);
3692 		return;
3693 	}
3694 
3695 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
3696 	memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status));
3697 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
3698 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
3699 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
3700 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
3701 		if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
3702 			rate = 5;
3703 		rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
3704 		if (rate_idx < 0)
3705 			return;
3706 		arsta->txrate.legacy = rate;
3707 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
3708 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
3709 		arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
3710 	} else {
3711 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
3712 		arsta->txrate.mcs = txrate.mcs;
3713 	}
3714 
3715 	switch (txrate.flags) {
3716 	case WMI_RATE_PREAMBLE_OFDM:
3717 		if (arsta->arvif && arsta->arvif->vif)
3718 			conf = rcu_dereference(arsta->arvif->vif->chanctx_conf);
3719 		if (conf && conf->def.chan->band == NL80211_BAND_5GHZ)
3720 			arsta->tx_info.status.rates[0].idx = rate_idx - 4;
3721 		break;
3722 	case WMI_RATE_PREAMBLE_CCK:
3723 		arsta->tx_info.status.rates[0].idx = rate_idx;
3724 		if (sgi)
3725 			arsta->tx_info.status.rates[0].flags |=
3726 				(IEEE80211_TX_RC_USE_SHORT_PREAMBLE |
3727 				 IEEE80211_TX_RC_SHORT_GI);
3728 		break;
3729 	case WMI_RATE_PREAMBLE_HT:
3730 		arsta->tx_info.status.rates[0].idx =
3731 				txrate.mcs + ((txrate.nss - 1) * 8);
3732 		if (sgi)
3733 			arsta->tx_info.status.rates[0].flags |=
3734 					IEEE80211_TX_RC_SHORT_GI;
3735 		arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS;
3736 		break;
3737 	case WMI_RATE_PREAMBLE_VHT:
3738 		ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0],
3739 				       txrate.mcs, txrate.nss);
3740 		if (sgi)
3741 			arsta->tx_info.status.rates[0].flags |=
3742 						IEEE80211_TX_RC_SHORT_GI;
3743 		arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS;
3744 		break;
3745 	}
3746 
3747 	arsta->txrate.nss = txrate.nss;
3748 	arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
3749 	arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate);
3750 	if (sgi)
3751 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
3752 
3753 	switch (arsta->txrate.bw) {
3754 	case RATE_INFO_BW_40:
3755 		arsta->tx_info.status.rates[0].flags |=
3756 				IEEE80211_TX_RC_40_MHZ_WIDTH;
3757 		break;
3758 	case RATE_INFO_BW_80:
3759 		arsta->tx_info.status.rates[0].flags |=
3760 				IEEE80211_TX_RC_80_MHZ_WIDTH;
3761 		break;
3762 	}
3763 
3764 	if (peer_stats->succ_pkts) {
3765 		arsta->tx_info.flags = IEEE80211_TX_STAT_ACK;
3766 		arsta->tx_info.status.rates[0].count = 1;
3767 		ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info);
3768 	}
3769 
3770 	if (ar->htt.disable_tx_comp) {
3771 		arsta->tx_failed += peer_stats->failed_pkts;
3772 		ath10k_dbg(ar, ATH10K_DBG_HTT, "tx failed %d\n",
3773 			   arsta->tx_failed);
3774 	}
3775 
3776 	arsta->tx_retries += peer_stats->retry_pkts;
3777 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx retries %d", arsta->tx_retries);
3778 
3779 	if (ath10k_debug_is_extd_tx_stats_enabled(ar))
3780 		ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
3781 						    rate_idx);
3782 }
3783 
3784 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
3785 					struct sk_buff *skb)
3786 {
3787 	struct htt_resp *resp = (struct htt_resp *)skb->data;
3788 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3789 	struct htt_per_peer_tx_stats_ind *tx_stats;
3790 	struct ieee80211_sta *sta;
3791 	struct ath10k_peer *peer;
3792 	int peer_id, i;
3793 	u8 ppdu_len, num_ppdu;
3794 
3795 	num_ppdu = resp->peer_tx_stats.num_ppdu;
3796 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
3797 
3798 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
3799 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
3800 		return;
3801 	}
3802 
3803 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
3804 			(resp->peer_tx_stats.payload);
3805 	peer_id = __le16_to_cpu(tx_stats->peer_id);
3806 
3807 	rcu_read_lock();
3808 	spin_lock_bh(&ar->data_lock);
3809 	peer = ath10k_peer_find_by_id(ar, peer_id);
3810 	if (!peer || !peer->sta) {
3811 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
3812 			    peer_id);
3813 		goto out;
3814 	}
3815 
3816 	sta = peer->sta;
3817 	for (i = 0; i < num_ppdu; i++) {
3818 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
3819 			   (resp->peer_tx_stats.payload + i * ppdu_len);
3820 
3821 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
3822 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
3823 		p_tx_stats->failed_bytes =
3824 				__le32_to_cpu(tx_stats->failed_bytes);
3825 		p_tx_stats->ratecode = tx_stats->ratecode;
3826 		p_tx_stats->flags = tx_stats->flags;
3827 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
3828 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
3829 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
3830 		p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration);
3831 
3832 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3833 	}
3834 
3835 out:
3836 	spin_unlock_bh(&ar->data_lock);
3837 	rcu_read_unlock();
3838 }
3839 
3840 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
3841 {
3842 	struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
3843 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3844 	struct ath10k_10_2_peer_tx_stats *tx_stats;
3845 	struct ieee80211_sta *sta;
3846 	struct ath10k_peer *peer;
3847 	u16 log_type = __le16_to_cpu(hdr->log_type);
3848 	u32 peer_id = 0, i;
3849 
3850 	if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
3851 		return;
3852 
3853 	tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
3854 		    ATH10K_10_2_TX_STATS_OFFSET);
3855 
3856 	if (!tx_stats->tx_ppdu_cnt)
3857 		return;
3858 
3859 	peer_id = tx_stats->peer_id;
3860 
3861 	rcu_read_lock();
3862 	spin_lock_bh(&ar->data_lock);
3863 	peer = ath10k_peer_find_by_id(ar, peer_id);
3864 	if (!peer || !peer->sta) {
3865 		ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
3866 			    peer_id);
3867 		goto out;
3868 	}
3869 
3870 	sta = peer->sta;
3871 	for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
3872 		p_tx_stats->succ_bytes =
3873 			__le16_to_cpu(tx_stats->success_bytes[i]);
3874 		p_tx_stats->retry_bytes =
3875 			__le16_to_cpu(tx_stats->retry_bytes[i]);
3876 		p_tx_stats->failed_bytes =
3877 			__le16_to_cpu(tx_stats->failed_bytes[i]);
3878 		p_tx_stats->ratecode = tx_stats->ratecode[i];
3879 		p_tx_stats->flags = tx_stats->flags[i];
3880 		p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
3881 		p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
3882 		p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
3883 
3884 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3885 	}
3886 	spin_unlock_bh(&ar->data_lock);
3887 	rcu_read_unlock();
3888 
3889 	return;
3890 
3891 out:
3892 	spin_unlock_bh(&ar->data_lock);
3893 	rcu_read_unlock();
3894 }
3895 
3896 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type)
3897 {
3898 	switch (sec_type) {
3899 	case HTT_SECURITY_TKIP:
3900 	case HTT_SECURITY_TKIP_NOMIC:
3901 	case HTT_SECURITY_AES_CCMP:
3902 		return 48;
3903 	default:
3904 		return 0;
3905 	}
3906 }
3907 
3908 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar,
3909 					  struct htt_security_indication *ev)
3910 {
3911 	enum htt_txrx_sec_cast_type sec_index;
3912 	enum htt_security_types sec_type;
3913 	struct ath10k_peer *peer;
3914 
3915 	spin_lock_bh(&ar->data_lock);
3916 
3917 	peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id));
3918 	if (!peer) {
3919 		ath10k_warn(ar, "failed to find peer id %d for security indication",
3920 			    __le16_to_cpu(ev->peer_id));
3921 		goto out;
3922 	}
3923 
3924 	sec_type = MS(ev->flags, HTT_SECURITY_TYPE);
3925 
3926 	if (ev->flags & HTT_SECURITY_IS_UNICAST)
3927 		sec_index = HTT_TXRX_SEC_UCAST;
3928 	else
3929 		sec_index = HTT_TXRX_SEC_MCAST;
3930 
3931 	peer->rx_pn[sec_index].sec_type = sec_type;
3932 	peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type);
3933 
3934 	memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid));
3935 	memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn));
3936 
3937 out:
3938 	spin_unlock_bh(&ar->data_lock);
3939 }
3940 
3941 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3942 {
3943 	struct ath10k_htt *htt = &ar->htt;
3944 	struct htt_resp *resp = (struct htt_resp *)skb->data;
3945 	enum htt_t2h_msg_type type;
3946 
3947 	/* confirm alignment */
3948 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
3949 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
3950 
3951 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
3952 		   resp->hdr.msg_type);
3953 
3954 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
3955 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
3956 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
3957 		return true;
3958 	}
3959 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
3960 
3961 	switch (type) {
3962 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
3963 		htt->target_version_major = resp->ver_resp.major;
3964 		htt->target_version_minor = resp->ver_resp.minor;
3965 		complete(&htt->target_version_received);
3966 		break;
3967 	}
3968 	case HTT_T2H_MSG_TYPE_RX_IND:
3969 		if (ar->bus_param.dev_type != ATH10K_DEV_TYPE_HL) {
3970 			ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
3971 		} else {
3972 			skb_queue_tail(&htt->rx_indication_head, skb);
3973 			return false;
3974 		}
3975 		break;
3976 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
3977 		struct htt_peer_map_event ev = {
3978 			.vdev_id = resp->peer_map.vdev_id,
3979 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
3980 		};
3981 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
3982 		ath10k_peer_map_event(htt, &ev);
3983 		break;
3984 	}
3985 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
3986 		struct htt_peer_unmap_event ev = {
3987 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
3988 		};
3989 		ath10k_peer_unmap_event(htt, &ev);
3990 		break;
3991 	}
3992 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
3993 		struct htt_tx_done tx_done = {};
3994 		struct ath10k_htt *htt = &ar->htt;
3995 		struct ath10k_htc *htc = &ar->htc;
3996 		struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid];
3997 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
3998 		int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
3999 
4000 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
4001 
4002 		switch (status) {
4003 		case HTT_MGMT_TX_STATUS_OK:
4004 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
4005 			if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
4006 				     ar->wmi.svc_map) &&
4007 			    (resp->mgmt_tx_completion.flags &
4008 			     HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
4009 				tx_done.ack_rssi =
4010 				FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
4011 					  info);
4012 			}
4013 			break;
4014 		case HTT_MGMT_TX_STATUS_RETRY:
4015 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
4016 			break;
4017 		case HTT_MGMT_TX_STATUS_DROP:
4018 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
4019 			break;
4020 		}
4021 
4022 		if (htt->disable_tx_comp) {
4023 			spin_lock_bh(&htc->tx_lock);
4024 			ep->tx_credits++;
4025 			spin_unlock_bh(&htc->tx_lock);
4026 		}
4027 
4028 		status = ath10k_txrx_tx_unref(htt, &tx_done);
4029 		if (!status) {
4030 			spin_lock_bh(&htt->tx_lock);
4031 			ath10k_htt_tx_mgmt_dec_pending(htt);
4032 			spin_unlock_bh(&htt->tx_lock);
4033 		}
4034 		break;
4035 	}
4036 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
4037 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
4038 		break;
4039 	case HTT_T2H_MSG_TYPE_SEC_IND: {
4040 		struct ath10k *ar = htt->ar;
4041 		struct htt_security_indication *ev = &resp->security_indication;
4042 
4043 		ath10k_htt_rx_sec_ind_handler(ar, ev);
4044 		ath10k_dbg(ar, ATH10K_DBG_HTT,
4045 			   "sec ind peer_id %d unicast %d type %d\n",
4046 			  __le16_to_cpu(ev->peer_id),
4047 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
4048 			  MS(ev->flags, HTT_SECURITY_TYPE));
4049 		complete(&ar->install_key_done);
4050 		break;
4051 	}
4052 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
4053 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
4054 				skb->data, skb->len);
4055 		atomic_inc(&htt->num_mpdus_ready);
4056 
4057 		return ath10k_htt_rx_proc_rx_frag_ind(htt,
4058 						      &resp->rx_frag_ind,
4059 						      skb);
4060 	}
4061 	case HTT_T2H_MSG_TYPE_TEST:
4062 		break;
4063 	case HTT_T2H_MSG_TYPE_STATS_CONF:
4064 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
4065 		break;
4066 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
4067 		/* Firmware can return tx frames if it's unable to fully
4068 		 * process them and suspects host may be able to fix it. ath10k
4069 		 * sends all tx frames as already inspected so this shouldn't
4070 		 * happen unless fw has a bug.
4071 		 */
4072 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
4073 		break;
4074 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
4075 		ath10k_htt_rx_addba(ar, resp);
4076 		break;
4077 	case HTT_T2H_MSG_TYPE_RX_DELBA:
4078 		ath10k_htt_rx_delba(ar, resp);
4079 		break;
4080 	case HTT_T2H_MSG_TYPE_PKTLOG: {
4081 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
4082 					skb->len -
4083 					offsetof(struct htt_resp,
4084 						 pktlog_msg.payload));
4085 
4086 		if (ath10k_peer_stats_enabled(ar))
4087 			ath10k_fetch_10_2_tx_stats(ar,
4088 						   resp->pktlog_msg.payload);
4089 		break;
4090 	}
4091 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
4092 		/* Ignore this event because mac80211 takes care of Rx
4093 		 * aggregation reordering.
4094 		 */
4095 		break;
4096 	}
4097 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
4098 		skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
4099 		return false;
4100 	}
4101 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: {
4102 		struct ath10k_htt *htt = &ar->htt;
4103 		struct ath10k_htc *htc = &ar->htc;
4104 		struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid];
4105 		u32 msg_word = __le32_to_cpu(*(__le32 *)resp);
4106 		int htt_credit_delta;
4107 
4108 		htt_credit_delta = HTT_TX_CREDIT_DELTA_ABS_GET(msg_word);
4109 		if (HTT_TX_CREDIT_SIGN_BIT_GET(msg_word))
4110 			htt_credit_delta = -htt_credit_delta;
4111 
4112 		ath10k_dbg(ar, ATH10K_DBG_HTT,
4113 			   "htt credit update delta %d\n",
4114 			   htt_credit_delta);
4115 
4116 		if (htt->disable_tx_comp) {
4117 			spin_lock_bh(&htc->tx_lock);
4118 			ep->tx_credits += htt_credit_delta;
4119 			spin_unlock_bh(&htc->tx_lock);
4120 			ath10k_dbg(ar, ATH10K_DBG_HTT,
4121 				   "htt credit total %d\n",
4122 				   ep->tx_credits);
4123 			ep->ep_ops.ep_tx_credits(htc->ar);
4124 		}
4125 		break;
4126 	}
4127 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
4128 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
4129 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
4130 
4131 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
4132 		ath10k_dbg(ar, ATH10K_DBG_HTT,
4133 			   "htt chan change freq %u phymode %s\n",
4134 			   freq, ath10k_wmi_phymode_str(phymode));
4135 		break;
4136 	}
4137 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
4138 		break;
4139 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
4140 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
4141 
4142 		if (!tx_fetch_ind) {
4143 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
4144 			break;
4145 		}
4146 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
4147 		break;
4148 	}
4149 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
4150 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
4151 		break;
4152 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
4153 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
4154 		break;
4155 	case HTT_T2H_MSG_TYPE_PEER_STATS:
4156 		ath10k_htt_fetch_peer_stats(ar, skb);
4157 		break;
4158 	case HTT_T2H_MSG_TYPE_EN_STATS:
4159 	default:
4160 		ath10k_warn(ar, "htt event (%d) not handled\n",
4161 			    resp->hdr.msg_type);
4162 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
4163 				skb->data, skb->len);
4164 		break;
4165 	}
4166 	return true;
4167 }
4168 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
4169 
4170 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
4171 					     struct sk_buff *skb)
4172 {
4173 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
4174 	dev_kfree_skb_any(skb);
4175 }
4176 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
4177 
4178 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
4179 {
4180 	struct sk_buff *skb;
4181 
4182 	while (quota < budget) {
4183 		if (skb_queue_empty(&ar->htt.rx_msdus_q))
4184 			break;
4185 
4186 		skb = skb_dequeue(&ar->htt.rx_msdus_q);
4187 		if (!skb)
4188 			break;
4189 		ath10k_process_rx(ar, skb);
4190 		quota++;
4191 	}
4192 
4193 	return quota;
4194 }
4195 
4196 int ath10k_htt_rx_hl_indication(struct ath10k *ar, int budget)
4197 {
4198 	struct htt_resp *resp;
4199 	struct ath10k_htt *htt = &ar->htt;
4200 	struct sk_buff *skb;
4201 	bool release;
4202 	int quota;
4203 
4204 	for (quota = 0; quota < budget; quota++) {
4205 		skb = skb_dequeue(&htt->rx_indication_head);
4206 		if (!skb)
4207 			break;
4208 
4209 		resp = (struct htt_resp *)skb->data;
4210 
4211 		release = ath10k_htt_rx_proc_rx_ind_hl(htt,
4212 						       &resp->rx_ind_hl,
4213 						       skb,
4214 						       HTT_RX_PN_CHECK,
4215 						       HTT_RX_NON_TKIP_MIC);
4216 
4217 		if (release)
4218 			dev_kfree_skb_any(skb);
4219 
4220 		ath10k_dbg(ar, ATH10K_DBG_HTT, "rx indication poll pending count:%d\n",
4221 			   skb_queue_len(&htt->rx_indication_head));
4222 	}
4223 	return quota;
4224 }
4225 EXPORT_SYMBOL(ath10k_htt_rx_hl_indication);
4226 
4227 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
4228 {
4229 	struct ath10k_htt *htt = &ar->htt;
4230 	struct htt_tx_done tx_done = {};
4231 	struct sk_buff_head tx_ind_q;
4232 	struct sk_buff *skb;
4233 	unsigned long flags;
4234 	int quota = 0, done, ret;
4235 	bool resched_napi = false;
4236 
4237 	__skb_queue_head_init(&tx_ind_q);
4238 
4239 	/* Process pending frames before dequeuing more data
4240 	 * from hardware.
4241 	 */
4242 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
4243 	if (quota == budget) {
4244 		resched_napi = true;
4245 		goto exit;
4246 	}
4247 
4248 	while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
4249 		spin_lock_bh(&htt->rx_ring.lock);
4250 		ret = ath10k_htt_rx_in_ord_ind(ar, skb);
4251 		spin_unlock_bh(&htt->rx_ring.lock);
4252 
4253 		dev_kfree_skb_any(skb);
4254 		if (ret == -EIO) {
4255 			resched_napi = true;
4256 			goto exit;
4257 		}
4258 	}
4259 
4260 	while (atomic_read(&htt->num_mpdus_ready)) {
4261 		ret = ath10k_htt_rx_handle_amsdu(htt);
4262 		if (ret == -EIO) {
4263 			resched_napi = true;
4264 			goto exit;
4265 		}
4266 		atomic_dec(&htt->num_mpdus_ready);
4267 	}
4268 
4269 	/* Deliver received data after processing data from hardware */
4270 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
4271 
4272 	/* From NAPI documentation:
4273 	 *  The napi poll() function may also process TX completions, in which
4274 	 *  case if it processes the entire TX ring then it should count that
4275 	 *  work as the rest of the budget.
4276 	 */
4277 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
4278 		quota = budget;
4279 
4280 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
4281 	 * From kfifo_get() documentation:
4282 	 *  Note that with only one concurrent reader and one concurrent writer,
4283 	 *  you don't need extra locking to use these macro.
4284 	 */
4285 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
4286 		ath10k_txrx_tx_unref(htt, &tx_done);
4287 
4288 	ath10k_mac_tx_push_pending(ar);
4289 
4290 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
4291 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
4292 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
4293 
4294 	while ((skb = __skb_dequeue(&tx_ind_q))) {
4295 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
4296 		dev_kfree_skb_any(skb);
4297 	}
4298 
4299 exit:
4300 	ath10k_htt_rx_msdu_buff_replenish(htt);
4301 	/* In case of rx failure or more data to read, report budget
4302 	 * to reschedule NAPI poll
4303 	 */
4304 	done = resched_napi ? budget : quota;
4305 
4306 	return done;
4307 }
4308 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
4309 
4310 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
4311 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
4312 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
4313 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
4314 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
4315 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
4316 };
4317 
4318 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
4319 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
4320 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
4321 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
4322 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
4323 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
4324 };
4325 
4326 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
4327 	.htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl,
4328 };
4329 
4330 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
4331 {
4332 	struct ath10k *ar = htt->ar;
4333 
4334 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
4335 		htt->rx_ops = &htt_rx_ops_hl;
4336 	else if (ar->hw_params.target_64bit)
4337 		htt->rx_ops = &htt_rx_ops_64;
4338 	else
4339 		htt->rx_ops = &htt_rx_ops_32;
4340 }
4341