xref: /linux/drivers/net/wireless/ath/ath10k/htt_rx.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25 
26 #include <linux/log2.h>
27 
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30 
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33 
34 #define HTT_RX_RING_REFILL_RESCHED_MS 5
35 
36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
37 
38 static struct sk_buff *
39 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
40 {
41 	struct ath10k_skb_rxcb *rxcb;
42 
43 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
44 		if (rxcb->paddr == paddr)
45 			return ATH10K_RXCB_SKB(rxcb);
46 
47 	WARN_ON_ONCE(1);
48 	return NULL;
49 }
50 
51 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
52 {
53 	struct sk_buff *skb;
54 	struct ath10k_skb_rxcb *rxcb;
55 	struct hlist_node *n;
56 	int i;
57 
58 	if (htt->rx_ring.in_ord_rx) {
59 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
60 			skb = ATH10K_RXCB_SKB(rxcb);
61 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
62 					 skb->len + skb_tailroom(skb),
63 					 DMA_FROM_DEVICE);
64 			hash_del(&rxcb->hlist);
65 			dev_kfree_skb_any(skb);
66 		}
67 	} else {
68 		for (i = 0; i < htt->rx_ring.size; i++) {
69 			skb = htt->rx_ring.netbufs_ring[i];
70 			if (!skb)
71 				continue;
72 
73 			rxcb = ATH10K_SKB_RXCB(skb);
74 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
75 					 skb->len + skb_tailroom(skb),
76 					 DMA_FROM_DEVICE);
77 			dev_kfree_skb_any(skb);
78 		}
79 	}
80 
81 	htt->rx_ring.fill_cnt = 0;
82 	hash_init(htt->rx_ring.skb_table);
83 	memset(htt->rx_ring.netbufs_ring, 0,
84 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
85 }
86 
87 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
88 {
89 	struct htt_rx_desc *rx_desc;
90 	struct ath10k_skb_rxcb *rxcb;
91 	struct sk_buff *skb;
92 	dma_addr_t paddr;
93 	int ret = 0, idx;
94 
95 	/* The Full Rx Reorder firmware has no way of telling the host
96 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
97 	 * To keep things simple make sure ring is always half empty. This
98 	 * guarantees there'll be no replenishment overruns possible.
99 	 */
100 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
101 
102 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
103 	while (num > 0) {
104 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
105 		if (!skb) {
106 			ret = -ENOMEM;
107 			goto fail;
108 		}
109 
110 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
111 			skb_pull(skb,
112 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
113 				 skb->data);
114 
115 		/* Clear rx_desc attention word before posting to Rx ring */
116 		rx_desc = (struct htt_rx_desc *)skb->data;
117 		rx_desc->attention.flags = __cpu_to_le32(0);
118 
119 		paddr = dma_map_single(htt->ar->dev, skb->data,
120 				       skb->len + skb_tailroom(skb),
121 				       DMA_FROM_DEVICE);
122 
123 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
124 			dev_kfree_skb_any(skb);
125 			ret = -ENOMEM;
126 			goto fail;
127 		}
128 
129 		rxcb = ATH10K_SKB_RXCB(skb);
130 		rxcb->paddr = paddr;
131 		htt->rx_ring.netbufs_ring[idx] = skb;
132 		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
133 		htt->rx_ring.fill_cnt++;
134 
135 		if (htt->rx_ring.in_ord_rx) {
136 			hash_add(htt->rx_ring.skb_table,
137 				 &ATH10K_SKB_RXCB(skb)->hlist,
138 				 (u32)paddr);
139 		}
140 
141 		num--;
142 		idx++;
143 		idx &= htt->rx_ring.size_mask;
144 	}
145 
146 fail:
147 	/*
148 	 * Make sure the rx buffer is updated before available buffer
149 	 * index to avoid any potential rx ring corruption.
150 	 */
151 	mb();
152 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
153 	return ret;
154 }
155 
156 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
157 {
158 	lockdep_assert_held(&htt->rx_ring.lock);
159 	return __ath10k_htt_rx_ring_fill_n(htt, num);
160 }
161 
162 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
163 {
164 	int ret, num_deficit, num_to_fill;
165 
166 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
167 	 * reason is RX may take up significant amount of CPU cycles and starve
168 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
169 	 * with ath10k wlan interface. This ended up with very poor performance
170 	 * once CPU the host system was overwhelmed with RX on ath10k.
171 	 *
172 	 * By limiting the number of refills the replenishing occurs
173 	 * progressively. This in turns makes use of the fact tasklets are
174 	 * processed in FIFO order. This means actual RX processing can starve
175 	 * out refilling. If there's not enough buffers on RX ring FW will not
176 	 * report RX until it is refilled with enough buffers. This
177 	 * automatically balances load wrt to CPU power.
178 	 *
179 	 * This probably comes at a cost of lower maximum throughput but
180 	 * improves the average and stability. */
181 	spin_lock_bh(&htt->rx_ring.lock);
182 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
183 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
184 	num_deficit -= num_to_fill;
185 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
186 	if (ret == -ENOMEM) {
187 		/*
188 		 * Failed to fill it to the desired level -
189 		 * we'll start a timer and try again next time.
190 		 * As long as enough buffers are left in the ring for
191 		 * another A-MPDU rx, no special recovery is needed.
192 		 */
193 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
194 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
195 	} else if (num_deficit > 0) {
196 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
197 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
198 	}
199 	spin_unlock_bh(&htt->rx_ring.lock);
200 }
201 
202 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
203 {
204 	struct ath10k_htt *htt = (struct ath10k_htt *)arg;
205 
206 	ath10k_htt_rx_msdu_buff_replenish(htt);
207 }
208 
209 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
210 {
211 	struct ath10k_htt *htt = &ar->htt;
212 	int ret;
213 
214 	spin_lock_bh(&htt->rx_ring.lock);
215 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
216 					      htt->rx_ring.fill_cnt));
217 	spin_unlock_bh(&htt->rx_ring.lock);
218 
219 	if (ret)
220 		ath10k_htt_rx_ring_free(htt);
221 
222 	return ret;
223 }
224 
225 void ath10k_htt_rx_free(struct ath10k_htt *htt)
226 {
227 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
228 
229 	skb_queue_purge(&htt->rx_compl_q);
230 	skb_queue_purge(&htt->rx_in_ord_compl_q);
231 	skb_queue_purge(&htt->tx_fetch_ind_q);
232 
233 	ath10k_htt_rx_ring_free(htt);
234 
235 	dma_free_coherent(htt->ar->dev,
236 			  (htt->rx_ring.size *
237 			   sizeof(htt->rx_ring.paddrs_ring)),
238 			  htt->rx_ring.paddrs_ring,
239 			  htt->rx_ring.base_paddr);
240 
241 	dma_free_coherent(htt->ar->dev,
242 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
243 			  htt->rx_ring.alloc_idx.vaddr,
244 			  htt->rx_ring.alloc_idx.paddr);
245 
246 	kfree(htt->rx_ring.netbufs_ring);
247 }
248 
249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
250 {
251 	struct ath10k *ar = htt->ar;
252 	int idx;
253 	struct sk_buff *msdu;
254 
255 	lockdep_assert_held(&htt->rx_ring.lock);
256 
257 	if (htt->rx_ring.fill_cnt == 0) {
258 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
259 		return NULL;
260 	}
261 
262 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
263 	msdu = htt->rx_ring.netbufs_ring[idx];
264 	htt->rx_ring.netbufs_ring[idx] = NULL;
265 	htt->rx_ring.paddrs_ring[idx] = 0;
266 
267 	idx++;
268 	idx &= htt->rx_ring.size_mask;
269 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
270 	htt->rx_ring.fill_cnt--;
271 
272 	dma_unmap_single(htt->ar->dev,
273 			 ATH10K_SKB_RXCB(msdu)->paddr,
274 			 msdu->len + skb_tailroom(msdu),
275 			 DMA_FROM_DEVICE);
276 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
277 			msdu->data, msdu->len + skb_tailroom(msdu));
278 
279 	return msdu;
280 }
281 
282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
284 				   struct sk_buff_head *amsdu)
285 {
286 	struct ath10k *ar = htt->ar;
287 	int msdu_len, msdu_chaining = 0;
288 	struct sk_buff *msdu;
289 	struct htt_rx_desc *rx_desc;
290 
291 	lockdep_assert_held(&htt->rx_ring.lock);
292 
293 	for (;;) {
294 		int last_msdu, msdu_len_invalid, msdu_chained;
295 
296 		msdu = ath10k_htt_rx_netbuf_pop(htt);
297 		if (!msdu) {
298 			__skb_queue_purge(amsdu);
299 			return -ENOENT;
300 		}
301 
302 		__skb_queue_tail(amsdu, msdu);
303 
304 		rx_desc = (struct htt_rx_desc *)msdu->data;
305 
306 		/* FIXME: we must report msdu payload since this is what caller
307 		 *        expects now */
308 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
309 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
310 
311 		/*
312 		 * Sanity check - confirm the HW is finished filling in the
313 		 * rx data.
314 		 * If the HW and SW are working correctly, then it's guaranteed
315 		 * that the HW's MAC DMA is done before this point in the SW.
316 		 * To prevent the case that we handle a stale Rx descriptor,
317 		 * just assert for now until we have a way to recover.
318 		 */
319 		if (!(__le32_to_cpu(rx_desc->attention.flags)
320 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
321 			__skb_queue_purge(amsdu);
322 			return -EIO;
323 		}
324 
325 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
326 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
327 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
328 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
329 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
330 		msdu_chained = rx_desc->frag_info.ring2_more_count;
331 
332 		if (msdu_len_invalid)
333 			msdu_len = 0;
334 
335 		skb_trim(msdu, 0);
336 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
337 		msdu_len -= msdu->len;
338 
339 		/* Note: Chained buffers do not contain rx descriptor */
340 		while (msdu_chained--) {
341 			msdu = ath10k_htt_rx_netbuf_pop(htt);
342 			if (!msdu) {
343 				__skb_queue_purge(amsdu);
344 				return -ENOENT;
345 			}
346 
347 			__skb_queue_tail(amsdu, msdu);
348 			skb_trim(msdu, 0);
349 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
350 			msdu_len -= msdu->len;
351 			msdu_chaining = 1;
352 		}
353 
354 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
355 				RX_MSDU_END_INFO0_LAST_MSDU;
356 
357 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
358 					 sizeof(*rx_desc) - sizeof(u32));
359 
360 		if (last_msdu)
361 			break;
362 	}
363 
364 	if (skb_queue_empty(amsdu))
365 		msdu_chaining = -1;
366 
367 	/*
368 	 * Don't refill the ring yet.
369 	 *
370 	 * First, the elements popped here are still in use - it is not
371 	 * safe to overwrite them until the matching call to
372 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
373 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
374 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
375 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
376 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
377 	 * out of the rx ring, and then refill it just once.
378 	 */
379 
380 	return msdu_chaining;
381 }
382 
383 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
384 					       u32 paddr)
385 {
386 	struct ath10k *ar = htt->ar;
387 	struct ath10k_skb_rxcb *rxcb;
388 	struct sk_buff *msdu;
389 
390 	lockdep_assert_held(&htt->rx_ring.lock);
391 
392 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
393 	if (!msdu)
394 		return NULL;
395 
396 	rxcb = ATH10K_SKB_RXCB(msdu);
397 	hash_del(&rxcb->hlist);
398 	htt->rx_ring.fill_cnt--;
399 
400 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
401 			 msdu->len + skb_tailroom(msdu),
402 			 DMA_FROM_DEVICE);
403 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
404 			msdu->data, msdu->len + skb_tailroom(msdu));
405 
406 	return msdu;
407 }
408 
409 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
410 					struct htt_rx_in_ord_ind *ev,
411 					struct sk_buff_head *list)
412 {
413 	struct ath10k *ar = htt->ar;
414 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
415 	struct htt_rx_desc *rxd;
416 	struct sk_buff *msdu;
417 	int msdu_count;
418 	bool is_offload;
419 	u32 paddr;
420 
421 	lockdep_assert_held(&htt->rx_ring.lock);
422 
423 	msdu_count = __le16_to_cpu(ev->msdu_count);
424 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
425 
426 	while (msdu_count--) {
427 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
428 
429 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
430 		if (!msdu) {
431 			__skb_queue_purge(list);
432 			return -ENOENT;
433 		}
434 
435 		__skb_queue_tail(list, msdu);
436 
437 		if (!is_offload) {
438 			rxd = (void *)msdu->data;
439 
440 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
441 
442 			skb_put(msdu, sizeof(*rxd));
443 			skb_pull(msdu, sizeof(*rxd));
444 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
445 
446 			if (!(__le32_to_cpu(rxd->attention.flags) &
447 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
448 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
449 				return -EIO;
450 			}
451 		}
452 
453 		msdu_desc++;
454 	}
455 
456 	return 0;
457 }
458 
459 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
460 {
461 	struct ath10k *ar = htt->ar;
462 	dma_addr_t paddr;
463 	void *vaddr;
464 	size_t size;
465 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
466 
467 	htt->rx_confused = false;
468 
469 	/* XXX: The fill level could be changed during runtime in response to
470 	 * the host processing latency. Is this really worth it?
471 	 */
472 	htt->rx_ring.size = HTT_RX_RING_SIZE;
473 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
474 	htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
475 
476 	if (!is_power_of_2(htt->rx_ring.size)) {
477 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
478 		return -EINVAL;
479 	}
480 
481 	htt->rx_ring.netbufs_ring =
482 		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
483 			GFP_KERNEL);
484 	if (!htt->rx_ring.netbufs_ring)
485 		goto err_netbuf;
486 
487 	size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
488 
489 	vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
490 	if (!vaddr)
491 		goto err_dma_ring;
492 
493 	htt->rx_ring.paddrs_ring = vaddr;
494 	htt->rx_ring.base_paddr = paddr;
495 
496 	vaddr = dma_alloc_coherent(htt->ar->dev,
497 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
498 				   &paddr, GFP_KERNEL);
499 	if (!vaddr)
500 		goto err_dma_idx;
501 
502 	htt->rx_ring.alloc_idx.vaddr = vaddr;
503 	htt->rx_ring.alloc_idx.paddr = paddr;
504 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
505 	*htt->rx_ring.alloc_idx.vaddr = 0;
506 
507 	/* Initialize the Rx refill retry timer */
508 	setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
509 
510 	spin_lock_init(&htt->rx_ring.lock);
511 
512 	htt->rx_ring.fill_cnt = 0;
513 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
514 	hash_init(htt->rx_ring.skb_table);
515 
516 	skb_queue_head_init(&htt->rx_compl_q);
517 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
518 	skb_queue_head_init(&htt->tx_fetch_ind_q);
519 	atomic_set(&htt->num_mpdus_ready, 0);
520 
521 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
522 		   htt->rx_ring.size, htt->rx_ring.fill_level);
523 	return 0;
524 
525 err_dma_idx:
526 	dma_free_coherent(htt->ar->dev,
527 			  (htt->rx_ring.size *
528 			   sizeof(htt->rx_ring.paddrs_ring)),
529 			  htt->rx_ring.paddrs_ring,
530 			  htt->rx_ring.base_paddr);
531 err_dma_ring:
532 	kfree(htt->rx_ring.netbufs_ring);
533 err_netbuf:
534 	return -ENOMEM;
535 }
536 
537 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
538 					  enum htt_rx_mpdu_encrypt_type type)
539 {
540 	switch (type) {
541 	case HTT_RX_MPDU_ENCRYPT_NONE:
542 		return 0;
543 	case HTT_RX_MPDU_ENCRYPT_WEP40:
544 	case HTT_RX_MPDU_ENCRYPT_WEP104:
545 		return IEEE80211_WEP_IV_LEN;
546 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
547 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
548 		return IEEE80211_TKIP_IV_LEN;
549 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
550 		return IEEE80211_CCMP_HDR_LEN;
551 	case HTT_RX_MPDU_ENCRYPT_WEP128:
552 	case HTT_RX_MPDU_ENCRYPT_WAPI:
553 		break;
554 	}
555 
556 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
557 	return 0;
558 }
559 
560 #define MICHAEL_MIC_LEN 8
561 
562 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
563 					 enum htt_rx_mpdu_encrypt_type type)
564 {
565 	switch (type) {
566 	case HTT_RX_MPDU_ENCRYPT_NONE:
567 		return 0;
568 	case HTT_RX_MPDU_ENCRYPT_WEP40:
569 	case HTT_RX_MPDU_ENCRYPT_WEP104:
570 		return IEEE80211_WEP_ICV_LEN;
571 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
572 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
573 		return IEEE80211_TKIP_ICV_LEN;
574 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
575 		return IEEE80211_CCMP_MIC_LEN;
576 	case HTT_RX_MPDU_ENCRYPT_WEP128:
577 	case HTT_RX_MPDU_ENCRYPT_WAPI:
578 		break;
579 	}
580 
581 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
582 	return 0;
583 }
584 
585 struct amsdu_subframe_hdr {
586 	u8 dst[ETH_ALEN];
587 	u8 src[ETH_ALEN];
588 	__be16 len;
589 } __packed;
590 
591 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
592 
593 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
594 				  struct ieee80211_rx_status *status,
595 				  struct htt_rx_desc *rxd)
596 {
597 	struct ieee80211_supported_band *sband;
598 	u8 cck, rate, bw, sgi, mcs, nss;
599 	u8 preamble = 0;
600 	u8 group_id;
601 	u32 info1, info2, info3;
602 
603 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
604 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
605 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
606 
607 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
608 
609 	switch (preamble) {
610 	case HTT_RX_LEGACY:
611 		/* To get legacy rate index band is required. Since band can't
612 		 * be undefined check if freq is non-zero.
613 		 */
614 		if (!status->freq)
615 			return;
616 
617 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
618 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
619 		rate &= ~RX_PPDU_START_RATE_FLAG;
620 
621 		sband = &ar->mac.sbands[status->band];
622 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
623 		break;
624 	case HTT_RX_HT:
625 	case HTT_RX_HT_WITH_TXBF:
626 		/* HT-SIG - Table 20-11 in info2 and info3 */
627 		mcs = info2 & 0x1F;
628 		nss = mcs >> 3;
629 		bw = (info2 >> 7) & 1;
630 		sgi = (info3 >> 7) & 1;
631 
632 		status->rate_idx = mcs;
633 		status->flag |= RX_FLAG_HT;
634 		if (sgi)
635 			status->flag |= RX_FLAG_SHORT_GI;
636 		if (bw)
637 			status->flag |= RX_FLAG_40MHZ;
638 		break;
639 	case HTT_RX_VHT:
640 	case HTT_RX_VHT_WITH_TXBF:
641 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
642 		   TODO check this */
643 		bw = info2 & 3;
644 		sgi = info3 & 1;
645 		group_id = (info2 >> 4) & 0x3F;
646 
647 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
648 			mcs = (info3 >> 4) & 0x0F;
649 			nss = ((info2 >> 10) & 0x07) + 1;
650 		} else {
651 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
652 			 * so it's impossible to decode MCS. Also since
653 			 * firmware consumes Group Id Management frames host
654 			 * has no knowledge regarding group/user position
655 			 * mapping so it's impossible to pick the correct Nsts
656 			 * from VHT-SIG-A1.
657 			 *
658 			 * Bandwidth and SGI are valid so report the rateinfo
659 			 * on best-effort basis.
660 			 */
661 			mcs = 0;
662 			nss = 1;
663 		}
664 
665 		if (mcs > 0x09) {
666 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
667 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
668 				    __le32_to_cpu(rxd->attention.flags),
669 				    __le32_to_cpu(rxd->mpdu_start.info0),
670 				    __le32_to_cpu(rxd->mpdu_start.info1),
671 				    __le32_to_cpu(rxd->msdu_start.common.info0),
672 				    __le32_to_cpu(rxd->msdu_start.common.info1),
673 				    rxd->ppdu_start.info0,
674 				    __le32_to_cpu(rxd->ppdu_start.info1),
675 				    __le32_to_cpu(rxd->ppdu_start.info2),
676 				    __le32_to_cpu(rxd->ppdu_start.info3),
677 				    __le32_to_cpu(rxd->ppdu_start.info4));
678 
679 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
680 				    __le32_to_cpu(rxd->msdu_end.common.info0),
681 				    __le32_to_cpu(rxd->mpdu_end.info0));
682 
683 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
684 					"rx desc msdu payload: ",
685 					rxd->msdu_payload, 50);
686 		}
687 
688 		status->rate_idx = mcs;
689 		status->vht_nss = nss;
690 
691 		if (sgi)
692 			status->flag |= RX_FLAG_SHORT_GI;
693 
694 		switch (bw) {
695 		/* 20MHZ */
696 		case 0:
697 			break;
698 		/* 40MHZ */
699 		case 1:
700 			status->flag |= RX_FLAG_40MHZ;
701 			break;
702 		/* 80MHZ */
703 		case 2:
704 			status->vht_flag |= RX_VHT_FLAG_80MHZ;
705 		}
706 
707 		status->flag |= RX_FLAG_VHT;
708 		break;
709 	default:
710 		break;
711 	}
712 }
713 
714 static struct ieee80211_channel *
715 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
716 {
717 	struct ath10k_peer *peer;
718 	struct ath10k_vif *arvif;
719 	struct cfg80211_chan_def def;
720 	u16 peer_id;
721 
722 	lockdep_assert_held(&ar->data_lock);
723 
724 	if (!rxd)
725 		return NULL;
726 
727 	if (rxd->attention.flags &
728 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
729 		return NULL;
730 
731 	if (!(rxd->msdu_end.common.info0 &
732 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
733 		return NULL;
734 
735 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
736 		     RX_MPDU_START_INFO0_PEER_IDX);
737 
738 	peer = ath10k_peer_find_by_id(ar, peer_id);
739 	if (!peer)
740 		return NULL;
741 
742 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
743 	if (WARN_ON_ONCE(!arvif))
744 		return NULL;
745 
746 	if (ath10k_mac_vif_chan(arvif->vif, &def))
747 		return NULL;
748 
749 	return def.chan;
750 }
751 
752 static struct ieee80211_channel *
753 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
754 {
755 	struct ath10k_vif *arvif;
756 	struct cfg80211_chan_def def;
757 
758 	lockdep_assert_held(&ar->data_lock);
759 
760 	list_for_each_entry(arvif, &ar->arvifs, list) {
761 		if (arvif->vdev_id == vdev_id &&
762 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
763 			return def.chan;
764 	}
765 
766 	return NULL;
767 }
768 
769 static void
770 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
771 			      struct ieee80211_chanctx_conf *conf,
772 			      void *data)
773 {
774 	struct cfg80211_chan_def *def = data;
775 
776 	*def = conf->def;
777 }
778 
779 static struct ieee80211_channel *
780 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
781 {
782 	struct cfg80211_chan_def def = {};
783 
784 	ieee80211_iter_chan_contexts_atomic(ar->hw,
785 					    ath10k_htt_rx_h_any_chan_iter,
786 					    &def);
787 
788 	return def.chan;
789 }
790 
791 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
792 				    struct ieee80211_rx_status *status,
793 				    struct htt_rx_desc *rxd,
794 				    u32 vdev_id)
795 {
796 	struct ieee80211_channel *ch;
797 
798 	spin_lock_bh(&ar->data_lock);
799 	ch = ar->scan_channel;
800 	if (!ch)
801 		ch = ar->rx_channel;
802 	if (!ch)
803 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
804 	if (!ch)
805 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
806 	if (!ch)
807 		ch = ath10k_htt_rx_h_any_channel(ar);
808 	if (!ch)
809 		ch = ar->tgt_oper_chan;
810 	spin_unlock_bh(&ar->data_lock);
811 
812 	if (!ch)
813 		return false;
814 
815 	status->band = ch->band;
816 	status->freq = ch->center_freq;
817 
818 	return true;
819 }
820 
821 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
822 				   struct ieee80211_rx_status *status,
823 				   struct htt_rx_desc *rxd)
824 {
825 	/* FIXME: Get real NF */
826 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
827 			 rxd->ppdu_start.rssi_comb;
828 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
829 }
830 
831 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
832 				    struct ieee80211_rx_status *status,
833 				    struct htt_rx_desc *rxd)
834 {
835 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
836 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
837 	 * TSF. Is it worth holding frames until end of PPDU is known?
838 	 *
839 	 * FIXME: Can we get/compute 64bit TSF?
840 	 */
841 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
842 	status->flag |= RX_FLAG_MACTIME_END;
843 }
844 
845 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
846 				 struct sk_buff_head *amsdu,
847 				 struct ieee80211_rx_status *status,
848 				 u32 vdev_id)
849 {
850 	struct sk_buff *first;
851 	struct htt_rx_desc *rxd;
852 	bool is_first_ppdu;
853 	bool is_last_ppdu;
854 
855 	if (skb_queue_empty(amsdu))
856 		return;
857 
858 	first = skb_peek(amsdu);
859 	rxd = (void *)first->data - sizeof(*rxd);
860 
861 	is_first_ppdu = !!(rxd->attention.flags &
862 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
863 	is_last_ppdu = !!(rxd->attention.flags &
864 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
865 
866 	if (is_first_ppdu) {
867 		/* New PPDU starts so clear out the old per-PPDU status. */
868 		status->freq = 0;
869 		status->rate_idx = 0;
870 		status->vht_nss = 0;
871 		status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
872 		status->flag &= ~(RX_FLAG_HT |
873 				  RX_FLAG_VHT |
874 				  RX_FLAG_SHORT_GI |
875 				  RX_FLAG_40MHZ |
876 				  RX_FLAG_MACTIME_END);
877 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
878 
879 		ath10k_htt_rx_h_signal(ar, status, rxd);
880 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
881 		ath10k_htt_rx_h_rates(ar, status, rxd);
882 	}
883 
884 	if (is_last_ppdu)
885 		ath10k_htt_rx_h_mactime(ar, status, rxd);
886 }
887 
888 static const char * const tid_to_ac[] = {
889 	"BE",
890 	"BK",
891 	"BK",
892 	"BE",
893 	"VI",
894 	"VI",
895 	"VO",
896 	"VO",
897 };
898 
899 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
900 {
901 	u8 *qc;
902 	int tid;
903 
904 	if (!ieee80211_is_data_qos(hdr->frame_control))
905 		return "";
906 
907 	qc = ieee80211_get_qos_ctl(hdr);
908 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
909 	if (tid < 8)
910 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
911 	else
912 		snprintf(out, size, "tid %d", tid);
913 
914 	return out;
915 }
916 
917 static void ath10k_process_rx(struct ath10k *ar,
918 			      struct ieee80211_rx_status *rx_status,
919 			      struct sk_buff *skb)
920 {
921 	struct ieee80211_rx_status *status;
922 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
923 	char tid[32];
924 
925 	status = IEEE80211_SKB_RXCB(skb);
926 	*status = *rx_status;
927 
928 	ath10k_dbg(ar, ATH10K_DBG_DATA,
929 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%llx fcs-err %i mic-err %i amsdu-more %i\n",
930 		   skb,
931 		   skb->len,
932 		   ieee80211_get_SA(hdr),
933 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
934 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
935 							"mcast" : "ucast",
936 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
937 		   (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) == 0 ?
938 							"legacy" : "",
939 		   status->flag & RX_FLAG_HT ? "ht" : "",
940 		   status->flag & RX_FLAG_VHT ? "vht" : "",
941 		   status->flag & RX_FLAG_40MHZ ? "40" : "",
942 		   status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
943 		   status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
944 		   status->rate_idx,
945 		   status->vht_nss,
946 		   status->freq,
947 		   status->band, status->flag,
948 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
949 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
950 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
951 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
952 			skb->data, skb->len);
953 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
954 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
955 
956 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
957 }
958 
959 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
960 				      struct ieee80211_hdr *hdr)
961 {
962 	int len = ieee80211_hdrlen(hdr->frame_control);
963 
964 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
965 		      ar->running_fw->fw_file.fw_features))
966 		len = round_up(len, 4);
967 
968 	return len;
969 }
970 
971 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
972 					struct sk_buff *msdu,
973 					struct ieee80211_rx_status *status,
974 					enum htt_rx_mpdu_encrypt_type enctype,
975 					bool is_decrypted)
976 {
977 	struct ieee80211_hdr *hdr;
978 	struct htt_rx_desc *rxd;
979 	size_t hdr_len;
980 	size_t crypto_len;
981 	bool is_first;
982 	bool is_last;
983 
984 	rxd = (void *)msdu->data - sizeof(*rxd);
985 	is_first = !!(rxd->msdu_end.common.info0 &
986 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
987 	is_last = !!(rxd->msdu_end.common.info0 &
988 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
989 
990 	/* Delivered decapped frame:
991 	 * [802.11 header]
992 	 * [crypto param] <-- can be trimmed if !fcs_err &&
993 	 *                    !decrypt_err && !peer_idx_invalid
994 	 * [amsdu header] <-- only if A-MSDU
995 	 * [rfc1042/llc]
996 	 * [payload]
997 	 * [FCS] <-- at end, needs to be trimmed
998 	 */
999 
1000 	/* This probably shouldn't happen but warn just in case */
1001 	if (unlikely(WARN_ON_ONCE(!is_first)))
1002 		return;
1003 
1004 	/* This probably shouldn't happen but warn just in case */
1005 	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1006 		return;
1007 
1008 	skb_trim(msdu, msdu->len - FCS_LEN);
1009 
1010 	/* In most cases this will be true for sniffed frames. It makes sense
1011 	 * to deliver them as-is without stripping the crypto param. This is
1012 	 * necessary for software based decryption.
1013 	 *
1014 	 * If there's no error then the frame is decrypted. At least that is
1015 	 * the case for frames that come in via fragmented rx indication.
1016 	 */
1017 	if (!is_decrypted)
1018 		return;
1019 
1020 	/* The payload is decrypted so strip crypto params. Start from tail
1021 	 * since hdr is used to compute some stuff.
1022 	 */
1023 
1024 	hdr = (void *)msdu->data;
1025 
1026 	/* Tail */
1027 	if (status->flag & RX_FLAG_IV_STRIPPED)
1028 		skb_trim(msdu, msdu->len -
1029 			 ath10k_htt_rx_crypto_tail_len(ar, enctype));
1030 
1031 	/* MMIC */
1032 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1033 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1034 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1035 		skb_trim(msdu, msdu->len - 8);
1036 
1037 	/* Head */
1038 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1039 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1040 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1041 
1042 		memmove((void *)msdu->data + crypto_len,
1043 			(void *)msdu->data, hdr_len);
1044 		skb_pull(msdu, crypto_len);
1045 	}
1046 }
1047 
1048 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1049 					  struct sk_buff *msdu,
1050 					  struct ieee80211_rx_status *status,
1051 					  const u8 first_hdr[64])
1052 {
1053 	struct ieee80211_hdr *hdr;
1054 	struct htt_rx_desc *rxd;
1055 	size_t hdr_len;
1056 	u8 da[ETH_ALEN];
1057 	u8 sa[ETH_ALEN];
1058 	int l3_pad_bytes;
1059 
1060 	/* Delivered decapped frame:
1061 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1062 	 * [rfc1042/llc]
1063 	 *
1064 	 * Note: The nwifi header doesn't have QoS Control and is
1065 	 * (always?) a 3addr frame.
1066 	 *
1067 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1068 	 * of an A-MSDU.
1069 	 */
1070 
1071 	/* pull decapped header and copy SA & DA */
1072 	rxd = (void *)msdu->data - sizeof(*rxd);
1073 
1074 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1075 	skb_put(msdu, l3_pad_bytes);
1076 
1077 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1078 
1079 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1080 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1081 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1082 	skb_pull(msdu, hdr_len);
1083 
1084 	/* push original 802.11 header */
1085 	hdr = (struct ieee80211_hdr *)first_hdr;
1086 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1087 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1088 
1089 	/* original 802.11 header has a different DA and in
1090 	 * case of 4addr it may also have different SA
1091 	 */
1092 	hdr = (struct ieee80211_hdr *)msdu->data;
1093 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1094 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1095 }
1096 
1097 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1098 					  struct sk_buff *msdu,
1099 					  enum htt_rx_mpdu_encrypt_type enctype)
1100 {
1101 	struct ieee80211_hdr *hdr;
1102 	struct htt_rx_desc *rxd;
1103 	size_t hdr_len, crypto_len;
1104 	void *rfc1042;
1105 	bool is_first, is_last, is_amsdu;
1106 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1107 
1108 	rxd = (void *)msdu->data - sizeof(*rxd);
1109 	hdr = (void *)rxd->rx_hdr_status;
1110 
1111 	is_first = !!(rxd->msdu_end.common.info0 &
1112 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1113 	is_last = !!(rxd->msdu_end.common.info0 &
1114 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1115 	is_amsdu = !(is_first && is_last);
1116 
1117 	rfc1042 = hdr;
1118 
1119 	if (is_first) {
1120 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1121 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1122 
1123 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1124 			   round_up(crypto_len, bytes_aligned);
1125 	}
1126 
1127 	if (is_amsdu)
1128 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1129 
1130 	return rfc1042;
1131 }
1132 
1133 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1134 					struct sk_buff *msdu,
1135 					struct ieee80211_rx_status *status,
1136 					const u8 first_hdr[64],
1137 					enum htt_rx_mpdu_encrypt_type enctype)
1138 {
1139 	struct ieee80211_hdr *hdr;
1140 	struct ethhdr *eth;
1141 	size_t hdr_len;
1142 	void *rfc1042;
1143 	u8 da[ETH_ALEN];
1144 	u8 sa[ETH_ALEN];
1145 	int l3_pad_bytes;
1146 	struct htt_rx_desc *rxd;
1147 
1148 	/* Delivered decapped frame:
1149 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1150 	 * [payload]
1151 	 */
1152 
1153 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1154 	if (WARN_ON_ONCE(!rfc1042))
1155 		return;
1156 
1157 	rxd = (void *)msdu->data - sizeof(*rxd);
1158 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1159 	skb_put(msdu, l3_pad_bytes);
1160 	skb_pull(msdu, l3_pad_bytes);
1161 
1162 	/* pull decapped header and copy SA & DA */
1163 	eth = (struct ethhdr *)msdu->data;
1164 	ether_addr_copy(da, eth->h_dest);
1165 	ether_addr_copy(sa, eth->h_source);
1166 	skb_pull(msdu, sizeof(struct ethhdr));
1167 
1168 	/* push rfc1042/llc/snap */
1169 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1170 	       sizeof(struct rfc1042_hdr));
1171 
1172 	/* push original 802.11 header */
1173 	hdr = (struct ieee80211_hdr *)first_hdr;
1174 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1175 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1176 
1177 	/* original 802.11 header has a different DA and in
1178 	 * case of 4addr it may also have different SA
1179 	 */
1180 	hdr = (struct ieee80211_hdr *)msdu->data;
1181 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1182 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1183 }
1184 
1185 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1186 					 struct sk_buff *msdu,
1187 					 struct ieee80211_rx_status *status,
1188 					 const u8 first_hdr[64])
1189 {
1190 	struct ieee80211_hdr *hdr;
1191 	size_t hdr_len;
1192 	int l3_pad_bytes;
1193 	struct htt_rx_desc *rxd;
1194 
1195 	/* Delivered decapped frame:
1196 	 * [amsdu header] <-- replaced with 802.11 hdr
1197 	 * [rfc1042/llc]
1198 	 * [payload]
1199 	 */
1200 
1201 	rxd = (void *)msdu->data - sizeof(*rxd);
1202 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1203 
1204 	skb_put(msdu, l3_pad_bytes);
1205 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1206 
1207 	hdr = (struct ieee80211_hdr *)first_hdr;
1208 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1209 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1210 }
1211 
1212 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1213 				    struct sk_buff *msdu,
1214 				    struct ieee80211_rx_status *status,
1215 				    u8 first_hdr[64],
1216 				    enum htt_rx_mpdu_encrypt_type enctype,
1217 				    bool is_decrypted)
1218 {
1219 	struct htt_rx_desc *rxd;
1220 	enum rx_msdu_decap_format decap;
1221 
1222 	/* First msdu's decapped header:
1223 	 * [802.11 header] <-- padded to 4 bytes long
1224 	 * [crypto param] <-- padded to 4 bytes long
1225 	 * [amsdu header] <-- only if A-MSDU
1226 	 * [rfc1042/llc]
1227 	 *
1228 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1229 	 * [amsdu header] <-- only if A-MSDU
1230 	 * [rfc1042/llc]
1231 	 */
1232 
1233 	rxd = (void *)msdu->data - sizeof(*rxd);
1234 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1235 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1236 
1237 	switch (decap) {
1238 	case RX_MSDU_DECAP_RAW:
1239 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1240 					    is_decrypted);
1241 		break;
1242 	case RX_MSDU_DECAP_NATIVE_WIFI:
1243 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1244 		break;
1245 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1246 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1247 		break;
1248 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1249 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1250 		break;
1251 	}
1252 }
1253 
1254 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1255 {
1256 	struct htt_rx_desc *rxd;
1257 	u32 flags, info;
1258 	bool is_ip4, is_ip6;
1259 	bool is_tcp, is_udp;
1260 	bool ip_csum_ok, tcpudp_csum_ok;
1261 
1262 	rxd = (void *)skb->data - sizeof(*rxd);
1263 	flags = __le32_to_cpu(rxd->attention.flags);
1264 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1265 
1266 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1267 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1268 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1269 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1270 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1271 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1272 
1273 	if (!is_ip4 && !is_ip6)
1274 		return CHECKSUM_NONE;
1275 	if (!is_tcp && !is_udp)
1276 		return CHECKSUM_NONE;
1277 	if (!ip_csum_ok)
1278 		return CHECKSUM_NONE;
1279 	if (!tcpudp_csum_ok)
1280 		return CHECKSUM_NONE;
1281 
1282 	return CHECKSUM_UNNECESSARY;
1283 }
1284 
1285 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1286 {
1287 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1288 }
1289 
1290 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1291 				 struct sk_buff_head *amsdu,
1292 				 struct ieee80211_rx_status *status)
1293 {
1294 	struct sk_buff *first;
1295 	struct sk_buff *last;
1296 	struct sk_buff *msdu;
1297 	struct htt_rx_desc *rxd;
1298 	struct ieee80211_hdr *hdr;
1299 	enum htt_rx_mpdu_encrypt_type enctype;
1300 	u8 first_hdr[64];
1301 	u8 *qos;
1302 	size_t hdr_len;
1303 	bool has_fcs_err;
1304 	bool has_crypto_err;
1305 	bool has_tkip_err;
1306 	bool has_peer_idx_invalid;
1307 	bool is_decrypted;
1308 	bool is_mgmt;
1309 	u32 attention;
1310 
1311 	if (skb_queue_empty(amsdu))
1312 		return;
1313 
1314 	first = skb_peek(amsdu);
1315 	rxd = (void *)first->data - sizeof(*rxd);
1316 
1317 	is_mgmt = !!(rxd->attention.flags &
1318 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1319 
1320 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1321 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1322 
1323 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1324 	 * decapped header. It'll be used for undecapping of each MSDU.
1325 	 */
1326 	hdr = (void *)rxd->rx_hdr_status;
1327 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1328 	memcpy(first_hdr, hdr, hdr_len);
1329 
1330 	/* Each A-MSDU subframe will use the original header as the base and be
1331 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1332 	 */
1333 	hdr = (void *)first_hdr;
1334 	qos = ieee80211_get_qos_ctl(hdr);
1335 	qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1336 
1337 	/* Some attention flags are valid only in the last MSDU. */
1338 	last = skb_peek_tail(amsdu);
1339 	rxd = (void *)last->data - sizeof(*rxd);
1340 	attention = __le32_to_cpu(rxd->attention.flags);
1341 
1342 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1343 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1344 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1345 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1346 
1347 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1348 	 * e.g. due to fcs error, missing peer or invalid key data it will
1349 	 * report the frame as raw.
1350 	 */
1351 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1352 			!has_fcs_err &&
1353 			!has_crypto_err &&
1354 			!has_peer_idx_invalid);
1355 
1356 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1357 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1358 			  RX_FLAG_MMIC_ERROR |
1359 			  RX_FLAG_DECRYPTED |
1360 			  RX_FLAG_IV_STRIPPED |
1361 			  RX_FLAG_ONLY_MONITOR |
1362 			  RX_FLAG_MMIC_STRIPPED);
1363 
1364 	if (has_fcs_err)
1365 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1366 
1367 	if (has_tkip_err)
1368 		status->flag |= RX_FLAG_MMIC_ERROR;
1369 
1370 	/* Firmware reports all necessary management frames via WMI already.
1371 	 * They are not reported to monitor interfaces at all so pass the ones
1372 	 * coming via HTT to monitor interfaces instead. This simplifies
1373 	 * matters a lot.
1374 	 */
1375 	if (is_mgmt)
1376 		status->flag |= RX_FLAG_ONLY_MONITOR;
1377 
1378 	if (is_decrypted) {
1379 		status->flag |= RX_FLAG_DECRYPTED;
1380 
1381 		if (likely(!is_mgmt))
1382 			status->flag |= RX_FLAG_IV_STRIPPED |
1383 					RX_FLAG_MMIC_STRIPPED;
1384 }
1385 
1386 	skb_queue_walk(amsdu, msdu) {
1387 		ath10k_htt_rx_h_csum_offload(msdu);
1388 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1389 					is_decrypted);
1390 
1391 		/* Undecapping involves copying the original 802.11 header back
1392 		 * to sk_buff. If frame is protected and hardware has decrypted
1393 		 * it then remove the protected bit.
1394 		 */
1395 		if (!is_decrypted)
1396 			continue;
1397 		if (is_mgmt)
1398 			continue;
1399 
1400 		hdr = (void *)msdu->data;
1401 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1402 	}
1403 }
1404 
1405 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1406 				    struct sk_buff_head *amsdu,
1407 				    struct ieee80211_rx_status *status)
1408 {
1409 	struct sk_buff *msdu;
1410 
1411 	while ((msdu = __skb_dequeue(amsdu))) {
1412 		/* Setup per-MSDU flags */
1413 		if (skb_queue_empty(amsdu))
1414 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1415 		else
1416 			status->flag |= RX_FLAG_AMSDU_MORE;
1417 
1418 		ath10k_process_rx(ar, status, msdu);
1419 	}
1420 }
1421 
1422 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1423 {
1424 	struct sk_buff *skb, *first;
1425 	int space;
1426 	int total_len = 0;
1427 
1428 	/* TODO:  Might could optimize this by using
1429 	 * skb_try_coalesce or similar method to
1430 	 * decrease copying, or maybe get mac80211 to
1431 	 * provide a way to just receive a list of
1432 	 * skb?
1433 	 */
1434 
1435 	first = __skb_dequeue(amsdu);
1436 
1437 	/* Allocate total length all at once. */
1438 	skb_queue_walk(amsdu, skb)
1439 		total_len += skb->len;
1440 
1441 	space = total_len - skb_tailroom(first);
1442 	if ((space > 0) &&
1443 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1444 		/* TODO:  bump some rx-oom error stat */
1445 		/* put it back together so we can free the
1446 		 * whole list at once.
1447 		 */
1448 		__skb_queue_head(amsdu, first);
1449 		return -1;
1450 	}
1451 
1452 	/* Walk list again, copying contents into
1453 	 * msdu_head
1454 	 */
1455 	while ((skb = __skb_dequeue(amsdu))) {
1456 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1457 					  skb->len);
1458 		dev_kfree_skb_any(skb);
1459 	}
1460 
1461 	__skb_queue_head(amsdu, first);
1462 	return 0;
1463 }
1464 
1465 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1466 				    struct sk_buff_head *amsdu)
1467 {
1468 	struct sk_buff *first;
1469 	struct htt_rx_desc *rxd;
1470 	enum rx_msdu_decap_format decap;
1471 
1472 	first = skb_peek(amsdu);
1473 	rxd = (void *)first->data - sizeof(*rxd);
1474 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1475 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1476 
1477 	/* FIXME: Current unchaining logic can only handle simple case of raw
1478 	 * msdu chaining. If decapping is other than raw the chaining may be
1479 	 * more complex and this isn't handled by the current code. Don't even
1480 	 * try re-constructing such frames - it'll be pretty much garbage.
1481 	 */
1482 	if (decap != RX_MSDU_DECAP_RAW ||
1483 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1484 		__skb_queue_purge(amsdu);
1485 		return;
1486 	}
1487 
1488 	ath10k_unchain_msdu(amsdu);
1489 }
1490 
1491 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1492 					struct sk_buff_head *amsdu,
1493 					struct ieee80211_rx_status *rx_status)
1494 {
1495 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1496 	 * invalid/dangerous frames.
1497 	 */
1498 
1499 	if (!rx_status->freq) {
1500 		ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1501 		return false;
1502 	}
1503 
1504 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1505 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1506 		return false;
1507 	}
1508 
1509 	return true;
1510 }
1511 
1512 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1513 				   struct sk_buff_head *amsdu,
1514 				   struct ieee80211_rx_status *rx_status)
1515 {
1516 	if (skb_queue_empty(amsdu))
1517 		return;
1518 
1519 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1520 		return;
1521 
1522 	__skb_queue_purge(amsdu);
1523 }
1524 
1525 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1526 {
1527 	struct ath10k *ar = htt->ar;
1528 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1529 	struct sk_buff_head amsdu;
1530 	int ret, num_msdus;
1531 
1532 	__skb_queue_head_init(&amsdu);
1533 
1534 	spin_lock_bh(&htt->rx_ring.lock);
1535 	if (htt->rx_confused) {
1536 		spin_unlock_bh(&htt->rx_ring.lock);
1537 		return -EIO;
1538 	}
1539 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1540 	spin_unlock_bh(&htt->rx_ring.lock);
1541 
1542 	if (ret < 0) {
1543 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1544 		__skb_queue_purge(&amsdu);
1545 		/* FIXME: It's probably a good idea to reboot the
1546 		 * device instead of leaving it inoperable.
1547 		 */
1548 		htt->rx_confused = true;
1549 		return ret;
1550 	}
1551 
1552 	num_msdus = skb_queue_len(&amsdu);
1553 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1554 
1555 	/* only for ret = 1 indicates chained msdus */
1556 	if (ret > 0)
1557 		ath10k_htt_rx_h_unchain(ar, &amsdu);
1558 
1559 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1560 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1561 	ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1562 
1563 	return num_msdus;
1564 }
1565 
1566 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1567 				      struct htt_rx_indication *rx)
1568 {
1569 	struct ath10k *ar = htt->ar;
1570 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1571 	int num_mpdu_ranges;
1572 	int i, mpdu_count = 0;
1573 
1574 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1575 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1576 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1577 
1578 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1579 			rx, sizeof(*rx) +
1580 			(sizeof(struct htt_rx_indication_mpdu_range) *
1581 				num_mpdu_ranges));
1582 
1583 	for (i = 0; i < num_mpdu_ranges; i++)
1584 		mpdu_count += mpdu_ranges[i].mpdu_count;
1585 
1586 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
1587 }
1588 
1589 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1590 				       struct sk_buff *skb)
1591 {
1592 	struct ath10k_htt *htt = &ar->htt;
1593 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1594 	struct htt_tx_done tx_done = {};
1595 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1596 	__le16 msdu_id;
1597 	int i;
1598 
1599 	switch (status) {
1600 	case HTT_DATA_TX_STATUS_NO_ACK:
1601 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1602 		break;
1603 	case HTT_DATA_TX_STATUS_OK:
1604 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
1605 		break;
1606 	case HTT_DATA_TX_STATUS_DISCARD:
1607 	case HTT_DATA_TX_STATUS_POSTPONE:
1608 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1609 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1610 		break;
1611 	default:
1612 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1613 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1614 		break;
1615 	}
1616 
1617 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1618 		   resp->data_tx_completion.num_msdus);
1619 
1620 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1621 		msdu_id = resp->data_tx_completion.msdus[i];
1622 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1623 
1624 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
1625 		 * interrupt and main interrupt (MSI/-X range case) for the same
1626 		 * HTC service so it should be safe to use kfifo_put w/o lock.
1627 		 *
1628 		 * From kfifo_put() documentation:
1629 		 *  Note that with only one concurrent reader and one concurrent
1630 		 *  writer, you don't need extra locking to use these macro.
1631 		 */
1632 		if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1633 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1634 				    tx_done.msdu_id, tx_done.status);
1635 			ath10k_txrx_tx_unref(htt, &tx_done);
1636 		}
1637 	}
1638 }
1639 
1640 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1641 {
1642 	struct htt_rx_addba *ev = &resp->rx_addba;
1643 	struct ath10k_peer *peer;
1644 	struct ath10k_vif *arvif;
1645 	u16 info0, tid, peer_id;
1646 
1647 	info0 = __le16_to_cpu(ev->info0);
1648 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1649 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1650 
1651 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1652 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1653 		   tid, peer_id, ev->window_size);
1654 
1655 	spin_lock_bh(&ar->data_lock);
1656 	peer = ath10k_peer_find_by_id(ar, peer_id);
1657 	if (!peer) {
1658 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1659 			    peer_id);
1660 		spin_unlock_bh(&ar->data_lock);
1661 		return;
1662 	}
1663 
1664 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1665 	if (!arvif) {
1666 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1667 			    peer->vdev_id);
1668 		spin_unlock_bh(&ar->data_lock);
1669 		return;
1670 	}
1671 
1672 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1673 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1674 		   peer->addr, tid, ev->window_size);
1675 
1676 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1677 	spin_unlock_bh(&ar->data_lock);
1678 }
1679 
1680 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1681 {
1682 	struct htt_rx_delba *ev = &resp->rx_delba;
1683 	struct ath10k_peer *peer;
1684 	struct ath10k_vif *arvif;
1685 	u16 info0, tid, peer_id;
1686 
1687 	info0 = __le16_to_cpu(ev->info0);
1688 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1689 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1690 
1691 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1692 		   "htt rx delba tid %hu peer_id %hu\n",
1693 		   tid, peer_id);
1694 
1695 	spin_lock_bh(&ar->data_lock);
1696 	peer = ath10k_peer_find_by_id(ar, peer_id);
1697 	if (!peer) {
1698 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1699 			    peer_id);
1700 		spin_unlock_bh(&ar->data_lock);
1701 		return;
1702 	}
1703 
1704 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1705 	if (!arvif) {
1706 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1707 			    peer->vdev_id);
1708 		spin_unlock_bh(&ar->data_lock);
1709 		return;
1710 	}
1711 
1712 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1713 		   "htt rx stop rx ba session sta %pM tid %hu\n",
1714 		   peer->addr, tid);
1715 
1716 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1717 	spin_unlock_bh(&ar->data_lock);
1718 }
1719 
1720 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1721 				       struct sk_buff_head *amsdu)
1722 {
1723 	struct sk_buff *msdu;
1724 	struct htt_rx_desc *rxd;
1725 
1726 	if (skb_queue_empty(list))
1727 		return -ENOBUFS;
1728 
1729 	if (WARN_ON(!skb_queue_empty(amsdu)))
1730 		return -EINVAL;
1731 
1732 	while ((msdu = __skb_dequeue(list))) {
1733 		__skb_queue_tail(amsdu, msdu);
1734 
1735 		rxd = (void *)msdu->data - sizeof(*rxd);
1736 		if (rxd->msdu_end.common.info0 &
1737 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1738 			break;
1739 	}
1740 
1741 	msdu = skb_peek_tail(amsdu);
1742 	rxd = (void *)msdu->data - sizeof(*rxd);
1743 	if (!(rxd->msdu_end.common.info0 &
1744 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1745 		skb_queue_splice_init(amsdu, list);
1746 		return -EAGAIN;
1747 	}
1748 
1749 	return 0;
1750 }
1751 
1752 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1753 					    struct sk_buff *skb)
1754 {
1755 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1756 
1757 	if (!ieee80211_has_protected(hdr->frame_control))
1758 		return;
1759 
1760 	/* Offloaded frames are already decrypted but firmware insists they are
1761 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1762 	 * will drop the frame.
1763 	 */
1764 
1765 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1766 	status->flag |= RX_FLAG_DECRYPTED |
1767 			RX_FLAG_IV_STRIPPED |
1768 			RX_FLAG_MMIC_STRIPPED;
1769 }
1770 
1771 static int ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1772 				      struct sk_buff_head *list)
1773 {
1774 	struct ath10k_htt *htt = &ar->htt;
1775 	struct ieee80211_rx_status *status = &htt->rx_status;
1776 	struct htt_rx_offload_msdu *rx;
1777 	struct sk_buff *msdu;
1778 	size_t offset;
1779 	int num_msdu = 0;
1780 
1781 	while ((msdu = __skb_dequeue(list))) {
1782 		/* Offloaded frames don't have Rx descriptor. Instead they have
1783 		 * a short meta information header.
1784 		 */
1785 
1786 		rx = (void *)msdu->data;
1787 
1788 		skb_put(msdu, sizeof(*rx));
1789 		skb_pull(msdu, sizeof(*rx));
1790 
1791 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1792 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1793 			dev_kfree_skb_any(msdu);
1794 			continue;
1795 		}
1796 
1797 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1798 
1799 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
1800 		 * actual payload is unaligned. Align the frame.  Otherwise
1801 		 * mac80211 complains.  This shouldn't reduce performance much
1802 		 * because these offloaded frames are rare.
1803 		 */
1804 		offset = 4 - ((unsigned long)msdu->data & 3);
1805 		skb_put(msdu, offset);
1806 		memmove(msdu->data + offset, msdu->data, msdu->len);
1807 		skb_pull(msdu, offset);
1808 
1809 		/* FIXME: The frame is NWifi. Re-construct QoS Control
1810 		 * if possible later.
1811 		 */
1812 
1813 		memset(status, 0, sizeof(*status));
1814 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1815 
1816 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1817 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1818 		ath10k_process_rx(ar, status, msdu);
1819 		num_msdu++;
1820 	}
1821 	return num_msdu;
1822 }
1823 
1824 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1825 {
1826 	struct ath10k_htt *htt = &ar->htt;
1827 	struct htt_resp *resp = (void *)skb->data;
1828 	struct ieee80211_rx_status *status = &htt->rx_status;
1829 	struct sk_buff_head list;
1830 	struct sk_buff_head amsdu;
1831 	u16 peer_id;
1832 	u16 msdu_count;
1833 	u8 vdev_id;
1834 	u8 tid;
1835 	bool offload;
1836 	bool frag;
1837 	int ret, num_msdus = 0;
1838 
1839 	lockdep_assert_held(&htt->rx_ring.lock);
1840 
1841 	if (htt->rx_confused)
1842 		return -EIO;
1843 
1844 	skb_pull(skb, sizeof(resp->hdr));
1845 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1846 
1847 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1848 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1849 	vdev_id = resp->rx_in_ord_ind.vdev_id;
1850 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1851 	offload = !!(resp->rx_in_ord_ind.info &
1852 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1853 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1854 
1855 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1856 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1857 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
1858 
1859 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1860 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
1861 		return -EINVAL;
1862 	}
1863 
1864 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1865 	 * extracted and processed.
1866 	 */
1867 	__skb_queue_head_init(&list);
1868 	ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1869 	if (ret < 0) {
1870 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1871 		htt->rx_confused = true;
1872 		return -EIO;
1873 	}
1874 
1875 	/* Offloaded frames are very different and need to be handled
1876 	 * separately.
1877 	 */
1878 	if (offload)
1879 		num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list);
1880 
1881 	while (!skb_queue_empty(&list)) {
1882 		__skb_queue_head_init(&amsdu);
1883 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1884 		switch (ret) {
1885 		case 0:
1886 			/* Note: The in-order indication may report interleaved
1887 			 * frames from different PPDUs meaning reported rx rate
1888 			 * to mac80211 isn't accurate/reliable. It's still
1889 			 * better to report something than nothing though. This
1890 			 * should still give an idea about rx rate to the user.
1891 			 */
1892 			num_msdus += skb_queue_len(&amsdu);
1893 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1894 			ath10k_htt_rx_h_filter(ar, &amsdu, status);
1895 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1896 			ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1897 			break;
1898 		case -EAGAIN:
1899 			/* fall through */
1900 		default:
1901 			/* Should not happen. */
1902 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1903 			htt->rx_confused = true;
1904 			__skb_queue_purge(&list);
1905 			return -EIO;
1906 		}
1907 	}
1908 	return num_msdus;
1909 }
1910 
1911 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
1912 						   const __le32 *resp_ids,
1913 						   int num_resp_ids)
1914 {
1915 	int i;
1916 	u32 resp_id;
1917 
1918 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
1919 		   num_resp_ids);
1920 
1921 	for (i = 0; i < num_resp_ids; i++) {
1922 		resp_id = le32_to_cpu(resp_ids[i]);
1923 
1924 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
1925 			   resp_id);
1926 
1927 		/* TODO: free resp_id */
1928 	}
1929 }
1930 
1931 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
1932 {
1933 	struct ieee80211_hw *hw = ar->hw;
1934 	struct ieee80211_txq *txq;
1935 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1936 	struct htt_tx_fetch_record *record;
1937 	size_t len;
1938 	size_t max_num_bytes;
1939 	size_t max_num_msdus;
1940 	size_t num_bytes;
1941 	size_t num_msdus;
1942 	const __le32 *resp_ids;
1943 	u16 num_records;
1944 	u16 num_resp_ids;
1945 	u16 peer_id;
1946 	u8 tid;
1947 	int ret;
1948 	int i;
1949 
1950 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
1951 
1952 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
1953 	if (unlikely(skb->len < len)) {
1954 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
1955 		return;
1956 	}
1957 
1958 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
1959 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
1960 
1961 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
1962 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
1963 
1964 	if (unlikely(skb->len < len)) {
1965 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
1966 		return;
1967 	}
1968 
1969 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
1970 		   num_records, num_resp_ids,
1971 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
1972 
1973 	if (!ar->htt.tx_q_state.enabled) {
1974 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
1975 		return;
1976 	}
1977 
1978 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
1979 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
1980 		return;
1981 	}
1982 
1983 	rcu_read_lock();
1984 
1985 	for (i = 0; i < num_records; i++) {
1986 		record = &resp->tx_fetch_ind.records[i];
1987 		peer_id = MS(le16_to_cpu(record->info),
1988 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
1989 		tid = MS(le16_to_cpu(record->info),
1990 			 HTT_TX_FETCH_RECORD_INFO_TID);
1991 		max_num_msdus = le16_to_cpu(record->num_msdus);
1992 		max_num_bytes = le32_to_cpu(record->num_bytes);
1993 
1994 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
1995 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
1996 
1997 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
1998 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
1999 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2000 				    peer_id, tid);
2001 			continue;
2002 		}
2003 
2004 		spin_lock_bh(&ar->data_lock);
2005 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2006 		spin_unlock_bh(&ar->data_lock);
2007 
2008 		/* It is okay to release the lock and use txq because RCU read
2009 		 * lock is held.
2010 		 */
2011 
2012 		if (unlikely(!txq)) {
2013 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2014 				    peer_id, tid);
2015 			continue;
2016 		}
2017 
2018 		num_msdus = 0;
2019 		num_bytes = 0;
2020 
2021 		while (num_msdus < max_num_msdus &&
2022 		       num_bytes < max_num_bytes) {
2023 			ret = ath10k_mac_tx_push_txq(hw, txq);
2024 			if (ret < 0)
2025 				break;
2026 
2027 			num_msdus++;
2028 			num_bytes += ret;
2029 		}
2030 
2031 		record->num_msdus = cpu_to_le16(num_msdus);
2032 		record->num_bytes = cpu_to_le32(num_bytes);
2033 
2034 		ath10k_htt_tx_txq_recalc(hw, txq);
2035 	}
2036 
2037 	rcu_read_unlock();
2038 
2039 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2040 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2041 
2042 	ret = ath10k_htt_tx_fetch_resp(ar,
2043 				       resp->tx_fetch_ind.token,
2044 				       resp->tx_fetch_ind.fetch_seq_num,
2045 				       resp->tx_fetch_ind.records,
2046 				       num_records);
2047 	if (unlikely(ret)) {
2048 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2049 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
2050 		/* FIXME: request fw restart */
2051 	}
2052 
2053 	ath10k_htt_tx_txq_sync(ar);
2054 }
2055 
2056 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2057 					   struct sk_buff *skb)
2058 {
2059 	const struct htt_resp *resp = (void *)skb->data;
2060 	size_t len;
2061 	int num_resp_ids;
2062 
2063 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2064 
2065 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2066 	if (unlikely(skb->len < len)) {
2067 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2068 		return;
2069 	}
2070 
2071 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2072 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2073 
2074 	if (unlikely(skb->len < len)) {
2075 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2076 		return;
2077 	}
2078 
2079 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2080 					       resp->tx_fetch_confirm.resp_ids,
2081 					       num_resp_ids);
2082 }
2083 
2084 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2085 					     struct sk_buff *skb)
2086 {
2087 	const struct htt_resp *resp = (void *)skb->data;
2088 	const struct htt_tx_mode_switch_record *record;
2089 	struct ieee80211_txq *txq;
2090 	struct ath10k_txq *artxq;
2091 	size_t len;
2092 	size_t num_records;
2093 	enum htt_tx_mode_switch_mode mode;
2094 	bool enable;
2095 	u16 info0;
2096 	u16 info1;
2097 	u16 threshold;
2098 	u16 peer_id;
2099 	u8 tid;
2100 	int i;
2101 
2102 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2103 
2104 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2105 	if (unlikely(skb->len < len)) {
2106 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2107 		return;
2108 	}
2109 
2110 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2111 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2112 
2113 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2114 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2115 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2116 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2117 
2118 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2119 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2120 		   info0, info1, enable, num_records, mode, threshold);
2121 
2122 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2123 
2124 	if (unlikely(skb->len < len)) {
2125 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2126 		return;
2127 	}
2128 
2129 	switch (mode) {
2130 	case HTT_TX_MODE_SWITCH_PUSH:
2131 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
2132 		break;
2133 	default:
2134 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2135 			    mode);
2136 		return;
2137 	}
2138 
2139 	if (!enable)
2140 		return;
2141 
2142 	ar->htt.tx_q_state.enabled = enable;
2143 	ar->htt.tx_q_state.mode = mode;
2144 	ar->htt.tx_q_state.num_push_allowed = threshold;
2145 
2146 	rcu_read_lock();
2147 
2148 	for (i = 0; i < num_records; i++) {
2149 		record = &resp->tx_mode_switch_ind.records[i];
2150 		info0 = le16_to_cpu(record->info0);
2151 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2152 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2153 
2154 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2155 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2156 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2157 				    peer_id, tid);
2158 			continue;
2159 		}
2160 
2161 		spin_lock_bh(&ar->data_lock);
2162 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2163 		spin_unlock_bh(&ar->data_lock);
2164 
2165 		/* It is okay to release the lock and use txq because RCU read
2166 		 * lock is held.
2167 		 */
2168 
2169 		if (unlikely(!txq)) {
2170 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2171 				    peer_id, tid);
2172 			continue;
2173 		}
2174 
2175 		spin_lock_bh(&ar->htt.tx_lock);
2176 		artxq = (void *)txq->drv_priv;
2177 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2178 		spin_unlock_bh(&ar->htt.tx_lock);
2179 	}
2180 
2181 	rcu_read_unlock();
2182 
2183 	ath10k_mac_tx_push_pending(ar);
2184 }
2185 
2186 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2187 {
2188 	bool release;
2189 
2190 	release = ath10k_htt_t2h_msg_handler(ar, skb);
2191 
2192 	/* Free the indication buffer */
2193 	if (release)
2194 		dev_kfree_skb_any(skb);
2195 }
2196 
2197 static inline bool is_valid_legacy_rate(u8 rate)
2198 {
2199 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2200 					  18, 24, 36, 48, 54};
2201 	int i;
2202 
2203 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2204 		if (rate == legacy_rates[i])
2205 			return true;
2206 	}
2207 
2208 	return false;
2209 }
2210 
2211 static void
2212 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2213 				struct ieee80211_sta *sta,
2214 				struct ath10k_per_peer_tx_stats *peer_stats)
2215 {
2216 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2217 	u8 rate = 0, sgi;
2218 	struct rate_info txrate;
2219 
2220 	lockdep_assert_held(&ar->data_lock);
2221 
2222 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2223 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2224 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2225 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2226 	sgi = ATH10K_HW_GI(peer_stats->flags);
2227 
2228 	if (((txrate.flags == WMI_RATE_PREAMBLE_HT) ||
2229 	     (txrate.flags == WMI_RATE_PREAMBLE_VHT)) && txrate.mcs > 9) {
2230 		ath10k_warn(ar, "Invalid mcs %hhd peer stats", txrate.mcs);
2231 		return;
2232 	}
2233 
2234 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2235 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2236 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2237 
2238 		if (!is_valid_legacy_rate(rate)) {
2239 			ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2240 				    rate);
2241 			return;
2242 		}
2243 
2244 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2245 		rate *= 10;
2246 		if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2247 			rate = rate - 5;
2248 		arsta->txrate.legacy = rate * 10;
2249 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2250 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2251 		arsta->txrate.mcs = txrate.mcs;
2252 	} else {
2253 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2254 		arsta->txrate.mcs = txrate.mcs;
2255 	}
2256 
2257 	if (sgi)
2258 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2259 
2260 	arsta->txrate.nss = txrate.nss;
2261 	arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20;
2262 }
2263 
2264 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2265 					struct sk_buff *skb)
2266 {
2267 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2268 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2269 	struct htt_per_peer_tx_stats_ind *tx_stats;
2270 	struct ieee80211_sta *sta;
2271 	struct ath10k_peer *peer;
2272 	int peer_id, i;
2273 	u8 ppdu_len, num_ppdu;
2274 
2275 	num_ppdu = resp->peer_tx_stats.num_ppdu;
2276 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2277 
2278 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2279 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2280 		return;
2281 	}
2282 
2283 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
2284 			(resp->peer_tx_stats.payload);
2285 	peer_id = __le16_to_cpu(tx_stats->peer_id);
2286 
2287 	rcu_read_lock();
2288 	spin_lock_bh(&ar->data_lock);
2289 	peer = ath10k_peer_find_by_id(ar, peer_id);
2290 	if (!peer) {
2291 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2292 			    peer_id);
2293 		goto out;
2294 	}
2295 
2296 	sta = peer->sta;
2297 	for (i = 0; i < num_ppdu; i++) {
2298 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
2299 			   (resp->peer_tx_stats.payload + i * ppdu_len);
2300 
2301 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2302 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2303 		p_tx_stats->failed_bytes =
2304 				__le32_to_cpu(tx_stats->failed_bytes);
2305 		p_tx_stats->ratecode = tx_stats->ratecode;
2306 		p_tx_stats->flags = tx_stats->flags;
2307 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2308 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2309 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2310 
2311 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2312 	}
2313 
2314 out:
2315 	spin_unlock_bh(&ar->data_lock);
2316 	rcu_read_unlock();
2317 }
2318 
2319 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2320 {
2321 	struct ath10k_htt *htt = &ar->htt;
2322 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2323 	enum htt_t2h_msg_type type;
2324 
2325 	/* confirm alignment */
2326 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
2327 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2328 
2329 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2330 		   resp->hdr.msg_type);
2331 
2332 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2333 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2334 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2335 		return true;
2336 	}
2337 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2338 
2339 	switch (type) {
2340 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2341 		htt->target_version_major = resp->ver_resp.major;
2342 		htt->target_version_minor = resp->ver_resp.minor;
2343 		complete(&htt->target_version_received);
2344 		break;
2345 	}
2346 	case HTT_T2H_MSG_TYPE_RX_IND:
2347 		ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2348 		break;
2349 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
2350 		struct htt_peer_map_event ev = {
2351 			.vdev_id = resp->peer_map.vdev_id,
2352 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2353 		};
2354 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2355 		ath10k_peer_map_event(htt, &ev);
2356 		break;
2357 	}
2358 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2359 		struct htt_peer_unmap_event ev = {
2360 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2361 		};
2362 		ath10k_peer_unmap_event(htt, &ev);
2363 		break;
2364 	}
2365 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2366 		struct htt_tx_done tx_done = {};
2367 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2368 
2369 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2370 
2371 		switch (status) {
2372 		case HTT_MGMT_TX_STATUS_OK:
2373 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
2374 			break;
2375 		case HTT_MGMT_TX_STATUS_RETRY:
2376 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2377 			break;
2378 		case HTT_MGMT_TX_STATUS_DROP:
2379 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2380 			break;
2381 		}
2382 
2383 		status = ath10k_txrx_tx_unref(htt, &tx_done);
2384 		if (!status) {
2385 			spin_lock_bh(&htt->tx_lock);
2386 			ath10k_htt_tx_mgmt_dec_pending(htt);
2387 			spin_unlock_bh(&htt->tx_lock);
2388 		}
2389 		break;
2390 	}
2391 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2392 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2393 		break;
2394 	case HTT_T2H_MSG_TYPE_SEC_IND: {
2395 		struct ath10k *ar = htt->ar;
2396 		struct htt_security_indication *ev = &resp->security_indication;
2397 
2398 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2399 			   "sec ind peer_id %d unicast %d type %d\n",
2400 			  __le16_to_cpu(ev->peer_id),
2401 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2402 			  MS(ev->flags, HTT_SECURITY_TYPE));
2403 		complete(&ar->install_key_done);
2404 		break;
2405 	}
2406 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2407 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2408 				skb->data, skb->len);
2409 		atomic_inc(&htt->num_mpdus_ready);
2410 		break;
2411 	}
2412 	case HTT_T2H_MSG_TYPE_TEST:
2413 		break;
2414 	case HTT_T2H_MSG_TYPE_STATS_CONF:
2415 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
2416 		break;
2417 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2418 		/* Firmware can return tx frames if it's unable to fully
2419 		 * process them and suspects host may be able to fix it. ath10k
2420 		 * sends all tx frames as already inspected so this shouldn't
2421 		 * happen unless fw has a bug.
2422 		 */
2423 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2424 		break;
2425 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
2426 		ath10k_htt_rx_addba(ar, resp);
2427 		break;
2428 	case HTT_T2H_MSG_TYPE_RX_DELBA:
2429 		ath10k_htt_rx_delba(ar, resp);
2430 		break;
2431 	case HTT_T2H_MSG_TYPE_PKTLOG: {
2432 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2433 					skb->len -
2434 					offsetof(struct htt_resp,
2435 						 pktlog_msg.payload));
2436 		break;
2437 	}
2438 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2439 		/* Ignore this event because mac80211 takes care of Rx
2440 		 * aggregation reordering.
2441 		 */
2442 		break;
2443 	}
2444 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2445 		__skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2446 		return false;
2447 	}
2448 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2449 		break;
2450 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2451 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2452 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
2453 
2454 		ar->tgt_oper_chan =
2455 			__ieee80211_get_channel(ar->hw->wiphy, freq);
2456 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2457 			   "htt chan change freq %u phymode %s\n",
2458 			   freq, ath10k_wmi_phymode_str(phymode));
2459 		break;
2460 	}
2461 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
2462 		break;
2463 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2464 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2465 
2466 		if (!tx_fetch_ind) {
2467 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2468 			break;
2469 		}
2470 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2471 		break;
2472 	}
2473 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2474 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2475 		break;
2476 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2477 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2478 		break;
2479 	case HTT_T2H_MSG_TYPE_PEER_STATS:
2480 		ath10k_htt_fetch_peer_stats(ar, skb);
2481 		break;
2482 	case HTT_T2H_MSG_TYPE_EN_STATS:
2483 	default:
2484 		ath10k_warn(ar, "htt event (%d) not handled\n",
2485 			    resp->hdr.msg_type);
2486 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2487 				skb->data, skb->len);
2488 		break;
2489 	};
2490 	return true;
2491 }
2492 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2493 
2494 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2495 					     struct sk_buff *skb)
2496 {
2497 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2498 	dev_kfree_skb_any(skb);
2499 }
2500 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2501 
2502 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2503 {
2504 	struct ath10k_htt *htt = &ar->htt;
2505 	struct htt_tx_done tx_done = {};
2506 	struct sk_buff_head tx_ind_q;
2507 	struct sk_buff *skb;
2508 	unsigned long flags;
2509 	int quota = 0, done, num_rx_msdus;
2510 	bool resched_napi = false;
2511 
2512 	__skb_queue_head_init(&tx_ind_q);
2513 
2514 	/* Since in-ord-ind can deliver more than 1 A-MSDU in single event,
2515 	 * process it first to utilize full available quota.
2516 	 */
2517 	while (quota < budget) {
2518 		if (skb_queue_empty(&htt->rx_in_ord_compl_q))
2519 			break;
2520 
2521 		skb = __skb_dequeue(&htt->rx_in_ord_compl_q);
2522 		if (!skb) {
2523 			resched_napi = true;
2524 			goto exit;
2525 		}
2526 
2527 		spin_lock_bh(&htt->rx_ring.lock);
2528 		num_rx_msdus = ath10k_htt_rx_in_ord_ind(ar, skb);
2529 		spin_unlock_bh(&htt->rx_ring.lock);
2530 		if (num_rx_msdus < 0) {
2531 			resched_napi = true;
2532 			goto exit;
2533 		}
2534 
2535 		dev_kfree_skb_any(skb);
2536 		if (num_rx_msdus > 0)
2537 			quota += num_rx_msdus;
2538 
2539 		if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2540 		    !skb_queue_empty(&htt->rx_in_ord_compl_q)) {
2541 			resched_napi = true;
2542 			goto exit;
2543 		}
2544 	}
2545 
2546 	while (quota < budget) {
2547 		/* no more data to receive */
2548 		if (!atomic_read(&htt->num_mpdus_ready))
2549 			break;
2550 
2551 		num_rx_msdus = ath10k_htt_rx_handle_amsdu(htt);
2552 		if (num_rx_msdus < 0) {
2553 			resched_napi = true;
2554 			goto exit;
2555 		}
2556 
2557 		quota += num_rx_msdus;
2558 		atomic_dec(&htt->num_mpdus_ready);
2559 		if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2560 		    atomic_read(&htt->num_mpdus_ready)) {
2561 			resched_napi = true;
2562 			goto exit;
2563 		}
2564 	}
2565 
2566 	/* From NAPI documentation:
2567 	 *  The napi poll() function may also process TX completions, in which
2568 	 *  case if it processes the entire TX ring then it should count that
2569 	 *  work as the rest of the budget.
2570 	 */
2571 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2572 		quota = budget;
2573 
2574 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2575 	 * From kfifo_get() documentation:
2576 	 *  Note that with only one concurrent reader and one concurrent writer,
2577 	 *  you don't need extra locking to use these macro.
2578 	 */
2579 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
2580 		ath10k_txrx_tx_unref(htt, &tx_done);
2581 
2582 	ath10k_mac_tx_push_pending(ar);
2583 
2584 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2585 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2586 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2587 
2588 	while ((skb = __skb_dequeue(&tx_ind_q))) {
2589 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
2590 		dev_kfree_skb_any(skb);
2591 	}
2592 
2593 exit:
2594 	ath10k_htt_rx_msdu_buff_replenish(htt);
2595 	/* In case of rx failure or more data to read, report budget
2596 	 * to reschedule NAPI poll
2597 	 */
2598 	done = resched_napi ? budget : quota;
2599 
2600 	return done;
2601 }
2602 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
2603