1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "core.h" 19 #include "htc.h" 20 #include "htt.h" 21 #include "txrx.h" 22 #include "debug.h" 23 #include "trace.h" 24 #include "mac.h" 25 26 #include <linux/log2.h> 27 28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX 29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1) 30 31 /* when under memory pressure rx ring refill may fail and needs a retry */ 32 #define HTT_RX_RING_REFILL_RETRY_MS 50 33 34 #define HTT_RX_RING_REFILL_RESCHED_MS 5 35 36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 37 38 static struct sk_buff * 39 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr) 40 { 41 struct ath10k_skb_rxcb *rxcb; 42 43 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 44 if (rxcb->paddr == paddr) 45 return ATH10K_RXCB_SKB(rxcb); 46 47 WARN_ON_ONCE(1); 48 return NULL; 49 } 50 51 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 52 { 53 struct sk_buff *skb; 54 struct ath10k_skb_rxcb *rxcb; 55 struct hlist_node *n; 56 int i; 57 58 if (htt->rx_ring.in_ord_rx) { 59 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 60 skb = ATH10K_RXCB_SKB(rxcb); 61 dma_unmap_single(htt->ar->dev, rxcb->paddr, 62 skb->len + skb_tailroom(skb), 63 DMA_FROM_DEVICE); 64 hash_del(&rxcb->hlist); 65 dev_kfree_skb_any(skb); 66 } 67 } else { 68 for (i = 0; i < htt->rx_ring.size; i++) { 69 skb = htt->rx_ring.netbufs_ring[i]; 70 if (!skb) 71 continue; 72 73 rxcb = ATH10K_SKB_RXCB(skb); 74 dma_unmap_single(htt->ar->dev, rxcb->paddr, 75 skb->len + skb_tailroom(skb), 76 DMA_FROM_DEVICE); 77 dev_kfree_skb_any(skb); 78 } 79 } 80 81 htt->rx_ring.fill_cnt = 0; 82 hash_init(htt->rx_ring.skb_table); 83 memset(htt->rx_ring.netbufs_ring, 0, 84 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 85 } 86 87 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 88 { 89 struct htt_rx_desc *rx_desc; 90 struct ath10k_skb_rxcb *rxcb; 91 struct sk_buff *skb; 92 dma_addr_t paddr; 93 int ret = 0, idx; 94 95 /* The Full Rx Reorder firmware has no way of telling the host 96 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 97 * To keep things simple make sure ring is always half empty. This 98 * guarantees there'll be no replenishment overruns possible. 99 */ 100 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 101 102 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 103 while (num > 0) { 104 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 105 if (!skb) { 106 ret = -ENOMEM; 107 goto fail; 108 } 109 110 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 111 skb_pull(skb, 112 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 113 skb->data); 114 115 /* Clear rx_desc attention word before posting to Rx ring */ 116 rx_desc = (struct htt_rx_desc *)skb->data; 117 rx_desc->attention.flags = __cpu_to_le32(0); 118 119 paddr = dma_map_single(htt->ar->dev, skb->data, 120 skb->len + skb_tailroom(skb), 121 DMA_FROM_DEVICE); 122 123 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 124 dev_kfree_skb_any(skb); 125 ret = -ENOMEM; 126 goto fail; 127 } 128 129 rxcb = ATH10K_SKB_RXCB(skb); 130 rxcb->paddr = paddr; 131 htt->rx_ring.netbufs_ring[idx] = skb; 132 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); 133 htt->rx_ring.fill_cnt++; 134 135 if (htt->rx_ring.in_ord_rx) { 136 hash_add(htt->rx_ring.skb_table, 137 &ATH10K_SKB_RXCB(skb)->hlist, 138 (u32)paddr); 139 } 140 141 num--; 142 idx++; 143 idx &= htt->rx_ring.size_mask; 144 } 145 146 fail: 147 /* 148 * Make sure the rx buffer is updated before available buffer 149 * index to avoid any potential rx ring corruption. 150 */ 151 mb(); 152 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 153 return ret; 154 } 155 156 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 157 { 158 lockdep_assert_held(&htt->rx_ring.lock); 159 return __ath10k_htt_rx_ring_fill_n(htt, num); 160 } 161 162 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 163 { 164 int ret, num_deficit, num_to_fill; 165 166 /* Refilling the whole RX ring buffer proves to be a bad idea. The 167 * reason is RX may take up significant amount of CPU cycles and starve 168 * other tasks, e.g. TX on an ethernet device while acting as a bridge 169 * with ath10k wlan interface. This ended up with very poor performance 170 * once CPU the host system was overwhelmed with RX on ath10k. 171 * 172 * By limiting the number of refills the replenishing occurs 173 * progressively. This in turns makes use of the fact tasklets are 174 * processed in FIFO order. This means actual RX processing can starve 175 * out refilling. If there's not enough buffers on RX ring FW will not 176 * report RX until it is refilled with enough buffers. This 177 * automatically balances load wrt to CPU power. 178 * 179 * This probably comes at a cost of lower maximum throughput but 180 * improves the average and stability. */ 181 spin_lock_bh(&htt->rx_ring.lock); 182 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 183 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 184 num_deficit -= num_to_fill; 185 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 186 if (ret == -ENOMEM) { 187 /* 188 * Failed to fill it to the desired level - 189 * we'll start a timer and try again next time. 190 * As long as enough buffers are left in the ring for 191 * another A-MPDU rx, no special recovery is needed. 192 */ 193 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 194 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 195 } else if (num_deficit > 0) { 196 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 197 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); 198 } 199 spin_unlock_bh(&htt->rx_ring.lock); 200 } 201 202 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) 203 { 204 struct ath10k_htt *htt = (struct ath10k_htt *)arg; 205 206 ath10k_htt_rx_msdu_buff_replenish(htt); 207 } 208 209 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 210 { 211 struct ath10k_htt *htt = &ar->htt; 212 int ret; 213 214 spin_lock_bh(&htt->rx_ring.lock); 215 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 216 htt->rx_ring.fill_cnt)); 217 spin_unlock_bh(&htt->rx_ring.lock); 218 219 if (ret) 220 ath10k_htt_rx_ring_free(htt); 221 222 return ret; 223 } 224 225 void ath10k_htt_rx_free(struct ath10k_htt *htt) 226 { 227 del_timer_sync(&htt->rx_ring.refill_retry_timer); 228 229 skb_queue_purge(&htt->rx_compl_q); 230 skb_queue_purge(&htt->rx_in_ord_compl_q); 231 skb_queue_purge(&htt->tx_fetch_ind_q); 232 233 ath10k_htt_rx_ring_free(htt); 234 235 dma_free_coherent(htt->ar->dev, 236 (htt->rx_ring.size * 237 sizeof(htt->rx_ring.paddrs_ring)), 238 htt->rx_ring.paddrs_ring, 239 htt->rx_ring.base_paddr); 240 241 dma_free_coherent(htt->ar->dev, 242 sizeof(*htt->rx_ring.alloc_idx.vaddr), 243 htt->rx_ring.alloc_idx.vaddr, 244 htt->rx_ring.alloc_idx.paddr); 245 246 kfree(htt->rx_ring.netbufs_ring); 247 } 248 249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 250 { 251 struct ath10k *ar = htt->ar; 252 int idx; 253 struct sk_buff *msdu; 254 255 lockdep_assert_held(&htt->rx_ring.lock); 256 257 if (htt->rx_ring.fill_cnt == 0) { 258 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 259 return NULL; 260 } 261 262 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 263 msdu = htt->rx_ring.netbufs_ring[idx]; 264 htt->rx_ring.netbufs_ring[idx] = NULL; 265 htt->rx_ring.paddrs_ring[idx] = 0; 266 267 idx++; 268 idx &= htt->rx_ring.size_mask; 269 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 270 htt->rx_ring.fill_cnt--; 271 272 dma_unmap_single(htt->ar->dev, 273 ATH10K_SKB_RXCB(msdu)->paddr, 274 msdu->len + skb_tailroom(msdu), 275 DMA_FROM_DEVICE); 276 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 277 msdu->data, msdu->len + skb_tailroom(msdu)); 278 279 return msdu; 280 } 281 282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 284 struct sk_buff_head *amsdu) 285 { 286 struct ath10k *ar = htt->ar; 287 int msdu_len, msdu_chaining = 0; 288 struct sk_buff *msdu; 289 struct htt_rx_desc *rx_desc; 290 291 lockdep_assert_held(&htt->rx_ring.lock); 292 293 for (;;) { 294 int last_msdu, msdu_len_invalid, msdu_chained; 295 296 msdu = ath10k_htt_rx_netbuf_pop(htt); 297 if (!msdu) { 298 __skb_queue_purge(amsdu); 299 return -ENOENT; 300 } 301 302 __skb_queue_tail(amsdu, msdu); 303 304 rx_desc = (struct htt_rx_desc *)msdu->data; 305 306 /* FIXME: we must report msdu payload since this is what caller 307 * expects now */ 308 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 309 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 310 311 /* 312 * Sanity check - confirm the HW is finished filling in the 313 * rx data. 314 * If the HW and SW are working correctly, then it's guaranteed 315 * that the HW's MAC DMA is done before this point in the SW. 316 * To prevent the case that we handle a stale Rx descriptor, 317 * just assert for now until we have a way to recover. 318 */ 319 if (!(__le32_to_cpu(rx_desc->attention.flags) 320 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 321 __skb_queue_purge(amsdu); 322 return -EIO; 323 } 324 325 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 326 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 327 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 328 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), 329 RX_MSDU_START_INFO0_MSDU_LENGTH); 330 msdu_chained = rx_desc->frag_info.ring2_more_count; 331 332 if (msdu_len_invalid) 333 msdu_len = 0; 334 335 skb_trim(msdu, 0); 336 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 337 msdu_len -= msdu->len; 338 339 /* Note: Chained buffers do not contain rx descriptor */ 340 while (msdu_chained--) { 341 msdu = ath10k_htt_rx_netbuf_pop(htt); 342 if (!msdu) { 343 __skb_queue_purge(amsdu); 344 return -ENOENT; 345 } 346 347 __skb_queue_tail(amsdu, msdu); 348 skb_trim(msdu, 0); 349 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 350 msdu_len -= msdu->len; 351 msdu_chaining = 1; 352 } 353 354 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & 355 RX_MSDU_END_INFO0_LAST_MSDU; 356 357 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 358 sizeof(*rx_desc) - sizeof(u32)); 359 360 if (last_msdu) 361 break; 362 } 363 364 if (skb_queue_empty(amsdu)) 365 msdu_chaining = -1; 366 367 /* 368 * Don't refill the ring yet. 369 * 370 * First, the elements popped here are still in use - it is not 371 * safe to overwrite them until the matching call to 372 * mpdu_desc_list_next. Second, for efficiency it is preferable to 373 * refill the rx ring with 1 PPDU's worth of rx buffers (something 374 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 375 * (something like 3 buffers). Consequently, we'll rely on the txrx 376 * SW to tell us when it is done pulling all the PPDU's rx buffers 377 * out of the rx ring, and then refill it just once. 378 */ 379 380 return msdu_chaining; 381 } 382 383 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 384 u32 paddr) 385 { 386 struct ath10k *ar = htt->ar; 387 struct ath10k_skb_rxcb *rxcb; 388 struct sk_buff *msdu; 389 390 lockdep_assert_held(&htt->rx_ring.lock); 391 392 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 393 if (!msdu) 394 return NULL; 395 396 rxcb = ATH10K_SKB_RXCB(msdu); 397 hash_del(&rxcb->hlist); 398 htt->rx_ring.fill_cnt--; 399 400 dma_unmap_single(htt->ar->dev, rxcb->paddr, 401 msdu->len + skb_tailroom(msdu), 402 DMA_FROM_DEVICE); 403 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 404 msdu->data, msdu->len + skb_tailroom(msdu)); 405 406 return msdu; 407 } 408 409 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt, 410 struct htt_rx_in_ord_ind *ev, 411 struct sk_buff_head *list) 412 { 413 struct ath10k *ar = htt->ar; 414 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs; 415 struct htt_rx_desc *rxd; 416 struct sk_buff *msdu; 417 int msdu_count; 418 bool is_offload; 419 u32 paddr; 420 421 lockdep_assert_held(&htt->rx_ring.lock); 422 423 msdu_count = __le16_to_cpu(ev->msdu_count); 424 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 425 426 while (msdu_count--) { 427 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 428 429 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 430 if (!msdu) { 431 __skb_queue_purge(list); 432 return -ENOENT; 433 } 434 435 __skb_queue_tail(list, msdu); 436 437 if (!is_offload) { 438 rxd = (void *)msdu->data; 439 440 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 441 442 skb_put(msdu, sizeof(*rxd)); 443 skb_pull(msdu, sizeof(*rxd)); 444 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 445 446 if (!(__le32_to_cpu(rxd->attention.flags) & 447 RX_ATTENTION_FLAGS_MSDU_DONE)) { 448 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 449 return -EIO; 450 } 451 } 452 453 msdu_desc++; 454 } 455 456 return 0; 457 } 458 459 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 460 { 461 struct ath10k *ar = htt->ar; 462 dma_addr_t paddr; 463 void *vaddr; 464 size_t size; 465 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 466 467 htt->rx_confused = false; 468 469 /* XXX: The fill level could be changed during runtime in response to 470 * the host processing latency. Is this really worth it? 471 */ 472 htt->rx_ring.size = HTT_RX_RING_SIZE; 473 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 474 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL; 475 476 if (!is_power_of_2(htt->rx_ring.size)) { 477 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 478 return -EINVAL; 479 } 480 481 htt->rx_ring.netbufs_ring = 482 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *), 483 GFP_KERNEL); 484 if (!htt->rx_ring.netbufs_ring) 485 goto err_netbuf; 486 487 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring); 488 489 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); 490 if (!vaddr) 491 goto err_dma_ring; 492 493 htt->rx_ring.paddrs_ring = vaddr; 494 htt->rx_ring.base_paddr = paddr; 495 496 vaddr = dma_alloc_coherent(htt->ar->dev, 497 sizeof(*htt->rx_ring.alloc_idx.vaddr), 498 &paddr, GFP_KERNEL); 499 if (!vaddr) 500 goto err_dma_idx; 501 502 htt->rx_ring.alloc_idx.vaddr = vaddr; 503 htt->rx_ring.alloc_idx.paddr = paddr; 504 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 505 *htt->rx_ring.alloc_idx.vaddr = 0; 506 507 /* Initialize the Rx refill retry timer */ 508 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); 509 510 spin_lock_init(&htt->rx_ring.lock); 511 512 htt->rx_ring.fill_cnt = 0; 513 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 514 hash_init(htt->rx_ring.skb_table); 515 516 skb_queue_head_init(&htt->rx_compl_q); 517 skb_queue_head_init(&htt->rx_in_ord_compl_q); 518 skb_queue_head_init(&htt->tx_fetch_ind_q); 519 atomic_set(&htt->num_mpdus_ready, 0); 520 521 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 522 htt->rx_ring.size, htt->rx_ring.fill_level); 523 return 0; 524 525 err_dma_idx: 526 dma_free_coherent(htt->ar->dev, 527 (htt->rx_ring.size * 528 sizeof(htt->rx_ring.paddrs_ring)), 529 htt->rx_ring.paddrs_ring, 530 htt->rx_ring.base_paddr); 531 err_dma_ring: 532 kfree(htt->rx_ring.netbufs_ring); 533 err_netbuf: 534 return -ENOMEM; 535 } 536 537 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 538 enum htt_rx_mpdu_encrypt_type type) 539 { 540 switch (type) { 541 case HTT_RX_MPDU_ENCRYPT_NONE: 542 return 0; 543 case HTT_RX_MPDU_ENCRYPT_WEP40: 544 case HTT_RX_MPDU_ENCRYPT_WEP104: 545 return IEEE80211_WEP_IV_LEN; 546 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 547 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 548 return IEEE80211_TKIP_IV_LEN; 549 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 550 return IEEE80211_CCMP_HDR_LEN; 551 case HTT_RX_MPDU_ENCRYPT_WEP128: 552 case HTT_RX_MPDU_ENCRYPT_WAPI: 553 break; 554 } 555 556 ath10k_warn(ar, "unsupported encryption type %d\n", type); 557 return 0; 558 } 559 560 #define MICHAEL_MIC_LEN 8 561 562 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar, 563 enum htt_rx_mpdu_encrypt_type type) 564 { 565 switch (type) { 566 case HTT_RX_MPDU_ENCRYPT_NONE: 567 return 0; 568 case HTT_RX_MPDU_ENCRYPT_WEP40: 569 case HTT_RX_MPDU_ENCRYPT_WEP104: 570 return IEEE80211_WEP_ICV_LEN; 571 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 572 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 573 return IEEE80211_TKIP_ICV_LEN; 574 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 575 return IEEE80211_CCMP_MIC_LEN; 576 case HTT_RX_MPDU_ENCRYPT_WEP128: 577 case HTT_RX_MPDU_ENCRYPT_WAPI: 578 break; 579 } 580 581 ath10k_warn(ar, "unsupported encryption type %d\n", type); 582 return 0; 583 } 584 585 struct amsdu_subframe_hdr { 586 u8 dst[ETH_ALEN]; 587 u8 src[ETH_ALEN]; 588 __be16 len; 589 } __packed; 590 591 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 592 593 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 594 struct ieee80211_rx_status *status, 595 struct htt_rx_desc *rxd) 596 { 597 struct ieee80211_supported_band *sband; 598 u8 cck, rate, bw, sgi, mcs, nss; 599 u8 preamble = 0; 600 u8 group_id; 601 u32 info1, info2, info3; 602 603 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 604 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 605 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 606 607 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 608 609 switch (preamble) { 610 case HTT_RX_LEGACY: 611 /* To get legacy rate index band is required. Since band can't 612 * be undefined check if freq is non-zero. 613 */ 614 if (!status->freq) 615 return; 616 617 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 618 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 619 rate &= ~RX_PPDU_START_RATE_FLAG; 620 621 sband = &ar->mac.sbands[status->band]; 622 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); 623 break; 624 case HTT_RX_HT: 625 case HTT_RX_HT_WITH_TXBF: 626 /* HT-SIG - Table 20-11 in info2 and info3 */ 627 mcs = info2 & 0x1F; 628 nss = mcs >> 3; 629 bw = (info2 >> 7) & 1; 630 sgi = (info3 >> 7) & 1; 631 632 status->rate_idx = mcs; 633 status->flag |= RX_FLAG_HT; 634 if (sgi) 635 status->flag |= RX_FLAG_SHORT_GI; 636 if (bw) 637 status->flag |= RX_FLAG_40MHZ; 638 break; 639 case HTT_RX_VHT: 640 case HTT_RX_VHT_WITH_TXBF: 641 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 642 TODO check this */ 643 bw = info2 & 3; 644 sgi = info3 & 1; 645 group_id = (info2 >> 4) & 0x3F; 646 647 if (GROUP_ID_IS_SU_MIMO(group_id)) { 648 mcs = (info3 >> 4) & 0x0F; 649 nss = ((info2 >> 10) & 0x07) + 1; 650 } else { 651 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 652 * so it's impossible to decode MCS. Also since 653 * firmware consumes Group Id Management frames host 654 * has no knowledge regarding group/user position 655 * mapping so it's impossible to pick the correct Nsts 656 * from VHT-SIG-A1. 657 * 658 * Bandwidth and SGI are valid so report the rateinfo 659 * on best-effort basis. 660 */ 661 mcs = 0; 662 nss = 1; 663 } 664 665 if (mcs > 0x09) { 666 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 667 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 668 __le32_to_cpu(rxd->attention.flags), 669 __le32_to_cpu(rxd->mpdu_start.info0), 670 __le32_to_cpu(rxd->mpdu_start.info1), 671 __le32_to_cpu(rxd->msdu_start.common.info0), 672 __le32_to_cpu(rxd->msdu_start.common.info1), 673 rxd->ppdu_start.info0, 674 __le32_to_cpu(rxd->ppdu_start.info1), 675 __le32_to_cpu(rxd->ppdu_start.info2), 676 __le32_to_cpu(rxd->ppdu_start.info3), 677 __le32_to_cpu(rxd->ppdu_start.info4)); 678 679 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 680 __le32_to_cpu(rxd->msdu_end.common.info0), 681 __le32_to_cpu(rxd->mpdu_end.info0)); 682 683 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 684 "rx desc msdu payload: ", 685 rxd->msdu_payload, 50); 686 } 687 688 status->rate_idx = mcs; 689 status->vht_nss = nss; 690 691 if (sgi) 692 status->flag |= RX_FLAG_SHORT_GI; 693 694 switch (bw) { 695 /* 20MHZ */ 696 case 0: 697 break; 698 /* 40MHZ */ 699 case 1: 700 status->flag |= RX_FLAG_40MHZ; 701 break; 702 /* 80MHZ */ 703 case 2: 704 status->vht_flag |= RX_VHT_FLAG_80MHZ; 705 } 706 707 status->flag |= RX_FLAG_VHT; 708 break; 709 default: 710 break; 711 } 712 } 713 714 static struct ieee80211_channel * 715 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 716 { 717 struct ath10k_peer *peer; 718 struct ath10k_vif *arvif; 719 struct cfg80211_chan_def def; 720 u16 peer_id; 721 722 lockdep_assert_held(&ar->data_lock); 723 724 if (!rxd) 725 return NULL; 726 727 if (rxd->attention.flags & 728 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 729 return NULL; 730 731 if (!(rxd->msdu_end.common.info0 & 732 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 733 return NULL; 734 735 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), 736 RX_MPDU_START_INFO0_PEER_IDX); 737 738 peer = ath10k_peer_find_by_id(ar, peer_id); 739 if (!peer) 740 return NULL; 741 742 arvif = ath10k_get_arvif(ar, peer->vdev_id); 743 if (WARN_ON_ONCE(!arvif)) 744 return NULL; 745 746 if (ath10k_mac_vif_chan(arvif->vif, &def)) 747 return NULL; 748 749 return def.chan; 750 } 751 752 static struct ieee80211_channel * 753 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 754 { 755 struct ath10k_vif *arvif; 756 struct cfg80211_chan_def def; 757 758 lockdep_assert_held(&ar->data_lock); 759 760 list_for_each_entry(arvif, &ar->arvifs, list) { 761 if (arvif->vdev_id == vdev_id && 762 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 763 return def.chan; 764 } 765 766 return NULL; 767 } 768 769 static void 770 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 771 struct ieee80211_chanctx_conf *conf, 772 void *data) 773 { 774 struct cfg80211_chan_def *def = data; 775 776 *def = conf->def; 777 } 778 779 static struct ieee80211_channel * 780 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 781 { 782 struct cfg80211_chan_def def = {}; 783 784 ieee80211_iter_chan_contexts_atomic(ar->hw, 785 ath10k_htt_rx_h_any_chan_iter, 786 &def); 787 788 return def.chan; 789 } 790 791 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 792 struct ieee80211_rx_status *status, 793 struct htt_rx_desc *rxd, 794 u32 vdev_id) 795 { 796 struct ieee80211_channel *ch; 797 798 spin_lock_bh(&ar->data_lock); 799 ch = ar->scan_channel; 800 if (!ch) 801 ch = ar->rx_channel; 802 if (!ch) 803 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 804 if (!ch) 805 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 806 if (!ch) 807 ch = ath10k_htt_rx_h_any_channel(ar); 808 if (!ch) 809 ch = ar->tgt_oper_chan; 810 spin_unlock_bh(&ar->data_lock); 811 812 if (!ch) 813 return false; 814 815 status->band = ch->band; 816 status->freq = ch->center_freq; 817 818 return true; 819 } 820 821 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 822 struct ieee80211_rx_status *status, 823 struct htt_rx_desc *rxd) 824 { 825 /* FIXME: Get real NF */ 826 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 827 rxd->ppdu_start.rssi_comb; 828 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 829 } 830 831 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 832 struct ieee80211_rx_status *status, 833 struct htt_rx_desc *rxd) 834 { 835 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 836 * means all prior MSDUs in a PPDU are reported to mac80211 without the 837 * TSF. Is it worth holding frames until end of PPDU is known? 838 * 839 * FIXME: Can we get/compute 64bit TSF? 840 */ 841 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); 842 status->flag |= RX_FLAG_MACTIME_END; 843 } 844 845 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 846 struct sk_buff_head *amsdu, 847 struct ieee80211_rx_status *status, 848 u32 vdev_id) 849 { 850 struct sk_buff *first; 851 struct htt_rx_desc *rxd; 852 bool is_first_ppdu; 853 bool is_last_ppdu; 854 855 if (skb_queue_empty(amsdu)) 856 return; 857 858 first = skb_peek(amsdu); 859 rxd = (void *)first->data - sizeof(*rxd); 860 861 is_first_ppdu = !!(rxd->attention.flags & 862 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 863 is_last_ppdu = !!(rxd->attention.flags & 864 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 865 866 if (is_first_ppdu) { 867 /* New PPDU starts so clear out the old per-PPDU status. */ 868 status->freq = 0; 869 status->rate_idx = 0; 870 status->vht_nss = 0; 871 status->vht_flag &= ~RX_VHT_FLAG_80MHZ; 872 status->flag &= ~(RX_FLAG_HT | 873 RX_FLAG_VHT | 874 RX_FLAG_SHORT_GI | 875 RX_FLAG_40MHZ | 876 RX_FLAG_MACTIME_END); 877 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 878 879 ath10k_htt_rx_h_signal(ar, status, rxd); 880 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 881 ath10k_htt_rx_h_rates(ar, status, rxd); 882 } 883 884 if (is_last_ppdu) 885 ath10k_htt_rx_h_mactime(ar, status, rxd); 886 } 887 888 static const char * const tid_to_ac[] = { 889 "BE", 890 "BK", 891 "BK", 892 "BE", 893 "VI", 894 "VI", 895 "VO", 896 "VO", 897 }; 898 899 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 900 { 901 u8 *qc; 902 int tid; 903 904 if (!ieee80211_is_data_qos(hdr->frame_control)) 905 return ""; 906 907 qc = ieee80211_get_qos_ctl(hdr); 908 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 909 if (tid < 8) 910 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 911 else 912 snprintf(out, size, "tid %d", tid); 913 914 return out; 915 } 916 917 static void ath10k_process_rx(struct ath10k *ar, 918 struct ieee80211_rx_status *rx_status, 919 struct sk_buff *skb) 920 { 921 struct ieee80211_rx_status *status; 922 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 923 char tid[32]; 924 925 status = IEEE80211_SKB_RXCB(skb); 926 *status = *rx_status; 927 928 ath10k_dbg(ar, ATH10K_DBG_DATA, 929 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%llx fcs-err %i mic-err %i amsdu-more %i\n", 930 skb, 931 skb->len, 932 ieee80211_get_SA(hdr), 933 ath10k_get_tid(hdr, tid, sizeof(tid)), 934 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 935 "mcast" : "ucast", 936 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 937 (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) == 0 ? 938 "legacy" : "", 939 status->flag & RX_FLAG_HT ? "ht" : "", 940 status->flag & RX_FLAG_VHT ? "vht" : "", 941 status->flag & RX_FLAG_40MHZ ? "40" : "", 942 status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "", 943 status->flag & RX_FLAG_SHORT_GI ? "sgi " : "", 944 status->rate_idx, 945 status->vht_nss, 946 status->freq, 947 status->band, status->flag, 948 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 949 !!(status->flag & RX_FLAG_MMIC_ERROR), 950 !!(status->flag & RX_FLAG_AMSDU_MORE)); 951 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 952 skb->data, skb->len); 953 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 954 trace_ath10k_rx_payload(ar, skb->data, skb->len); 955 956 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 957 } 958 959 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 960 struct ieee80211_hdr *hdr) 961 { 962 int len = ieee80211_hdrlen(hdr->frame_control); 963 964 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 965 ar->running_fw->fw_file.fw_features)) 966 len = round_up(len, 4); 967 968 return len; 969 } 970 971 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 972 struct sk_buff *msdu, 973 struct ieee80211_rx_status *status, 974 enum htt_rx_mpdu_encrypt_type enctype, 975 bool is_decrypted) 976 { 977 struct ieee80211_hdr *hdr; 978 struct htt_rx_desc *rxd; 979 size_t hdr_len; 980 size_t crypto_len; 981 bool is_first; 982 bool is_last; 983 984 rxd = (void *)msdu->data - sizeof(*rxd); 985 is_first = !!(rxd->msdu_end.common.info0 & 986 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 987 is_last = !!(rxd->msdu_end.common.info0 & 988 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 989 990 /* Delivered decapped frame: 991 * [802.11 header] 992 * [crypto param] <-- can be trimmed if !fcs_err && 993 * !decrypt_err && !peer_idx_invalid 994 * [amsdu header] <-- only if A-MSDU 995 * [rfc1042/llc] 996 * [payload] 997 * [FCS] <-- at end, needs to be trimmed 998 */ 999 1000 /* This probably shouldn't happen but warn just in case */ 1001 if (unlikely(WARN_ON_ONCE(!is_first))) 1002 return; 1003 1004 /* This probably shouldn't happen but warn just in case */ 1005 if (unlikely(WARN_ON_ONCE(!(is_first && is_last)))) 1006 return; 1007 1008 skb_trim(msdu, msdu->len - FCS_LEN); 1009 1010 /* In most cases this will be true for sniffed frames. It makes sense 1011 * to deliver them as-is without stripping the crypto param. This is 1012 * necessary for software based decryption. 1013 * 1014 * If there's no error then the frame is decrypted. At least that is 1015 * the case for frames that come in via fragmented rx indication. 1016 */ 1017 if (!is_decrypted) 1018 return; 1019 1020 /* The payload is decrypted so strip crypto params. Start from tail 1021 * since hdr is used to compute some stuff. 1022 */ 1023 1024 hdr = (void *)msdu->data; 1025 1026 /* Tail */ 1027 if (status->flag & RX_FLAG_IV_STRIPPED) 1028 skb_trim(msdu, msdu->len - 1029 ath10k_htt_rx_crypto_tail_len(ar, enctype)); 1030 1031 /* MMIC */ 1032 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 1033 !ieee80211_has_morefrags(hdr->frame_control) && 1034 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1035 skb_trim(msdu, msdu->len - 8); 1036 1037 /* Head */ 1038 if (status->flag & RX_FLAG_IV_STRIPPED) { 1039 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1040 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1041 1042 memmove((void *)msdu->data + crypto_len, 1043 (void *)msdu->data, hdr_len); 1044 skb_pull(msdu, crypto_len); 1045 } 1046 } 1047 1048 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1049 struct sk_buff *msdu, 1050 struct ieee80211_rx_status *status, 1051 const u8 first_hdr[64]) 1052 { 1053 struct ieee80211_hdr *hdr; 1054 struct htt_rx_desc *rxd; 1055 size_t hdr_len; 1056 u8 da[ETH_ALEN]; 1057 u8 sa[ETH_ALEN]; 1058 int l3_pad_bytes; 1059 1060 /* Delivered decapped frame: 1061 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1062 * [rfc1042/llc] 1063 * 1064 * Note: The nwifi header doesn't have QoS Control and is 1065 * (always?) a 3addr frame. 1066 * 1067 * Note2: There's no A-MSDU subframe header. Even if it's part 1068 * of an A-MSDU. 1069 */ 1070 1071 /* pull decapped header and copy SA & DA */ 1072 rxd = (void *)msdu->data - sizeof(*rxd); 1073 1074 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1075 skb_put(msdu, l3_pad_bytes); 1076 1077 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1078 1079 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1080 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1081 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1082 skb_pull(msdu, hdr_len); 1083 1084 /* push original 802.11 header */ 1085 hdr = (struct ieee80211_hdr *)first_hdr; 1086 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1087 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1088 1089 /* original 802.11 header has a different DA and in 1090 * case of 4addr it may also have different SA 1091 */ 1092 hdr = (struct ieee80211_hdr *)msdu->data; 1093 ether_addr_copy(ieee80211_get_DA(hdr), da); 1094 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1095 } 1096 1097 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1098 struct sk_buff *msdu, 1099 enum htt_rx_mpdu_encrypt_type enctype) 1100 { 1101 struct ieee80211_hdr *hdr; 1102 struct htt_rx_desc *rxd; 1103 size_t hdr_len, crypto_len; 1104 void *rfc1042; 1105 bool is_first, is_last, is_amsdu; 1106 int bytes_aligned = ar->hw_params.decap_align_bytes; 1107 1108 rxd = (void *)msdu->data - sizeof(*rxd); 1109 hdr = (void *)rxd->rx_hdr_status; 1110 1111 is_first = !!(rxd->msdu_end.common.info0 & 1112 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1113 is_last = !!(rxd->msdu_end.common.info0 & 1114 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1115 is_amsdu = !(is_first && is_last); 1116 1117 rfc1042 = hdr; 1118 1119 if (is_first) { 1120 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1121 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1122 1123 rfc1042 += round_up(hdr_len, bytes_aligned) + 1124 round_up(crypto_len, bytes_aligned); 1125 } 1126 1127 if (is_amsdu) 1128 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1129 1130 return rfc1042; 1131 } 1132 1133 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1134 struct sk_buff *msdu, 1135 struct ieee80211_rx_status *status, 1136 const u8 first_hdr[64], 1137 enum htt_rx_mpdu_encrypt_type enctype) 1138 { 1139 struct ieee80211_hdr *hdr; 1140 struct ethhdr *eth; 1141 size_t hdr_len; 1142 void *rfc1042; 1143 u8 da[ETH_ALEN]; 1144 u8 sa[ETH_ALEN]; 1145 int l3_pad_bytes; 1146 struct htt_rx_desc *rxd; 1147 1148 /* Delivered decapped frame: 1149 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1150 * [payload] 1151 */ 1152 1153 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1154 if (WARN_ON_ONCE(!rfc1042)) 1155 return; 1156 1157 rxd = (void *)msdu->data - sizeof(*rxd); 1158 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1159 skb_put(msdu, l3_pad_bytes); 1160 skb_pull(msdu, l3_pad_bytes); 1161 1162 /* pull decapped header and copy SA & DA */ 1163 eth = (struct ethhdr *)msdu->data; 1164 ether_addr_copy(da, eth->h_dest); 1165 ether_addr_copy(sa, eth->h_source); 1166 skb_pull(msdu, sizeof(struct ethhdr)); 1167 1168 /* push rfc1042/llc/snap */ 1169 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1170 sizeof(struct rfc1042_hdr)); 1171 1172 /* push original 802.11 header */ 1173 hdr = (struct ieee80211_hdr *)first_hdr; 1174 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1175 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1176 1177 /* original 802.11 header has a different DA and in 1178 * case of 4addr it may also have different SA 1179 */ 1180 hdr = (struct ieee80211_hdr *)msdu->data; 1181 ether_addr_copy(ieee80211_get_DA(hdr), da); 1182 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1183 } 1184 1185 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1186 struct sk_buff *msdu, 1187 struct ieee80211_rx_status *status, 1188 const u8 first_hdr[64]) 1189 { 1190 struct ieee80211_hdr *hdr; 1191 size_t hdr_len; 1192 int l3_pad_bytes; 1193 struct htt_rx_desc *rxd; 1194 1195 /* Delivered decapped frame: 1196 * [amsdu header] <-- replaced with 802.11 hdr 1197 * [rfc1042/llc] 1198 * [payload] 1199 */ 1200 1201 rxd = (void *)msdu->data - sizeof(*rxd); 1202 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1203 1204 skb_put(msdu, l3_pad_bytes); 1205 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); 1206 1207 hdr = (struct ieee80211_hdr *)first_hdr; 1208 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1209 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1210 } 1211 1212 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1213 struct sk_buff *msdu, 1214 struct ieee80211_rx_status *status, 1215 u8 first_hdr[64], 1216 enum htt_rx_mpdu_encrypt_type enctype, 1217 bool is_decrypted) 1218 { 1219 struct htt_rx_desc *rxd; 1220 enum rx_msdu_decap_format decap; 1221 1222 /* First msdu's decapped header: 1223 * [802.11 header] <-- padded to 4 bytes long 1224 * [crypto param] <-- padded to 4 bytes long 1225 * [amsdu header] <-- only if A-MSDU 1226 * [rfc1042/llc] 1227 * 1228 * Other (2nd, 3rd, ..) msdu's decapped header: 1229 * [amsdu header] <-- only if A-MSDU 1230 * [rfc1042/llc] 1231 */ 1232 1233 rxd = (void *)msdu->data - sizeof(*rxd); 1234 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1235 RX_MSDU_START_INFO1_DECAP_FORMAT); 1236 1237 switch (decap) { 1238 case RX_MSDU_DECAP_RAW: 1239 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1240 is_decrypted); 1241 break; 1242 case RX_MSDU_DECAP_NATIVE_WIFI: 1243 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr); 1244 break; 1245 case RX_MSDU_DECAP_ETHERNET2_DIX: 1246 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1247 break; 1248 case RX_MSDU_DECAP_8023_SNAP_LLC: 1249 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr); 1250 break; 1251 } 1252 } 1253 1254 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1255 { 1256 struct htt_rx_desc *rxd; 1257 u32 flags, info; 1258 bool is_ip4, is_ip6; 1259 bool is_tcp, is_udp; 1260 bool ip_csum_ok, tcpudp_csum_ok; 1261 1262 rxd = (void *)skb->data - sizeof(*rxd); 1263 flags = __le32_to_cpu(rxd->attention.flags); 1264 info = __le32_to_cpu(rxd->msdu_start.common.info1); 1265 1266 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1267 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1268 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1269 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1270 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1271 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1272 1273 if (!is_ip4 && !is_ip6) 1274 return CHECKSUM_NONE; 1275 if (!is_tcp && !is_udp) 1276 return CHECKSUM_NONE; 1277 if (!ip_csum_ok) 1278 return CHECKSUM_NONE; 1279 if (!tcpudp_csum_ok) 1280 return CHECKSUM_NONE; 1281 1282 return CHECKSUM_UNNECESSARY; 1283 } 1284 1285 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1286 { 1287 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1288 } 1289 1290 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1291 struct sk_buff_head *amsdu, 1292 struct ieee80211_rx_status *status) 1293 { 1294 struct sk_buff *first; 1295 struct sk_buff *last; 1296 struct sk_buff *msdu; 1297 struct htt_rx_desc *rxd; 1298 struct ieee80211_hdr *hdr; 1299 enum htt_rx_mpdu_encrypt_type enctype; 1300 u8 first_hdr[64]; 1301 u8 *qos; 1302 size_t hdr_len; 1303 bool has_fcs_err; 1304 bool has_crypto_err; 1305 bool has_tkip_err; 1306 bool has_peer_idx_invalid; 1307 bool is_decrypted; 1308 bool is_mgmt; 1309 u32 attention; 1310 1311 if (skb_queue_empty(amsdu)) 1312 return; 1313 1314 first = skb_peek(amsdu); 1315 rxd = (void *)first->data - sizeof(*rxd); 1316 1317 is_mgmt = !!(rxd->attention.flags & 1318 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1319 1320 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1321 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1322 1323 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1324 * decapped header. It'll be used for undecapping of each MSDU. 1325 */ 1326 hdr = (void *)rxd->rx_hdr_status; 1327 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1328 memcpy(first_hdr, hdr, hdr_len); 1329 1330 /* Each A-MSDU subframe will use the original header as the base and be 1331 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1332 */ 1333 hdr = (void *)first_hdr; 1334 qos = ieee80211_get_qos_ctl(hdr); 1335 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1336 1337 /* Some attention flags are valid only in the last MSDU. */ 1338 last = skb_peek_tail(amsdu); 1339 rxd = (void *)last->data - sizeof(*rxd); 1340 attention = __le32_to_cpu(rxd->attention.flags); 1341 1342 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1343 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1344 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1345 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1346 1347 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1348 * e.g. due to fcs error, missing peer or invalid key data it will 1349 * report the frame as raw. 1350 */ 1351 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1352 !has_fcs_err && 1353 !has_crypto_err && 1354 !has_peer_idx_invalid); 1355 1356 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1357 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1358 RX_FLAG_MMIC_ERROR | 1359 RX_FLAG_DECRYPTED | 1360 RX_FLAG_IV_STRIPPED | 1361 RX_FLAG_ONLY_MONITOR | 1362 RX_FLAG_MMIC_STRIPPED); 1363 1364 if (has_fcs_err) 1365 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1366 1367 if (has_tkip_err) 1368 status->flag |= RX_FLAG_MMIC_ERROR; 1369 1370 /* Firmware reports all necessary management frames via WMI already. 1371 * They are not reported to monitor interfaces at all so pass the ones 1372 * coming via HTT to monitor interfaces instead. This simplifies 1373 * matters a lot. 1374 */ 1375 if (is_mgmt) 1376 status->flag |= RX_FLAG_ONLY_MONITOR; 1377 1378 if (is_decrypted) { 1379 status->flag |= RX_FLAG_DECRYPTED; 1380 1381 if (likely(!is_mgmt)) 1382 status->flag |= RX_FLAG_IV_STRIPPED | 1383 RX_FLAG_MMIC_STRIPPED; 1384 } 1385 1386 skb_queue_walk(amsdu, msdu) { 1387 ath10k_htt_rx_h_csum_offload(msdu); 1388 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1389 is_decrypted); 1390 1391 /* Undecapping involves copying the original 802.11 header back 1392 * to sk_buff. If frame is protected and hardware has decrypted 1393 * it then remove the protected bit. 1394 */ 1395 if (!is_decrypted) 1396 continue; 1397 if (is_mgmt) 1398 continue; 1399 1400 hdr = (void *)msdu->data; 1401 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1402 } 1403 } 1404 1405 static void ath10k_htt_rx_h_deliver(struct ath10k *ar, 1406 struct sk_buff_head *amsdu, 1407 struct ieee80211_rx_status *status) 1408 { 1409 struct sk_buff *msdu; 1410 1411 while ((msdu = __skb_dequeue(amsdu))) { 1412 /* Setup per-MSDU flags */ 1413 if (skb_queue_empty(amsdu)) 1414 status->flag &= ~RX_FLAG_AMSDU_MORE; 1415 else 1416 status->flag |= RX_FLAG_AMSDU_MORE; 1417 1418 ath10k_process_rx(ar, status, msdu); 1419 } 1420 } 1421 1422 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu) 1423 { 1424 struct sk_buff *skb, *first; 1425 int space; 1426 int total_len = 0; 1427 1428 /* TODO: Might could optimize this by using 1429 * skb_try_coalesce or similar method to 1430 * decrease copying, or maybe get mac80211 to 1431 * provide a way to just receive a list of 1432 * skb? 1433 */ 1434 1435 first = __skb_dequeue(amsdu); 1436 1437 /* Allocate total length all at once. */ 1438 skb_queue_walk(amsdu, skb) 1439 total_len += skb->len; 1440 1441 space = total_len - skb_tailroom(first); 1442 if ((space > 0) && 1443 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 1444 /* TODO: bump some rx-oom error stat */ 1445 /* put it back together so we can free the 1446 * whole list at once. 1447 */ 1448 __skb_queue_head(amsdu, first); 1449 return -1; 1450 } 1451 1452 /* Walk list again, copying contents into 1453 * msdu_head 1454 */ 1455 while ((skb = __skb_dequeue(amsdu))) { 1456 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 1457 skb->len); 1458 dev_kfree_skb_any(skb); 1459 } 1460 1461 __skb_queue_head(amsdu, first); 1462 return 0; 1463 } 1464 1465 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 1466 struct sk_buff_head *amsdu) 1467 { 1468 struct sk_buff *first; 1469 struct htt_rx_desc *rxd; 1470 enum rx_msdu_decap_format decap; 1471 1472 first = skb_peek(amsdu); 1473 rxd = (void *)first->data - sizeof(*rxd); 1474 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1475 RX_MSDU_START_INFO1_DECAP_FORMAT); 1476 1477 /* FIXME: Current unchaining logic can only handle simple case of raw 1478 * msdu chaining. If decapping is other than raw the chaining may be 1479 * more complex and this isn't handled by the current code. Don't even 1480 * try re-constructing such frames - it'll be pretty much garbage. 1481 */ 1482 if (decap != RX_MSDU_DECAP_RAW || 1483 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 1484 __skb_queue_purge(amsdu); 1485 return; 1486 } 1487 1488 ath10k_unchain_msdu(amsdu); 1489 } 1490 1491 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 1492 struct sk_buff_head *amsdu, 1493 struct ieee80211_rx_status *rx_status) 1494 { 1495 /* FIXME: It might be a good idea to do some fuzzy-testing to drop 1496 * invalid/dangerous frames. 1497 */ 1498 1499 if (!rx_status->freq) { 1500 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n"); 1501 return false; 1502 } 1503 1504 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 1505 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 1506 return false; 1507 } 1508 1509 return true; 1510 } 1511 1512 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 1513 struct sk_buff_head *amsdu, 1514 struct ieee80211_rx_status *rx_status) 1515 { 1516 if (skb_queue_empty(amsdu)) 1517 return; 1518 1519 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 1520 return; 1521 1522 __skb_queue_purge(amsdu); 1523 } 1524 1525 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) 1526 { 1527 struct ath10k *ar = htt->ar; 1528 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1529 struct sk_buff_head amsdu; 1530 int ret, num_msdus; 1531 1532 __skb_queue_head_init(&amsdu); 1533 1534 spin_lock_bh(&htt->rx_ring.lock); 1535 if (htt->rx_confused) { 1536 spin_unlock_bh(&htt->rx_ring.lock); 1537 return -EIO; 1538 } 1539 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); 1540 spin_unlock_bh(&htt->rx_ring.lock); 1541 1542 if (ret < 0) { 1543 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 1544 __skb_queue_purge(&amsdu); 1545 /* FIXME: It's probably a good idea to reboot the 1546 * device instead of leaving it inoperable. 1547 */ 1548 htt->rx_confused = true; 1549 return ret; 1550 } 1551 1552 num_msdus = skb_queue_len(&amsdu); 1553 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 1554 1555 /* only for ret = 1 indicates chained msdus */ 1556 if (ret > 0) 1557 ath10k_htt_rx_h_unchain(ar, &amsdu); 1558 1559 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); 1560 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); 1561 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); 1562 1563 return num_msdus; 1564 } 1565 1566 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt, 1567 struct htt_rx_indication *rx) 1568 { 1569 struct ath10k *ar = htt->ar; 1570 struct htt_rx_indication_mpdu_range *mpdu_ranges; 1571 int num_mpdu_ranges; 1572 int i, mpdu_count = 0; 1573 1574 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 1575 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 1576 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 1577 1578 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 1579 rx, sizeof(*rx) + 1580 (sizeof(struct htt_rx_indication_mpdu_range) * 1581 num_mpdu_ranges)); 1582 1583 for (i = 0; i < num_mpdu_ranges; i++) 1584 mpdu_count += mpdu_ranges[i].mpdu_count; 1585 1586 atomic_add(mpdu_count, &htt->num_mpdus_ready); 1587 } 1588 1589 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, 1590 struct sk_buff *skb) 1591 { 1592 struct ath10k_htt *htt = &ar->htt; 1593 struct htt_resp *resp = (struct htt_resp *)skb->data; 1594 struct htt_tx_done tx_done = {}; 1595 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 1596 __le16 msdu_id; 1597 int i; 1598 1599 switch (status) { 1600 case HTT_DATA_TX_STATUS_NO_ACK: 1601 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 1602 break; 1603 case HTT_DATA_TX_STATUS_OK: 1604 tx_done.status = HTT_TX_COMPL_STATE_ACK; 1605 break; 1606 case HTT_DATA_TX_STATUS_DISCARD: 1607 case HTT_DATA_TX_STATUS_POSTPONE: 1608 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 1609 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 1610 break; 1611 default: 1612 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 1613 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 1614 break; 1615 } 1616 1617 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 1618 resp->data_tx_completion.num_msdus); 1619 1620 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { 1621 msdu_id = resp->data_tx_completion.msdus[i]; 1622 tx_done.msdu_id = __le16_to_cpu(msdu_id); 1623 1624 /* kfifo_put: In practice firmware shouldn't fire off per-CE 1625 * interrupt and main interrupt (MSI/-X range case) for the same 1626 * HTC service so it should be safe to use kfifo_put w/o lock. 1627 * 1628 * From kfifo_put() documentation: 1629 * Note that with only one concurrent reader and one concurrent 1630 * writer, you don't need extra locking to use these macro. 1631 */ 1632 if (!kfifo_put(&htt->txdone_fifo, tx_done)) { 1633 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", 1634 tx_done.msdu_id, tx_done.status); 1635 ath10k_txrx_tx_unref(htt, &tx_done); 1636 } 1637 } 1638 } 1639 1640 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 1641 { 1642 struct htt_rx_addba *ev = &resp->rx_addba; 1643 struct ath10k_peer *peer; 1644 struct ath10k_vif *arvif; 1645 u16 info0, tid, peer_id; 1646 1647 info0 = __le16_to_cpu(ev->info0); 1648 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1649 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1650 1651 ath10k_dbg(ar, ATH10K_DBG_HTT, 1652 "htt rx addba tid %hu peer_id %hu size %hhu\n", 1653 tid, peer_id, ev->window_size); 1654 1655 spin_lock_bh(&ar->data_lock); 1656 peer = ath10k_peer_find_by_id(ar, peer_id); 1657 if (!peer) { 1658 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1659 peer_id); 1660 spin_unlock_bh(&ar->data_lock); 1661 return; 1662 } 1663 1664 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1665 if (!arvif) { 1666 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1667 peer->vdev_id); 1668 spin_unlock_bh(&ar->data_lock); 1669 return; 1670 } 1671 1672 ath10k_dbg(ar, ATH10K_DBG_HTT, 1673 "htt rx start rx ba session sta %pM tid %hu size %hhu\n", 1674 peer->addr, tid, ev->window_size); 1675 1676 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1677 spin_unlock_bh(&ar->data_lock); 1678 } 1679 1680 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 1681 { 1682 struct htt_rx_delba *ev = &resp->rx_delba; 1683 struct ath10k_peer *peer; 1684 struct ath10k_vif *arvif; 1685 u16 info0, tid, peer_id; 1686 1687 info0 = __le16_to_cpu(ev->info0); 1688 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1689 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1690 1691 ath10k_dbg(ar, ATH10K_DBG_HTT, 1692 "htt rx delba tid %hu peer_id %hu\n", 1693 tid, peer_id); 1694 1695 spin_lock_bh(&ar->data_lock); 1696 peer = ath10k_peer_find_by_id(ar, peer_id); 1697 if (!peer) { 1698 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1699 peer_id); 1700 spin_unlock_bh(&ar->data_lock); 1701 return; 1702 } 1703 1704 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1705 if (!arvif) { 1706 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1707 peer->vdev_id); 1708 spin_unlock_bh(&ar->data_lock); 1709 return; 1710 } 1711 1712 ath10k_dbg(ar, ATH10K_DBG_HTT, 1713 "htt rx stop rx ba session sta %pM tid %hu\n", 1714 peer->addr, tid); 1715 1716 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1717 spin_unlock_bh(&ar->data_lock); 1718 } 1719 1720 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, 1721 struct sk_buff_head *amsdu) 1722 { 1723 struct sk_buff *msdu; 1724 struct htt_rx_desc *rxd; 1725 1726 if (skb_queue_empty(list)) 1727 return -ENOBUFS; 1728 1729 if (WARN_ON(!skb_queue_empty(amsdu))) 1730 return -EINVAL; 1731 1732 while ((msdu = __skb_dequeue(list))) { 1733 __skb_queue_tail(amsdu, msdu); 1734 1735 rxd = (void *)msdu->data - sizeof(*rxd); 1736 if (rxd->msdu_end.common.info0 & 1737 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 1738 break; 1739 } 1740 1741 msdu = skb_peek_tail(amsdu); 1742 rxd = (void *)msdu->data - sizeof(*rxd); 1743 if (!(rxd->msdu_end.common.info0 & 1744 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 1745 skb_queue_splice_init(amsdu, list); 1746 return -EAGAIN; 1747 } 1748 1749 return 0; 1750 } 1751 1752 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 1753 struct sk_buff *skb) 1754 { 1755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1756 1757 if (!ieee80211_has_protected(hdr->frame_control)) 1758 return; 1759 1760 /* Offloaded frames are already decrypted but firmware insists they are 1761 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 1762 * will drop the frame. 1763 */ 1764 1765 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1766 status->flag |= RX_FLAG_DECRYPTED | 1767 RX_FLAG_IV_STRIPPED | 1768 RX_FLAG_MMIC_STRIPPED; 1769 } 1770 1771 static int ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 1772 struct sk_buff_head *list) 1773 { 1774 struct ath10k_htt *htt = &ar->htt; 1775 struct ieee80211_rx_status *status = &htt->rx_status; 1776 struct htt_rx_offload_msdu *rx; 1777 struct sk_buff *msdu; 1778 size_t offset; 1779 int num_msdu = 0; 1780 1781 while ((msdu = __skb_dequeue(list))) { 1782 /* Offloaded frames don't have Rx descriptor. Instead they have 1783 * a short meta information header. 1784 */ 1785 1786 rx = (void *)msdu->data; 1787 1788 skb_put(msdu, sizeof(*rx)); 1789 skb_pull(msdu, sizeof(*rx)); 1790 1791 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 1792 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 1793 dev_kfree_skb_any(msdu); 1794 continue; 1795 } 1796 1797 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 1798 1799 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 1800 * actual payload is unaligned. Align the frame. Otherwise 1801 * mac80211 complains. This shouldn't reduce performance much 1802 * because these offloaded frames are rare. 1803 */ 1804 offset = 4 - ((unsigned long)msdu->data & 3); 1805 skb_put(msdu, offset); 1806 memmove(msdu->data + offset, msdu->data, msdu->len); 1807 skb_pull(msdu, offset); 1808 1809 /* FIXME: The frame is NWifi. Re-construct QoS Control 1810 * if possible later. 1811 */ 1812 1813 memset(status, 0, sizeof(*status)); 1814 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1815 1816 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 1817 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 1818 ath10k_process_rx(ar, status, msdu); 1819 num_msdu++; 1820 } 1821 return num_msdu; 1822 } 1823 1824 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 1825 { 1826 struct ath10k_htt *htt = &ar->htt; 1827 struct htt_resp *resp = (void *)skb->data; 1828 struct ieee80211_rx_status *status = &htt->rx_status; 1829 struct sk_buff_head list; 1830 struct sk_buff_head amsdu; 1831 u16 peer_id; 1832 u16 msdu_count; 1833 u8 vdev_id; 1834 u8 tid; 1835 bool offload; 1836 bool frag; 1837 int ret, num_msdus = 0; 1838 1839 lockdep_assert_held(&htt->rx_ring.lock); 1840 1841 if (htt->rx_confused) 1842 return -EIO; 1843 1844 skb_pull(skb, sizeof(resp->hdr)); 1845 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 1846 1847 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 1848 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 1849 vdev_id = resp->rx_in_ord_ind.vdev_id; 1850 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 1851 offload = !!(resp->rx_in_ord_ind.info & 1852 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 1853 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 1854 1855 ath10k_dbg(ar, ATH10K_DBG_HTT, 1856 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 1857 vdev_id, peer_id, tid, offload, frag, msdu_count); 1858 1859 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) { 1860 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 1861 return -EINVAL; 1862 } 1863 1864 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 1865 * extracted and processed. 1866 */ 1867 __skb_queue_head_init(&list); 1868 ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list); 1869 if (ret < 0) { 1870 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 1871 htt->rx_confused = true; 1872 return -EIO; 1873 } 1874 1875 /* Offloaded frames are very different and need to be handled 1876 * separately. 1877 */ 1878 if (offload) 1879 num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list); 1880 1881 while (!skb_queue_empty(&list)) { 1882 __skb_queue_head_init(&amsdu); 1883 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); 1884 switch (ret) { 1885 case 0: 1886 /* Note: The in-order indication may report interleaved 1887 * frames from different PPDUs meaning reported rx rate 1888 * to mac80211 isn't accurate/reliable. It's still 1889 * better to report something than nothing though. This 1890 * should still give an idea about rx rate to the user. 1891 */ 1892 num_msdus += skb_queue_len(&amsdu); 1893 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 1894 ath10k_htt_rx_h_filter(ar, &amsdu, status); 1895 ath10k_htt_rx_h_mpdu(ar, &amsdu, status); 1896 ath10k_htt_rx_h_deliver(ar, &amsdu, status); 1897 break; 1898 case -EAGAIN: 1899 /* fall through */ 1900 default: 1901 /* Should not happen. */ 1902 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 1903 htt->rx_confused = true; 1904 __skb_queue_purge(&list); 1905 return -EIO; 1906 } 1907 } 1908 return num_msdus; 1909 } 1910 1911 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, 1912 const __le32 *resp_ids, 1913 int num_resp_ids) 1914 { 1915 int i; 1916 u32 resp_id; 1917 1918 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", 1919 num_resp_ids); 1920 1921 for (i = 0; i < num_resp_ids; i++) { 1922 resp_id = le32_to_cpu(resp_ids[i]); 1923 1924 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", 1925 resp_id); 1926 1927 /* TODO: free resp_id */ 1928 } 1929 } 1930 1931 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) 1932 { 1933 struct ieee80211_hw *hw = ar->hw; 1934 struct ieee80211_txq *txq; 1935 struct htt_resp *resp = (struct htt_resp *)skb->data; 1936 struct htt_tx_fetch_record *record; 1937 size_t len; 1938 size_t max_num_bytes; 1939 size_t max_num_msdus; 1940 size_t num_bytes; 1941 size_t num_msdus; 1942 const __le32 *resp_ids; 1943 u16 num_records; 1944 u16 num_resp_ids; 1945 u16 peer_id; 1946 u8 tid; 1947 int ret; 1948 int i; 1949 1950 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); 1951 1952 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); 1953 if (unlikely(skb->len < len)) { 1954 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); 1955 return; 1956 } 1957 1958 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); 1959 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); 1960 1961 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; 1962 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; 1963 1964 if (unlikely(skb->len < len)) { 1965 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); 1966 return; 1967 } 1968 1969 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n", 1970 num_records, num_resp_ids, 1971 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); 1972 1973 if (!ar->htt.tx_q_state.enabled) { 1974 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); 1975 return; 1976 } 1977 1978 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { 1979 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); 1980 return; 1981 } 1982 1983 rcu_read_lock(); 1984 1985 for (i = 0; i < num_records; i++) { 1986 record = &resp->tx_fetch_ind.records[i]; 1987 peer_id = MS(le16_to_cpu(record->info), 1988 HTT_TX_FETCH_RECORD_INFO_PEER_ID); 1989 tid = MS(le16_to_cpu(record->info), 1990 HTT_TX_FETCH_RECORD_INFO_TID); 1991 max_num_msdus = le16_to_cpu(record->num_msdus); 1992 max_num_bytes = le32_to_cpu(record->num_bytes); 1993 1994 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n", 1995 i, peer_id, tid, max_num_msdus, max_num_bytes); 1996 1997 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 1998 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 1999 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 2000 peer_id, tid); 2001 continue; 2002 } 2003 2004 spin_lock_bh(&ar->data_lock); 2005 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 2006 spin_unlock_bh(&ar->data_lock); 2007 2008 /* It is okay to release the lock and use txq because RCU read 2009 * lock is held. 2010 */ 2011 2012 if (unlikely(!txq)) { 2013 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 2014 peer_id, tid); 2015 continue; 2016 } 2017 2018 num_msdus = 0; 2019 num_bytes = 0; 2020 2021 while (num_msdus < max_num_msdus && 2022 num_bytes < max_num_bytes) { 2023 ret = ath10k_mac_tx_push_txq(hw, txq); 2024 if (ret < 0) 2025 break; 2026 2027 num_msdus++; 2028 num_bytes += ret; 2029 } 2030 2031 record->num_msdus = cpu_to_le16(num_msdus); 2032 record->num_bytes = cpu_to_le32(num_bytes); 2033 2034 ath10k_htt_tx_txq_recalc(hw, txq); 2035 } 2036 2037 rcu_read_unlock(); 2038 2039 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); 2040 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); 2041 2042 ret = ath10k_htt_tx_fetch_resp(ar, 2043 resp->tx_fetch_ind.token, 2044 resp->tx_fetch_ind.fetch_seq_num, 2045 resp->tx_fetch_ind.records, 2046 num_records); 2047 if (unlikely(ret)) { 2048 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", 2049 le32_to_cpu(resp->tx_fetch_ind.token), ret); 2050 /* FIXME: request fw restart */ 2051 } 2052 2053 ath10k_htt_tx_txq_sync(ar); 2054 } 2055 2056 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, 2057 struct sk_buff *skb) 2058 { 2059 const struct htt_resp *resp = (void *)skb->data; 2060 size_t len; 2061 int num_resp_ids; 2062 2063 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); 2064 2065 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); 2066 if (unlikely(skb->len < len)) { 2067 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); 2068 return; 2069 } 2070 2071 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); 2072 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; 2073 2074 if (unlikely(skb->len < len)) { 2075 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); 2076 return; 2077 } 2078 2079 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, 2080 resp->tx_fetch_confirm.resp_ids, 2081 num_resp_ids); 2082 } 2083 2084 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, 2085 struct sk_buff *skb) 2086 { 2087 const struct htt_resp *resp = (void *)skb->data; 2088 const struct htt_tx_mode_switch_record *record; 2089 struct ieee80211_txq *txq; 2090 struct ath10k_txq *artxq; 2091 size_t len; 2092 size_t num_records; 2093 enum htt_tx_mode_switch_mode mode; 2094 bool enable; 2095 u16 info0; 2096 u16 info1; 2097 u16 threshold; 2098 u16 peer_id; 2099 u8 tid; 2100 int i; 2101 2102 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); 2103 2104 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); 2105 if (unlikely(skb->len < len)) { 2106 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); 2107 return; 2108 } 2109 2110 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); 2111 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); 2112 2113 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); 2114 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 2115 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); 2116 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 2117 2118 ath10k_dbg(ar, ATH10K_DBG_HTT, 2119 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n", 2120 info0, info1, enable, num_records, mode, threshold); 2121 2122 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; 2123 2124 if (unlikely(skb->len < len)) { 2125 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); 2126 return; 2127 } 2128 2129 switch (mode) { 2130 case HTT_TX_MODE_SWITCH_PUSH: 2131 case HTT_TX_MODE_SWITCH_PUSH_PULL: 2132 break; 2133 default: 2134 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", 2135 mode); 2136 return; 2137 } 2138 2139 if (!enable) 2140 return; 2141 2142 ar->htt.tx_q_state.enabled = enable; 2143 ar->htt.tx_q_state.mode = mode; 2144 ar->htt.tx_q_state.num_push_allowed = threshold; 2145 2146 rcu_read_lock(); 2147 2148 for (i = 0; i < num_records; i++) { 2149 record = &resp->tx_mode_switch_ind.records[i]; 2150 info0 = le16_to_cpu(record->info0); 2151 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); 2152 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); 2153 2154 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 2155 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 2156 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 2157 peer_id, tid); 2158 continue; 2159 } 2160 2161 spin_lock_bh(&ar->data_lock); 2162 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 2163 spin_unlock_bh(&ar->data_lock); 2164 2165 /* It is okay to release the lock and use txq because RCU read 2166 * lock is held. 2167 */ 2168 2169 if (unlikely(!txq)) { 2170 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 2171 peer_id, tid); 2172 continue; 2173 } 2174 2175 spin_lock_bh(&ar->htt.tx_lock); 2176 artxq = (void *)txq->drv_priv; 2177 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); 2178 spin_unlock_bh(&ar->htt.tx_lock); 2179 } 2180 2181 rcu_read_unlock(); 2182 2183 ath10k_mac_tx_push_pending(ar); 2184 } 2185 2186 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 2187 { 2188 bool release; 2189 2190 release = ath10k_htt_t2h_msg_handler(ar, skb); 2191 2192 /* Free the indication buffer */ 2193 if (release) 2194 dev_kfree_skb_any(skb); 2195 } 2196 2197 static inline bool is_valid_legacy_rate(u8 rate) 2198 { 2199 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 2200 18, 24, 36, 48, 54}; 2201 int i; 2202 2203 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { 2204 if (rate == legacy_rates[i]) 2205 return true; 2206 } 2207 2208 return false; 2209 } 2210 2211 static void 2212 ath10k_update_per_peer_tx_stats(struct ath10k *ar, 2213 struct ieee80211_sta *sta, 2214 struct ath10k_per_peer_tx_stats *peer_stats) 2215 { 2216 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 2217 u8 rate = 0, sgi; 2218 struct rate_info txrate; 2219 2220 lockdep_assert_held(&ar->data_lock); 2221 2222 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); 2223 txrate.bw = ATH10K_HW_BW(peer_stats->flags); 2224 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); 2225 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); 2226 sgi = ATH10K_HW_GI(peer_stats->flags); 2227 2228 if (((txrate.flags == WMI_RATE_PREAMBLE_HT) || 2229 (txrate.flags == WMI_RATE_PREAMBLE_VHT)) && txrate.mcs > 9) { 2230 ath10k_warn(ar, "Invalid mcs %hhd peer stats", txrate.mcs); 2231 return; 2232 } 2233 2234 if (txrate.flags == WMI_RATE_PREAMBLE_CCK || 2235 txrate.flags == WMI_RATE_PREAMBLE_OFDM) { 2236 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); 2237 2238 if (!is_valid_legacy_rate(rate)) { 2239 ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", 2240 rate); 2241 return; 2242 } 2243 2244 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ 2245 rate *= 10; 2246 if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK) 2247 rate = rate - 5; 2248 arsta->txrate.legacy = rate * 10; 2249 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { 2250 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 2251 arsta->txrate.mcs = txrate.mcs; 2252 } else { 2253 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 2254 arsta->txrate.mcs = txrate.mcs; 2255 } 2256 2257 if (sgi) 2258 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 2259 2260 arsta->txrate.nss = txrate.nss; 2261 arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20; 2262 } 2263 2264 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, 2265 struct sk_buff *skb) 2266 { 2267 struct htt_resp *resp = (struct htt_resp *)skb->data; 2268 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 2269 struct htt_per_peer_tx_stats_ind *tx_stats; 2270 struct ieee80211_sta *sta; 2271 struct ath10k_peer *peer; 2272 int peer_id, i; 2273 u8 ppdu_len, num_ppdu; 2274 2275 num_ppdu = resp->peer_tx_stats.num_ppdu; 2276 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); 2277 2278 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { 2279 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); 2280 return; 2281 } 2282 2283 tx_stats = (struct htt_per_peer_tx_stats_ind *) 2284 (resp->peer_tx_stats.payload); 2285 peer_id = __le16_to_cpu(tx_stats->peer_id); 2286 2287 rcu_read_lock(); 2288 spin_lock_bh(&ar->data_lock); 2289 peer = ath10k_peer_find_by_id(ar, peer_id); 2290 if (!peer) { 2291 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", 2292 peer_id); 2293 goto out; 2294 } 2295 2296 sta = peer->sta; 2297 for (i = 0; i < num_ppdu; i++) { 2298 tx_stats = (struct htt_per_peer_tx_stats_ind *) 2299 (resp->peer_tx_stats.payload + i * ppdu_len); 2300 2301 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); 2302 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); 2303 p_tx_stats->failed_bytes = 2304 __le32_to_cpu(tx_stats->failed_bytes); 2305 p_tx_stats->ratecode = tx_stats->ratecode; 2306 p_tx_stats->flags = tx_stats->flags; 2307 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); 2308 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); 2309 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); 2310 2311 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 2312 } 2313 2314 out: 2315 spin_unlock_bh(&ar->data_lock); 2316 rcu_read_unlock(); 2317 } 2318 2319 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 2320 { 2321 struct ath10k_htt *htt = &ar->htt; 2322 struct htt_resp *resp = (struct htt_resp *)skb->data; 2323 enum htt_t2h_msg_type type; 2324 2325 /* confirm alignment */ 2326 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 2327 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 2328 2329 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 2330 resp->hdr.msg_type); 2331 2332 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 2333 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 2334 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 2335 return true; 2336 } 2337 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 2338 2339 switch (type) { 2340 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 2341 htt->target_version_major = resp->ver_resp.major; 2342 htt->target_version_minor = resp->ver_resp.minor; 2343 complete(&htt->target_version_received); 2344 break; 2345 } 2346 case HTT_T2H_MSG_TYPE_RX_IND: 2347 ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind); 2348 break; 2349 case HTT_T2H_MSG_TYPE_PEER_MAP: { 2350 struct htt_peer_map_event ev = { 2351 .vdev_id = resp->peer_map.vdev_id, 2352 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 2353 }; 2354 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 2355 ath10k_peer_map_event(htt, &ev); 2356 break; 2357 } 2358 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 2359 struct htt_peer_unmap_event ev = { 2360 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 2361 }; 2362 ath10k_peer_unmap_event(htt, &ev); 2363 break; 2364 } 2365 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 2366 struct htt_tx_done tx_done = {}; 2367 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 2368 2369 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 2370 2371 switch (status) { 2372 case HTT_MGMT_TX_STATUS_OK: 2373 tx_done.status = HTT_TX_COMPL_STATE_ACK; 2374 break; 2375 case HTT_MGMT_TX_STATUS_RETRY: 2376 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 2377 break; 2378 case HTT_MGMT_TX_STATUS_DROP: 2379 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2380 break; 2381 } 2382 2383 status = ath10k_txrx_tx_unref(htt, &tx_done); 2384 if (!status) { 2385 spin_lock_bh(&htt->tx_lock); 2386 ath10k_htt_tx_mgmt_dec_pending(htt); 2387 spin_unlock_bh(&htt->tx_lock); 2388 } 2389 break; 2390 } 2391 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 2392 ath10k_htt_rx_tx_compl_ind(htt->ar, skb); 2393 break; 2394 case HTT_T2H_MSG_TYPE_SEC_IND: { 2395 struct ath10k *ar = htt->ar; 2396 struct htt_security_indication *ev = &resp->security_indication; 2397 2398 ath10k_dbg(ar, ATH10K_DBG_HTT, 2399 "sec ind peer_id %d unicast %d type %d\n", 2400 __le16_to_cpu(ev->peer_id), 2401 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 2402 MS(ev->flags, HTT_SECURITY_TYPE)); 2403 complete(&ar->install_key_done); 2404 break; 2405 } 2406 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 2407 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2408 skb->data, skb->len); 2409 atomic_inc(&htt->num_mpdus_ready); 2410 break; 2411 } 2412 case HTT_T2H_MSG_TYPE_TEST: 2413 break; 2414 case HTT_T2H_MSG_TYPE_STATS_CONF: 2415 trace_ath10k_htt_stats(ar, skb->data, skb->len); 2416 break; 2417 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 2418 /* Firmware can return tx frames if it's unable to fully 2419 * process them and suspects host may be able to fix it. ath10k 2420 * sends all tx frames as already inspected so this shouldn't 2421 * happen unless fw has a bug. 2422 */ 2423 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 2424 break; 2425 case HTT_T2H_MSG_TYPE_RX_ADDBA: 2426 ath10k_htt_rx_addba(ar, resp); 2427 break; 2428 case HTT_T2H_MSG_TYPE_RX_DELBA: 2429 ath10k_htt_rx_delba(ar, resp); 2430 break; 2431 case HTT_T2H_MSG_TYPE_PKTLOG: { 2432 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 2433 skb->len - 2434 offsetof(struct htt_resp, 2435 pktlog_msg.payload)); 2436 break; 2437 } 2438 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 2439 /* Ignore this event because mac80211 takes care of Rx 2440 * aggregation reordering. 2441 */ 2442 break; 2443 } 2444 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 2445 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 2446 return false; 2447 } 2448 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: 2449 break; 2450 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { 2451 u32 phymode = __le32_to_cpu(resp->chan_change.phymode); 2452 u32 freq = __le32_to_cpu(resp->chan_change.freq); 2453 2454 ar->tgt_oper_chan = 2455 __ieee80211_get_channel(ar->hw->wiphy, freq); 2456 ath10k_dbg(ar, ATH10K_DBG_HTT, 2457 "htt chan change freq %u phymode %s\n", 2458 freq, ath10k_wmi_phymode_str(phymode)); 2459 break; 2460 } 2461 case HTT_T2H_MSG_TYPE_AGGR_CONF: 2462 break; 2463 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { 2464 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); 2465 2466 if (!tx_fetch_ind) { 2467 ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); 2468 break; 2469 } 2470 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); 2471 break; 2472 } 2473 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: 2474 ath10k_htt_rx_tx_fetch_confirm(ar, skb); 2475 break; 2476 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: 2477 ath10k_htt_rx_tx_mode_switch_ind(ar, skb); 2478 break; 2479 case HTT_T2H_MSG_TYPE_PEER_STATS: 2480 ath10k_htt_fetch_peer_stats(ar, skb); 2481 break; 2482 case HTT_T2H_MSG_TYPE_EN_STATS: 2483 default: 2484 ath10k_warn(ar, "htt event (%d) not handled\n", 2485 resp->hdr.msg_type); 2486 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2487 skb->data, skb->len); 2488 break; 2489 }; 2490 return true; 2491 } 2492 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 2493 2494 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, 2495 struct sk_buff *skb) 2496 { 2497 trace_ath10k_htt_pktlog(ar, skb->data, skb->len); 2498 dev_kfree_skb_any(skb); 2499 } 2500 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); 2501 2502 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) 2503 { 2504 struct ath10k_htt *htt = &ar->htt; 2505 struct htt_tx_done tx_done = {}; 2506 struct sk_buff_head tx_ind_q; 2507 struct sk_buff *skb; 2508 unsigned long flags; 2509 int quota = 0, done, num_rx_msdus; 2510 bool resched_napi = false; 2511 2512 __skb_queue_head_init(&tx_ind_q); 2513 2514 /* Since in-ord-ind can deliver more than 1 A-MSDU in single event, 2515 * process it first to utilize full available quota. 2516 */ 2517 while (quota < budget) { 2518 if (skb_queue_empty(&htt->rx_in_ord_compl_q)) 2519 break; 2520 2521 skb = __skb_dequeue(&htt->rx_in_ord_compl_q); 2522 if (!skb) { 2523 resched_napi = true; 2524 goto exit; 2525 } 2526 2527 spin_lock_bh(&htt->rx_ring.lock); 2528 num_rx_msdus = ath10k_htt_rx_in_ord_ind(ar, skb); 2529 spin_unlock_bh(&htt->rx_ring.lock); 2530 if (num_rx_msdus < 0) { 2531 resched_napi = true; 2532 goto exit; 2533 } 2534 2535 dev_kfree_skb_any(skb); 2536 if (num_rx_msdus > 0) 2537 quota += num_rx_msdus; 2538 2539 if ((quota > ATH10K_NAPI_QUOTA_LIMIT) && 2540 !skb_queue_empty(&htt->rx_in_ord_compl_q)) { 2541 resched_napi = true; 2542 goto exit; 2543 } 2544 } 2545 2546 while (quota < budget) { 2547 /* no more data to receive */ 2548 if (!atomic_read(&htt->num_mpdus_ready)) 2549 break; 2550 2551 num_rx_msdus = ath10k_htt_rx_handle_amsdu(htt); 2552 if (num_rx_msdus < 0) { 2553 resched_napi = true; 2554 goto exit; 2555 } 2556 2557 quota += num_rx_msdus; 2558 atomic_dec(&htt->num_mpdus_ready); 2559 if ((quota > ATH10K_NAPI_QUOTA_LIMIT) && 2560 atomic_read(&htt->num_mpdus_ready)) { 2561 resched_napi = true; 2562 goto exit; 2563 } 2564 } 2565 2566 /* From NAPI documentation: 2567 * The napi poll() function may also process TX completions, in which 2568 * case if it processes the entire TX ring then it should count that 2569 * work as the rest of the budget. 2570 */ 2571 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) 2572 quota = budget; 2573 2574 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. 2575 * From kfifo_get() documentation: 2576 * Note that with only one concurrent reader and one concurrent writer, 2577 * you don't need extra locking to use these macro. 2578 */ 2579 while (kfifo_get(&htt->txdone_fifo, &tx_done)) 2580 ath10k_txrx_tx_unref(htt, &tx_done); 2581 2582 ath10k_mac_tx_push_pending(ar); 2583 2584 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); 2585 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); 2586 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); 2587 2588 while ((skb = __skb_dequeue(&tx_ind_q))) { 2589 ath10k_htt_rx_tx_fetch_ind(ar, skb); 2590 dev_kfree_skb_any(skb); 2591 } 2592 2593 exit: 2594 ath10k_htt_rx_msdu_buff_replenish(htt); 2595 /* In case of rx failure or more data to read, report budget 2596 * to reschedule NAPI poll 2597 */ 2598 done = resched_napi ? budget : quota; 2599 2600 return done; 2601 } 2602 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task); 2603