xref: /linux/drivers/net/wireless/ath/ath10k/htt_rx.c (revision 27dfc44e1ba30d2d49675e21918bf4b3b3b59fa6)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
6  */
7 
8 #include "core.h"
9 #include "htc.h"
10 #include "htt.h"
11 #include "txrx.h"
12 #include "debug.h"
13 #include "trace.h"
14 #include "mac.h"
15 
16 #include <linux/log2.h>
17 #include <linux/bitfield.h>
18 
19 /* when under memory pressure rx ring refill may fail and needs a retry */
20 #define HTT_RX_RING_REFILL_RETRY_MS 50
21 
22 #define HTT_RX_RING_REFILL_RESCHED_MS 5
23 
24 /* shortcut to interpret a raw memory buffer as a rx descriptor */
25 #define HTT_RX_BUF_TO_RX_DESC(hw, buf) ath10k_htt_rx_desc_from_raw_buffer(hw, buf)
26 
27 static int ath10k_htt_rx_get_csum_state(struct ath10k_hw_params *hw, struct sk_buff *skb);
28 
29 static struct sk_buff *
30 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
31 {
32 	struct ath10k_skb_rxcb *rxcb;
33 
34 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
35 		if (rxcb->paddr == paddr)
36 			return ATH10K_RXCB_SKB(rxcb);
37 
38 	WARN_ON_ONCE(1);
39 	return NULL;
40 }
41 
42 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
43 {
44 	struct sk_buff *skb;
45 	struct ath10k_skb_rxcb *rxcb;
46 	struct hlist_node *n;
47 	int i;
48 
49 	if (htt->rx_ring.in_ord_rx) {
50 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
51 			skb = ATH10K_RXCB_SKB(rxcb);
52 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
53 					 skb->len + skb_tailroom(skb),
54 					 DMA_FROM_DEVICE);
55 			hash_del(&rxcb->hlist);
56 			dev_kfree_skb_any(skb);
57 		}
58 	} else {
59 		for (i = 0; i < htt->rx_ring.size; i++) {
60 			skb = htt->rx_ring.netbufs_ring[i];
61 			if (!skb)
62 				continue;
63 
64 			rxcb = ATH10K_SKB_RXCB(skb);
65 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
66 					 skb->len + skb_tailroom(skb),
67 					 DMA_FROM_DEVICE);
68 			dev_kfree_skb_any(skb);
69 		}
70 	}
71 
72 	htt->rx_ring.fill_cnt = 0;
73 	hash_init(htt->rx_ring.skb_table);
74 	memset(htt->rx_ring.netbufs_ring, 0,
75 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
76 }
77 
78 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
79 {
80 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
81 }
82 
83 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
84 {
85 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
86 }
87 
88 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
89 					     void *vaddr)
90 {
91 	htt->rx_ring.paddrs_ring_32 = vaddr;
92 }
93 
94 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
95 					     void *vaddr)
96 {
97 	htt->rx_ring.paddrs_ring_64 = vaddr;
98 }
99 
100 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
101 					  dma_addr_t paddr, int idx)
102 {
103 	htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
104 }
105 
106 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
107 					  dma_addr_t paddr, int idx)
108 {
109 	htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
110 }
111 
112 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
113 {
114 	htt->rx_ring.paddrs_ring_32[idx] = 0;
115 }
116 
117 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
118 {
119 	htt->rx_ring.paddrs_ring_64[idx] = 0;
120 }
121 
122 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
123 {
124 	return (void *)htt->rx_ring.paddrs_ring_32;
125 }
126 
127 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
128 {
129 	return (void *)htt->rx_ring.paddrs_ring_64;
130 }
131 
132 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
133 {
134 	struct ath10k_hw_params *hw = &htt->ar->hw_params;
135 	struct htt_rx_desc *rx_desc;
136 	struct ath10k_skb_rxcb *rxcb;
137 	struct sk_buff *skb;
138 	dma_addr_t paddr;
139 	int ret = 0, idx;
140 
141 	/* The Full Rx Reorder firmware has no way of telling the host
142 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
143 	 * To keep things simple make sure ring is always half empty. This
144 	 * guarantees there'll be no replenishment overruns possible.
145 	 */
146 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
147 
148 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
149 
150 	if (idx < 0 || idx >= htt->rx_ring.size) {
151 		ath10k_err(htt->ar, "rx ring index is not valid, firmware malfunctioning?\n");
152 		idx &= htt->rx_ring.size_mask;
153 		ret = -ENOMEM;
154 		goto fail;
155 	}
156 
157 	while (num > 0) {
158 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
159 		if (!skb) {
160 			ret = -ENOMEM;
161 			goto fail;
162 		}
163 
164 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
165 			skb_pull(skb,
166 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
167 				 skb->data);
168 
169 		/* Clear rx_desc attention word before posting to Rx ring */
170 		rx_desc = HTT_RX_BUF_TO_RX_DESC(hw, skb->data);
171 		ath10k_htt_rx_desc_get_attention(hw, rx_desc)->flags = __cpu_to_le32(0);
172 
173 		paddr = dma_map_single(htt->ar->dev, skb->data,
174 				       skb->len + skb_tailroom(skb),
175 				       DMA_FROM_DEVICE);
176 
177 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
178 			dev_kfree_skb_any(skb);
179 			ret = -ENOMEM;
180 			goto fail;
181 		}
182 
183 		rxcb = ATH10K_SKB_RXCB(skb);
184 		rxcb->paddr = paddr;
185 		htt->rx_ring.netbufs_ring[idx] = skb;
186 		ath10k_htt_set_paddrs_ring(htt, paddr, idx);
187 		htt->rx_ring.fill_cnt++;
188 
189 		if (htt->rx_ring.in_ord_rx) {
190 			hash_add(htt->rx_ring.skb_table,
191 				 &ATH10K_SKB_RXCB(skb)->hlist,
192 				 paddr);
193 		}
194 
195 		num--;
196 		idx++;
197 		idx &= htt->rx_ring.size_mask;
198 	}
199 
200 fail:
201 	/*
202 	 * Make sure the rx buffer is updated before available buffer
203 	 * index to avoid any potential rx ring corruption.
204 	 */
205 	mb();
206 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
207 	return ret;
208 }
209 
210 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
211 {
212 	lockdep_assert_held(&htt->rx_ring.lock);
213 	return __ath10k_htt_rx_ring_fill_n(htt, num);
214 }
215 
216 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
217 {
218 	int ret, num_deficit, num_to_fill;
219 
220 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
221 	 * reason is RX may take up significant amount of CPU cycles and starve
222 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
223 	 * with ath10k wlan interface. This ended up with very poor performance
224 	 * once CPU the host system was overwhelmed with RX on ath10k.
225 	 *
226 	 * By limiting the number of refills the replenishing occurs
227 	 * progressively. This in turns makes use of the fact tasklets are
228 	 * processed in FIFO order. This means actual RX processing can starve
229 	 * out refilling. If there's not enough buffers on RX ring FW will not
230 	 * report RX until it is refilled with enough buffers. This
231 	 * automatically balances load wrt to CPU power.
232 	 *
233 	 * This probably comes at a cost of lower maximum throughput but
234 	 * improves the average and stability.
235 	 */
236 	spin_lock_bh(&htt->rx_ring.lock);
237 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
238 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
239 	num_deficit -= num_to_fill;
240 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
241 	if (ret == -ENOMEM) {
242 		/*
243 		 * Failed to fill it to the desired level -
244 		 * we'll start a timer and try again next time.
245 		 * As long as enough buffers are left in the ring for
246 		 * another A-MPDU rx, no special recovery is needed.
247 		 */
248 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
249 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
250 	} else if (num_deficit > 0) {
251 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
252 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
253 	}
254 	spin_unlock_bh(&htt->rx_ring.lock);
255 }
256 
257 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
258 {
259 	struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
260 
261 	ath10k_htt_rx_msdu_buff_replenish(htt);
262 }
263 
264 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
265 {
266 	struct ath10k_htt *htt = &ar->htt;
267 	int ret;
268 
269 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
270 		return 0;
271 
272 	spin_lock_bh(&htt->rx_ring.lock);
273 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
274 					      htt->rx_ring.fill_cnt));
275 
276 	if (ret)
277 		ath10k_htt_rx_ring_free(htt);
278 
279 	spin_unlock_bh(&htt->rx_ring.lock);
280 
281 	return ret;
282 }
283 
284 void ath10k_htt_rx_free(struct ath10k_htt *htt)
285 {
286 	if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
287 		return;
288 
289 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
290 
291 	skb_queue_purge(&htt->rx_msdus_q);
292 	skb_queue_purge(&htt->rx_in_ord_compl_q);
293 	skb_queue_purge(&htt->tx_fetch_ind_q);
294 
295 	spin_lock_bh(&htt->rx_ring.lock);
296 	ath10k_htt_rx_ring_free(htt);
297 	spin_unlock_bh(&htt->rx_ring.lock);
298 
299 	dma_free_coherent(htt->ar->dev,
300 			  ath10k_htt_get_rx_ring_size(htt),
301 			  ath10k_htt_get_vaddr_ring(htt),
302 			  htt->rx_ring.base_paddr);
303 
304 	ath10k_htt_config_paddrs_ring(htt, NULL);
305 
306 	dma_free_coherent(htt->ar->dev,
307 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
308 			  htt->rx_ring.alloc_idx.vaddr,
309 			  htt->rx_ring.alloc_idx.paddr);
310 	htt->rx_ring.alloc_idx.vaddr = NULL;
311 
312 	kfree(htt->rx_ring.netbufs_ring);
313 	htt->rx_ring.netbufs_ring = NULL;
314 }
315 
316 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
317 {
318 	struct ath10k *ar = htt->ar;
319 	int idx;
320 	struct sk_buff *msdu;
321 
322 	lockdep_assert_held(&htt->rx_ring.lock);
323 
324 	if (htt->rx_ring.fill_cnt == 0) {
325 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
326 		return NULL;
327 	}
328 
329 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
330 	msdu = htt->rx_ring.netbufs_ring[idx];
331 	htt->rx_ring.netbufs_ring[idx] = NULL;
332 	ath10k_htt_reset_paddrs_ring(htt, idx);
333 
334 	idx++;
335 	idx &= htt->rx_ring.size_mask;
336 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
337 	htt->rx_ring.fill_cnt--;
338 
339 	dma_unmap_single(htt->ar->dev,
340 			 ATH10K_SKB_RXCB(msdu)->paddr,
341 			 msdu->len + skb_tailroom(msdu),
342 			 DMA_FROM_DEVICE);
343 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
344 			msdu->data, msdu->len + skb_tailroom(msdu));
345 
346 	return msdu;
347 }
348 
349 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
350 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
351 				   struct sk_buff_head *amsdu)
352 {
353 	struct ath10k *ar = htt->ar;
354 	struct ath10k_hw_params *hw = &ar->hw_params;
355 	int msdu_len, msdu_chaining = 0;
356 	struct sk_buff *msdu;
357 	struct htt_rx_desc *rx_desc;
358 	struct rx_attention *rx_desc_attention;
359 	struct rx_frag_info_common *rx_desc_frag_info_common;
360 	struct rx_msdu_start_common *rx_desc_msdu_start_common;
361 	struct rx_msdu_end_common *rx_desc_msdu_end_common;
362 
363 	lockdep_assert_held(&htt->rx_ring.lock);
364 
365 	for (;;) {
366 		int last_msdu, msdu_len_invalid, msdu_chained;
367 
368 		msdu = ath10k_htt_rx_netbuf_pop(htt);
369 		if (!msdu) {
370 			__skb_queue_purge(amsdu);
371 			return -ENOENT;
372 		}
373 
374 		__skb_queue_tail(amsdu, msdu);
375 
376 		rx_desc = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data);
377 		rx_desc_attention = ath10k_htt_rx_desc_get_attention(hw, rx_desc);
378 		rx_desc_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw,
379 									      rx_desc);
380 		rx_desc_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rx_desc);
381 		rx_desc_frag_info_common = ath10k_htt_rx_desc_get_frag_info(hw, rx_desc);
382 
383 		/* FIXME: we must report msdu payload since this is what caller
384 		 * expects now
385 		 */
386 		skb_put(msdu, hw->rx_desc_ops->rx_desc_msdu_payload_offset);
387 		skb_pull(msdu, hw->rx_desc_ops->rx_desc_msdu_payload_offset);
388 
389 		/*
390 		 * Sanity check - confirm the HW is finished filling in the
391 		 * rx data.
392 		 * If the HW and SW are working correctly, then it's guaranteed
393 		 * that the HW's MAC DMA is done before this point in the SW.
394 		 * To prevent the case that we handle a stale Rx descriptor,
395 		 * just assert for now until we have a way to recover.
396 		 */
397 		if (!(__le32_to_cpu(rx_desc_attention->flags)
398 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
399 			__skb_queue_purge(amsdu);
400 			return -EIO;
401 		}
402 
403 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc_attention->flags)
404 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
405 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
406 		msdu_len = MS(__le32_to_cpu(rx_desc_msdu_start_common->info0),
407 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
408 		msdu_chained = rx_desc_frag_info_common->ring2_more_count;
409 
410 		if (msdu_len_invalid)
411 			msdu_len = 0;
412 
413 		skb_trim(msdu, 0);
414 		skb_put(msdu, min(msdu_len, ath10k_htt_rx_msdu_size(hw)));
415 		msdu_len -= msdu->len;
416 
417 		/* Note: Chained buffers do not contain rx descriptor */
418 		while (msdu_chained--) {
419 			msdu = ath10k_htt_rx_netbuf_pop(htt);
420 			if (!msdu) {
421 				__skb_queue_purge(amsdu);
422 				return -ENOENT;
423 			}
424 
425 			__skb_queue_tail(amsdu, msdu);
426 			skb_trim(msdu, 0);
427 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
428 			msdu_len -= msdu->len;
429 			msdu_chaining = 1;
430 		}
431 
432 		last_msdu = __le32_to_cpu(rx_desc_msdu_end_common->info0) &
433 				RX_MSDU_END_INFO0_LAST_MSDU;
434 
435 		/* FIXME: why are we skipping the first part of the rx_desc? */
436 		trace_ath10k_htt_rx_desc(ar, (void *)rx_desc + sizeof(u32),
437 					 hw->rx_desc_ops->rx_desc_size - sizeof(u32));
438 
439 		if (last_msdu)
440 			break;
441 	}
442 
443 	if (skb_queue_empty(amsdu))
444 		msdu_chaining = -1;
445 
446 	/*
447 	 * Don't refill the ring yet.
448 	 *
449 	 * First, the elements popped here are still in use - it is not
450 	 * safe to overwrite them until the matching call to
451 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
452 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
453 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
454 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
455 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
456 	 * out of the rx ring, and then refill it just once.
457 	 */
458 
459 	return msdu_chaining;
460 }
461 
462 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
463 					       u64 paddr)
464 {
465 	struct ath10k *ar = htt->ar;
466 	struct ath10k_skb_rxcb *rxcb;
467 	struct sk_buff *msdu;
468 
469 	lockdep_assert_held(&htt->rx_ring.lock);
470 
471 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
472 	if (!msdu)
473 		return NULL;
474 
475 	rxcb = ATH10K_SKB_RXCB(msdu);
476 	hash_del(&rxcb->hlist);
477 	htt->rx_ring.fill_cnt--;
478 
479 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
480 			 msdu->len + skb_tailroom(msdu),
481 			 DMA_FROM_DEVICE);
482 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
483 			msdu->data, msdu->len + skb_tailroom(msdu));
484 
485 	return msdu;
486 }
487 
488 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head,
489 					       struct sk_buff *frag_list,
490 					       unsigned int frag_len)
491 {
492 	skb_shinfo(skb_head)->frag_list = frag_list;
493 	skb_head->data_len = frag_len;
494 	skb_head->len += skb_head->data_len;
495 }
496 
497 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt,
498 					     struct sk_buff *msdu,
499 					     struct htt_rx_in_ord_msdu_desc **msdu_desc)
500 {
501 	struct ath10k *ar = htt->ar;
502 	struct ath10k_hw_params *hw = &ar->hw_params;
503 	u32 paddr;
504 	struct sk_buff *frag_buf;
505 	struct sk_buff *prev_frag_buf;
506 	u8 last_frag;
507 	struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc;
508 	struct htt_rx_desc *rxd;
509 	int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
510 
511 	rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data);
512 	trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size);
513 
514 	skb_put(msdu, hw->rx_desc_ops->rx_desc_size);
515 	skb_pull(msdu, hw->rx_desc_ops->rx_desc_size);
516 	skb_put(msdu, min(amsdu_len, ath10k_htt_rx_msdu_size(hw)));
517 	amsdu_len -= msdu->len;
518 
519 	last_frag = ind_desc->reserved;
520 	if (last_frag) {
521 		if (amsdu_len) {
522 			ath10k_warn(ar, "invalid amsdu len %u, left %d",
523 				    __le16_to_cpu(ind_desc->msdu_len),
524 				    amsdu_len);
525 		}
526 		return 0;
527 	}
528 
529 	ind_desc++;
530 	paddr = __le32_to_cpu(ind_desc->msdu_paddr);
531 	frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
532 	if (!frag_buf) {
533 		ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr);
534 		return -ENOENT;
535 	}
536 
537 	skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
538 	ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
539 
540 	amsdu_len -= frag_buf->len;
541 	prev_frag_buf = frag_buf;
542 	last_frag = ind_desc->reserved;
543 	while (!last_frag) {
544 		ind_desc++;
545 		paddr = __le32_to_cpu(ind_desc->msdu_paddr);
546 		frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
547 		if (!frag_buf) {
548 			ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x",
549 				    paddr);
550 			prev_frag_buf->next = NULL;
551 			return -ENOENT;
552 		}
553 
554 		skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
555 		last_frag = ind_desc->reserved;
556 		amsdu_len -= frag_buf->len;
557 
558 		prev_frag_buf->next = frag_buf;
559 		prev_frag_buf = frag_buf;
560 	}
561 
562 	if (amsdu_len) {
563 		ath10k_warn(ar, "invalid amsdu len %u, left %d",
564 			    __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
565 	}
566 
567 	*msdu_desc = ind_desc;
568 
569 	prev_frag_buf->next = NULL;
570 	return 0;
571 }
572 
573 static int
574 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt,
575 				  struct sk_buff *msdu,
576 				  struct htt_rx_in_ord_msdu_desc_ext **msdu_desc)
577 {
578 	struct ath10k *ar = htt->ar;
579 	struct ath10k_hw_params *hw = &ar->hw_params;
580 	u64 paddr;
581 	struct sk_buff *frag_buf;
582 	struct sk_buff *prev_frag_buf;
583 	u8 last_frag;
584 	struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc;
585 	struct htt_rx_desc *rxd;
586 	int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
587 
588 	rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data);
589 	trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size);
590 
591 	skb_put(msdu, hw->rx_desc_ops->rx_desc_size);
592 	skb_pull(msdu, hw->rx_desc_ops->rx_desc_size);
593 	skb_put(msdu, min(amsdu_len, ath10k_htt_rx_msdu_size(hw)));
594 	amsdu_len -= msdu->len;
595 
596 	last_frag = ind_desc->reserved;
597 	if (last_frag) {
598 		if (amsdu_len) {
599 			ath10k_warn(ar, "invalid amsdu len %u, left %d",
600 				    __le16_to_cpu(ind_desc->msdu_len),
601 				    amsdu_len);
602 		}
603 		return 0;
604 	}
605 
606 	ind_desc++;
607 	paddr = __le64_to_cpu(ind_desc->msdu_paddr);
608 	frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
609 	if (!frag_buf) {
610 		ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr);
611 		return -ENOENT;
612 	}
613 
614 	skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
615 	ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
616 
617 	amsdu_len -= frag_buf->len;
618 	prev_frag_buf = frag_buf;
619 	last_frag = ind_desc->reserved;
620 	while (!last_frag) {
621 		ind_desc++;
622 		paddr = __le64_to_cpu(ind_desc->msdu_paddr);
623 		frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
624 		if (!frag_buf) {
625 			ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx",
626 				    paddr);
627 			prev_frag_buf->next = NULL;
628 			return -ENOENT;
629 		}
630 
631 		skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
632 		last_frag = ind_desc->reserved;
633 		amsdu_len -= frag_buf->len;
634 
635 		prev_frag_buf->next = frag_buf;
636 		prev_frag_buf = frag_buf;
637 	}
638 
639 	if (amsdu_len) {
640 		ath10k_warn(ar, "invalid amsdu len %u, left %d",
641 			    __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
642 	}
643 
644 	*msdu_desc = ind_desc;
645 
646 	prev_frag_buf->next = NULL;
647 	return 0;
648 }
649 
650 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
651 					  struct htt_rx_in_ord_ind *ev,
652 					  struct sk_buff_head *list)
653 {
654 	struct ath10k *ar = htt->ar;
655 	struct ath10k_hw_params *hw = &ar->hw_params;
656 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
657 	struct htt_rx_desc *rxd;
658 	struct rx_attention *rxd_attention;
659 	struct sk_buff *msdu;
660 	int msdu_count, ret;
661 	bool is_offload;
662 	u32 paddr;
663 
664 	lockdep_assert_held(&htt->rx_ring.lock);
665 
666 	msdu_count = __le16_to_cpu(ev->msdu_count);
667 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
668 
669 	while (msdu_count--) {
670 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
671 
672 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
673 		if (!msdu) {
674 			__skb_queue_purge(list);
675 			return -ENOENT;
676 		}
677 
678 		if (!is_offload && ar->monitor_arvif) {
679 			ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu,
680 								&msdu_desc);
681 			if (ret) {
682 				__skb_queue_purge(list);
683 				return ret;
684 			}
685 			__skb_queue_tail(list, msdu);
686 			msdu_desc++;
687 			continue;
688 		}
689 
690 		__skb_queue_tail(list, msdu);
691 
692 		if (!is_offload) {
693 			rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data);
694 			rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd);
695 
696 			trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size);
697 
698 			skb_put(msdu, hw->rx_desc_ops->rx_desc_size);
699 			skb_pull(msdu, hw->rx_desc_ops->rx_desc_size);
700 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
701 
702 			if (!(__le32_to_cpu(rxd_attention->flags) &
703 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
704 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
705 				return -EIO;
706 			}
707 		}
708 
709 		msdu_desc++;
710 	}
711 
712 	return 0;
713 }
714 
715 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
716 					  struct htt_rx_in_ord_ind *ev,
717 					  struct sk_buff_head *list)
718 {
719 	struct ath10k *ar = htt->ar;
720 	struct ath10k_hw_params *hw = &ar->hw_params;
721 	struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
722 	struct htt_rx_desc *rxd;
723 	struct rx_attention *rxd_attention;
724 	struct sk_buff *msdu;
725 	int msdu_count, ret;
726 	bool is_offload;
727 	u64 paddr;
728 
729 	lockdep_assert_held(&htt->rx_ring.lock);
730 
731 	msdu_count = __le16_to_cpu(ev->msdu_count);
732 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
733 
734 	while (msdu_count--) {
735 		paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
736 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
737 		if (!msdu) {
738 			__skb_queue_purge(list);
739 			return -ENOENT;
740 		}
741 
742 		if (!is_offload && ar->monitor_arvif) {
743 			ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu,
744 								&msdu_desc);
745 			if (ret) {
746 				__skb_queue_purge(list);
747 				return ret;
748 			}
749 			__skb_queue_tail(list, msdu);
750 			msdu_desc++;
751 			continue;
752 		}
753 
754 		__skb_queue_tail(list, msdu);
755 
756 		if (!is_offload) {
757 			rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data);
758 			rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd);
759 
760 			trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size);
761 
762 			skb_put(msdu, hw->rx_desc_ops->rx_desc_size);
763 			skb_pull(msdu, hw->rx_desc_ops->rx_desc_size);
764 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
765 
766 			if (!(__le32_to_cpu(rxd_attention->flags) &
767 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
768 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
769 				return -EIO;
770 			}
771 		}
772 
773 		msdu_desc++;
774 	}
775 
776 	return 0;
777 }
778 
779 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
780 {
781 	struct ath10k *ar = htt->ar;
782 	dma_addr_t paddr;
783 	void *vaddr, *vaddr_ring;
784 	size_t size;
785 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
786 
787 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
788 		return 0;
789 
790 	htt->rx_confused = false;
791 
792 	/* XXX: The fill level could be changed during runtime in response to
793 	 * the host processing latency. Is this really worth it?
794 	 */
795 	htt->rx_ring.size = HTT_RX_RING_SIZE;
796 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
797 	htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
798 
799 	if (!is_power_of_2(htt->rx_ring.size)) {
800 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
801 		return -EINVAL;
802 	}
803 
804 	htt->rx_ring.netbufs_ring =
805 		kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
806 			GFP_KERNEL);
807 	if (!htt->rx_ring.netbufs_ring)
808 		goto err_netbuf;
809 
810 	size = ath10k_htt_get_rx_ring_size(htt);
811 
812 	vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
813 	if (!vaddr_ring)
814 		goto err_dma_ring;
815 
816 	ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
817 	htt->rx_ring.base_paddr = paddr;
818 
819 	vaddr = dma_alloc_coherent(htt->ar->dev,
820 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
821 				   &paddr, GFP_KERNEL);
822 	if (!vaddr)
823 		goto err_dma_idx;
824 
825 	htt->rx_ring.alloc_idx.vaddr = vaddr;
826 	htt->rx_ring.alloc_idx.paddr = paddr;
827 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
828 	*htt->rx_ring.alloc_idx.vaddr = 0;
829 
830 	/* Initialize the Rx refill retry timer */
831 	timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
832 
833 	spin_lock_init(&htt->rx_ring.lock);
834 
835 	htt->rx_ring.fill_cnt = 0;
836 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
837 	hash_init(htt->rx_ring.skb_table);
838 
839 	skb_queue_head_init(&htt->rx_msdus_q);
840 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
841 	skb_queue_head_init(&htt->tx_fetch_ind_q);
842 	atomic_set(&htt->num_mpdus_ready, 0);
843 
844 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
845 		   htt->rx_ring.size, htt->rx_ring.fill_level);
846 	return 0;
847 
848 err_dma_idx:
849 	dma_free_coherent(htt->ar->dev,
850 			  ath10k_htt_get_rx_ring_size(htt),
851 			  vaddr_ring,
852 			  htt->rx_ring.base_paddr);
853 	ath10k_htt_config_paddrs_ring(htt, NULL);
854 err_dma_ring:
855 	kfree(htt->rx_ring.netbufs_ring);
856 	htt->rx_ring.netbufs_ring = NULL;
857 err_netbuf:
858 	return -ENOMEM;
859 }
860 
861 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
862 					  enum htt_rx_mpdu_encrypt_type type)
863 {
864 	switch (type) {
865 	case HTT_RX_MPDU_ENCRYPT_NONE:
866 		return 0;
867 	case HTT_RX_MPDU_ENCRYPT_WEP40:
868 	case HTT_RX_MPDU_ENCRYPT_WEP104:
869 		return IEEE80211_WEP_IV_LEN;
870 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
871 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
872 		return IEEE80211_TKIP_IV_LEN;
873 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
874 		return IEEE80211_CCMP_HDR_LEN;
875 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
876 		return IEEE80211_CCMP_256_HDR_LEN;
877 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
878 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
879 		return IEEE80211_GCMP_HDR_LEN;
880 	case HTT_RX_MPDU_ENCRYPT_WEP128:
881 	case HTT_RX_MPDU_ENCRYPT_WAPI:
882 		break;
883 	}
884 
885 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
886 	return 0;
887 }
888 
889 #define MICHAEL_MIC_LEN 8
890 
891 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
892 					enum htt_rx_mpdu_encrypt_type type)
893 {
894 	switch (type) {
895 	case HTT_RX_MPDU_ENCRYPT_NONE:
896 	case HTT_RX_MPDU_ENCRYPT_WEP40:
897 	case HTT_RX_MPDU_ENCRYPT_WEP104:
898 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
899 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
900 		return 0;
901 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
902 		return IEEE80211_CCMP_MIC_LEN;
903 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
904 		return IEEE80211_CCMP_256_MIC_LEN;
905 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
906 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
907 		return IEEE80211_GCMP_MIC_LEN;
908 	case HTT_RX_MPDU_ENCRYPT_WEP128:
909 	case HTT_RX_MPDU_ENCRYPT_WAPI:
910 		break;
911 	}
912 
913 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
914 	return 0;
915 }
916 
917 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
918 					enum htt_rx_mpdu_encrypt_type type)
919 {
920 	switch (type) {
921 	case HTT_RX_MPDU_ENCRYPT_NONE:
922 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
923 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
924 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
925 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
926 		return 0;
927 	case HTT_RX_MPDU_ENCRYPT_WEP40:
928 	case HTT_RX_MPDU_ENCRYPT_WEP104:
929 		return IEEE80211_WEP_ICV_LEN;
930 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
931 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
932 		return IEEE80211_TKIP_ICV_LEN;
933 	case HTT_RX_MPDU_ENCRYPT_WEP128:
934 	case HTT_RX_MPDU_ENCRYPT_WAPI:
935 		break;
936 	}
937 
938 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
939 	return 0;
940 }
941 
942 struct amsdu_subframe_hdr {
943 	u8 dst[ETH_ALEN];
944 	u8 src[ETH_ALEN];
945 	__be16 len;
946 } __packed;
947 
948 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
949 
950 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
951 {
952 	u8 ret = 0;
953 
954 	switch (bw) {
955 	case 0:
956 		ret = RATE_INFO_BW_20;
957 		break;
958 	case 1:
959 		ret = RATE_INFO_BW_40;
960 		break;
961 	case 2:
962 		ret = RATE_INFO_BW_80;
963 		break;
964 	case 3:
965 		ret = RATE_INFO_BW_160;
966 		break;
967 	}
968 
969 	return ret;
970 }
971 
972 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
973 				  struct ieee80211_rx_status *status,
974 				  struct htt_rx_desc *rxd)
975 {
976 	struct ath10k_hw_params *hw = &ar->hw_params;
977 	struct rx_attention *rxd_attention;
978 	struct rx_mpdu_start *rxd_mpdu_start;
979 	struct rx_mpdu_end *rxd_mpdu_end;
980 	struct rx_msdu_start_common *rxd_msdu_start_common;
981 	struct rx_msdu_end_common *rxd_msdu_end_common;
982 	struct rx_ppdu_start *rxd_ppdu_start;
983 	struct ieee80211_supported_band *sband;
984 	u8 cck, rate, bw, sgi, mcs, nss;
985 	u8 *rxd_msdu_payload;
986 	u8 preamble = 0;
987 	u8 group_id;
988 	u32 info1, info2, info3;
989 	u32 stbc, nsts_su;
990 
991 	rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd);
992 	rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd);
993 	rxd_mpdu_end = ath10k_htt_rx_desc_get_mpdu_end(hw, rxd);
994 	rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd);
995 	rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd);
996 	rxd_ppdu_start = ath10k_htt_rx_desc_get_ppdu_start(hw, rxd);
997 	rxd_msdu_payload = ath10k_htt_rx_desc_get_msdu_payload(hw, rxd);
998 
999 	info1 = __le32_to_cpu(rxd_ppdu_start->info1);
1000 	info2 = __le32_to_cpu(rxd_ppdu_start->info2);
1001 	info3 = __le32_to_cpu(rxd_ppdu_start->info3);
1002 
1003 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
1004 
1005 	switch (preamble) {
1006 	case HTT_RX_LEGACY:
1007 		/* To get legacy rate index band is required. Since band can't
1008 		 * be undefined check if freq is non-zero.
1009 		 */
1010 		if (!status->freq)
1011 			return;
1012 
1013 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
1014 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
1015 		rate &= ~RX_PPDU_START_RATE_FLAG;
1016 
1017 		sband = &ar->mac.sbands[status->band];
1018 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
1019 		break;
1020 	case HTT_RX_HT:
1021 	case HTT_RX_HT_WITH_TXBF:
1022 		/* HT-SIG - Table 20-11 in info2 and info3 */
1023 		mcs = info2 & 0x1F;
1024 		nss = mcs >> 3;
1025 		bw = (info2 >> 7) & 1;
1026 		sgi = (info3 >> 7) & 1;
1027 
1028 		status->rate_idx = mcs;
1029 		status->encoding = RX_ENC_HT;
1030 		if (sgi)
1031 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1032 		if (bw)
1033 			status->bw = RATE_INFO_BW_40;
1034 		break;
1035 	case HTT_RX_VHT:
1036 	case HTT_RX_VHT_WITH_TXBF:
1037 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
1038 		 * TODO check this
1039 		 */
1040 		bw = info2 & 3;
1041 		sgi = info3 & 1;
1042 		stbc = (info2 >> 3) & 1;
1043 		group_id = (info2 >> 4) & 0x3F;
1044 
1045 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
1046 			mcs = (info3 >> 4) & 0x0F;
1047 			nsts_su = ((info2 >> 10) & 0x07);
1048 			if (stbc)
1049 				nss = (nsts_su >> 2) + 1;
1050 			else
1051 				nss = (nsts_su + 1);
1052 		} else {
1053 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
1054 			 * so it's impossible to decode MCS. Also since
1055 			 * firmware consumes Group Id Management frames host
1056 			 * has no knowledge regarding group/user position
1057 			 * mapping so it's impossible to pick the correct Nsts
1058 			 * from VHT-SIG-A1.
1059 			 *
1060 			 * Bandwidth and SGI are valid so report the rateinfo
1061 			 * on best-effort basis.
1062 			 */
1063 			mcs = 0;
1064 			nss = 1;
1065 		}
1066 
1067 		if (mcs > 0x09) {
1068 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
1069 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
1070 				    __le32_to_cpu(rxd_attention->flags),
1071 				    __le32_to_cpu(rxd_mpdu_start->info0),
1072 				    __le32_to_cpu(rxd_mpdu_start->info1),
1073 				    __le32_to_cpu(rxd_msdu_start_common->info0),
1074 				    __le32_to_cpu(rxd_msdu_start_common->info1),
1075 				    rxd_ppdu_start->info0,
1076 				    __le32_to_cpu(rxd_ppdu_start->info1),
1077 				    __le32_to_cpu(rxd_ppdu_start->info2),
1078 				    __le32_to_cpu(rxd_ppdu_start->info3),
1079 				    __le32_to_cpu(rxd_ppdu_start->info4));
1080 
1081 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
1082 				    __le32_to_cpu(rxd_msdu_end_common->info0),
1083 				    __le32_to_cpu(rxd_mpdu_end->info0));
1084 
1085 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
1086 					"rx desc msdu payload: ",
1087 					rxd_msdu_payload, 50);
1088 		}
1089 
1090 		status->rate_idx = mcs;
1091 		status->nss = nss;
1092 
1093 		if (sgi)
1094 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1095 
1096 		status->bw = ath10k_bw_to_mac80211_bw(bw);
1097 		status->encoding = RX_ENC_VHT;
1098 		break;
1099 	default:
1100 		break;
1101 	}
1102 }
1103 
1104 static struct ieee80211_channel *
1105 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
1106 {
1107 	struct ath10k_hw_params *hw = &ar->hw_params;
1108 	struct rx_attention *rxd_attention;
1109 	struct rx_msdu_end_common *rxd_msdu_end_common;
1110 	struct rx_mpdu_start *rxd_mpdu_start;
1111 	struct ath10k_peer *peer;
1112 	struct ath10k_vif *arvif;
1113 	struct cfg80211_chan_def def;
1114 	u16 peer_id;
1115 
1116 	lockdep_assert_held(&ar->data_lock);
1117 
1118 	if (!rxd)
1119 		return NULL;
1120 
1121 	rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd);
1122 	rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd);
1123 	rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd);
1124 
1125 	if (rxd_attention->flags &
1126 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
1127 		return NULL;
1128 
1129 	if (!(rxd_msdu_end_common->info0 &
1130 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
1131 		return NULL;
1132 
1133 	peer_id = MS(__le32_to_cpu(rxd_mpdu_start->info0),
1134 		     RX_MPDU_START_INFO0_PEER_IDX);
1135 
1136 	peer = ath10k_peer_find_by_id(ar, peer_id);
1137 	if (!peer)
1138 		return NULL;
1139 
1140 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1141 	if (WARN_ON_ONCE(!arvif))
1142 		return NULL;
1143 
1144 	if (ath10k_mac_vif_chan(arvif->vif, &def))
1145 		return NULL;
1146 
1147 	return def.chan;
1148 }
1149 
1150 static struct ieee80211_channel *
1151 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
1152 {
1153 	struct ath10k_vif *arvif;
1154 	struct cfg80211_chan_def def;
1155 
1156 	lockdep_assert_held(&ar->data_lock);
1157 
1158 	list_for_each_entry(arvif, &ar->arvifs, list) {
1159 		if (arvif->vdev_id == vdev_id &&
1160 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
1161 			return def.chan;
1162 	}
1163 
1164 	return NULL;
1165 }
1166 
1167 static void
1168 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
1169 			      struct ieee80211_chanctx_conf *conf,
1170 			      void *data)
1171 {
1172 	struct cfg80211_chan_def *def = data;
1173 
1174 	*def = conf->def;
1175 }
1176 
1177 static struct ieee80211_channel *
1178 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
1179 {
1180 	struct cfg80211_chan_def def = {};
1181 
1182 	ieee80211_iter_chan_contexts_atomic(ar->hw,
1183 					    ath10k_htt_rx_h_any_chan_iter,
1184 					    &def);
1185 
1186 	return def.chan;
1187 }
1188 
1189 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
1190 				    struct ieee80211_rx_status *status,
1191 				    struct htt_rx_desc *rxd,
1192 				    u32 vdev_id)
1193 {
1194 	struct ieee80211_channel *ch;
1195 
1196 	spin_lock_bh(&ar->data_lock);
1197 	ch = ar->scan_channel;
1198 	if (!ch)
1199 		ch = ar->rx_channel;
1200 	if (!ch)
1201 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
1202 	if (!ch)
1203 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
1204 	if (!ch)
1205 		ch = ath10k_htt_rx_h_any_channel(ar);
1206 	if (!ch)
1207 		ch = ar->tgt_oper_chan;
1208 	spin_unlock_bh(&ar->data_lock);
1209 
1210 	if (!ch)
1211 		return false;
1212 
1213 	status->band = ch->band;
1214 	status->freq = ch->center_freq;
1215 
1216 	return true;
1217 }
1218 
1219 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
1220 				   struct ieee80211_rx_status *status,
1221 				   struct htt_rx_desc *rxd)
1222 {
1223 	struct ath10k_hw_params *hw = &ar->hw_params;
1224 	struct rx_ppdu_start *rxd_ppdu_start = ath10k_htt_rx_desc_get_ppdu_start(hw, rxd);
1225 	int i;
1226 
1227 	for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
1228 		status->chains &= ~BIT(i);
1229 
1230 		if (rxd_ppdu_start->rssi_chains[i].pri20_mhz != 0x80) {
1231 			status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
1232 				rxd_ppdu_start->rssi_chains[i].pri20_mhz;
1233 
1234 			status->chains |= BIT(i);
1235 		}
1236 	}
1237 
1238 	/* FIXME: Get real NF */
1239 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
1240 			 rxd_ppdu_start->rssi_comb;
1241 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1242 }
1243 
1244 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
1245 				    struct ieee80211_rx_status *status,
1246 				    struct htt_rx_desc *rxd)
1247 {
1248 	struct ath10k_hw_params *hw = &ar->hw_params;
1249 	struct rx_ppdu_end_common *rxd_ppdu_end_common;
1250 
1251 	rxd_ppdu_end_common = ath10k_htt_rx_desc_get_ppdu_end(hw, rxd);
1252 
1253 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
1254 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
1255 	 * TSF. Is it worth holding frames until end of PPDU is known?
1256 	 *
1257 	 * FIXME: Can we get/compute 64bit TSF?
1258 	 */
1259 	status->mactime = __le32_to_cpu(rxd_ppdu_end_common->tsf_timestamp);
1260 	status->flag |= RX_FLAG_MACTIME_END;
1261 }
1262 
1263 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1264 				 struct sk_buff_head *amsdu,
1265 				 struct ieee80211_rx_status *status,
1266 				 u32 vdev_id)
1267 {
1268 	struct sk_buff *first;
1269 	struct ath10k_hw_params *hw = &ar->hw_params;
1270 	struct htt_rx_desc *rxd;
1271 	struct rx_attention *rxd_attention;
1272 	bool is_first_ppdu;
1273 	bool is_last_ppdu;
1274 
1275 	if (skb_queue_empty(amsdu))
1276 		return;
1277 
1278 	first = skb_peek(amsdu);
1279 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1280 				    (void *)first->data - hw->rx_desc_ops->rx_desc_size);
1281 
1282 	rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd);
1283 
1284 	is_first_ppdu = !!(rxd_attention->flags &
1285 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1286 	is_last_ppdu = !!(rxd_attention->flags &
1287 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1288 
1289 	if (is_first_ppdu) {
1290 		/* New PPDU starts so clear out the old per-PPDU status. */
1291 		status->freq = 0;
1292 		status->rate_idx = 0;
1293 		status->nss = 0;
1294 		status->encoding = RX_ENC_LEGACY;
1295 		status->bw = RATE_INFO_BW_20;
1296 
1297 		status->flag &= ~RX_FLAG_MACTIME_END;
1298 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1299 
1300 		status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1301 		status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1302 		status->ampdu_reference = ar->ampdu_reference;
1303 
1304 		ath10k_htt_rx_h_signal(ar, status, rxd);
1305 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1306 		ath10k_htt_rx_h_rates(ar, status, rxd);
1307 	}
1308 
1309 	if (is_last_ppdu) {
1310 		ath10k_htt_rx_h_mactime(ar, status, rxd);
1311 
1312 		/* set ampdu last segment flag */
1313 		status->flag |= RX_FLAG_AMPDU_IS_LAST;
1314 		ar->ampdu_reference++;
1315 	}
1316 }
1317 
1318 static const char * const tid_to_ac[] = {
1319 	"BE",
1320 	"BK",
1321 	"BK",
1322 	"BE",
1323 	"VI",
1324 	"VI",
1325 	"VO",
1326 	"VO",
1327 };
1328 
1329 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1330 {
1331 	u8 *qc;
1332 	int tid;
1333 
1334 	if (!ieee80211_is_data_qos(hdr->frame_control))
1335 		return "";
1336 
1337 	qc = ieee80211_get_qos_ctl(hdr);
1338 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1339 	if (tid < 8)
1340 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1341 	else
1342 		snprintf(out, size, "tid %d", tid);
1343 
1344 	return out;
1345 }
1346 
1347 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1348 				       struct ieee80211_rx_status *rx_status,
1349 				       struct sk_buff *skb)
1350 {
1351 	struct ieee80211_rx_status *status;
1352 
1353 	status = IEEE80211_SKB_RXCB(skb);
1354 	*status = *rx_status;
1355 
1356 	skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1357 }
1358 
1359 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1360 {
1361 	struct ieee80211_rx_status *status;
1362 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1363 	char tid[32];
1364 
1365 	status = IEEE80211_SKB_RXCB(skb);
1366 
1367 	if (!(ar->filter_flags & FIF_FCSFAIL) &&
1368 	    status->flag & RX_FLAG_FAILED_FCS_CRC) {
1369 		ar->stats.rx_crc_err_drop++;
1370 		dev_kfree_skb_any(skb);
1371 		return;
1372 	}
1373 
1374 	ath10k_dbg(ar, ATH10K_DBG_DATA,
1375 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1376 		   skb,
1377 		   skb->len,
1378 		   ieee80211_get_SA(hdr),
1379 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
1380 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1381 							"mcast" : "ucast",
1382 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1383 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1384 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
1385 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
1386 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
1387 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
1388 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
1389 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1390 		   status->rate_idx,
1391 		   status->nss,
1392 		   status->freq,
1393 		   status->band, status->flag,
1394 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1395 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
1396 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
1397 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1398 			skb->data, skb->len);
1399 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1400 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
1401 
1402 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1403 }
1404 
1405 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1406 				      struct ieee80211_hdr *hdr)
1407 {
1408 	int len = ieee80211_hdrlen(hdr->frame_control);
1409 
1410 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1411 		      ar->running_fw->fw_file.fw_features))
1412 		len = round_up(len, 4);
1413 
1414 	return len;
1415 }
1416 
1417 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1418 					struct sk_buff *msdu,
1419 					struct ieee80211_rx_status *status,
1420 					enum htt_rx_mpdu_encrypt_type enctype,
1421 					bool is_decrypted,
1422 					const u8 first_hdr[64])
1423 {
1424 	struct ieee80211_hdr *hdr;
1425 	struct ath10k_hw_params *hw = &ar->hw_params;
1426 	struct htt_rx_desc *rxd;
1427 	struct rx_msdu_end_common *rxd_msdu_end_common;
1428 	size_t hdr_len;
1429 	size_t crypto_len;
1430 	bool is_first;
1431 	bool is_last;
1432 	bool msdu_limit_err;
1433 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1434 	u8 *qos;
1435 
1436 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1437 				    (void *)msdu->data - hw->rx_desc_ops->rx_desc_size);
1438 
1439 	rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd);
1440 	is_first = !!(rxd_msdu_end_common->info0 &
1441 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1442 	is_last = !!(rxd_msdu_end_common->info0 &
1443 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1444 
1445 	/* Delivered decapped frame:
1446 	 * [802.11 header]
1447 	 * [crypto param] <-- can be trimmed if !fcs_err &&
1448 	 *                    !decrypt_err && !peer_idx_invalid
1449 	 * [amsdu header] <-- only if A-MSDU
1450 	 * [rfc1042/llc]
1451 	 * [payload]
1452 	 * [FCS] <-- at end, needs to be trimmed
1453 	 */
1454 
1455 	/* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when
1456 	 * deaggregate, so that unwanted MSDU-deaggregation is avoided for
1457 	 * error packets. If limit exceeds, hw sends all remaining MSDUs as
1458 	 * a single last MSDU with this msdu limit error set.
1459 	 */
1460 	msdu_limit_err = ath10k_htt_rx_desc_msdu_limit_error(hw, rxd);
1461 
1462 	/* If MSDU limit error happens, then don't warn on, the partial raw MSDU
1463 	 * without first MSDU is expected in that case, and handled later here.
1464 	 */
1465 	/* This probably shouldn't happen but warn just in case */
1466 	if (WARN_ON_ONCE(!is_first && !msdu_limit_err))
1467 		return;
1468 
1469 	/* This probably shouldn't happen but warn just in case */
1470 	if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err))
1471 		return;
1472 
1473 	skb_trim(msdu, msdu->len - FCS_LEN);
1474 
1475 	/* Push original 80211 header */
1476 	if (unlikely(msdu_limit_err)) {
1477 		hdr = (struct ieee80211_hdr *)first_hdr;
1478 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1479 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1480 
1481 		if (ieee80211_is_data_qos(hdr->frame_control)) {
1482 			qos = ieee80211_get_qos_ctl(hdr);
1483 			qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1484 		}
1485 
1486 		if (crypto_len)
1487 			memcpy(skb_push(msdu, crypto_len),
1488 			       (void *)hdr + round_up(hdr_len, bytes_aligned),
1489 			       crypto_len);
1490 
1491 		memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1492 	}
1493 
1494 	/* In most cases this will be true for sniffed frames. It makes sense
1495 	 * to deliver them as-is without stripping the crypto param. This is
1496 	 * necessary for software based decryption.
1497 	 *
1498 	 * If there's no error then the frame is decrypted. At least that is
1499 	 * the case for frames that come in via fragmented rx indication.
1500 	 */
1501 	if (!is_decrypted)
1502 		return;
1503 
1504 	/* The payload is decrypted so strip crypto params. Start from tail
1505 	 * since hdr is used to compute some stuff.
1506 	 */
1507 
1508 	hdr = (void *)msdu->data;
1509 
1510 	/* Tail */
1511 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1512 		skb_trim(msdu, msdu->len -
1513 			 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1514 
1515 		skb_trim(msdu, msdu->len -
1516 			 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1517 	} else {
1518 		/* MIC */
1519 		if (status->flag & RX_FLAG_MIC_STRIPPED)
1520 			skb_trim(msdu, msdu->len -
1521 				 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1522 
1523 		/* ICV */
1524 		if (status->flag & RX_FLAG_ICV_STRIPPED)
1525 			skb_trim(msdu, msdu->len -
1526 				 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1527 	}
1528 
1529 	/* MMIC */
1530 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1531 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1532 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1533 		skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1534 
1535 	/* Head */
1536 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1537 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1538 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1539 
1540 		memmove((void *)msdu->data + crypto_len,
1541 			(void *)msdu->data, hdr_len);
1542 		skb_pull(msdu, crypto_len);
1543 	}
1544 }
1545 
1546 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1547 					  struct sk_buff *msdu,
1548 					  struct ieee80211_rx_status *status,
1549 					  const u8 first_hdr[64],
1550 					  enum htt_rx_mpdu_encrypt_type enctype)
1551 {
1552 	struct ath10k_hw_params *hw = &ar->hw_params;
1553 	struct ieee80211_hdr *hdr;
1554 	struct htt_rx_desc *rxd;
1555 	size_t hdr_len;
1556 	u8 da[ETH_ALEN];
1557 	u8 sa[ETH_ALEN];
1558 	int l3_pad_bytes;
1559 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1560 
1561 	/* Delivered decapped frame:
1562 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1563 	 * [rfc1042/llc]
1564 	 *
1565 	 * Note: The nwifi header doesn't have QoS Control and is
1566 	 * (always?) a 3addr frame.
1567 	 *
1568 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1569 	 * of an A-MSDU.
1570 	 */
1571 
1572 	/* pull decapped header and copy SA & DA */
1573 	rxd = HTT_RX_BUF_TO_RX_DESC(hw, (void *)msdu->data -
1574 				    hw->rx_desc_ops->rx_desc_size);
1575 
1576 	l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1577 	skb_put(msdu, l3_pad_bytes);
1578 
1579 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1580 
1581 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1582 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1583 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1584 	skb_pull(msdu, hdr_len);
1585 
1586 	/* push original 802.11 header */
1587 	hdr = (struct ieee80211_hdr *)first_hdr;
1588 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1589 
1590 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1591 		memcpy(skb_push(msdu,
1592 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1593 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1594 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1595 	}
1596 
1597 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1598 
1599 	/* original 802.11 header has a different DA and in
1600 	 * case of 4addr it may also have different SA
1601 	 */
1602 	hdr = (struct ieee80211_hdr *)msdu->data;
1603 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1604 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1605 }
1606 
1607 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1608 					  struct sk_buff *msdu,
1609 					  enum htt_rx_mpdu_encrypt_type enctype)
1610 {
1611 	struct ieee80211_hdr *hdr;
1612 	struct ath10k_hw_params *hw = &ar->hw_params;
1613 	struct htt_rx_desc *rxd;
1614 	struct rx_msdu_end_common *rxd_msdu_end_common;
1615 	u8 *rxd_rx_hdr_status;
1616 	size_t hdr_len, crypto_len;
1617 	void *rfc1042;
1618 	bool is_first, is_last, is_amsdu;
1619 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1620 
1621 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1622 				    (void *)msdu->data - hw->rx_desc_ops->rx_desc_size);
1623 
1624 	rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd);
1625 	rxd_rx_hdr_status = ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd);
1626 	hdr = (void *)rxd_rx_hdr_status;
1627 
1628 	is_first = !!(rxd_msdu_end_common->info0 &
1629 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1630 	is_last = !!(rxd_msdu_end_common->info0 &
1631 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1632 	is_amsdu = !(is_first && is_last);
1633 
1634 	rfc1042 = hdr;
1635 
1636 	if (is_first) {
1637 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1638 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1639 
1640 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1641 			   round_up(crypto_len, bytes_aligned);
1642 	}
1643 
1644 	if (is_amsdu)
1645 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1646 
1647 	return rfc1042;
1648 }
1649 
1650 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1651 					struct sk_buff *msdu,
1652 					struct ieee80211_rx_status *status,
1653 					const u8 first_hdr[64],
1654 					enum htt_rx_mpdu_encrypt_type enctype)
1655 {
1656 	struct ath10k_hw_params *hw = &ar->hw_params;
1657 	struct ieee80211_hdr *hdr;
1658 	struct ethhdr *eth;
1659 	size_t hdr_len;
1660 	void *rfc1042;
1661 	u8 da[ETH_ALEN];
1662 	u8 sa[ETH_ALEN];
1663 	int l3_pad_bytes;
1664 	struct htt_rx_desc *rxd;
1665 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1666 
1667 	/* Delivered decapped frame:
1668 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1669 	 * [payload]
1670 	 */
1671 
1672 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1673 	if (WARN_ON_ONCE(!rfc1042))
1674 		return;
1675 
1676 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1677 				    (void *)msdu->data - hw->rx_desc_ops->rx_desc_size);
1678 
1679 	l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1680 	skb_put(msdu, l3_pad_bytes);
1681 	skb_pull(msdu, l3_pad_bytes);
1682 
1683 	/* pull decapped header and copy SA & DA */
1684 	eth = (struct ethhdr *)msdu->data;
1685 	ether_addr_copy(da, eth->h_dest);
1686 	ether_addr_copy(sa, eth->h_source);
1687 	skb_pull(msdu, sizeof(struct ethhdr));
1688 
1689 	/* push rfc1042/llc/snap */
1690 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1691 	       sizeof(struct rfc1042_hdr));
1692 
1693 	/* push original 802.11 header */
1694 	hdr = (struct ieee80211_hdr *)first_hdr;
1695 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1696 
1697 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1698 		memcpy(skb_push(msdu,
1699 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1700 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1701 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1702 	}
1703 
1704 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1705 
1706 	/* original 802.11 header has a different DA and in
1707 	 * case of 4addr it may also have different SA
1708 	 */
1709 	hdr = (struct ieee80211_hdr *)msdu->data;
1710 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1711 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1712 }
1713 
1714 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1715 					 struct sk_buff *msdu,
1716 					 struct ieee80211_rx_status *status,
1717 					 const u8 first_hdr[64],
1718 					 enum htt_rx_mpdu_encrypt_type enctype)
1719 {
1720 	struct ath10k_hw_params *hw = &ar->hw_params;
1721 	struct ieee80211_hdr *hdr;
1722 	size_t hdr_len;
1723 	int l3_pad_bytes;
1724 	struct htt_rx_desc *rxd;
1725 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1726 
1727 	/* Delivered decapped frame:
1728 	 * [amsdu header] <-- replaced with 802.11 hdr
1729 	 * [rfc1042/llc]
1730 	 * [payload]
1731 	 */
1732 
1733 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1734 				    (void *)msdu->data - hw->rx_desc_ops->rx_desc_size);
1735 
1736 	l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1737 
1738 	skb_put(msdu, l3_pad_bytes);
1739 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1740 
1741 	hdr = (struct ieee80211_hdr *)first_hdr;
1742 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1743 
1744 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1745 		memcpy(skb_push(msdu,
1746 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1747 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1748 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1749 	}
1750 
1751 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1752 }
1753 
1754 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1755 				    struct sk_buff *msdu,
1756 				    struct ieee80211_rx_status *status,
1757 				    u8 first_hdr[64],
1758 				    enum htt_rx_mpdu_encrypt_type enctype,
1759 				    bool is_decrypted)
1760 {
1761 	struct ath10k_hw_params *hw = &ar->hw_params;
1762 	struct htt_rx_desc *rxd;
1763 	struct rx_msdu_start_common *rxd_msdu_start_common;
1764 	enum rx_msdu_decap_format decap;
1765 
1766 	/* First msdu's decapped header:
1767 	 * [802.11 header] <-- padded to 4 bytes long
1768 	 * [crypto param] <-- padded to 4 bytes long
1769 	 * [amsdu header] <-- only if A-MSDU
1770 	 * [rfc1042/llc]
1771 	 *
1772 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1773 	 * [amsdu header] <-- only if A-MSDU
1774 	 * [rfc1042/llc]
1775 	 */
1776 
1777 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1778 				    (void *)msdu->data - hw->rx_desc_ops->rx_desc_size);
1779 
1780 	rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd);
1781 	decap = MS(__le32_to_cpu(rxd_msdu_start_common->info1),
1782 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1783 
1784 	switch (decap) {
1785 	case RX_MSDU_DECAP_RAW:
1786 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1787 					    is_decrypted, first_hdr);
1788 		break;
1789 	case RX_MSDU_DECAP_NATIVE_WIFI:
1790 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1791 					      enctype);
1792 		break;
1793 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1794 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1795 		break;
1796 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1797 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1798 					     enctype);
1799 		break;
1800 	}
1801 }
1802 
1803 static int ath10k_htt_rx_get_csum_state(struct ath10k_hw_params *hw, struct sk_buff *skb)
1804 {
1805 	struct htt_rx_desc *rxd;
1806 	struct rx_attention *rxd_attention;
1807 	struct rx_msdu_start_common *rxd_msdu_start_common;
1808 	u32 flags, info;
1809 	bool is_ip4, is_ip6;
1810 	bool is_tcp, is_udp;
1811 	bool ip_csum_ok, tcpudp_csum_ok;
1812 
1813 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1814 				    (void *)skb->data - hw->rx_desc_ops->rx_desc_size);
1815 
1816 	rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd);
1817 	rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd);
1818 	flags = __le32_to_cpu(rxd_attention->flags);
1819 	info = __le32_to_cpu(rxd_msdu_start_common->info1);
1820 
1821 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1822 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1823 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1824 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1825 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1826 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1827 
1828 	if (!is_ip4 && !is_ip6)
1829 		return CHECKSUM_NONE;
1830 	if (!is_tcp && !is_udp)
1831 		return CHECKSUM_NONE;
1832 	if (!ip_csum_ok)
1833 		return CHECKSUM_NONE;
1834 	if (!tcpudp_csum_ok)
1835 		return CHECKSUM_NONE;
1836 
1837 	return CHECKSUM_UNNECESSARY;
1838 }
1839 
1840 static void ath10k_htt_rx_h_csum_offload(struct ath10k_hw_params *hw,
1841 					 struct sk_buff *msdu)
1842 {
1843 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(hw, msdu);
1844 }
1845 
1846 static u64 ath10k_htt_rx_h_get_pn(struct ath10k *ar, struct sk_buff *skb,
1847 				  u16 offset,
1848 				  enum htt_rx_mpdu_encrypt_type enctype)
1849 {
1850 	struct ieee80211_hdr *hdr;
1851 	u64 pn = 0;
1852 	u8 *ehdr;
1853 
1854 	hdr = (struct ieee80211_hdr *)(skb->data + offset);
1855 	ehdr = skb->data + offset + ieee80211_hdrlen(hdr->frame_control);
1856 
1857 	if (enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2) {
1858 		pn = ehdr[0];
1859 		pn |= (u64)ehdr[1] << 8;
1860 		pn |= (u64)ehdr[4] << 16;
1861 		pn |= (u64)ehdr[5] << 24;
1862 		pn |= (u64)ehdr[6] << 32;
1863 		pn |= (u64)ehdr[7] << 40;
1864 	}
1865 	return pn;
1866 }
1867 
1868 static bool ath10k_htt_rx_h_frag_multicast_check(struct ath10k *ar,
1869 						 struct sk_buff *skb,
1870 						 u16 offset)
1871 {
1872 	struct ieee80211_hdr *hdr;
1873 
1874 	hdr = (struct ieee80211_hdr *)(skb->data + offset);
1875 	return !is_multicast_ether_addr(hdr->addr1);
1876 }
1877 
1878 static bool ath10k_htt_rx_h_frag_pn_check(struct ath10k *ar,
1879 					  struct sk_buff *skb,
1880 					  u16 peer_id,
1881 					  u16 offset,
1882 					  enum htt_rx_mpdu_encrypt_type enctype)
1883 {
1884 	struct ath10k_peer *peer;
1885 	union htt_rx_pn_t *last_pn, new_pn = {0};
1886 	struct ieee80211_hdr *hdr;
1887 	u8 tid, frag_number;
1888 	u32 seq;
1889 
1890 	peer = ath10k_peer_find_by_id(ar, peer_id);
1891 	if (!peer) {
1892 		ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer for frag pn check\n");
1893 		return false;
1894 	}
1895 
1896 	hdr = (struct ieee80211_hdr *)(skb->data + offset);
1897 	if (ieee80211_is_data_qos(hdr->frame_control))
1898 		tid = ieee80211_get_tid(hdr);
1899 	else
1900 		tid = ATH10K_TXRX_NON_QOS_TID;
1901 
1902 	last_pn = &peer->frag_tids_last_pn[tid];
1903 	new_pn.pn48 = ath10k_htt_rx_h_get_pn(ar, skb, offset, enctype);
1904 	frag_number = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1905 	seq = (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4;
1906 
1907 	if (frag_number == 0) {
1908 		last_pn->pn48 = new_pn.pn48;
1909 		peer->frag_tids_seq[tid] = seq;
1910 	} else {
1911 		if (seq != peer->frag_tids_seq[tid])
1912 			return false;
1913 
1914 		if (new_pn.pn48 != last_pn->pn48 + 1)
1915 			return false;
1916 
1917 		last_pn->pn48 = new_pn.pn48;
1918 	}
1919 
1920 	return true;
1921 }
1922 
1923 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1924 				 struct sk_buff_head *amsdu,
1925 				 struct ieee80211_rx_status *status,
1926 				 bool fill_crypt_header,
1927 				 u8 *rx_hdr,
1928 				 enum ath10k_pkt_rx_err *err,
1929 				 u16 peer_id,
1930 				 bool frag)
1931 {
1932 	struct sk_buff *first;
1933 	struct sk_buff *last;
1934 	struct sk_buff *msdu, *temp;
1935 	struct ath10k_hw_params *hw = &ar->hw_params;
1936 	struct htt_rx_desc *rxd;
1937 	struct rx_attention *rxd_attention;
1938 	struct rx_mpdu_start *rxd_mpdu_start;
1939 
1940 	struct ieee80211_hdr *hdr;
1941 	enum htt_rx_mpdu_encrypt_type enctype;
1942 	u8 first_hdr[64];
1943 	u8 *qos;
1944 	bool has_fcs_err;
1945 	bool has_crypto_err;
1946 	bool has_tkip_err;
1947 	bool has_peer_idx_invalid;
1948 	bool is_decrypted;
1949 	bool is_mgmt;
1950 	u32 attention;
1951 	bool frag_pn_check = true, multicast_check = true;
1952 
1953 	if (skb_queue_empty(amsdu))
1954 		return;
1955 
1956 	first = skb_peek(amsdu);
1957 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1958 				    (void *)first->data - hw->rx_desc_ops->rx_desc_size);
1959 
1960 	rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd);
1961 	rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd);
1962 
1963 	is_mgmt = !!(rxd_attention->flags &
1964 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1965 
1966 	enctype = MS(__le32_to_cpu(rxd_mpdu_start->info0),
1967 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1968 
1969 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1970 	 * decapped header. It'll be used for undecapping of each MSDU.
1971 	 */
1972 	hdr = (void *)ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd);
1973 	memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1974 
1975 	if (rx_hdr)
1976 		memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1977 
1978 	/* Each A-MSDU subframe will use the original header as the base and be
1979 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1980 	 */
1981 	hdr = (void *)first_hdr;
1982 
1983 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1984 		qos = ieee80211_get_qos_ctl(hdr);
1985 		qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1986 	}
1987 
1988 	/* Some attention flags are valid only in the last MSDU. */
1989 	last = skb_peek_tail(amsdu);
1990 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
1991 				    (void *)last->data - hw->rx_desc_ops->rx_desc_size);
1992 
1993 	rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd);
1994 	attention = __le32_to_cpu(rxd_attention->flags);
1995 
1996 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1997 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1998 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1999 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
2000 
2001 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
2002 	 * e.g. due to fcs error, missing peer or invalid key data it will
2003 	 * report the frame as raw.
2004 	 */
2005 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
2006 			!has_fcs_err &&
2007 			!has_crypto_err &&
2008 			!has_peer_idx_invalid);
2009 
2010 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
2011 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
2012 			  RX_FLAG_MMIC_ERROR |
2013 			  RX_FLAG_DECRYPTED |
2014 			  RX_FLAG_IV_STRIPPED |
2015 			  RX_FLAG_ONLY_MONITOR |
2016 			  RX_FLAG_MMIC_STRIPPED);
2017 
2018 	if (has_fcs_err)
2019 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
2020 
2021 	if (has_tkip_err)
2022 		status->flag |= RX_FLAG_MMIC_ERROR;
2023 
2024 	if (err) {
2025 		if (has_fcs_err)
2026 			*err = ATH10K_PKT_RX_ERR_FCS;
2027 		else if (has_tkip_err)
2028 			*err = ATH10K_PKT_RX_ERR_TKIP;
2029 		else if (has_crypto_err)
2030 			*err = ATH10K_PKT_RX_ERR_CRYPT;
2031 		else if (has_peer_idx_invalid)
2032 			*err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
2033 	}
2034 
2035 	/* Firmware reports all necessary management frames via WMI already.
2036 	 * They are not reported to monitor interfaces at all so pass the ones
2037 	 * coming via HTT to monitor interfaces instead. This simplifies
2038 	 * matters a lot.
2039 	 */
2040 	if (is_mgmt)
2041 		status->flag |= RX_FLAG_ONLY_MONITOR;
2042 
2043 	if (is_decrypted) {
2044 		status->flag |= RX_FLAG_DECRYPTED;
2045 
2046 		if (likely(!is_mgmt))
2047 			status->flag |= RX_FLAG_MMIC_STRIPPED;
2048 
2049 		if (fill_crypt_header)
2050 			status->flag |= RX_FLAG_MIC_STRIPPED |
2051 					RX_FLAG_ICV_STRIPPED;
2052 		else
2053 			status->flag |= RX_FLAG_IV_STRIPPED;
2054 	}
2055 
2056 	skb_queue_walk(amsdu, msdu) {
2057 		if (frag && !fill_crypt_header && is_decrypted &&
2058 		    enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2)
2059 			frag_pn_check = ath10k_htt_rx_h_frag_pn_check(ar,
2060 								      msdu,
2061 								      peer_id,
2062 								      0,
2063 								      enctype);
2064 
2065 		if (frag)
2066 			multicast_check = ath10k_htt_rx_h_frag_multicast_check(ar,
2067 									       msdu,
2068 									       0);
2069 
2070 		if (!frag_pn_check || !multicast_check) {
2071 			/* Discard the fragment with invalid PN or multicast DA
2072 			 */
2073 			temp = msdu->prev;
2074 			__skb_unlink(msdu, amsdu);
2075 			dev_kfree_skb_any(msdu);
2076 			msdu = temp;
2077 			frag_pn_check = true;
2078 			multicast_check = true;
2079 			continue;
2080 		}
2081 
2082 		ath10k_htt_rx_h_csum_offload(&ar->hw_params, msdu);
2083 
2084 		if (frag && !fill_crypt_header &&
2085 		    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
2086 			status->flag &= ~RX_FLAG_MMIC_STRIPPED;
2087 
2088 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
2089 					is_decrypted);
2090 
2091 		/* Undecapping involves copying the original 802.11 header back
2092 		 * to sk_buff. If frame is protected and hardware has decrypted
2093 		 * it then remove the protected bit.
2094 		 */
2095 		if (!is_decrypted)
2096 			continue;
2097 		if (is_mgmt)
2098 			continue;
2099 
2100 		if (fill_crypt_header)
2101 			continue;
2102 
2103 		hdr = (void *)msdu->data;
2104 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2105 
2106 		if (frag && !fill_crypt_header &&
2107 		    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
2108 			status->flag &= ~RX_FLAG_IV_STRIPPED &
2109 					~RX_FLAG_MMIC_STRIPPED;
2110 	}
2111 }
2112 
2113 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
2114 				    struct sk_buff_head *amsdu,
2115 				    struct ieee80211_rx_status *status)
2116 {
2117 	struct sk_buff *msdu;
2118 	struct sk_buff *first_subframe;
2119 
2120 	first_subframe = skb_peek(amsdu);
2121 
2122 	while ((msdu = __skb_dequeue(amsdu))) {
2123 		/* Setup per-MSDU flags */
2124 		if (skb_queue_empty(amsdu))
2125 			status->flag &= ~RX_FLAG_AMSDU_MORE;
2126 		else
2127 			status->flag |= RX_FLAG_AMSDU_MORE;
2128 
2129 		if (msdu == first_subframe) {
2130 			first_subframe = NULL;
2131 			status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
2132 		} else {
2133 			status->flag |= RX_FLAG_ALLOW_SAME_PN;
2134 		}
2135 
2136 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2137 	}
2138 }
2139 
2140 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
2141 			       unsigned long *unchain_cnt)
2142 {
2143 	struct sk_buff *skb, *first;
2144 	int space;
2145 	int total_len = 0;
2146 	int amsdu_len = skb_queue_len(amsdu);
2147 
2148 	/* TODO:  Might could optimize this by using
2149 	 * skb_try_coalesce or similar method to
2150 	 * decrease copying, or maybe get mac80211 to
2151 	 * provide a way to just receive a list of
2152 	 * skb?
2153 	 */
2154 
2155 	first = __skb_dequeue(amsdu);
2156 
2157 	/* Allocate total length all at once. */
2158 	skb_queue_walk(amsdu, skb)
2159 		total_len += skb->len;
2160 
2161 	space = total_len - skb_tailroom(first);
2162 	if ((space > 0) &&
2163 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
2164 		/* TODO:  bump some rx-oom error stat */
2165 		/* put it back together so we can free the
2166 		 * whole list at once.
2167 		 */
2168 		__skb_queue_head(amsdu, first);
2169 		return -1;
2170 	}
2171 
2172 	/* Walk list again, copying contents into
2173 	 * msdu_head
2174 	 */
2175 	while ((skb = __skb_dequeue(amsdu))) {
2176 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
2177 					  skb->len);
2178 		dev_kfree_skb_any(skb);
2179 	}
2180 
2181 	__skb_queue_head(amsdu, first);
2182 
2183 	*unchain_cnt += amsdu_len - 1;
2184 
2185 	return 0;
2186 }
2187 
2188 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
2189 				    struct sk_buff_head *amsdu,
2190 				    unsigned long *drop_cnt,
2191 				    unsigned long *unchain_cnt)
2192 {
2193 	struct sk_buff *first;
2194 	struct ath10k_hw_params *hw = &ar->hw_params;
2195 	struct htt_rx_desc *rxd;
2196 	struct rx_msdu_start_common *rxd_msdu_start_common;
2197 	struct rx_frag_info_common *rxd_frag_info;
2198 	enum rx_msdu_decap_format decap;
2199 
2200 	first = skb_peek(amsdu);
2201 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
2202 				    (void *)first->data - hw->rx_desc_ops->rx_desc_size);
2203 
2204 	rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd);
2205 	rxd_frag_info = ath10k_htt_rx_desc_get_frag_info(hw, rxd);
2206 	decap = MS(__le32_to_cpu(rxd_msdu_start_common->info1),
2207 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
2208 
2209 	/* FIXME: Current unchaining logic can only handle simple case of raw
2210 	 * msdu chaining. If decapping is other than raw the chaining may be
2211 	 * more complex and this isn't handled by the current code. Don't even
2212 	 * try re-constructing such frames - it'll be pretty much garbage.
2213 	 */
2214 	if (decap != RX_MSDU_DECAP_RAW ||
2215 	    skb_queue_len(amsdu) != 1 + rxd_frag_info->ring2_more_count) {
2216 		*drop_cnt += skb_queue_len(amsdu);
2217 		__skb_queue_purge(amsdu);
2218 		return;
2219 	}
2220 
2221 	ath10k_unchain_msdu(amsdu, unchain_cnt);
2222 }
2223 
2224 static bool ath10k_htt_rx_validate_amsdu(struct ath10k *ar,
2225 					 struct sk_buff_head *amsdu)
2226 {
2227 	u8 *subframe_hdr;
2228 	struct sk_buff *first;
2229 	bool is_first, is_last;
2230 	struct ath10k_hw_params *hw = &ar->hw_params;
2231 	struct htt_rx_desc *rxd;
2232 	struct rx_msdu_end_common *rxd_msdu_end_common;
2233 	struct rx_mpdu_start *rxd_mpdu_start;
2234 	struct ieee80211_hdr *hdr;
2235 	size_t hdr_len, crypto_len;
2236 	enum htt_rx_mpdu_encrypt_type enctype;
2237 	int bytes_aligned = ar->hw_params.decap_align_bytes;
2238 
2239 	first = skb_peek(amsdu);
2240 
2241 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
2242 				    (void *)first->data - hw->rx_desc_ops->rx_desc_size);
2243 
2244 	rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd);
2245 	rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd);
2246 	hdr = (void *)ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd);
2247 
2248 	is_first = !!(rxd_msdu_end_common->info0 &
2249 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
2250 	is_last = !!(rxd_msdu_end_common->info0 &
2251 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
2252 
2253 	/* Return in case of non-aggregated msdu */
2254 	if (is_first && is_last)
2255 		return true;
2256 
2257 	/* First msdu flag is not set for the first msdu of the list */
2258 	if (!is_first)
2259 		return false;
2260 
2261 	enctype = MS(__le32_to_cpu(rxd_mpdu_start->info0),
2262 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
2263 
2264 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
2265 	crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
2266 
2267 	subframe_hdr = (u8 *)hdr + round_up(hdr_len, bytes_aligned) +
2268 		       crypto_len;
2269 
2270 	/* Validate if the amsdu has a proper first subframe.
2271 	 * There are chances a single msdu can be received as amsdu when
2272 	 * the unauthenticated amsdu flag of a QoS header
2273 	 * gets flipped in non-SPP AMSDU's, in such cases the first
2274 	 * subframe has llc/snap header in place of a valid da.
2275 	 * return false if the da matches rfc1042 pattern
2276 	 */
2277 	if (ether_addr_equal(subframe_hdr, rfc1042_header))
2278 		return false;
2279 
2280 	return true;
2281 }
2282 
2283 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
2284 					struct sk_buff_head *amsdu,
2285 					struct ieee80211_rx_status *rx_status)
2286 {
2287 	if (!rx_status->freq) {
2288 		ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
2289 		return false;
2290 	}
2291 
2292 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
2293 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
2294 		return false;
2295 	}
2296 
2297 	if (!ath10k_htt_rx_validate_amsdu(ar, amsdu)) {
2298 		ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid amsdu received\n");
2299 		return false;
2300 	}
2301 
2302 	return true;
2303 }
2304 
2305 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
2306 				   struct sk_buff_head *amsdu,
2307 				   struct ieee80211_rx_status *rx_status,
2308 				   unsigned long *drop_cnt)
2309 {
2310 	if (skb_queue_empty(amsdu))
2311 		return;
2312 
2313 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
2314 		return;
2315 
2316 	if (drop_cnt)
2317 		*drop_cnt += skb_queue_len(amsdu);
2318 
2319 	__skb_queue_purge(amsdu);
2320 }
2321 
2322 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
2323 {
2324 	struct ath10k *ar = htt->ar;
2325 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
2326 	struct sk_buff_head amsdu;
2327 	int ret;
2328 	unsigned long drop_cnt = 0;
2329 	unsigned long unchain_cnt = 0;
2330 	unsigned long drop_cnt_filter = 0;
2331 	unsigned long msdus_to_queue, num_msdus;
2332 	enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
2333 	u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
2334 
2335 	__skb_queue_head_init(&amsdu);
2336 
2337 	spin_lock_bh(&htt->rx_ring.lock);
2338 	if (htt->rx_confused) {
2339 		spin_unlock_bh(&htt->rx_ring.lock);
2340 		return -EIO;
2341 	}
2342 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
2343 	spin_unlock_bh(&htt->rx_ring.lock);
2344 
2345 	if (ret < 0) {
2346 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
2347 		__skb_queue_purge(&amsdu);
2348 		/* FIXME: It's probably a good idea to reboot the
2349 		 * device instead of leaving it inoperable.
2350 		 */
2351 		htt->rx_confused = true;
2352 		return ret;
2353 	}
2354 
2355 	num_msdus = skb_queue_len(&amsdu);
2356 
2357 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
2358 
2359 	/* only for ret = 1 indicates chained msdus */
2360 	if (ret > 0)
2361 		ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
2362 
2363 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
2364 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err, 0,
2365 			     false);
2366 	msdus_to_queue = skb_queue_len(&amsdu);
2367 	ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
2368 
2369 	ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
2370 				       unchain_cnt, drop_cnt, drop_cnt_filter,
2371 				       msdus_to_queue);
2372 
2373 	return 0;
2374 }
2375 
2376 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc,
2377 					  union htt_rx_pn_t *pn,
2378 					  int pn_len_bits)
2379 {
2380 	switch (pn_len_bits) {
2381 	case 48:
2382 		pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) +
2383 			   ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32);
2384 		break;
2385 	case 24:
2386 		pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0);
2387 		break;
2388 	}
2389 }
2390 
2391 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn,
2392 				   union htt_rx_pn_t *old_pn)
2393 {
2394 	return ((new_pn->pn48 & 0xffffffffffffULL) <=
2395 		(old_pn->pn48 & 0xffffffffffffULL));
2396 }
2397 
2398 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar,
2399 					     struct ath10k_peer *peer,
2400 					     struct htt_rx_indication_hl *rx)
2401 {
2402 	bool last_pn_valid, pn_invalid = false;
2403 	enum htt_txrx_sec_cast_type sec_index;
2404 	enum htt_security_types sec_type;
2405 	union htt_rx_pn_t new_pn = {0};
2406 	struct htt_hl_rx_desc *rx_desc;
2407 	union htt_rx_pn_t *last_pn;
2408 	u32 rx_desc_info, tid;
2409 	int num_mpdu_ranges;
2410 
2411 	lockdep_assert_held(&ar->data_lock);
2412 
2413 	if (!peer)
2414 		return false;
2415 
2416 	if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU))
2417 		return false;
2418 
2419 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2420 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2421 
2422 	rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2423 	rx_desc_info = __le32_to_cpu(rx_desc->info);
2424 
2425 	if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED))
2426 		return false;
2427 
2428 	tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2429 	last_pn_valid = peer->tids_last_pn_valid[tid];
2430 	last_pn = &peer->tids_last_pn[tid];
2431 
2432 	if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2433 		sec_index = HTT_TXRX_SEC_MCAST;
2434 	else
2435 		sec_index = HTT_TXRX_SEC_UCAST;
2436 
2437 	sec_type = peer->rx_pn[sec_index].sec_type;
2438 	ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2439 
2440 	if (sec_type != HTT_SECURITY_AES_CCMP &&
2441 	    sec_type != HTT_SECURITY_TKIP &&
2442 	    sec_type != HTT_SECURITY_TKIP_NOMIC)
2443 		return false;
2444 
2445 	if (last_pn_valid)
2446 		pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn);
2447 	else
2448 		peer->tids_last_pn_valid[tid] = true;
2449 
2450 	if (!pn_invalid)
2451 		last_pn->pn48 = new_pn.pn48;
2452 
2453 	return pn_invalid;
2454 }
2455 
2456 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
2457 					 struct htt_rx_indication_hl *rx,
2458 					 struct sk_buff *skb,
2459 					 enum htt_rx_pn_check_type check_pn_type,
2460 					 enum htt_rx_tkip_demic_type tkip_mic_type)
2461 {
2462 	struct ath10k *ar = htt->ar;
2463 	struct ath10k_peer *peer;
2464 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
2465 	struct fw_rx_desc_hl *fw_desc;
2466 	enum htt_txrx_sec_cast_type sec_index;
2467 	enum htt_security_types sec_type;
2468 	union htt_rx_pn_t new_pn = {0};
2469 	struct htt_hl_rx_desc *rx_desc;
2470 	struct ieee80211_hdr *hdr;
2471 	struct ieee80211_rx_status *rx_status;
2472 	u16 peer_id;
2473 	u8 rx_desc_len;
2474 	int num_mpdu_ranges;
2475 	size_t tot_hdr_len;
2476 	struct ieee80211_channel *ch;
2477 	bool pn_invalid, qos, first_msdu;
2478 	u32 tid, rx_desc_info;
2479 
2480 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
2481 	tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2482 
2483 	spin_lock_bh(&ar->data_lock);
2484 	peer = ath10k_peer_find_by_id(ar, peer_id);
2485 	spin_unlock_bh(&ar->data_lock);
2486 	if (!peer && peer_id != HTT_INVALID_PEERID)
2487 		ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
2488 
2489 	if (!peer)
2490 		return true;
2491 
2492 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2493 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2494 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
2495 	fw_desc = &rx->fw_desc;
2496 	rx_desc_len = fw_desc->len;
2497 
2498 	if (fw_desc->u.bits.discard) {
2499 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt discard mpdu\n");
2500 		goto err;
2501 	}
2502 
2503 	/* I have not yet seen any case where num_mpdu_ranges > 1.
2504 	 * qcacld does not seem handle that case either, so we introduce the
2505 	 * same limitation here as well.
2506 	 */
2507 	if (num_mpdu_ranges > 1)
2508 		ath10k_warn(ar,
2509 			    "Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
2510 			    num_mpdu_ranges);
2511 
2512 	if (mpdu_ranges->mpdu_range_status !=
2513 	    HTT_RX_IND_MPDU_STATUS_OK &&
2514 	    mpdu_ranges->mpdu_range_status !=
2515 	    HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) {
2516 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt mpdu_range_status %d\n",
2517 			   mpdu_ranges->mpdu_range_status);
2518 		goto err;
2519 	}
2520 
2521 	rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2522 	rx_desc_info = __le32_to_cpu(rx_desc->info);
2523 
2524 	if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2525 		sec_index = HTT_TXRX_SEC_MCAST;
2526 	else
2527 		sec_index = HTT_TXRX_SEC_UCAST;
2528 
2529 	sec_type = peer->rx_pn[sec_index].sec_type;
2530 	first_msdu = rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU;
2531 
2532 	ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2533 
2534 	if (check_pn_type == HTT_RX_PN_CHECK && tid >= IEEE80211_NUM_TIDS) {
2535 		spin_lock_bh(&ar->data_lock);
2536 		pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx);
2537 		spin_unlock_bh(&ar->data_lock);
2538 
2539 		if (pn_invalid)
2540 			goto err;
2541 	}
2542 
2543 	/* Strip off all headers before the MAC header before delivery to
2544 	 * mac80211
2545 	 */
2546 	tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
2547 		      sizeof(rx->ppdu) + sizeof(rx->prefix) +
2548 		      sizeof(rx->fw_desc) +
2549 		      sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
2550 
2551 	skb_pull(skb, tot_hdr_len);
2552 
2553 	hdr = (struct ieee80211_hdr *)skb->data;
2554 	qos = ieee80211_is_data_qos(hdr->frame_control);
2555 
2556 	rx_status = IEEE80211_SKB_RXCB(skb);
2557 	memset(rx_status, 0, sizeof(*rx_status));
2558 
2559 	if (rx->ppdu.combined_rssi == 0) {
2560 		/* SDIO firmware does not provide signal */
2561 		rx_status->signal = 0;
2562 		rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2563 	} else {
2564 		rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
2565 			rx->ppdu.combined_rssi;
2566 		rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
2567 	}
2568 
2569 	spin_lock_bh(&ar->data_lock);
2570 	ch = ar->scan_channel;
2571 	if (!ch)
2572 		ch = ar->rx_channel;
2573 	if (!ch)
2574 		ch = ath10k_htt_rx_h_any_channel(ar);
2575 	if (!ch)
2576 		ch = ar->tgt_oper_chan;
2577 	spin_unlock_bh(&ar->data_lock);
2578 
2579 	if (ch) {
2580 		rx_status->band = ch->band;
2581 		rx_status->freq = ch->center_freq;
2582 	}
2583 	if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
2584 		rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
2585 	else
2586 		rx_status->flag |= RX_FLAG_AMSDU_MORE;
2587 
2588 	/* Not entirely sure about this, but all frames from the chipset has
2589 	 * the protected flag set even though they have already been decrypted.
2590 	 * Unmasking this flag is necessary in order for mac80211 not to drop
2591 	 * the frame.
2592 	 * TODO: Verify this is always the case or find out a way to check
2593 	 * if there has been hw decryption.
2594 	 */
2595 	if (ieee80211_has_protected(hdr->frame_control)) {
2596 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2597 		rx_status->flag |= RX_FLAG_DECRYPTED |
2598 				   RX_FLAG_IV_STRIPPED |
2599 				   RX_FLAG_MMIC_STRIPPED;
2600 
2601 		if (tid < IEEE80211_NUM_TIDS &&
2602 		    first_msdu &&
2603 		    check_pn_type == HTT_RX_PN_CHECK &&
2604 		   (sec_type == HTT_SECURITY_AES_CCMP ||
2605 		    sec_type == HTT_SECURITY_TKIP ||
2606 		    sec_type == HTT_SECURITY_TKIP_NOMIC)) {
2607 			u8 offset, *ivp, i;
2608 			s8 keyidx = 0;
2609 			__le64 pn48 = cpu_to_le64(new_pn.pn48);
2610 
2611 			hdr = (struct ieee80211_hdr *)skb->data;
2612 			offset = ieee80211_hdrlen(hdr->frame_control);
2613 			hdr->frame_control |= __cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2614 			rx_status->flag &= ~RX_FLAG_IV_STRIPPED;
2615 
2616 			memmove(skb->data - IEEE80211_CCMP_HDR_LEN,
2617 				skb->data, offset);
2618 			skb_push(skb, IEEE80211_CCMP_HDR_LEN);
2619 			ivp = skb->data + offset;
2620 			memset(skb->data + offset, 0, IEEE80211_CCMP_HDR_LEN);
2621 			/* Ext IV */
2622 			ivp[IEEE80211_WEP_IV_LEN - 1] |= ATH10K_IEEE80211_EXTIV;
2623 
2624 			for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
2625 				if (peer->keys[i] &&
2626 				    peer->keys[i]->flags & IEEE80211_KEY_FLAG_PAIRWISE)
2627 					keyidx = peer->keys[i]->keyidx;
2628 			}
2629 
2630 			/* Key ID */
2631 			ivp[IEEE80211_WEP_IV_LEN - 1] |= keyidx << 6;
2632 
2633 			if (sec_type == HTT_SECURITY_AES_CCMP) {
2634 				rx_status->flag |= RX_FLAG_MIC_STRIPPED;
2635 				/* pn 0, pn 1 */
2636 				memcpy(skb->data + offset, &pn48, 2);
2637 				/* pn 1, pn 3 , pn 34 , pn 5 */
2638 				memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4);
2639 			} else {
2640 				rx_status->flag |= RX_FLAG_ICV_STRIPPED;
2641 				/* TSC 0 */
2642 				memcpy(skb->data + offset + 2, &pn48, 1);
2643 				/* TSC 1 */
2644 				memcpy(skb->data + offset, ((u8 *)&pn48) + 1, 1);
2645 				/* TSC 2 , TSC 3 , TSC 4 , TSC 5*/
2646 				memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4);
2647 			}
2648 		}
2649 	}
2650 
2651 	if (tkip_mic_type == HTT_RX_TKIP_MIC)
2652 		rx_status->flag &= ~RX_FLAG_IV_STRIPPED &
2653 				   ~RX_FLAG_MMIC_STRIPPED;
2654 
2655 	if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR)
2656 		rx_status->flag |= RX_FLAG_MMIC_ERROR;
2657 
2658 	if (!qos && tid < IEEE80211_NUM_TIDS) {
2659 		u8 offset;
2660 		__le16 qos_ctrl = 0;
2661 
2662 		hdr = (struct ieee80211_hdr *)skb->data;
2663 		offset = ieee80211_hdrlen(hdr->frame_control);
2664 
2665 		hdr->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
2666 		memmove(skb->data - IEEE80211_QOS_CTL_LEN, skb->data, offset);
2667 		skb_push(skb, IEEE80211_QOS_CTL_LEN);
2668 		qos_ctrl = cpu_to_le16(tid);
2669 		memcpy(skb->data + offset, &qos_ctrl, IEEE80211_QOS_CTL_LEN);
2670 	}
2671 
2672 	if (ar->napi.dev)
2673 		ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
2674 	else
2675 		ieee80211_rx_ni(ar->hw, skb);
2676 
2677 	/* We have delivered the skb to the upper layers (mac80211) so we
2678 	 * must not free it.
2679 	 */
2680 	return false;
2681 err:
2682 	/* Tell the caller that it must free the skb since we have not
2683 	 * consumed it
2684 	 */
2685 	return true;
2686 }
2687 
2688 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb,
2689 					       u16 head_len,
2690 					       u16 hdr_len)
2691 {
2692 	u8 *ivp, *orig_hdr;
2693 
2694 	orig_hdr = skb->data;
2695 	ivp = orig_hdr + hdr_len + head_len;
2696 
2697 	/* the ExtIV bit is always set to 1 for TKIP */
2698 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2699 		return -EINVAL;
2700 
2701 	memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2702 	skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2703 	skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN);
2704 	return 0;
2705 }
2706 
2707 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb,
2708 						 u16 head_len,
2709 						 u16 hdr_len)
2710 {
2711 	u8 *ivp, *orig_hdr;
2712 
2713 	orig_hdr = skb->data;
2714 	ivp = orig_hdr + hdr_len + head_len;
2715 
2716 	/* the ExtIV bit is always set to 1 for TKIP */
2717 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2718 		return -EINVAL;
2719 
2720 	memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2721 	skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2722 	skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN);
2723 	return 0;
2724 }
2725 
2726 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb,
2727 					 u16 head_len,
2728 					 u16 hdr_len)
2729 {
2730 	u8 *ivp, *orig_hdr;
2731 
2732 	orig_hdr = skb->data;
2733 	ivp = orig_hdr + hdr_len + head_len;
2734 
2735 	/* the ExtIV bit is always set to 1 for CCMP */
2736 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2737 		return -EINVAL;
2738 
2739 	skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN);
2740 	memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len);
2741 	skb_pull(skb, IEEE80211_CCMP_HDR_LEN);
2742 	return 0;
2743 }
2744 
2745 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb,
2746 					u16 head_len,
2747 					u16 hdr_len)
2748 {
2749 	u8 *orig_hdr;
2750 
2751 	orig_hdr = skb->data;
2752 
2753 	memmove(orig_hdr + IEEE80211_WEP_IV_LEN,
2754 		orig_hdr, head_len + hdr_len);
2755 	skb_pull(skb, IEEE80211_WEP_IV_LEN);
2756 	skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN);
2757 	return 0;
2758 }
2759 
2760 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt,
2761 					      struct htt_rx_fragment_indication *rx,
2762 					      struct sk_buff *skb)
2763 {
2764 	struct ath10k *ar = htt->ar;
2765 	enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC;
2766 	enum htt_txrx_sec_cast_type sec_index;
2767 	struct htt_rx_indication_hl *rx_hl;
2768 	enum htt_security_types sec_type;
2769 	u32 tid, frag, seq, rx_desc_info;
2770 	union htt_rx_pn_t new_pn = {0};
2771 	struct htt_hl_rx_desc *rx_desc;
2772 	u16 peer_id, sc, hdr_space;
2773 	union htt_rx_pn_t *last_pn;
2774 	struct ieee80211_hdr *hdr;
2775 	int ret, num_mpdu_ranges;
2776 	struct ath10k_peer *peer;
2777 	struct htt_resp *resp;
2778 	size_t tot_hdr_len;
2779 
2780 	resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2781 	skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2782 	skb_trim(skb, skb->len - FCS_LEN);
2783 
2784 	peer_id = __le16_to_cpu(rx->peer_id);
2785 	rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl);
2786 
2787 	spin_lock_bh(&ar->data_lock);
2788 	peer = ath10k_peer_find_by_id(ar, peer_id);
2789 	if (!peer) {
2790 		ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id);
2791 		goto err;
2792 	}
2793 
2794 	num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1),
2795 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2796 
2797 	tot_hdr_len = sizeof(struct htt_resp_hdr) +
2798 		      sizeof(rx_hl->hdr) +
2799 		      sizeof(rx_hl->ppdu) +
2800 		      sizeof(rx_hl->prefix) +
2801 		      sizeof(rx_hl->fw_desc) +
2802 		      sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges;
2803 
2804 	tid =  MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2805 	rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len);
2806 	rx_desc_info = __le32_to_cpu(rx_desc->info);
2807 
2808 	hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len);
2809 
2810 	if (is_multicast_ether_addr(hdr->addr1)) {
2811 		/* Discard the fragment with multicast DA */
2812 		goto err;
2813 	}
2814 
2815 	if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) {
2816 		spin_unlock_bh(&ar->data_lock);
2817 		return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2818 						    HTT_RX_NON_PN_CHECK,
2819 						    HTT_RX_NON_TKIP_MIC);
2820 	}
2821 
2822 	if (ieee80211_has_retry(hdr->frame_control))
2823 		goto err;
2824 
2825 	hdr_space = ieee80211_hdrlen(hdr->frame_control);
2826 	sc = __le16_to_cpu(hdr->seq_ctrl);
2827 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2828 	frag = sc & IEEE80211_SCTL_FRAG;
2829 
2830 	sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ?
2831 		    HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST;
2832 	sec_type = peer->rx_pn[sec_index].sec_type;
2833 	ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2834 
2835 	switch (sec_type) {
2836 	case HTT_SECURITY_TKIP:
2837 		tkip_mic = HTT_RX_TKIP_MIC;
2838 		ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb,
2839 							    tot_hdr_len +
2840 							    rx_hl->fw_desc.len,
2841 							    hdr_space);
2842 		if (ret)
2843 			goto err;
2844 		break;
2845 	case HTT_SECURITY_TKIP_NOMIC:
2846 		ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb,
2847 							  tot_hdr_len +
2848 							  rx_hl->fw_desc.len,
2849 							  hdr_space);
2850 		if (ret)
2851 			goto err;
2852 		break;
2853 	case HTT_SECURITY_AES_CCMP:
2854 		ret = ath10k_htt_rx_frag_ccmp_decap(skb,
2855 						    tot_hdr_len + rx_hl->fw_desc.len,
2856 						    hdr_space);
2857 		if (ret)
2858 			goto err;
2859 		break;
2860 	case HTT_SECURITY_WEP128:
2861 	case HTT_SECURITY_WEP104:
2862 	case HTT_SECURITY_WEP40:
2863 		ret = ath10k_htt_rx_frag_wep_decap(skb,
2864 						   tot_hdr_len + rx_hl->fw_desc.len,
2865 						   hdr_space);
2866 		if (ret)
2867 			goto err;
2868 		break;
2869 	default:
2870 		break;
2871 	}
2872 
2873 	resp = (struct htt_resp *)(skb->data);
2874 
2875 	if (sec_type != HTT_SECURITY_AES_CCMP &&
2876 	    sec_type != HTT_SECURITY_TKIP &&
2877 	    sec_type != HTT_SECURITY_TKIP_NOMIC) {
2878 		spin_unlock_bh(&ar->data_lock);
2879 		return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2880 						    HTT_RX_NON_PN_CHECK,
2881 						    HTT_RX_NON_TKIP_MIC);
2882 	}
2883 
2884 	last_pn = &peer->frag_tids_last_pn[tid];
2885 
2886 	if (frag == 0) {
2887 		if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl))
2888 			goto err;
2889 
2890 		last_pn->pn48 = new_pn.pn48;
2891 		peer->frag_tids_seq[tid] = seq;
2892 	} else if (sec_type == HTT_SECURITY_AES_CCMP) {
2893 		if (seq != peer->frag_tids_seq[tid])
2894 			goto err;
2895 
2896 		if (new_pn.pn48 != last_pn->pn48 + 1)
2897 			goto err;
2898 
2899 		last_pn->pn48 = new_pn.pn48;
2900 		last_pn = &peer->tids_last_pn[tid];
2901 		last_pn->pn48 = new_pn.pn48;
2902 	}
2903 
2904 	spin_unlock_bh(&ar->data_lock);
2905 
2906 	return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2907 					    HTT_RX_NON_PN_CHECK, tkip_mic);
2908 
2909 err:
2910 	spin_unlock_bh(&ar->data_lock);
2911 
2912 	/* Tell the caller that it must free the skb since we have not
2913 	 * consumed it
2914 	 */
2915 	return true;
2916 }
2917 
2918 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
2919 					 struct htt_rx_indication *rx)
2920 {
2921 	struct ath10k *ar = htt->ar;
2922 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
2923 	int num_mpdu_ranges;
2924 	int i, mpdu_count = 0;
2925 	u16 peer_id;
2926 	u8 tid;
2927 
2928 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2929 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2930 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
2931 	tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2932 
2933 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
2934 
2935 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
2936 			rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges));
2937 
2938 	for (i = 0; i < num_mpdu_ranges; i++)
2939 		mpdu_count += mpdu_ranges[i].mpdu_count;
2940 
2941 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
2942 
2943 	ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
2944 					     num_mpdu_ranges);
2945 }
2946 
2947 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
2948 				       struct sk_buff *skb)
2949 {
2950 	struct ath10k_htt *htt = &ar->htt;
2951 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2952 	struct htt_tx_done tx_done = {};
2953 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
2954 	__le16 msdu_id, *msdus;
2955 	bool rssi_enabled = false;
2956 	u8 msdu_count = 0, num_airtime_records, tid;
2957 	int i, htt_pad = 0;
2958 	struct htt_data_tx_compl_ppdu_dur *ppdu_info;
2959 	struct ath10k_peer *peer;
2960 	u16 ppdu_info_offset = 0, peer_id;
2961 	u32 tx_duration;
2962 
2963 	switch (status) {
2964 	case HTT_DATA_TX_STATUS_NO_ACK:
2965 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2966 		break;
2967 	case HTT_DATA_TX_STATUS_OK:
2968 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
2969 		break;
2970 	case HTT_DATA_TX_STATUS_DISCARD:
2971 	case HTT_DATA_TX_STATUS_POSTPONE:
2972 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
2973 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2974 		break;
2975 	default:
2976 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
2977 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2978 		break;
2979 	}
2980 
2981 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
2982 		   resp->data_tx_completion.num_msdus);
2983 
2984 	msdu_count = resp->data_tx_completion.num_msdus;
2985 	msdus = resp->data_tx_completion.msdus;
2986 	rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp);
2987 
2988 	if (rssi_enabled)
2989 		htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params,
2990 							    resp);
2991 
2992 	for (i = 0; i < msdu_count; i++) {
2993 		msdu_id = msdus[i];
2994 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
2995 
2996 		if (rssi_enabled) {
2997 			/* Total no of MSDUs should be even,
2998 			 * if odd MSDUs are sent firmware fills
2999 			 * last msdu id with 0xffff
3000 			 */
3001 			if (msdu_count & 0x01) {
3002 				msdu_id = msdus[msdu_count +  i + 1 + htt_pad];
3003 				tx_done.ack_rssi = __le16_to_cpu(msdu_id);
3004 			} else {
3005 				msdu_id = msdus[msdu_count +  i + htt_pad];
3006 				tx_done.ack_rssi = __le16_to_cpu(msdu_id);
3007 			}
3008 		}
3009 
3010 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
3011 		 * interrupt and main interrupt (MSI/-X range case) for the same
3012 		 * HTC service so it should be safe to use kfifo_put w/o lock.
3013 		 *
3014 		 * From kfifo_put() documentation:
3015 		 *  Note that with only one concurrent reader and one concurrent
3016 		 *  writer, you don't need extra locking to use these macro.
3017 		 */
3018 		if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) {
3019 			ath10k_txrx_tx_unref(htt, &tx_done);
3020 		} else if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
3021 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
3022 				    tx_done.msdu_id, tx_done.status);
3023 			ath10k_txrx_tx_unref(htt, &tx_done);
3024 		}
3025 	}
3026 
3027 	if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT))
3028 		return;
3029 
3030 	ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count;
3031 
3032 	if (rssi_enabled)
3033 		ppdu_info_offset += ppdu_info_offset;
3034 
3035 	if (resp->data_tx_completion.flags2 &
3036 	    (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT))
3037 		ppdu_info_offset += 2;
3038 
3039 	ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset];
3040 	num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK,
3041 					__le32_to_cpu(ppdu_info->info0));
3042 
3043 	for (i = 0; i < num_airtime_records; i++) {
3044 		struct htt_data_tx_ppdu_dur *ppdu_dur;
3045 		u32 info0;
3046 
3047 		ppdu_dur = &ppdu_info->ppdu_dur[i];
3048 		info0 = __le32_to_cpu(ppdu_dur->info0);
3049 
3050 		peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK,
3051 				    info0);
3052 		rcu_read_lock();
3053 		spin_lock_bh(&ar->data_lock);
3054 
3055 		peer = ath10k_peer_find_by_id(ar, peer_id);
3056 		if (!peer || !peer->sta) {
3057 			spin_unlock_bh(&ar->data_lock);
3058 			rcu_read_unlock();
3059 			continue;
3060 		}
3061 
3062 		tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0) &
3063 						IEEE80211_QOS_CTL_TID_MASK;
3064 		tx_duration = __le32_to_cpu(ppdu_dur->tx_duration);
3065 
3066 		ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0);
3067 
3068 		spin_unlock_bh(&ar->data_lock);
3069 		rcu_read_unlock();
3070 	}
3071 }
3072 
3073 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
3074 {
3075 	struct htt_rx_addba *ev = &resp->rx_addba;
3076 	struct ath10k_peer *peer;
3077 	struct ath10k_vif *arvif;
3078 	u16 info0, tid, peer_id;
3079 
3080 	info0 = __le16_to_cpu(ev->info0);
3081 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
3082 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
3083 
3084 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3085 		   "htt rx addba tid %u peer_id %u size %u\n",
3086 		   tid, peer_id, ev->window_size);
3087 
3088 	spin_lock_bh(&ar->data_lock);
3089 	peer = ath10k_peer_find_by_id(ar, peer_id);
3090 	if (!peer) {
3091 		ath10k_warn(ar, "received addba event for invalid peer_id: %u\n",
3092 			    peer_id);
3093 		spin_unlock_bh(&ar->data_lock);
3094 		return;
3095 	}
3096 
3097 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
3098 	if (!arvif) {
3099 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
3100 			    peer->vdev_id);
3101 		spin_unlock_bh(&ar->data_lock);
3102 		return;
3103 	}
3104 
3105 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3106 		   "htt rx start rx ba session sta %pM tid %u size %u\n",
3107 		   peer->addr, tid, ev->window_size);
3108 
3109 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
3110 	spin_unlock_bh(&ar->data_lock);
3111 }
3112 
3113 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
3114 {
3115 	struct htt_rx_delba *ev = &resp->rx_delba;
3116 	struct ath10k_peer *peer;
3117 	struct ath10k_vif *arvif;
3118 	u16 info0, tid, peer_id;
3119 
3120 	info0 = __le16_to_cpu(ev->info0);
3121 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
3122 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
3123 
3124 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3125 		   "htt rx delba tid %u peer_id %u\n",
3126 		   tid, peer_id);
3127 
3128 	spin_lock_bh(&ar->data_lock);
3129 	peer = ath10k_peer_find_by_id(ar, peer_id);
3130 	if (!peer) {
3131 		ath10k_warn(ar, "received addba event for invalid peer_id: %u\n",
3132 			    peer_id);
3133 		spin_unlock_bh(&ar->data_lock);
3134 		return;
3135 	}
3136 
3137 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
3138 	if (!arvif) {
3139 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
3140 			    peer->vdev_id);
3141 		spin_unlock_bh(&ar->data_lock);
3142 		return;
3143 	}
3144 
3145 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3146 		   "htt rx stop rx ba session sta %pM tid %u\n",
3147 		   peer->addr, tid);
3148 
3149 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
3150 	spin_unlock_bh(&ar->data_lock);
3151 }
3152 
3153 static int ath10k_htt_rx_extract_amsdu(struct ath10k_hw_params *hw,
3154 				       struct sk_buff_head *list,
3155 				       struct sk_buff_head *amsdu)
3156 {
3157 	struct sk_buff *msdu;
3158 	struct htt_rx_desc *rxd;
3159 	struct rx_msdu_end_common *rxd_msdu_end_common;
3160 
3161 	if (skb_queue_empty(list))
3162 		return -ENOBUFS;
3163 
3164 	if (WARN_ON(!skb_queue_empty(amsdu)))
3165 		return -EINVAL;
3166 
3167 	while ((msdu = __skb_dequeue(list))) {
3168 		__skb_queue_tail(amsdu, msdu);
3169 
3170 		rxd = HTT_RX_BUF_TO_RX_DESC(hw,
3171 					    (void *)msdu->data -
3172 					    hw->rx_desc_ops->rx_desc_size);
3173 
3174 		rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd);
3175 		if (rxd_msdu_end_common->info0 &
3176 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
3177 			break;
3178 	}
3179 
3180 	msdu = skb_peek_tail(amsdu);
3181 	rxd = HTT_RX_BUF_TO_RX_DESC(hw,
3182 				    (void *)msdu->data - hw->rx_desc_ops->rx_desc_size);
3183 
3184 	rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd);
3185 	if (!(rxd_msdu_end_common->info0 &
3186 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
3187 		skb_queue_splice_init(amsdu, list);
3188 		return -EAGAIN;
3189 	}
3190 
3191 	return 0;
3192 }
3193 
3194 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
3195 					    struct sk_buff *skb)
3196 {
3197 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
3198 
3199 	if (!ieee80211_has_protected(hdr->frame_control))
3200 		return;
3201 
3202 	/* Offloaded frames are already decrypted but firmware insists they are
3203 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
3204 	 * will drop the frame.
3205 	 */
3206 
3207 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
3208 	status->flag |= RX_FLAG_DECRYPTED |
3209 			RX_FLAG_IV_STRIPPED |
3210 			RX_FLAG_MMIC_STRIPPED;
3211 }
3212 
3213 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
3214 				       struct sk_buff_head *list)
3215 {
3216 	struct ath10k_htt *htt = &ar->htt;
3217 	struct ieee80211_rx_status *status = &htt->rx_status;
3218 	struct htt_rx_offload_msdu *rx;
3219 	struct sk_buff *msdu;
3220 	size_t offset;
3221 
3222 	while ((msdu = __skb_dequeue(list))) {
3223 		/* Offloaded frames don't have Rx descriptor. Instead they have
3224 		 * a short meta information header.
3225 		 */
3226 
3227 		rx = (void *)msdu->data;
3228 
3229 		skb_put(msdu, sizeof(*rx));
3230 		skb_pull(msdu, sizeof(*rx));
3231 
3232 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
3233 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
3234 			dev_kfree_skb_any(msdu);
3235 			continue;
3236 		}
3237 
3238 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
3239 
3240 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
3241 		 * actual payload is unaligned. Align the frame.  Otherwise
3242 		 * mac80211 complains.  This shouldn't reduce performance much
3243 		 * because these offloaded frames are rare.
3244 		 */
3245 		offset = 4 - ((unsigned long)msdu->data & 3);
3246 		skb_put(msdu, offset);
3247 		memmove(msdu->data + offset, msdu->data, msdu->len);
3248 		skb_pull(msdu, offset);
3249 
3250 		/* FIXME: The frame is NWifi. Re-construct QoS Control
3251 		 * if possible later.
3252 		 */
3253 
3254 		memset(status, 0, sizeof(*status));
3255 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
3256 
3257 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
3258 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
3259 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
3260 	}
3261 }
3262 
3263 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
3264 {
3265 	struct ath10k_htt *htt = &ar->htt;
3266 	struct htt_resp *resp = (void *)skb->data;
3267 	struct ieee80211_rx_status *status = &htt->rx_status;
3268 	struct sk_buff_head list;
3269 	struct sk_buff_head amsdu;
3270 	u16 peer_id;
3271 	u16 msdu_count;
3272 	u8 vdev_id;
3273 	u8 tid;
3274 	bool offload;
3275 	bool frag;
3276 	int ret;
3277 
3278 	lockdep_assert_held(&htt->rx_ring.lock);
3279 
3280 	if (htt->rx_confused)
3281 		return -EIO;
3282 
3283 	skb_pull(skb, sizeof(resp->hdr));
3284 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
3285 
3286 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
3287 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
3288 	vdev_id = resp->rx_in_ord_ind.vdev_id;
3289 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
3290 	offload = !!(resp->rx_in_ord_ind.info &
3291 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
3292 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
3293 
3294 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3295 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
3296 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
3297 
3298 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
3299 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
3300 		return -EINVAL;
3301 	}
3302 
3303 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
3304 	 * extracted and processed.
3305 	 */
3306 	__skb_queue_head_init(&list);
3307 	if (ar->hw_params.target_64bit)
3308 		ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
3309 						     &list);
3310 	else
3311 		ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
3312 						     &list);
3313 
3314 	if (ret < 0) {
3315 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
3316 		htt->rx_confused = true;
3317 		return -EIO;
3318 	}
3319 
3320 	/* Offloaded frames are very different and need to be handled
3321 	 * separately.
3322 	 */
3323 	if (offload)
3324 		ath10k_htt_rx_h_rx_offload(ar, &list);
3325 
3326 	while (!skb_queue_empty(&list)) {
3327 		__skb_queue_head_init(&amsdu);
3328 		ret = ath10k_htt_rx_extract_amsdu(&ar->hw_params, &list, &amsdu);
3329 		switch (ret) {
3330 		case 0:
3331 			/* Note: The in-order indication may report interleaved
3332 			 * frames from different PPDUs meaning reported rx rate
3333 			 * to mac80211 isn't accurate/reliable. It's still
3334 			 * better to report something than nothing though. This
3335 			 * should still give an idea about rx rate to the user.
3336 			 */
3337 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
3338 			ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
3339 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
3340 					     NULL, peer_id, frag);
3341 			ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
3342 			break;
3343 		case -EAGAIN:
3344 			fallthrough;
3345 		default:
3346 			/* Should not happen. */
3347 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
3348 			htt->rx_confused = true;
3349 			__skb_queue_purge(&list);
3350 			return -EIO;
3351 		}
3352 	}
3353 	return ret;
3354 }
3355 
3356 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
3357 						   const __le32 *resp_ids,
3358 						   int num_resp_ids)
3359 {
3360 	int i;
3361 	u32 resp_id;
3362 
3363 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
3364 		   num_resp_ids);
3365 
3366 	for (i = 0; i < num_resp_ids; i++) {
3367 		resp_id = le32_to_cpu(resp_ids[i]);
3368 
3369 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
3370 			   resp_id);
3371 
3372 		/* TODO: free resp_id */
3373 	}
3374 }
3375 
3376 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
3377 {
3378 	struct ieee80211_hw *hw = ar->hw;
3379 	struct ieee80211_txq *txq;
3380 	struct htt_resp *resp = (struct htt_resp *)skb->data;
3381 	struct htt_tx_fetch_record *record;
3382 	size_t len;
3383 	size_t max_num_bytes;
3384 	size_t max_num_msdus;
3385 	size_t num_bytes;
3386 	size_t num_msdus;
3387 	const __le32 *resp_ids;
3388 	u16 num_records;
3389 	u16 num_resp_ids;
3390 	u16 peer_id;
3391 	u8 tid;
3392 	int ret;
3393 	int i;
3394 	bool may_tx;
3395 
3396 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
3397 
3398 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
3399 	if (unlikely(skb->len < len)) {
3400 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
3401 		return;
3402 	}
3403 
3404 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
3405 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
3406 
3407 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
3408 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
3409 
3410 	if (unlikely(skb->len < len)) {
3411 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
3412 		return;
3413 	}
3414 
3415 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %u num resps %u seq %u\n",
3416 		   num_records, num_resp_ids,
3417 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
3418 
3419 	if (!ar->htt.tx_q_state.enabled) {
3420 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
3421 		return;
3422 	}
3423 
3424 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
3425 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
3426 		return;
3427 	}
3428 
3429 	rcu_read_lock();
3430 
3431 	for (i = 0; i < num_records; i++) {
3432 		record = &resp->tx_fetch_ind.records[i];
3433 		peer_id = MS(le16_to_cpu(record->info),
3434 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
3435 		tid = MS(le16_to_cpu(record->info),
3436 			 HTT_TX_FETCH_RECORD_INFO_TID);
3437 		max_num_msdus = le16_to_cpu(record->num_msdus);
3438 		max_num_bytes = le32_to_cpu(record->num_bytes);
3439 
3440 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %u tid %u msdus %zu bytes %zu\n",
3441 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
3442 
3443 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3444 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3445 			ath10k_warn(ar, "received out of range peer_id %u tid %u\n",
3446 				    peer_id, tid);
3447 			continue;
3448 		}
3449 
3450 		spin_lock_bh(&ar->data_lock);
3451 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3452 		spin_unlock_bh(&ar->data_lock);
3453 
3454 		/* It is okay to release the lock and use txq because RCU read
3455 		 * lock is held.
3456 		 */
3457 
3458 		if (unlikely(!txq)) {
3459 			ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n",
3460 				    peer_id, tid);
3461 			continue;
3462 		}
3463 
3464 		num_msdus = 0;
3465 		num_bytes = 0;
3466 
3467 		ieee80211_txq_schedule_start(hw, txq->ac);
3468 		may_tx = ieee80211_txq_may_transmit(hw, txq);
3469 		while (num_msdus < max_num_msdus &&
3470 		       num_bytes < max_num_bytes) {
3471 			if (!may_tx)
3472 				break;
3473 
3474 			ret = ath10k_mac_tx_push_txq(hw, txq);
3475 			if (ret < 0)
3476 				break;
3477 
3478 			num_msdus++;
3479 			num_bytes += ret;
3480 		}
3481 		ieee80211_return_txq(hw, txq, false);
3482 		ieee80211_txq_schedule_end(hw, txq->ac);
3483 
3484 		record->num_msdus = cpu_to_le16(num_msdus);
3485 		record->num_bytes = cpu_to_le32(num_bytes);
3486 
3487 		ath10k_htt_tx_txq_recalc(hw, txq);
3488 	}
3489 
3490 	rcu_read_unlock();
3491 
3492 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
3493 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
3494 
3495 	ret = ath10k_htt_tx_fetch_resp(ar,
3496 				       resp->tx_fetch_ind.token,
3497 				       resp->tx_fetch_ind.fetch_seq_num,
3498 				       resp->tx_fetch_ind.records,
3499 				       num_records);
3500 	if (unlikely(ret)) {
3501 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
3502 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
3503 		/* FIXME: request fw restart */
3504 	}
3505 
3506 	ath10k_htt_tx_txq_sync(ar);
3507 }
3508 
3509 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
3510 					   struct sk_buff *skb)
3511 {
3512 	const struct htt_resp *resp = (void *)skb->data;
3513 	size_t len;
3514 	int num_resp_ids;
3515 
3516 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
3517 
3518 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
3519 	if (unlikely(skb->len < len)) {
3520 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
3521 		return;
3522 	}
3523 
3524 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
3525 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
3526 
3527 	if (unlikely(skb->len < len)) {
3528 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
3529 		return;
3530 	}
3531 
3532 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
3533 					       resp->tx_fetch_confirm.resp_ids,
3534 					       num_resp_ids);
3535 }
3536 
3537 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
3538 					     struct sk_buff *skb)
3539 {
3540 	const struct htt_resp *resp = (void *)skb->data;
3541 	const struct htt_tx_mode_switch_record *record;
3542 	struct ieee80211_txq *txq;
3543 	struct ath10k_txq *artxq;
3544 	size_t len;
3545 	size_t num_records;
3546 	enum htt_tx_mode_switch_mode mode;
3547 	bool enable;
3548 	u16 info0;
3549 	u16 info1;
3550 	u16 threshold;
3551 	u16 peer_id;
3552 	u8 tid;
3553 	int i;
3554 
3555 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
3556 
3557 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
3558 	if (unlikely(skb->len < len)) {
3559 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
3560 		return;
3561 	}
3562 
3563 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
3564 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
3565 
3566 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
3567 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3568 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
3569 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3570 
3571 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3572 		   "htt rx tx mode switch ind info0 0x%04x info1 0x%04x enable %d num records %zd mode %d threshold %u\n",
3573 		   info0, info1, enable, num_records, mode, threshold);
3574 
3575 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
3576 
3577 	if (unlikely(skb->len < len)) {
3578 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
3579 		return;
3580 	}
3581 
3582 	switch (mode) {
3583 	case HTT_TX_MODE_SWITCH_PUSH:
3584 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
3585 		break;
3586 	default:
3587 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
3588 			    mode);
3589 		return;
3590 	}
3591 
3592 	if (!enable)
3593 		return;
3594 
3595 	ar->htt.tx_q_state.enabled = enable;
3596 	ar->htt.tx_q_state.mode = mode;
3597 	ar->htt.tx_q_state.num_push_allowed = threshold;
3598 
3599 	rcu_read_lock();
3600 
3601 	for (i = 0; i < num_records; i++) {
3602 		record = &resp->tx_mode_switch_ind.records[i];
3603 		info0 = le16_to_cpu(record->info0);
3604 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
3605 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
3606 
3607 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3608 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3609 			ath10k_warn(ar, "received out of range peer_id %u tid %u\n",
3610 				    peer_id, tid);
3611 			continue;
3612 		}
3613 
3614 		spin_lock_bh(&ar->data_lock);
3615 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3616 		spin_unlock_bh(&ar->data_lock);
3617 
3618 		/* It is okay to release the lock and use txq because RCU read
3619 		 * lock is held.
3620 		 */
3621 
3622 		if (unlikely(!txq)) {
3623 			ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n",
3624 				    peer_id, tid);
3625 			continue;
3626 		}
3627 
3628 		spin_lock_bh(&ar->htt.tx_lock);
3629 		artxq = (void *)txq->drv_priv;
3630 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
3631 		spin_unlock_bh(&ar->htt.tx_lock);
3632 	}
3633 
3634 	rcu_read_unlock();
3635 
3636 	ath10k_mac_tx_push_pending(ar);
3637 }
3638 
3639 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3640 {
3641 	bool release;
3642 
3643 	release = ath10k_htt_t2h_msg_handler(ar, skb);
3644 
3645 	/* Free the indication buffer */
3646 	if (release)
3647 		dev_kfree_skb_any(skb);
3648 }
3649 
3650 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
3651 {
3652 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
3653 					  18, 24, 36, 48, 54};
3654 	int i;
3655 
3656 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
3657 		if (rate == legacy_rates[i])
3658 			return i;
3659 	}
3660 
3661 	ath10k_warn(ar, "Invalid legacy rate %d peer stats", rate);
3662 	return -EINVAL;
3663 }
3664 
3665 static void
3666 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
3667 				    struct ath10k_sta *arsta,
3668 				    struct ath10k_per_peer_tx_stats *pstats,
3669 				    s8 legacy_rate_idx)
3670 {
3671 	struct rate_info *txrate = &arsta->txrate;
3672 	struct ath10k_htt_tx_stats *tx_stats;
3673 	int idx, ht_idx, gi, mcs, bw, nss;
3674 	unsigned long flags;
3675 
3676 	if (!arsta->tx_stats)
3677 		return;
3678 
3679 	tx_stats = arsta->tx_stats;
3680 	flags = txrate->flags;
3681 	gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags);
3682 	mcs = ATH10K_HW_MCS_RATE(pstats->ratecode);
3683 	bw = txrate->bw;
3684 	nss = txrate->nss;
3685 	ht_idx = mcs + (nss - 1) * 8;
3686 	idx = mcs * 8 + 8 * 10 * (nss - 1);
3687 	idx += bw * 2 + gi;
3688 
3689 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
3690 
3691 	if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) {
3692 		STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
3693 		STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
3694 		STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
3695 		STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
3696 		STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
3697 		STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
3698 	} else if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3699 		STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
3700 		STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
3701 		STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
3702 		STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
3703 		STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
3704 		STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
3705 	} else {
3706 		mcs = legacy_rate_idx;
3707 
3708 		STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
3709 		STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
3710 		STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
3711 		STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
3712 		STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
3713 		STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
3714 	}
3715 
3716 	if (ATH10K_HW_AMPDU(pstats->flags)) {
3717 		tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
3718 
3719 		if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3720 			STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
3721 				pstats->succ_bytes + pstats->retry_bytes;
3722 			STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
3723 				pstats->succ_pkts + pstats->retry_pkts;
3724 		} else {
3725 			STATS_OP_FMT(AMPDU).vht[0][mcs] +=
3726 				pstats->succ_bytes + pstats->retry_bytes;
3727 			STATS_OP_FMT(AMPDU).vht[1][mcs] +=
3728 				pstats->succ_pkts + pstats->retry_pkts;
3729 		}
3730 		STATS_OP_FMT(AMPDU).bw[0][bw] +=
3731 			pstats->succ_bytes + pstats->retry_bytes;
3732 		STATS_OP_FMT(AMPDU).nss[0][nss - 1] +=
3733 			pstats->succ_bytes + pstats->retry_bytes;
3734 		STATS_OP_FMT(AMPDU).gi[0][gi] +=
3735 			pstats->succ_bytes + pstats->retry_bytes;
3736 		STATS_OP_FMT(AMPDU).rate_table[0][idx] +=
3737 			pstats->succ_bytes + pstats->retry_bytes;
3738 		STATS_OP_FMT(AMPDU).bw[1][bw] +=
3739 			pstats->succ_pkts + pstats->retry_pkts;
3740 		STATS_OP_FMT(AMPDU).nss[1][nss - 1] +=
3741 			pstats->succ_pkts + pstats->retry_pkts;
3742 		STATS_OP_FMT(AMPDU).gi[1][gi] +=
3743 			pstats->succ_pkts + pstats->retry_pkts;
3744 		STATS_OP_FMT(AMPDU).rate_table[1][idx] +=
3745 			pstats->succ_pkts + pstats->retry_pkts;
3746 	} else {
3747 		tx_stats->ack_fails +=
3748 				ATH10K_HW_BA_FAIL(pstats->flags);
3749 	}
3750 
3751 	STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
3752 	STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes;
3753 	STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
3754 
3755 	STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
3756 	STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts;
3757 	STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
3758 
3759 	STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
3760 	STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes;
3761 	STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
3762 
3763 	STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
3764 	STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts;
3765 	STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
3766 
3767 	STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
3768 	STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes;
3769 	STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
3770 
3771 	STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
3772 	STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts;
3773 	STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
3774 
3775 	if (txrate->flags >= RATE_INFO_FLAGS_MCS) {
3776 		STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes;
3777 		STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts;
3778 		STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes;
3779 		STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts;
3780 		STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes;
3781 		STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts;
3782 	}
3783 
3784 	tx_stats->tx_duration += pstats->duration;
3785 }
3786 
3787 static void
3788 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
3789 				struct ieee80211_sta *sta,
3790 				struct ath10k_per_peer_tx_stats *peer_stats)
3791 {
3792 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
3793 	struct ieee80211_chanctx_conf *conf = NULL;
3794 	u8 rate = 0, sgi;
3795 	s8 rate_idx = 0;
3796 	bool skip_auto_rate;
3797 	struct rate_info txrate;
3798 
3799 	lockdep_assert_held(&ar->data_lock);
3800 
3801 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
3802 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
3803 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
3804 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
3805 	sgi = ATH10K_HW_GI(peer_stats->flags);
3806 	skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags);
3807 
3808 	/* Firmware's rate control skips broadcast/management frames,
3809 	 * if host has configure fixed rates and in some other special cases.
3810 	 */
3811 	if (skip_auto_rate)
3812 		return;
3813 
3814 	if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
3815 		ath10k_warn(ar, "Invalid VHT mcs %d peer stats",  txrate.mcs);
3816 		return;
3817 	}
3818 
3819 	if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
3820 	    (txrate.mcs > 7 || txrate.nss < 1)) {
3821 		ath10k_warn(ar, "Invalid HT mcs %d nss %d peer stats",
3822 			    txrate.mcs, txrate.nss);
3823 		return;
3824 	}
3825 
3826 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
3827 	memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status));
3828 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
3829 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
3830 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
3831 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
3832 		if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
3833 			rate = 5;
3834 		rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
3835 		if (rate_idx < 0)
3836 			return;
3837 		arsta->txrate.legacy = rate;
3838 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
3839 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
3840 		arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
3841 	} else {
3842 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
3843 		arsta->txrate.mcs = txrate.mcs;
3844 	}
3845 
3846 	switch (txrate.flags) {
3847 	case WMI_RATE_PREAMBLE_OFDM:
3848 		if (arsta->arvif && arsta->arvif->vif)
3849 			conf = rcu_dereference(arsta->arvif->vif->bss_conf.chanctx_conf);
3850 		if (conf && conf->def.chan->band == NL80211_BAND_5GHZ)
3851 			arsta->tx_info.status.rates[0].idx = rate_idx - 4;
3852 		break;
3853 	case WMI_RATE_PREAMBLE_CCK:
3854 		arsta->tx_info.status.rates[0].idx = rate_idx;
3855 		if (sgi)
3856 			arsta->tx_info.status.rates[0].flags |=
3857 				(IEEE80211_TX_RC_USE_SHORT_PREAMBLE |
3858 				 IEEE80211_TX_RC_SHORT_GI);
3859 		break;
3860 	case WMI_RATE_PREAMBLE_HT:
3861 		arsta->tx_info.status.rates[0].idx =
3862 				txrate.mcs + ((txrate.nss - 1) * 8);
3863 		if (sgi)
3864 			arsta->tx_info.status.rates[0].flags |=
3865 					IEEE80211_TX_RC_SHORT_GI;
3866 		arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS;
3867 		break;
3868 	case WMI_RATE_PREAMBLE_VHT:
3869 		ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0],
3870 				       txrate.mcs, txrate.nss);
3871 		if (sgi)
3872 			arsta->tx_info.status.rates[0].flags |=
3873 						IEEE80211_TX_RC_SHORT_GI;
3874 		arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS;
3875 		break;
3876 	}
3877 
3878 	arsta->txrate.nss = txrate.nss;
3879 	arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
3880 	arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate);
3881 	if (sgi)
3882 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
3883 
3884 	switch (arsta->txrate.bw) {
3885 	case RATE_INFO_BW_40:
3886 		arsta->tx_info.status.rates[0].flags |=
3887 				IEEE80211_TX_RC_40_MHZ_WIDTH;
3888 		break;
3889 	case RATE_INFO_BW_80:
3890 		arsta->tx_info.status.rates[0].flags |=
3891 				IEEE80211_TX_RC_80_MHZ_WIDTH;
3892 		break;
3893 	case RATE_INFO_BW_160:
3894 		arsta->tx_info.status.rates[0].flags |=
3895 				IEEE80211_TX_RC_160_MHZ_WIDTH;
3896 		break;
3897 	}
3898 
3899 	if (peer_stats->succ_pkts) {
3900 		arsta->tx_info.flags = IEEE80211_TX_STAT_ACK;
3901 		arsta->tx_info.status.rates[0].count = 1;
3902 		ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info);
3903 	}
3904 
3905 	if (ar->htt.disable_tx_comp) {
3906 		arsta->tx_failed += peer_stats->failed_pkts;
3907 		ath10k_dbg(ar, ATH10K_DBG_HTT, "tx failed %d\n",
3908 			   arsta->tx_failed);
3909 	}
3910 
3911 	arsta->tx_retries += peer_stats->retry_pkts;
3912 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx retries %d", arsta->tx_retries);
3913 
3914 	if (ath10k_debug_is_extd_tx_stats_enabled(ar))
3915 		ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
3916 						    rate_idx);
3917 }
3918 
3919 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
3920 					struct sk_buff *skb)
3921 {
3922 	struct htt_resp *resp = (struct htt_resp *)skb->data;
3923 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3924 	struct htt_per_peer_tx_stats_ind *tx_stats;
3925 	struct ieee80211_sta *sta;
3926 	struct ath10k_peer *peer;
3927 	int peer_id, i;
3928 	u8 ppdu_len, num_ppdu;
3929 
3930 	num_ppdu = resp->peer_tx_stats.num_ppdu;
3931 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
3932 
3933 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
3934 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
3935 		return;
3936 	}
3937 
3938 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
3939 			(resp->peer_tx_stats.payload);
3940 	peer_id = __le16_to_cpu(tx_stats->peer_id);
3941 
3942 	rcu_read_lock();
3943 	spin_lock_bh(&ar->data_lock);
3944 	peer = ath10k_peer_find_by_id(ar, peer_id);
3945 	if (!peer || !peer->sta) {
3946 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
3947 			    peer_id);
3948 		goto out;
3949 	}
3950 
3951 	sta = peer->sta;
3952 	for (i = 0; i < num_ppdu; i++) {
3953 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
3954 			   (resp->peer_tx_stats.payload + i * ppdu_len);
3955 
3956 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
3957 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
3958 		p_tx_stats->failed_bytes =
3959 				__le32_to_cpu(tx_stats->failed_bytes);
3960 		p_tx_stats->ratecode = tx_stats->ratecode;
3961 		p_tx_stats->flags = tx_stats->flags;
3962 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
3963 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
3964 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
3965 		p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration);
3966 
3967 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3968 	}
3969 
3970 out:
3971 	spin_unlock_bh(&ar->data_lock);
3972 	rcu_read_unlock();
3973 }
3974 
3975 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
3976 {
3977 	struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
3978 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3979 	struct ath10k_10_2_peer_tx_stats *tx_stats;
3980 	struct ieee80211_sta *sta;
3981 	struct ath10k_peer *peer;
3982 	u16 log_type = __le16_to_cpu(hdr->log_type);
3983 	u32 peer_id = 0, i;
3984 
3985 	if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
3986 		return;
3987 
3988 	tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
3989 		    ATH10K_10_2_TX_STATS_OFFSET);
3990 
3991 	if (!tx_stats->tx_ppdu_cnt)
3992 		return;
3993 
3994 	peer_id = tx_stats->peer_id;
3995 
3996 	rcu_read_lock();
3997 	spin_lock_bh(&ar->data_lock);
3998 	peer = ath10k_peer_find_by_id(ar, peer_id);
3999 	if (!peer || !peer->sta) {
4000 		ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
4001 			    peer_id);
4002 		goto out;
4003 	}
4004 
4005 	sta = peer->sta;
4006 	for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
4007 		p_tx_stats->succ_bytes =
4008 			__le16_to_cpu(tx_stats->success_bytes[i]);
4009 		p_tx_stats->retry_bytes =
4010 			__le16_to_cpu(tx_stats->retry_bytes[i]);
4011 		p_tx_stats->failed_bytes =
4012 			__le16_to_cpu(tx_stats->failed_bytes[i]);
4013 		p_tx_stats->ratecode = tx_stats->ratecode[i];
4014 		p_tx_stats->flags = tx_stats->flags[i];
4015 		p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
4016 		p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
4017 		p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
4018 
4019 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
4020 	}
4021 	spin_unlock_bh(&ar->data_lock);
4022 	rcu_read_unlock();
4023 
4024 	return;
4025 
4026 out:
4027 	spin_unlock_bh(&ar->data_lock);
4028 	rcu_read_unlock();
4029 }
4030 
4031 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type)
4032 {
4033 	switch (sec_type) {
4034 	case HTT_SECURITY_TKIP:
4035 	case HTT_SECURITY_TKIP_NOMIC:
4036 	case HTT_SECURITY_AES_CCMP:
4037 		return 48;
4038 	default:
4039 		return 0;
4040 	}
4041 }
4042 
4043 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar,
4044 					  struct htt_security_indication *ev)
4045 {
4046 	enum htt_txrx_sec_cast_type sec_index;
4047 	enum htt_security_types sec_type;
4048 	struct ath10k_peer *peer;
4049 
4050 	spin_lock_bh(&ar->data_lock);
4051 
4052 	peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id));
4053 	if (!peer) {
4054 		ath10k_warn(ar, "failed to find peer id %d for security indication",
4055 			    __le16_to_cpu(ev->peer_id));
4056 		goto out;
4057 	}
4058 
4059 	sec_type = MS(ev->flags, HTT_SECURITY_TYPE);
4060 
4061 	if (ev->flags & HTT_SECURITY_IS_UNICAST)
4062 		sec_index = HTT_TXRX_SEC_UCAST;
4063 	else
4064 		sec_index = HTT_TXRX_SEC_MCAST;
4065 
4066 	peer->rx_pn[sec_index].sec_type = sec_type;
4067 	peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type);
4068 
4069 	memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid));
4070 	memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn));
4071 
4072 out:
4073 	spin_unlock_bh(&ar->data_lock);
4074 }
4075 
4076 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
4077 {
4078 	struct ath10k_htt *htt = &ar->htt;
4079 	struct htt_resp *resp = (struct htt_resp *)skb->data;
4080 	enum htt_t2h_msg_type type;
4081 
4082 	/* confirm alignment */
4083 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
4084 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
4085 
4086 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
4087 		   resp->hdr.msg_type);
4088 
4089 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
4090 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
4091 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
4092 		return true;
4093 	}
4094 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
4095 
4096 	switch (type) {
4097 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
4098 		htt->target_version_major = resp->ver_resp.major;
4099 		htt->target_version_minor = resp->ver_resp.minor;
4100 		complete(&htt->target_version_received);
4101 		break;
4102 	}
4103 	case HTT_T2H_MSG_TYPE_RX_IND:
4104 		if (ar->bus_param.dev_type != ATH10K_DEV_TYPE_HL) {
4105 			ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
4106 		} else {
4107 			skb_queue_tail(&htt->rx_indication_head, skb);
4108 			return false;
4109 		}
4110 		break;
4111 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
4112 		struct htt_peer_map_event ev = {
4113 			.vdev_id = resp->peer_map.vdev_id,
4114 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
4115 		};
4116 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
4117 		ath10k_peer_map_event(htt, &ev);
4118 		break;
4119 	}
4120 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
4121 		struct htt_peer_unmap_event ev = {
4122 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
4123 		};
4124 		ath10k_peer_unmap_event(htt, &ev);
4125 		break;
4126 	}
4127 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
4128 		struct htt_tx_done tx_done = {};
4129 		struct ath10k_htt *htt = &ar->htt;
4130 		struct ath10k_htc *htc = &ar->htc;
4131 		struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid];
4132 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
4133 		int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
4134 
4135 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
4136 
4137 		switch (status) {
4138 		case HTT_MGMT_TX_STATUS_OK:
4139 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
4140 			if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
4141 				     ar->wmi.svc_map) &&
4142 			    (resp->mgmt_tx_completion.flags &
4143 			     HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
4144 				tx_done.ack_rssi =
4145 				FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
4146 					  info);
4147 			}
4148 			break;
4149 		case HTT_MGMT_TX_STATUS_RETRY:
4150 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
4151 			break;
4152 		case HTT_MGMT_TX_STATUS_DROP:
4153 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
4154 			break;
4155 		}
4156 
4157 		if (htt->disable_tx_comp) {
4158 			spin_lock_bh(&htc->tx_lock);
4159 			ep->tx_credits++;
4160 			spin_unlock_bh(&htc->tx_lock);
4161 		}
4162 
4163 		status = ath10k_txrx_tx_unref(htt, &tx_done);
4164 		if (!status) {
4165 			spin_lock_bh(&htt->tx_lock);
4166 			ath10k_htt_tx_mgmt_dec_pending(htt);
4167 			spin_unlock_bh(&htt->tx_lock);
4168 		}
4169 		break;
4170 	}
4171 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
4172 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
4173 		break;
4174 	case HTT_T2H_MSG_TYPE_SEC_IND: {
4175 		struct ath10k *ar = htt->ar;
4176 		struct htt_security_indication *ev = &resp->security_indication;
4177 
4178 		ath10k_htt_rx_sec_ind_handler(ar, ev);
4179 		ath10k_dbg(ar, ATH10K_DBG_HTT,
4180 			   "sec ind peer_id %d unicast %d type %d\n",
4181 			  __le16_to_cpu(ev->peer_id),
4182 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
4183 			  MS(ev->flags, HTT_SECURITY_TYPE));
4184 		complete(&ar->install_key_done);
4185 		break;
4186 	}
4187 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
4188 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
4189 				skb->data, skb->len);
4190 		atomic_inc(&htt->num_mpdus_ready);
4191 
4192 		return ath10k_htt_rx_proc_rx_frag_ind(htt,
4193 						      &resp->rx_frag_ind,
4194 						      skb);
4195 	}
4196 	case HTT_T2H_MSG_TYPE_TEST:
4197 		break;
4198 	case HTT_T2H_MSG_TYPE_STATS_CONF:
4199 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
4200 		break;
4201 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
4202 		/* Firmware can return tx frames if it's unable to fully
4203 		 * process them and suspects host may be able to fix it. ath10k
4204 		 * sends all tx frames as already inspected so this shouldn't
4205 		 * happen unless fw has a bug.
4206 		 */
4207 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
4208 		break;
4209 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
4210 		ath10k_htt_rx_addba(ar, resp);
4211 		break;
4212 	case HTT_T2H_MSG_TYPE_RX_DELBA:
4213 		ath10k_htt_rx_delba(ar, resp);
4214 		break;
4215 	case HTT_T2H_MSG_TYPE_PKTLOG: {
4216 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
4217 					skb->len -
4218 					offsetof(struct htt_resp,
4219 						 pktlog_msg.payload));
4220 
4221 		if (ath10k_peer_stats_enabled(ar))
4222 			ath10k_fetch_10_2_tx_stats(ar,
4223 						   resp->pktlog_msg.payload);
4224 		break;
4225 	}
4226 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
4227 		/* Ignore this event because mac80211 takes care of Rx
4228 		 * aggregation reordering.
4229 		 */
4230 		break;
4231 	}
4232 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
4233 		skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
4234 		return false;
4235 	}
4236 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: {
4237 		struct ath10k_htt *htt = &ar->htt;
4238 		struct ath10k_htc *htc = &ar->htc;
4239 		struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid];
4240 		u32 msg_word = __le32_to_cpu(*(__le32 *)resp);
4241 		int htt_credit_delta;
4242 
4243 		htt_credit_delta = HTT_TX_CREDIT_DELTA_ABS_GET(msg_word);
4244 		if (HTT_TX_CREDIT_SIGN_BIT_GET(msg_word))
4245 			htt_credit_delta = -htt_credit_delta;
4246 
4247 		ath10k_dbg(ar, ATH10K_DBG_HTT,
4248 			   "htt credit update delta %d\n",
4249 			   htt_credit_delta);
4250 
4251 		if (htt->disable_tx_comp) {
4252 			spin_lock_bh(&htc->tx_lock);
4253 			ep->tx_credits += htt_credit_delta;
4254 			spin_unlock_bh(&htc->tx_lock);
4255 			ath10k_dbg(ar, ATH10K_DBG_HTT,
4256 				   "htt credit total %d\n",
4257 				   ep->tx_credits);
4258 			ep->ep_ops.ep_tx_credits(htc->ar);
4259 		}
4260 		break;
4261 	}
4262 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
4263 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
4264 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
4265 
4266 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
4267 		ath10k_dbg(ar, ATH10K_DBG_HTT,
4268 			   "htt chan change freq %u phymode %s\n",
4269 			   freq, ath10k_wmi_phymode_str(phymode));
4270 		break;
4271 	}
4272 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
4273 		break;
4274 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
4275 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
4276 
4277 		if (!tx_fetch_ind) {
4278 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
4279 			break;
4280 		}
4281 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
4282 		break;
4283 	}
4284 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
4285 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
4286 		break;
4287 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
4288 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
4289 		break;
4290 	case HTT_T2H_MSG_TYPE_PEER_STATS:
4291 		ath10k_htt_fetch_peer_stats(ar, skb);
4292 		break;
4293 	case HTT_T2H_MSG_TYPE_EN_STATS:
4294 	default:
4295 		ath10k_warn(ar, "htt event (%d) not handled\n",
4296 			    resp->hdr.msg_type);
4297 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
4298 				skb->data, skb->len);
4299 		break;
4300 	}
4301 	return true;
4302 }
4303 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
4304 
4305 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
4306 					     struct sk_buff *skb)
4307 {
4308 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
4309 	dev_kfree_skb_any(skb);
4310 }
4311 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
4312 
4313 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
4314 {
4315 	struct sk_buff *skb;
4316 
4317 	while (quota < budget) {
4318 		if (skb_queue_empty(&ar->htt.rx_msdus_q))
4319 			break;
4320 
4321 		skb = skb_dequeue(&ar->htt.rx_msdus_q);
4322 		if (!skb)
4323 			break;
4324 		ath10k_process_rx(ar, skb);
4325 		quota++;
4326 	}
4327 
4328 	return quota;
4329 }
4330 
4331 int ath10k_htt_rx_hl_indication(struct ath10k *ar, int budget)
4332 {
4333 	struct htt_resp *resp;
4334 	struct ath10k_htt *htt = &ar->htt;
4335 	struct sk_buff *skb;
4336 	bool release;
4337 	int quota;
4338 
4339 	for (quota = 0; quota < budget; quota++) {
4340 		skb = skb_dequeue(&htt->rx_indication_head);
4341 		if (!skb)
4342 			break;
4343 
4344 		resp = (struct htt_resp *)skb->data;
4345 
4346 		release = ath10k_htt_rx_proc_rx_ind_hl(htt,
4347 						       &resp->rx_ind_hl,
4348 						       skb,
4349 						       HTT_RX_PN_CHECK,
4350 						       HTT_RX_NON_TKIP_MIC);
4351 
4352 		if (release)
4353 			dev_kfree_skb_any(skb);
4354 
4355 		ath10k_dbg(ar, ATH10K_DBG_HTT, "rx indication poll pending count:%d\n",
4356 			   skb_queue_len(&htt->rx_indication_head));
4357 	}
4358 	return quota;
4359 }
4360 EXPORT_SYMBOL(ath10k_htt_rx_hl_indication);
4361 
4362 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
4363 {
4364 	struct ath10k_htt *htt = &ar->htt;
4365 	struct htt_tx_done tx_done = {};
4366 	struct sk_buff_head tx_ind_q;
4367 	struct sk_buff *skb;
4368 	unsigned long flags;
4369 	int quota = 0, done, ret;
4370 	bool resched_napi = false;
4371 
4372 	__skb_queue_head_init(&tx_ind_q);
4373 
4374 	/* Process pending frames before dequeuing more data
4375 	 * from hardware.
4376 	 */
4377 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
4378 	if (quota == budget) {
4379 		resched_napi = true;
4380 		goto exit;
4381 	}
4382 
4383 	while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
4384 		spin_lock_bh(&htt->rx_ring.lock);
4385 		ret = ath10k_htt_rx_in_ord_ind(ar, skb);
4386 		spin_unlock_bh(&htt->rx_ring.lock);
4387 
4388 		dev_kfree_skb_any(skb);
4389 		if (ret == -EIO) {
4390 			resched_napi = true;
4391 			goto exit;
4392 		}
4393 	}
4394 
4395 	while (atomic_read(&htt->num_mpdus_ready)) {
4396 		ret = ath10k_htt_rx_handle_amsdu(htt);
4397 		if (ret == -EIO) {
4398 			resched_napi = true;
4399 			goto exit;
4400 		}
4401 		atomic_dec(&htt->num_mpdus_ready);
4402 	}
4403 
4404 	/* Deliver received data after processing data from hardware */
4405 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
4406 
4407 	/* From NAPI documentation:
4408 	 *  The napi poll() function may also process TX completions, in which
4409 	 *  case if it processes the entire TX ring then it should count that
4410 	 *  work as the rest of the budget.
4411 	 */
4412 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
4413 		quota = budget;
4414 
4415 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
4416 	 * From kfifo_get() documentation:
4417 	 *  Note that with only one concurrent reader and one concurrent writer,
4418 	 *  you don't need extra locking to use these macro.
4419 	 */
4420 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
4421 		ath10k_txrx_tx_unref(htt, &tx_done);
4422 
4423 	ath10k_mac_tx_push_pending(ar);
4424 
4425 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
4426 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
4427 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
4428 
4429 	while ((skb = __skb_dequeue(&tx_ind_q))) {
4430 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
4431 		dev_kfree_skb_any(skb);
4432 	}
4433 
4434 exit:
4435 	ath10k_htt_rx_msdu_buff_replenish(htt);
4436 	/* In case of rx failure or more data to read, report budget
4437 	 * to reschedule NAPI poll
4438 	 */
4439 	done = resched_napi ? budget : quota;
4440 
4441 	return done;
4442 }
4443 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
4444 
4445 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
4446 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
4447 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
4448 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
4449 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
4450 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
4451 };
4452 
4453 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
4454 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
4455 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
4456 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
4457 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
4458 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
4459 };
4460 
4461 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
4462 	.htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl,
4463 };
4464 
4465 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
4466 {
4467 	struct ath10k *ar = htt->ar;
4468 
4469 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
4470 		htt->rx_ops = &htt_rx_ops_hl;
4471 	else if (ar->hw_params.target_64bit)
4472 		htt->rx_ops = &htt_rx_ops_64;
4473 	else
4474 		htt->rx_ops = &htt_rx_ops_32;
4475 }
4476