1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2005-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 6 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. 7 * Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. 8 */ 9 10 #include <linux/export.h> 11 12 #include "core.h" 13 #include "htc.h" 14 #include "htt.h" 15 #include "txrx.h" 16 #include "debug.h" 17 #include "trace.h" 18 #include "mac.h" 19 20 #include <linux/log2.h> 21 #include <linux/bitfield.h> 22 23 /* when under memory pressure rx ring refill may fail and needs a retry */ 24 #define HTT_RX_RING_REFILL_RETRY_MS 50 25 26 #define HTT_RX_RING_REFILL_RESCHED_MS 5 27 28 /* shortcut to interpret a raw memory buffer as a rx descriptor */ 29 #define HTT_RX_BUF_TO_RX_DESC(hw, buf) ath10k_htt_rx_desc_from_raw_buffer(hw, buf) 30 31 static int ath10k_htt_rx_get_csum_state(struct ath10k_hw_params *hw, struct sk_buff *skb); 32 33 static struct sk_buff * 34 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr) 35 { 36 struct ath10k_skb_rxcb *rxcb; 37 38 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 39 if (rxcb->paddr == paddr) 40 return ATH10K_RXCB_SKB(rxcb); 41 42 WARN_ON_ONCE(1); 43 return NULL; 44 } 45 46 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 47 { 48 struct sk_buff *skb; 49 struct ath10k_skb_rxcb *rxcb; 50 struct hlist_node *n; 51 int i; 52 53 if (htt->rx_ring.in_ord_rx) { 54 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 55 skb = ATH10K_RXCB_SKB(rxcb); 56 dma_unmap_single(htt->ar->dev, rxcb->paddr, 57 skb->len + skb_tailroom(skb), 58 DMA_FROM_DEVICE); 59 hash_del(&rxcb->hlist); 60 dev_kfree_skb_any(skb); 61 } 62 } else { 63 for (i = 0; i < htt->rx_ring.size; i++) { 64 skb = htt->rx_ring.netbufs_ring[i]; 65 if (!skb) 66 continue; 67 68 rxcb = ATH10K_SKB_RXCB(skb); 69 dma_unmap_single(htt->ar->dev, rxcb->paddr, 70 skb->len + skb_tailroom(skb), 71 DMA_FROM_DEVICE); 72 dev_kfree_skb_any(skb); 73 } 74 } 75 76 htt->rx_ring.fill_cnt = 0; 77 hash_init(htt->rx_ring.skb_table); 78 memset(htt->rx_ring.netbufs_ring, 0, 79 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 80 } 81 82 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt) 83 { 84 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32); 85 } 86 87 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt) 88 { 89 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64); 90 } 91 92 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt, 93 void *vaddr) 94 { 95 htt->rx_ring.paddrs_ring_32 = vaddr; 96 } 97 98 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt, 99 void *vaddr) 100 { 101 htt->rx_ring.paddrs_ring_64 = vaddr; 102 } 103 104 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt, 105 dma_addr_t paddr, int idx) 106 { 107 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr); 108 } 109 110 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt, 111 dma_addr_t paddr, int idx) 112 { 113 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr); 114 } 115 116 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx) 117 { 118 htt->rx_ring.paddrs_ring_32[idx] = 0; 119 } 120 121 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx) 122 { 123 htt->rx_ring.paddrs_ring_64[idx] = 0; 124 } 125 126 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt) 127 { 128 return (void *)htt->rx_ring.paddrs_ring_32; 129 } 130 131 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt) 132 { 133 return (void *)htt->rx_ring.paddrs_ring_64; 134 } 135 136 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 137 { 138 struct ath10k_hw_params *hw = &htt->ar->hw_params; 139 struct htt_rx_desc *rx_desc; 140 struct ath10k_skb_rxcb *rxcb; 141 struct sk_buff *skb; 142 dma_addr_t paddr; 143 int ret = 0, idx; 144 145 /* The Full Rx Reorder firmware has no way of telling the host 146 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 147 * To keep things simple make sure ring is always half empty. This 148 * guarantees there'll be no replenishment overruns possible. 149 */ 150 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 151 152 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 153 154 if (idx < 0 || idx >= htt->rx_ring.size) { 155 ath10k_err(htt->ar, "rx ring index is not valid, firmware malfunctioning?\n"); 156 idx &= htt->rx_ring.size_mask; 157 ret = -ENOMEM; 158 goto fail; 159 } 160 161 while (num > 0) { 162 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 163 if (!skb) { 164 ret = -ENOMEM; 165 goto fail; 166 } 167 168 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 169 skb_pull(skb, 170 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 171 skb->data); 172 173 /* Clear rx_desc attention word before posting to Rx ring */ 174 rx_desc = HTT_RX_BUF_TO_RX_DESC(hw, skb->data); 175 ath10k_htt_rx_desc_get_attention(hw, rx_desc)->flags = __cpu_to_le32(0); 176 177 paddr = dma_map_single(htt->ar->dev, skb->data, 178 skb->len + skb_tailroom(skb), 179 DMA_FROM_DEVICE); 180 181 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 182 dev_kfree_skb_any(skb); 183 ret = -ENOMEM; 184 goto fail; 185 } 186 187 rxcb = ATH10K_SKB_RXCB(skb); 188 rxcb->paddr = paddr; 189 htt->rx_ring.netbufs_ring[idx] = skb; 190 ath10k_htt_set_paddrs_ring(htt, paddr, idx); 191 htt->rx_ring.fill_cnt++; 192 193 if (htt->rx_ring.in_ord_rx) { 194 hash_add(htt->rx_ring.skb_table, 195 &ATH10K_SKB_RXCB(skb)->hlist, 196 paddr); 197 } 198 199 num--; 200 idx++; 201 idx &= htt->rx_ring.size_mask; 202 } 203 204 fail: 205 /* 206 * Make sure the rx buffer is updated before available buffer 207 * index to avoid any potential rx ring corruption. 208 */ 209 mb(); 210 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 211 return ret; 212 } 213 214 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 215 { 216 lockdep_assert_held(&htt->rx_ring.lock); 217 return __ath10k_htt_rx_ring_fill_n(htt, num); 218 } 219 220 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 221 { 222 int ret, num_deficit, num_to_fill; 223 224 /* Refilling the whole RX ring buffer proves to be a bad idea. The 225 * reason is RX may take up significant amount of CPU cycles and starve 226 * other tasks, e.g. TX on an ethernet device while acting as a bridge 227 * with ath10k wlan interface. This ended up with very poor performance 228 * once CPU the host system was overwhelmed with RX on ath10k. 229 * 230 * By limiting the number of refills the replenishing occurs 231 * progressively. This in turns makes use of the fact tasklets are 232 * processed in FIFO order. This means actual RX processing can starve 233 * out refilling. If there's not enough buffers on RX ring FW will not 234 * report RX until it is refilled with enough buffers. This 235 * automatically balances load wrt to CPU power. 236 * 237 * This probably comes at a cost of lower maximum throughput but 238 * improves the average and stability. 239 */ 240 spin_lock_bh(&htt->rx_ring.lock); 241 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 242 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 243 num_deficit -= num_to_fill; 244 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 245 if (ret == -ENOMEM) { 246 /* 247 * Failed to fill it to the desired level - 248 * we'll start a timer and try again next time. 249 * As long as enough buffers are left in the ring for 250 * another A-MPDU rx, no special recovery is needed. 251 */ 252 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 253 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 254 } else if (num_deficit > 0) { 255 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 256 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); 257 } 258 spin_unlock_bh(&htt->rx_ring.lock); 259 } 260 261 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t) 262 { 263 struct ath10k_htt *htt = timer_container_of(htt, t, 264 rx_ring.refill_retry_timer); 265 266 ath10k_htt_rx_msdu_buff_replenish(htt); 267 } 268 269 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 270 { 271 struct ath10k_htt *htt = &ar->htt; 272 int ret; 273 274 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 275 return 0; 276 277 spin_lock_bh(&htt->rx_ring.lock); 278 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 279 htt->rx_ring.fill_cnt)); 280 281 if (ret) 282 ath10k_htt_rx_ring_free(htt); 283 284 spin_unlock_bh(&htt->rx_ring.lock); 285 286 return ret; 287 } 288 289 void ath10k_htt_rx_free(struct ath10k_htt *htt) 290 { 291 if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 292 return; 293 294 timer_delete_sync(&htt->rx_ring.refill_retry_timer); 295 296 skb_queue_purge(&htt->rx_msdus_q); 297 skb_queue_purge(&htt->rx_in_ord_compl_q); 298 skb_queue_purge(&htt->tx_fetch_ind_q); 299 300 spin_lock_bh(&htt->rx_ring.lock); 301 ath10k_htt_rx_ring_free(htt); 302 spin_unlock_bh(&htt->rx_ring.lock); 303 304 dma_free_coherent(htt->ar->dev, 305 ath10k_htt_get_rx_ring_size(htt), 306 ath10k_htt_get_vaddr_ring(htt), 307 htt->rx_ring.base_paddr); 308 309 ath10k_htt_config_paddrs_ring(htt, NULL); 310 311 dma_free_coherent(htt->ar->dev, 312 sizeof(*htt->rx_ring.alloc_idx.vaddr), 313 htt->rx_ring.alloc_idx.vaddr, 314 htt->rx_ring.alloc_idx.paddr); 315 htt->rx_ring.alloc_idx.vaddr = NULL; 316 317 kfree(htt->rx_ring.netbufs_ring); 318 htt->rx_ring.netbufs_ring = NULL; 319 } 320 321 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 322 { 323 struct ath10k *ar = htt->ar; 324 int idx; 325 struct sk_buff *msdu; 326 327 lockdep_assert_held(&htt->rx_ring.lock); 328 329 if (htt->rx_ring.fill_cnt == 0) { 330 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 331 return NULL; 332 } 333 334 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 335 msdu = htt->rx_ring.netbufs_ring[idx]; 336 htt->rx_ring.netbufs_ring[idx] = NULL; 337 ath10k_htt_reset_paddrs_ring(htt, idx); 338 339 idx++; 340 idx &= htt->rx_ring.size_mask; 341 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 342 htt->rx_ring.fill_cnt--; 343 344 dma_unmap_single(htt->ar->dev, 345 ATH10K_SKB_RXCB(msdu)->paddr, 346 msdu->len + skb_tailroom(msdu), 347 DMA_FROM_DEVICE); 348 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 349 msdu->data, msdu->len + skb_tailroom(msdu)); 350 351 return msdu; 352 } 353 354 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 355 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 356 struct sk_buff_head *amsdu) 357 { 358 struct ath10k *ar = htt->ar; 359 struct ath10k_hw_params *hw = &ar->hw_params; 360 int msdu_len, msdu_chaining = 0; 361 struct sk_buff *msdu; 362 struct htt_rx_desc *rx_desc; 363 struct rx_attention *rx_desc_attention; 364 struct rx_frag_info_common *rx_desc_frag_info_common; 365 struct rx_msdu_start_common *rx_desc_msdu_start_common; 366 struct rx_msdu_end_common *rx_desc_msdu_end_common; 367 368 lockdep_assert_held(&htt->rx_ring.lock); 369 370 for (;;) { 371 int last_msdu, msdu_len_invalid, msdu_chained; 372 373 msdu = ath10k_htt_rx_netbuf_pop(htt); 374 if (!msdu) { 375 __skb_queue_purge(amsdu); 376 return -ENOENT; 377 } 378 379 __skb_queue_tail(amsdu, msdu); 380 381 rx_desc = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 382 rx_desc_attention = ath10k_htt_rx_desc_get_attention(hw, rx_desc); 383 rx_desc_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, 384 rx_desc); 385 rx_desc_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rx_desc); 386 rx_desc_frag_info_common = ath10k_htt_rx_desc_get_frag_info(hw, rx_desc); 387 388 /* FIXME: we must report msdu payload since this is what caller 389 * expects now 390 */ 391 skb_put(msdu, hw->rx_desc_ops->rx_desc_msdu_payload_offset); 392 skb_pull(msdu, hw->rx_desc_ops->rx_desc_msdu_payload_offset); 393 394 /* 395 * Sanity check - confirm the HW is finished filling in the 396 * rx data. 397 * If the HW and SW are working correctly, then it's guaranteed 398 * that the HW's MAC DMA is done before this point in the SW. 399 * To prevent the case that we handle a stale Rx descriptor, 400 * just assert for now until we have a way to recover. 401 */ 402 if (!(__le32_to_cpu(rx_desc_attention->flags) 403 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 404 __skb_queue_purge(amsdu); 405 return -EIO; 406 } 407 408 msdu_len_invalid = !!(__le32_to_cpu(rx_desc_attention->flags) 409 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 410 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 411 msdu_len = MS(__le32_to_cpu(rx_desc_msdu_start_common->info0), 412 RX_MSDU_START_INFO0_MSDU_LENGTH); 413 msdu_chained = rx_desc_frag_info_common->ring2_more_count; 414 415 if (msdu_len_invalid) 416 msdu_len = 0; 417 418 skb_trim(msdu, 0); 419 skb_put(msdu, min(msdu_len, ath10k_htt_rx_msdu_size(hw))); 420 msdu_len -= msdu->len; 421 422 /* Note: Chained buffers do not contain rx descriptor */ 423 while (msdu_chained--) { 424 msdu = ath10k_htt_rx_netbuf_pop(htt); 425 if (!msdu) { 426 __skb_queue_purge(amsdu); 427 return -ENOENT; 428 } 429 430 __skb_queue_tail(amsdu, msdu); 431 skb_trim(msdu, 0); 432 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 433 msdu_len -= msdu->len; 434 msdu_chaining = 1; 435 } 436 437 last_msdu = __le32_to_cpu(rx_desc_msdu_end_common->info0) & 438 RX_MSDU_END_INFO0_LAST_MSDU; 439 440 /* FIXME: why are we skipping the first part of the rx_desc? */ 441 trace_ath10k_htt_rx_desc(ar, (void *)rx_desc + sizeof(u32), 442 hw->rx_desc_ops->rx_desc_size - sizeof(u32)); 443 444 if (last_msdu) 445 break; 446 } 447 448 if (skb_queue_empty(amsdu)) 449 msdu_chaining = -1; 450 451 /* 452 * Don't refill the ring yet. 453 * 454 * First, the elements popped here are still in use - it is not 455 * safe to overwrite them until the matching call to 456 * mpdu_desc_list_next. Second, for efficiency it is preferable to 457 * refill the rx ring with 1 PPDU's worth of rx buffers (something 458 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 459 * (something like 3 buffers). Consequently, we'll rely on the txrx 460 * SW to tell us when it is done pulling all the PPDU's rx buffers 461 * out of the rx ring, and then refill it just once. 462 */ 463 464 return msdu_chaining; 465 } 466 467 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 468 u64 paddr) 469 { 470 struct ath10k *ar = htt->ar; 471 struct ath10k_skb_rxcb *rxcb; 472 struct sk_buff *msdu; 473 474 lockdep_assert_held(&htt->rx_ring.lock); 475 476 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 477 if (!msdu) 478 return NULL; 479 480 rxcb = ATH10K_SKB_RXCB(msdu); 481 hash_del(&rxcb->hlist); 482 htt->rx_ring.fill_cnt--; 483 484 dma_unmap_single(htt->ar->dev, rxcb->paddr, 485 msdu->len + skb_tailroom(msdu), 486 DMA_FROM_DEVICE); 487 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 488 msdu->data, msdu->len + skb_tailroom(msdu)); 489 490 return msdu; 491 } 492 493 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head, 494 struct sk_buff *frag_list, 495 unsigned int frag_len) 496 { 497 skb_shinfo(skb_head)->frag_list = frag_list; 498 skb_head->data_len = frag_len; 499 skb_head->len += skb_head->data_len; 500 } 501 502 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt, 503 struct sk_buff *msdu, 504 struct htt_rx_in_ord_msdu_desc **msdu_desc) 505 { 506 struct ath10k *ar = htt->ar; 507 struct ath10k_hw_params *hw = &ar->hw_params; 508 u32 paddr; 509 struct sk_buff *frag_buf; 510 struct sk_buff *prev_frag_buf; 511 u8 last_frag; 512 struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc; 513 struct htt_rx_desc *rxd; 514 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 515 516 rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 517 trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size); 518 519 skb_put(msdu, hw->rx_desc_ops->rx_desc_size); 520 skb_pull(msdu, hw->rx_desc_ops->rx_desc_size); 521 skb_put(msdu, min(amsdu_len, ath10k_htt_rx_msdu_size(hw))); 522 amsdu_len -= msdu->len; 523 524 last_frag = ind_desc->reserved; 525 if (last_frag) { 526 if (amsdu_len) { 527 ath10k_warn(ar, "invalid amsdu len %u, left %d", 528 __le16_to_cpu(ind_desc->msdu_len), 529 amsdu_len); 530 } 531 return 0; 532 } 533 534 ind_desc++; 535 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 536 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 537 if (!frag_buf) { 538 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr); 539 return -ENOENT; 540 } 541 542 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 543 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 544 545 amsdu_len -= frag_buf->len; 546 prev_frag_buf = frag_buf; 547 last_frag = ind_desc->reserved; 548 while (!last_frag) { 549 ind_desc++; 550 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 551 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 552 if (!frag_buf) { 553 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x", 554 paddr); 555 prev_frag_buf->next = NULL; 556 return -ENOENT; 557 } 558 559 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 560 last_frag = ind_desc->reserved; 561 amsdu_len -= frag_buf->len; 562 563 prev_frag_buf->next = frag_buf; 564 prev_frag_buf = frag_buf; 565 } 566 567 if (amsdu_len) { 568 ath10k_warn(ar, "invalid amsdu len %u, left %d", 569 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 570 } 571 572 *msdu_desc = ind_desc; 573 574 prev_frag_buf->next = NULL; 575 return 0; 576 } 577 578 static int 579 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt, 580 struct sk_buff *msdu, 581 struct htt_rx_in_ord_msdu_desc_ext **msdu_desc) 582 { 583 struct ath10k *ar = htt->ar; 584 struct ath10k_hw_params *hw = &ar->hw_params; 585 u64 paddr; 586 struct sk_buff *frag_buf; 587 struct sk_buff *prev_frag_buf; 588 u8 last_frag; 589 struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc; 590 struct htt_rx_desc *rxd; 591 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 592 593 rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 594 trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size); 595 596 skb_put(msdu, hw->rx_desc_ops->rx_desc_size); 597 skb_pull(msdu, hw->rx_desc_ops->rx_desc_size); 598 skb_put(msdu, min(amsdu_len, ath10k_htt_rx_msdu_size(hw))); 599 amsdu_len -= msdu->len; 600 601 last_frag = ind_desc->reserved; 602 if (last_frag) { 603 if (amsdu_len) { 604 ath10k_warn(ar, "invalid amsdu len %u, left %d", 605 __le16_to_cpu(ind_desc->msdu_len), 606 amsdu_len); 607 } 608 return 0; 609 } 610 611 ind_desc++; 612 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 613 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 614 if (!frag_buf) { 615 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr); 616 return -ENOENT; 617 } 618 619 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 620 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 621 622 amsdu_len -= frag_buf->len; 623 prev_frag_buf = frag_buf; 624 last_frag = ind_desc->reserved; 625 while (!last_frag) { 626 ind_desc++; 627 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 628 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 629 if (!frag_buf) { 630 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx", 631 paddr); 632 prev_frag_buf->next = NULL; 633 return -ENOENT; 634 } 635 636 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 637 last_frag = ind_desc->reserved; 638 amsdu_len -= frag_buf->len; 639 640 prev_frag_buf->next = frag_buf; 641 prev_frag_buf = frag_buf; 642 } 643 644 if (amsdu_len) { 645 ath10k_warn(ar, "invalid amsdu len %u, left %d", 646 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 647 } 648 649 *msdu_desc = ind_desc; 650 651 prev_frag_buf->next = NULL; 652 return 0; 653 } 654 655 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt, 656 struct htt_rx_in_ord_ind *ev, 657 struct sk_buff_head *list) 658 { 659 struct ath10k *ar = htt->ar; 660 struct ath10k_hw_params *hw = &ar->hw_params; 661 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32; 662 struct htt_rx_desc *rxd; 663 struct rx_attention *rxd_attention; 664 struct sk_buff *msdu; 665 int msdu_count, ret; 666 bool is_offload; 667 u32 paddr; 668 669 lockdep_assert_held(&htt->rx_ring.lock); 670 671 msdu_count = __le16_to_cpu(ev->msdu_count); 672 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 673 674 while (msdu_count--) { 675 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 676 677 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 678 if (!msdu) { 679 __skb_queue_purge(list); 680 return -ENOENT; 681 } 682 683 if (!is_offload && ar->monitor_arvif) { 684 ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu, 685 &msdu_desc); 686 if (ret) { 687 __skb_queue_purge(list); 688 return ret; 689 } 690 __skb_queue_tail(list, msdu); 691 msdu_desc++; 692 continue; 693 } 694 695 __skb_queue_tail(list, msdu); 696 697 if (!is_offload) { 698 rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 699 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 700 701 trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size); 702 703 skb_put(msdu, hw->rx_desc_ops->rx_desc_size); 704 skb_pull(msdu, hw->rx_desc_ops->rx_desc_size); 705 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 706 707 if (!(__le32_to_cpu(rxd_attention->flags) & 708 RX_ATTENTION_FLAGS_MSDU_DONE)) { 709 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 710 return -EIO; 711 } 712 } 713 714 msdu_desc++; 715 } 716 717 return 0; 718 } 719 720 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt, 721 struct htt_rx_in_ord_ind *ev, 722 struct sk_buff_head *list) 723 { 724 struct ath10k *ar = htt->ar; 725 struct ath10k_hw_params *hw = &ar->hw_params; 726 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64; 727 struct htt_rx_desc *rxd; 728 struct rx_attention *rxd_attention; 729 struct sk_buff *msdu; 730 int msdu_count, ret; 731 bool is_offload; 732 u64 paddr; 733 734 lockdep_assert_held(&htt->rx_ring.lock); 735 736 msdu_count = __le16_to_cpu(ev->msdu_count); 737 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 738 739 while (msdu_count--) { 740 paddr = __le64_to_cpu(msdu_desc->msdu_paddr); 741 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 742 if (!msdu) { 743 __skb_queue_purge(list); 744 return -ENOENT; 745 } 746 747 if (!is_offload && ar->monitor_arvif) { 748 ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu, 749 &msdu_desc); 750 if (ret) { 751 __skb_queue_purge(list); 752 return ret; 753 } 754 __skb_queue_tail(list, msdu); 755 msdu_desc++; 756 continue; 757 } 758 759 __skb_queue_tail(list, msdu); 760 761 if (!is_offload) { 762 rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 763 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 764 765 trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size); 766 767 skb_put(msdu, hw->rx_desc_ops->rx_desc_size); 768 skb_pull(msdu, hw->rx_desc_ops->rx_desc_size); 769 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 770 771 if (!(__le32_to_cpu(rxd_attention->flags) & 772 RX_ATTENTION_FLAGS_MSDU_DONE)) { 773 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 774 return -EIO; 775 } 776 } 777 778 msdu_desc++; 779 } 780 781 return 0; 782 } 783 784 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 785 { 786 struct ath10k *ar = htt->ar; 787 dma_addr_t paddr; 788 void *vaddr, *vaddr_ring; 789 size_t size; 790 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 791 792 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 793 return 0; 794 795 htt->rx_confused = false; 796 797 /* XXX: The fill level could be changed during runtime in response to 798 * the host processing latency. Is this really worth it? 799 */ 800 htt->rx_ring.size = HTT_RX_RING_SIZE; 801 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 802 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level; 803 804 if (!is_power_of_2(htt->rx_ring.size)) { 805 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 806 return -EINVAL; 807 } 808 809 htt->rx_ring.netbufs_ring = 810 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *), 811 GFP_KERNEL); 812 if (!htt->rx_ring.netbufs_ring) 813 goto err_netbuf; 814 815 size = ath10k_htt_get_rx_ring_size(htt); 816 817 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); 818 if (!vaddr_ring) 819 goto err_dma_ring; 820 821 ath10k_htt_config_paddrs_ring(htt, vaddr_ring); 822 htt->rx_ring.base_paddr = paddr; 823 824 vaddr = dma_alloc_coherent(htt->ar->dev, 825 sizeof(*htt->rx_ring.alloc_idx.vaddr), 826 &paddr, GFP_KERNEL); 827 if (!vaddr) 828 goto err_dma_idx; 829 830 htt->rx_ring.alloc_idx.vaddr = vaddr; 831 htt->rx_ring.alloc_idx.paddr = paddr; 832 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 833 *htt->rx_ring.alloc_idx.vaddr = 0; 834 835 /* Initialize the Rx refill retry timer */ 836 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0); 837 838 spin_lock_init(&htt->rx_ring.lock); 839 840 htt->rx_ring.fill_cnt = 0; 841 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 842 hash_init(htt->rx_ring.skb_table); 843 844 skb_queue_head_init(&htt->rx_msdus_q); 845 skb_queue_head_init(&htt->rx_in_ord_compl_q); 846 skb_queue_head_init(&htt->tx_fetch_ind_q); 847 atomic_set(&htt->num_mpdus_ready, 0); 848 849 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 850 htt->rx_ring.size, htt->rx_ring.fill_level); 851 return 0; 852 853 err_dma_idx: 854 dma_free_coherent(htt->ar->dev, 855 ath10k_htt_get_rx_ring_size(htt), 856 vaddr_ring, 857 htt->rx_ring.base_paddr); 858 ath10k_htt_config_paddrs_ring(htt, NULL); 859 err_dma_ring: 860 kfree(htt->rx_ring.netbufs_ring); 861 htt->rx_ring.netbufs_ring = NULL; 862 err_netbuf: 863 return -ENOMEM; 864 } 865 866 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 867 enum htt_rx_mpdu_encrypt_type type) 868 { 869 switch (type) { 870 case HTT_RX_MPDU_ENCRYPT_NONE: 871 return 0; 872 case HTT_RX_MPDU_ENCRYPT_WEP40: 873 case HTT_RX_MPDU_ENCRYPT_WEP104: 874 return IEEE80211_WEP_IV_LEN; 875 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 876 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 877 return IEEE80211_TKIP_IV_LEN; 878 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 879 return IEEE80211_CCMP_HDR_LEN; 880 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 881 return IEEE80211_CCMP_256_HDR_LEN; 882 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 883 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 884 return IEEE80211_GCMP_HDR_LEN; 885 case HTT_RX_MPDU_ENCRYPT_WEP128: 886 case HTT_RX_MPDU_ENCRYPT_WAPI: 887 break; 888 } 889 890 ath10k_warn(ar, "unsupported encryption type %d\n", type); 891 return 0; 892 } 893 894 #define MICHAEL_MIC_LEN 8 895 896 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar, 897 enum htt_rx_mpdu_encrypt_type type) 898 { 899 switch (type) { 900 case HTT_RX_MPDU_ENCRYPT_NONE: 901 case HTT_RX_MPDU_ENCRYPT_WEP40: 902 case HTT_RX_MPDU_ENCRYPT_WEP104: 903 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 904 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 905 return 0; 906 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 907 return IEEE80211_CCMP_MIC_LEN; 908 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 909 return IEEE80211_CCMP_256_MIC_LEN; 910 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 911 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 912 return IEEE80211_GCMP_MIC_LEN; 913 case HTT_RX_MPDU_ENCRYPT_WEP128: 914 case HTT_RX_MPDU_ENCRYPT_WAPI: 915 break; 916 } 917 918 ath10k_warn(ar, "unsupported encryption type %d\n", type); 919 return 0; 920 } 921 922 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar, 923 enum htt_rx_mpdu_encrypt_type type) 924 { 925 switch (type) { 926 case HTT_RX_MPDU_ENCRYPT_NONE: 927 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 928 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 929 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 930 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 931 return 0; 932 case HTT_RX_MPDU_ENCRYPT_WEP40: 933 case HTT_RX_MPDU_ENCRYPT_WEP104: 934 return IEEE80211_WEP_ICV_LEN; 935 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 936 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 937 return IEEE80211_TKIP_ICV_LEN; 938 case HTT_RX_MPDU_ENCRYPT_WEP128: 939 case HTT_RX_MPDU_ENCRYPT_WAPI: 940 break; 941 } 942 943 ath10k_warn(ar, "unsupported encryption type %d\n", type); 944 return 0; 945 } 946 947 struct amsdu_subframe_hdr { 948 u8 dst[ETH_ALEN]; 949 u8 src[ETH_ALEN]; 950 __be16 len; 951 } __packed; 952 953 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 954 955 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw) 956 { 957 u8 ret = 0; 958 959 switch (bw) { 960 case 0: 961 ret = RATE_INFO_BW_20; 962 break; 963 case 1: 964 ret = RATE_INFO_BW_40; 965 break; 966 case 2: 967 ret = RATE_INFO_BW_80; 968 break; 969 case 3: 970 ret = RATE_INFO_BW_160; 971 break; 972 } 973 974 return ret; 975 } 976 977 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 978 struct ieee80211_rx_status *status, 979 struct htt_rx_desc *rxd) 980 { 981 struct ath10k_hw_params *hw = &ar->hw_params; 982 struct rx_attention *rxd_attention; 983 struct rx_mpdu_start *rxd_mpdu_start; 984 struct rx_mpdu_end *rxd_mpdu_end; 985 struct rx_msdu_start_common *rxd_msdu_start_common; 986 struct rx_msdu_end_common *rxd_msdu_end_common; 987 struct rx_ppdu_start *rxd_ppdu_start; 988 struct ieee80211_supported_band *sband; 989 u8 cck, rate, bw, sgi, mcs, nss; 990 u8 *rxd_msdu_payload; 991 u8 preamble = 0; 992 u8 group_id; 993 u32 info1, info2, info3; 994 u32 stbc, nsts_su; 995 996 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 997 rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd); 998 rxd_mpdu_end = ath10k_htt_rx_desc_get_mpdu_end(hw, rxd); 999 rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd); 1000 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 1001 rxd_ppdu_start = ath10k_htt_rx_desc_get_ppdu_start(hw, rxd); 1002 rxd_msdu_payload = ath10k_htt_rx_desc_get_msdu_payload(hw, rxd); 1003 1004 info1 = __le32_to_cpu(rxd_ppdu_start->info1); 1005 info2 = __le32_to_cpu(rxd_ppdu_start->info2); 1006 info3 = __le32_to_cpu(rxd_ppdu_start->info3); 1007 1008 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 1009 1010 switch (preamble) { 1011 case HTT_RX_LEGACY: 1012 /* To get legacy rate index band is required. Since band can't 1013 * be undefined check if freq is non-zero. 1014 */ 1015 if (!status->freq) 1016 return; 1017 1018 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 1019 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 1020 rate &= ~RX_PPDU_START_RATE_FLAG; 1021 1022 sband = &ar->mac.sbands[status->band]; 1023 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); 1024 break; 1025 case HTT_RX_HT: 1026 case HTT_RX_HT_WITH_TXBF: 1027 /* HT-SIG - Table 20-11 in info2 and info3 */ 1028 mcs = info2 & 0x1F; 1029 nss = mcs >> 3; 1030 bw = (info2 >> 7) & 1; 1031 sgi = (info3 >> 7) & 1; 1032 1033 status->rate_idx = mcs; 1034 status->encoding = RX_ENC_HT; 1035 if (sgi) 1036 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1037 if (bw) 1038 status->bw = RATE_INFO_BW_40; 1039 break; 1040 case HTT_RX_VHT: 1041 case HTT_RX_VHT_WITH_TXBF: 1042 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 1043 * TODO check this 1044 */ 1045 bw = info2 & 3; 1046 sgi = info3 & 1; 1047 stbc = (info2 >> 3) & 1; 1048 group_id = (info2 >> 4) & 0x3F; 1049 1050 if (GROUP_ID_IS_SU_MIMO(group_id)) { 1051 mcs = (info3 >> 4) & 0x0F; 1052 nsts_su = ((info2 >> 10) & 0x07); 1053 if (stbc) 1054 nss = (nsts_su >> 2) + 1; 1055 else 1056 nss = (nsts_su + 1); 1057 } else { 1058 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 1059 * so it's impossible to decode MCS. Also since 1060 * firmware consumes Group Id Management frames host 1061 * has no knowledge regarding group/user position 1062 * mapping so it's impossible to pick the correct Nsts 1063 * from VHT-SIG-A1. 1064 * 1065 * Bandwidth and SGI are valid so report the rateinfo 1066 * on best-effort basis. 1067 */ 1068 mcs = 0; 1069 nss = 1; 1070 } 1071 1072 if (mcs > 0x09) { 1073 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 1074 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 1075 __le32_to_cpu(rxd_attention->flags), 1076 __le32_to_cpu(rxd_mpdu_start->info0), 1077 __le32_to_cpu(rxd_mpdu_start->info1), 1078 __le32_to_cpu(rxd_msdu_start_common->info0), 1079 __le32_to_cpu(rxd_msdu_start_common->info1), 1080 rxd_ppdu_start->info0, 1081 __le32_to_cpu(rxd_ppdu_start->info1), 1082 __le32_to_cpu(rxd_ppdu_start->info2), 1083 __le32_to_cpu(rxd_ppdu_start->info3), 1084 __le32_to_cpu(rxd_ppdu_start->info4)); 1085 1086 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 1087 __le32_to_cpu(rxd_msdu_end_common->info0), 1088 __le32_to_cpu(rxd_mpdu_end->info0)); 1089 1090 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 1091 "rx desc msdu payload: ", 1092 rxd_msdu_payload, 50); 1093 } 1094 1095 status->rate_idx = mcs; 1096 status->nss = nss; 1097 1098 if (sgi) 1099 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1100 1101 status->bw = ath10k_bw_to_mac80211_bw(bw); 1102 status->encoding = RX_ENC_VHT; 1103 break; 1104 default: 1105 break; 1106 } 1107 } 1108 1109 static struct ieee80211_channel * 1110 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 1111 { 1112 struct ath10k_hw_params *hw = &ar->hw_params; 1113 struct rx_attention *rxd_attention; 1114 struct rx_msdu_end_common *rxd_msdu_end_common; 1115 struct rx_mpdu_start *rxd_mpdu_start; 1116 struct ath10k_peer *peer; 1117 struct ath10k_vif *arvif; 1118 struct cfg80211_chan_def def; 1119 u16 peer_id; 1120 1121 lockdep_assert_held(&ar->data_lock); 1122 1123 if (!rxd) 1124 return NULL; 1125 1126 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1127 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 1128 rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd); 1129 1130 if (rxd_attention->flags & 1131 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 1132 return NULL; 1133 1134 if (!(rxd_msdu_end_common->info0 & 1135 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 1136 return NULL; 1137 1138 peer_id = MS(__le32_to_cpu(rxd_mpdu_start->info0), 1139 RX_MPDU_START_INFO0_PEER_IDX); 1140 1141 peer = ath10k_peer_find_by_id(ar, peer_id); 1142 if (!peer) 1143 return NULL; 1144 1145 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1146 if (WARN_ON_ONCE(!arvif)) 1147 return NULL; 1148 1149 if (ath10k_mac_vif_chan(arvif->vif, &def)) 1150 return NULL; 1151 1152 return def.chan; 1153 } 1154 1155 static struct ieee80211_channel * 1156 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 1157 { 1158 struct ath10k_vif *arvif; 1159 struct cfg80211_chan_def def; 1160 1161 lockdep_assert_held(&ar->data_lock); 1162 1163 list_for_each_entry(arvif, &ar->arvifs, list) { 1164 if (arvif->vdev_id == vdev_id && 1165 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 1166 return def.chan; 1167 } 1168 1169 return NULL; 1170 } 1171 1172 static void 1173 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 1174 struct ieee80211_chanctx_conf *conf, 1175 void *data) 1176 { 1177 struct cfg80211_chan_def *def = data; 1178 1179 *def = conf->def; 1180 } 1181 1182 static struct ieee80211_channel * 1183 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 1184 { 1185 struct cfg80211_chan_def def = {}; 1186 1187 ieee80211_iter_chan_contexts_atomic(ar->hw, 1188 ath10k_htt_rx_h_any_chan_iter, 1189 &def); 1190 1191 return def.chan; 1192 } 1193 1194 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 1195 struct ieee80211_rx_status *status, 1196 struct htt_rx_desc *rxd, 1197 u32 vdev_id) 1198 { 1199 struct ieee80211_channel *ch; 1200 1201 spin_lock_bh(&ar->data_lock); 1202 ch = ar->scan_channel; 1203 if (!ch) 1204 ch = ar->rx_channel; 1205 if (!ch) 1206 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 1207 if (!ch) 1208 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 1209 if (!ch) 1210 ch = ath10k_htt_rx_h_any_channel(ar); 1211 if (!ch) 1212 ch = ar->tgt_oper_chan; 1213 spin_unlock_bh(&ar->data_lock); 1214 1215 if (!ch) 1216 return false; 1217 1218 status->band = ch->band; 1219 status->freq = ch->center_freq; 1220 1221 return true; 1222 } 1223 1224 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 1225 struct ieee80211_rx_status *status, 1226 struct htt_rx_desc *rxd) 1227 { 1228 struct ath10k_hw_params *hw = &ar->hw_params; 1229 struct rx_ppdu_start *rxd_ppdu_start = ath10k_htt_rx_desc_get_ppdu_start(hw, rxd); 1230 int i; 1231 1232 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) { 1233 status->chains &= ~BIT(i); 1234 1235 if (rxd_ppdu_start->rssi_chains[i].pri20_mhz != 0x80) { 1236 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR + 1237 rxd_ppdu_start->rssi_chains[i].pri20_mhz; 1238 1239 status->chains |= BIT(i); 1240 } 1241 } 1242 1243 /* FIXME: Get real NF */ 1244 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 1245 rxd_ppdu_start->rssi_comb; 1246 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 1247 } 1248 1249 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 1250 struct ieee80211_rx_status *status, 1251 struct htt_rx_desc *rxd) 1252 { 1253 struct ath10k_hw_params *hw = &ar->hw_params; 1254 struct rx_ppdu_end_common *rxd_ppdu_end_common; 1255 1256 rxd_ppdu_end_common = ath10k_htt_rx_desc_get_ppdu_end(hw, rxd); 1257 1258 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 1259 * means all prior MSDUs in a PPDU are reported to mac80211 without the 1260 * TSF. Is it worth holding frames until end of PPDU is known? 1261 * 1262 * FIXME: Can we get/compute 64bit TSF? 1263 */ 1264 status->mactime = __le32_to_cpu(rxd_ppdu_end_common->tsf_timestamp); 1265 status->flag |= RX_FLAG_MACTIME_END; 1266 } 1267 1268 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 1269 struct sk_buff_head *amsdu, 1270 struct ieee80211_rx_status *status, 1271 u32 vdev_id) 1272 { 1273 struct sk_buff *first; 1274 struct ath10k_hw_params *hw = &ar->hw_params; 1275 struct htt_rx_desc *rxd; 1276 struct rx_attention *rxd_attention; 1277 bool is_first_ppdu; 1278 bool is_last_ppdu; 1279 1280 if (skb_queue_empty(amsdu)) 1281 return; 1282 1283 first = skb_peek(amsdu); 1284 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1285 (void *)first->data - hw->rx_desc_ops->rx_desc_size); 1286 1287 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1288 1289 is_first_ppdu = !!(rxd_attention->flags & 1290 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 1291 is_last_ppdu = !!(rxd_attention->flags & 1292 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 1293 1294 if (is_first_ppdu) { 1295 /* New PPDU starts so clear out the old per-PPDU status. */ 1296 status->freq = 0; 1297 status->rate_idx = 0; 1298 status->nss = 0; 1299 status->encoding = RX_ENC_LEGACY; 1300 status->bw = RATE_INFO_BW_20; 1301 1302 status->flag &= ~RX_FLAG_MACTIME; 1303 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1304 1305 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST); 1306 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1307 status->ampdu_reference = ar->ampdu_reference; 1308 1309 ath10k_htt_rx_h_signal(ar, status, rxd); 1310 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 1311 ath10k_htt_rx_h_rates(ar, status, rxd); 1312 } 1313 1314 if (is_last_ppdu) { 1315 ath10k_htt_rx_h_mactime(ar, status, rxd); 1316 1317 /* set ampdu last segment flag */ 1318 status->flag |= RX_FLAG_AMPDU_IS_LAST; 1319 ar->ampdu_reference++; 1320 } 1321 } 1322 1323 static const char * const tid_to_ac[] = { 1324 "BE", 1325 "BK", 1326 "BK", 1327 "BE", 1328 "VI", 1329 "VI", 1330 "VO", 1331 "VO", 1332 }; 1333 1334 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 1335 { 1336 u8 *qc; 1337 int tid; 1338 1339 if (!ieee80211_is_data_qos(hdr->frame_control)) 1340 return ""; 1341 1342 qc = ieee80211_get_qos_ctl(hdr); 1343 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1344 if (tid < 8) 1345 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 1346 else 1347 snprintf(out, size, "tid %d", tid); 1348 1349 return out; 1350 } 1351 1352 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar, 1353 struct ieee80211_rx_status *rx_status, 1354 struct sk_buff *skb) 1355 { 1356 struct ieee80211_rx_status *status; 1357 1358 status = IEEE80211_SKB_RXCB(skb); 1359 *status = *rx_status; 1360 1361 skb_queue_tail(&ar->htt.rx_msdus_q, skb); 1362 } 1363 1364 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb) 1365 { 1366 struct ieee80211_rx_status *status; 1367 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1368 char tid[32]; 1369 1370 status = IEEE80211_SKB_RXCB(skb); 1371 1372 if (!(ar->filter_flags & FIF_FCSFAIL) && 1373 status->flag & RX_FLAG_FAILED_FCS_CRC) { 1374 ar->stats.rx_crc_err_drop++; 1375 dev_kfree_skb_any(skb); 1376 return; 1377 } 1378 1379 ath10k_dbg(ar, ATH10K_DBG_DATA, 1380 "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 1381 skb, 1382 skb->len, 1383 ieee80211_get_SA(hdr), 1384 ath10k_get_tid(hdr, tid, sizeof(tid)), 1385 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 1386 "mcast" : "ucast", 1387 IEEE80211_SEQ_TO_SN(__le16_to_cpu(hdr->seq_ctrl)), 1388 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 1389 (status->encoding == RX_ENC_HT) ? "ht" : "", 1390 (status->encoding == RX_ENC_VHT) ? "vht" : "", 1391 (status->bw == RATE_INFO_BW_40) ? "40" : "", 1392 (status->bw == RATE_INFO_BW_80) ? "80" : "", 1393 (status->bw == RATE_INFO_BW_160) ? "160" : "", 1394 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 1395 status->rate_idx, 1396 status->nss, 1397 status->freq, 1398 status->band, status->flag, 1399 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 1400 !!(status->flag & RX_FLAG_MMIC_ERROR), 1401 !!(status->flag & RX_FLAG_AMSDU_MORE)); 1402 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 1403 skb->data, skb->len); 1404 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 1405 trace_ath10k_rx_payload(ar, skb->data, skb->len); 1406 1407 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 1408 } 1409 1410 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 1411 struct ieee80211_hdr *hdr) 1412 { 1413 int len = ieee80211_hdrlen(hdr->frame_control); 1414 1415 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 1416 ar->running_fw->fw_file.fw_features)) 1417 len = round_up(len, 4); 1418 1419 return len; 1420 } 1421 1422 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 1423 struct sk_buff *msdu, 1424 struct ieee80211_rx_status *status, 1425 enum htt_rx_mpdu_encrypt_type enctype, 1426 bool is_decrypted, 1427 const u8 first_hdr[64]) 1428 { 1429 struct ieee80211_hdr *hdr; 1430 struct ath10k_hw_params *hw = &ar->hw_params; 1431 struct htt_rx_desc *rxd; 1432 struct rx_msdu_end_common *rxd_msdu_end_common; 1433 size_t hdr_len; 1434 size_t crypto_len; 1435 bool is_first; 1436 bool is_last; 1437 bool msdu_limit_err; 1438 int bytes_aligned = ar->hw_params.decap_align_bytes; 1439 u8 *qos; 1440 1441 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1442 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1443 1444 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 1445 is_first = !!(rxd_msdu_end_common->info0 & 1446 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1447 is_last = !!(rxd_msdu_end_common->info0 & 1448 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1449 1450 /* Delivered decapped frame: 1451 * [802.11 header] 1452 * [crypto param] <-- can be trimmed if !fcs_err && 1453 * !decrypt_err && !peer_idx_invalid 1454 * [amsdu header] <-- only if A-MSDU 1455 * [rfc1042/llc] 1456 * [payload] 1457 * [FCS] <-- at end, needs to be trimmed 1458 */ 1459 1460 /* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when 1461 * deaggregate, so that unwanted MSDU-deaggregation is avoided for 1462 * error packets. If limit exceeds, hw sends all remaining MSDUs as 1463 * a single last MSDU with this msdu limit error set. 1464 */ 1465 msdu_limit_err = ath10k_htt_rx_desc_msdu_limit_error(hw, rxd); 1466 1467 /* If MSDU limit error happens, then don't warn on, the partial raw MSDU 1468 * without first MSDU is expected in that case, and handled later here. 1469 */ 1470 /* This probably shouldn't happen but warn just in case */ 1471 if (WARN_ON_ONCE(!is_first && !msdu_limit_err)) 1472 return; 1473 1474 /* This probably shouldn't happen but warn just in case */ 1475 if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err)) 1476 return; 1477 1478 skb_trim(msdu, msdu->len - FCS_LEN); 1479 1480 /* Push original 80211 header */ 1481 if (unlikely(msdu_limit_err)) { 1482 hdr = (struct ieee80211_hdr *)first_hdr; 1483 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1484 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1485 1486 if (ieee80211_is_data_qos(hdr->frame_control)) { 1487 qos = ieee80211_get_qos_ctl(hdr); 1488 qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1489 } 1490 1491 if (crypto_len) 1492 memcpy(skb_push(msdu, crypto_len), 1493 (void *)hdr + round_up(hdr_len, bytes_aligned), 1494 crypto_len); 1495 1496 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1497 } 1498 1499 /* In most cases this will be true for sniffed frames. It makes sense 1500 * to deliver them as-is without stripping the crypto param. This is 1501 * necessary for software based decryption. 1502 * 1503 * If there's no error then the frame is decrypted. At least that is 1504 * the case for frames that come in via fragmented rx indication. 1505 */ 1506 if (!is_decrypted) 1507 return; 1508 1509 /* The payload is decrypted so strip crypto params. Start from tail 1510 * since hdr is used to compute some stuff. 1511 */ 1512 1513 hdr = (void *)msdu->data; 1514 1515 /* Tail */ 1516 if (status->flag & RX_FLAG_IV_STRIPPED) { 1517 skb_trim(msdu, msdu->len - 1518 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1519 1520 skb_trim(msdu, msdu->len - 1521 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1522 } else { 1523 /* MIC */ 1524 if (status->flag & RX_FLAG_MIC_STRIPPED) 1525 skb_trim(msdu, msdu->len - 1526 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1527 1528 /* ICV */ 1529 if (status->flag & RX_FLAG_ICV_STRIPPED) 1530 skb_trim(msdu, msdu->len - 1531 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1532 } 1533 1534 /* MMIC */ 1535 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 1536 !ieee80211_has_morefrags(hdr->frame_control) && 1537 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1538 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN); 1539 1540 /* Head */ 1541 if (status->flag & RX_FLAG_IV_STRIPPED) { 1542 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1543 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1544 1545 memmove((void *)msdu->data + crypto_len, 1546 (void *)msdu->data, hdr_len); 1547 skb_pull(msdu, crypto_len); 1548 } 1549 } 1550 1551 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1552 struct sk_buff *msdu, 1553 struct ieee80211_rx_status *status, 1554 const u8 first_hdr[64], 1555 enum htt_rx_mpdu_encrypt_type enctype) 1556 { 1557 struct ath10k_hw_params *hw = &ar->hw_params; 1558 struct ieee80211_hdr *hdr; 1559 struct htt_rx_desc *rxd; 1560 size_t hdr_len; 1561 u8 da[ETH_ALEN]; 1562 u8 sa[ETH_ALEN]; 1563 int l3_pad_bytes; 1564 int bytes_aligned = ar->hw_params.decap_align_bytes; 1565 1566 /* Delivered decapped frame: 1567 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1568 * [rfc1042/llc] 1569 * 1570 * Note: The nwifi header doesn't have QoS Control and is 1571 * (always?) a 3addr frame. 1572 * 1573 * Note2: There's no A-MSDU subframe header. Even if it's part 1574 * of an A-MSDU. 1575 */ 1576 1577 /* pull decapped header and copy SA & DA */ 1578 rxd = HTT_RX_BUF_TO_RX_DESC(hw, (void *)msdu->data - 1579 hw->rx_desc_ops->rx_desc_size); 1580 1581 l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1582 skb_put(msdu, l3_pad_bytes); 1583 1584 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1585 1586 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1587 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1588 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1589 skb_pull(msdu, hdr_len); 1590 1591 /* push original 802.11 header */ 1592 hdr = (struct ieee80211_hdr *)first_hdr; 1593 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1594 1595 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1596 memcpy(skb_push(msdu, 1597 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1598 (void *)hdr + round_up(hdr_len, bytes_aligned), 1599 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1600 } 1601 1602 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1603 1604 /* original 802.11 header has a different DA and in 1605 * case of 4addr it may also have different SA 1606 */ 1607 hdr = (struct ieee80211_hdr *)msdu->data; 1608 ether_addr_copy(ieee80211_get_DA(hdr), da); 1609 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1610 } 1611 1612 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1613 struct sk_buff *msdu, 1614 enum htt_rx_mpdu_encrypt_type enctype) 1615 { 1616 struct ieee80211_hdr *hdr; 1617 struct ath10k_hw_params *hw = &ar->hw_params; 1618 struct htt_rx_desc *rxd; 1619 struct rx_msdu_end_common *rxd_msdu_end_common; 1620 u8 *rxd_rx_hdr_status; 1621 size_t hdr_len, crypto_len; 1622 void *rfc1042; 1623 bool is_first, is_last, is_amsdu; 1624 int bytes_aligned = ar->hw_params.decap_align_bytes; 1625 1626 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1627 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1628 1629 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 1630 rxd_rx_hdr_status = ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd); 1631 hdr = (void *)rxd_rx_hdr_status; 1632 1633 is_first = !!(rxd_msdu_end_common->info0 & 1634 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1635 is_last = !!(rxd_msdu_end_common->info0 & 1636 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1637 is_amsdu = !(is_first && is_last); 1638 1639 rfc1042 = hdr; 1640 1641 if (is_first) { 1642 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1643 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1644 1645 rfc1042 += round_up(hdr_len, bytes_aligned) + 1646 round_up(crypto_len, bytes_aligned); 1647 } 1648 1649 if (is_amsdu) 1650 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1651 1652 return rfc1042; 1653 } 1654 1655 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1656 struct sk_buff *msdu, 1657 struct ieee80211_rx_status *status, 1658 const u8 first_hdr[64], 1659 enum htt_rx_mpdu_encrypt_type enctype) 1660 { 1661 struct ath10k_hw_params *hw = &ar->hw_params; 1662 struct ieee80211_hdr *hdr; 1663 struct ethhdr *eth; 1664 size_t hdr_len; 1665 void *rfc1042; 1666 u8 da[ETH_ALEN]; 1667 u8 sa[ETH_ALEN]; 1668 int l3_pad_bytes; 1669 struct htt_rx_desc *rxd; 1670 int bytes_aligned = ar->hw_params.decap_align_bytes; 1671 1672 /* Delivered decapped frame: 1673 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1674 * [payload] 1675 */ 1676 1677 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1678 if (WARN_ON_ONCE(!rfc1042)) 1679 return; 1680 1681 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1682 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1683 1684 l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1685 skb_put(msdu, l3_pad_bytes); 1686 skb_pull(msdu, l3_pad_bytes); 1687 1688 /* pull decapped header and copy SA & DA */ 1689 eth = (struct ethhdr *)msdu->data; 1690 ether_addr_copy(da, eth->h_dest); 1691 ether_addr_copy(sa, eth->h_source); 1692 skb_pull(msdu, sizeof(struct ethhdr)); 1693 1694 /* push rfc1042/llc/snap */ 1695 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1696 sizeof(struct rfc1042_hdr)); 1697 1698 /* push original 802.11 header */ 1699 hdr = (struct ieee80211_hdr *)first_hdr; 1700 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1701 1702 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1703 memcpy(skb_push(msdu, 1704 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1705 (void *)hdr + round_up(hdr_len, bytes_aligned), 1706 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1707 } 1708 1709 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1710 1711 /* original 802.11 header has a different DA and in 1712 * case of 4addr it may also have different SA 1713 */ 1714 hdr = (struct ieee80211_hdr *)msdu->data; 1715 ether_addr_copy(ieee80211_get_DA(hdr), da); 1716 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1717 } 1718 1719 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1720 struct sk_buff *msdu, 1721 struct ieee80211_rx_status *status, 1722 const u8 first_hdr[64], 1723 enum htt_rx_mpdu_encrypt_type enctype) 1724 { 1725 struct ath10k_hw_params *hw = &ar->hw_params; 1726 struct ieee80211_hdr *hdr; 1727 size_t hdr_len; 1728 int l3_pad_bytes; 1729 struct htt_rx_desc *rxd; 1730 int bytes_aligned = ar->hw_params.decap_align_bytes; 1731 1732 /* Delivered decapped frame: 1733 * [amsdu header] <-- replaced with 802.11 hdr 1734 * [rfc1042/llc] 1735 * [payload] 1736 */ 1737 1738 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1739 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1740 1741 l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1742 1743 skb_put(msdu, l3_pad_bytes); 1744 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); 1745 1746 hdr = (struct ieee80211_hdr *)first_hdr; 1747 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1748 1749 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1750 memcpy(skb_push(msdu, 1751 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1752 (void *)hdr + round_up(hdr_len, bytes_aligned), 1753 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1754 } 1755 1756 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1757 } 1758 1759 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1760 struct sk_buff *msdu, 1761 struct ieee80211_rx_status *status, 1762 u8 first_hdr[64], 1763 enum htt_rx_mpdu_encrypt_type enctype, 1764 bool is_decrypted) 1765 { 1766 struct ath10k_hw_params *hw = &ar->hw_params; 1767 struct htt_rx_desc *rxd; 1768 struct rx_msdu_start_common *rxd_msdu_start_common; 1769 enum rx_msdu_decap_format decap; 1770 1771 /* First msdu's decapped header: 1772 * [802.11 header] <-- padded to 4 bytes long 1773 * [crypto param] <-- padded to 4 bytes long 1774 * [amsdu header] <-- only if A-MSDU 1775 * [rfc1042/llc] 1776 * 1777 * Other (2nd, 3rd, ..) msdu's decapped header: 1778 * [amsdu header] <-- only if A-MSDU 1779 * [rfc1042/llc] 1780 */ 1781 1782 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1783 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1784 1785 rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd); 1786 decap = MS(__le32_to_cpu(rxd_msdu_start_common->info1), 1787 RX_MSDU_START_INFO1_DECAP_FORMAT); 1788 1789 switch (decap) { 1790 case RX_MSDU_DECAP_RAW: 1791 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1792 is_decrypted, first_hdr); 1793 break; 1794 case RX_MSDU_DECAP_NATIVE_WIFI: 1795 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr, 1796 enctype); 1797 break; 1798 case RX_MSDU_DECAP_ETHERNET2_DIX: 1799 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1800 break; 1801 case RX_MSDU_DECAP_8023_SNAP_LLC: 1802 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr, 1803 enctype); 1804 break; 1805 } 1806 } 1807 1808 static int ath10k_htt_rx_get_csum_state(struct ath10k_hw_params *hw, struct sk_buff *skb) 1809 { 1810 struct htt_rx_desc *rxd; 1811 struct rx_attention *rxd_attention; 1812 struct rx_msdu_start_common *rxd_msdu_start_common; 1813 u32 flags, info; 1814 bool is_ip4, is_ip6; 1815 bool is_tcp, is_udp; 1816 bool ip_csum_ok, tcpudp_csum_ok; 1817 1818 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1819 (void *)skb->data - hw->rx_desc_ops->rx_desc_size); 1820 1821 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1822 rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd); 1823 flags = __le32_to_cpu(rxd_attention->flags); 1824 info = __le32_to_cpu(rxd_msdu_start_common->info1); 1825 1826 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1827 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1828 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1829 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1830 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1831 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1832 1833 if (!is_ip4 && !is_ip6) 1834 return CHECKSUM_NONE; 1835 if (!is_tcp && !is_udp) 1836 return CHECKSUM_NONE; 1837 if (!ip_csum_ok) 1838 return CHECKSUM_NONE; 1839 if (!tcpudp_csum_ok) 1840 return CHECKSUM_NONE; 1841 1842 return CHECKSUM_UNNECESSARY; 1843 } 1844 1845 static void ath10k_htt_rx_h_csum_offload(struct ath10k_hw_params *hw, 1846 struct sk_buff *msdu) 1847 { 1848 msdu->ip_summed = ath10k_htt_rx_get_csum_state(hw, msdu); 1849 } 1850 1851 static u64 ath10k_htt_rx_h_get_pn(struct ath10k *ar, struct sk_buff *skb, 1852 enum htt_rx_mpdu_encrypt_type enctype) 1853 { 1854 struct ieee80211_hdr *hdr; 1855 u64 pn = 0; 1856 u8 *ehdr; 1857 1858 hdr = (struct ieee80211_hdr *)skb->data; 1859 ehdr = skb->data + ieee80211_hdrlen(hdr->frame_control); 1860 1861 if (enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2) { 1862 pn = ehdr[0]; 1863 pn |= (u64)ehdr[1] << 8; 1864 pn |= (u64)ehdr[4] << 16; 1865 pn |= (u64)ehdr[5] << 24; 1866 pn |= (u64)ehdr[6] << 32; 1867 pn |= (u64)ehdr[7] << 40; 1868 } 1869 return pn; 1870 } 1871 1872 static bool ath10k_htt_rx_h_frag_multicast_check(struct ath10k *ar, 1873 struct sk_buff *skb) 1874 { 1875 struct ieee80211_hdr *hdr; 1876 1877 hdr = (struct ieee80211_hdr *)skb->data; 1878 return !is_multicast_ether_addr(hdr->addr1); 1879 } 1880 1881 static bool ath10k_htt_rx_h_frag_pn_check(struct ath10k *ar, 1882 struct sk_buff *skb, 1883 u16 peer_id, 1884 enum htt_rx_mpdu_encrypt_type enctype) 1885 { 1886 struct ath10k_peer *peer; 1887 union htt_rx_pn_t *last_pn, new_pn = {0}; 1888 struct ieee80211_hdr *hdr; 1889 u8 tid, frag_number; 1890 u32 seq; 1891 1892 peer = ath10k_peer_find_by_id(ar, peer_id); 1893 if (!peer) { 1894 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer for frag pn check\n"); 1895 return false; 1896 } 1897 1898 hdr = (struct ieee80211_hdr *)skb->data; 1899 if (ieee80211_is_data_qos(hdr->frame_control)) 1900 tid = ieee80211_get_tid(hdr); 1901 else 1902 tid = ATH10K_TXRX_NON_QOS_TID; 1903 1904 last_pn = &peer->frag_tids_last_pn[tid]; 1905 new_pn.pn48 = ath10k_htt_rx_h_get_pn(ar, skb, enctype); 1906 frag_number = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 1907 seq = IEEE80211_SEQ_TO_SN(__le16_to_cpu(hdr->seq_ctrl)); 1908 1909 if (frag_number == 0) { 1910 last_pn->pn48 = new_pn.pn48; 1911 peer->frag_tids_seq[tid] = seq; 1912 } else { 1913 if (seq != peer->frag_tids_seq[tid]) 1914 return false; 1915 1916 if (new_pn.pn48 != last_pn->pn48 + 1) 1917 return false; 1918 1919 last_pn->pn48 = new_pn.pn48; 1920 } 1921 1922 return true; 1923 } 1924 1925 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1926 struct sk_buff_head *amsdu, 1927 struct ieee80211_rx_status *status, 1928 bool fill_crypt_header, 1929 u8 *rx_hdr, 1930 enum ath10k_pkt_rx_err *err, 1931 u16 peer_id, 1932 bool frag) 1933 { 1934 struct sk_buff *first; 1935 struct sk_buff *last; 1936 struct sk_buff *msdu, *temp; 1937 struct ath10k_hw_params *hw = &ar->hw_params; 1938 struct htt_rx_desc *rxd; 1939 struct rx_attention *rxd_attention; 1940 struct rx_mpdu_start *rxd_mpdu_start; 1941 1942 struct ieee80211_hdr *hdr; 1943 enum htt_rx_mpdu_encrypt_type enctype; 1944 u8 first_hdr[64]; 1945 u8 *qos; 1946 bool has_fcs_err; 1947 bool has_crypto_err; 1948 bool has_tkip_err; 1949 bool has_peer_idx_invalid; 1950 bool is_decrypted; 1951 bool is_mgmt; 1952 u32 attention; 1953 bool frag_pn_check = true, multicast_check = true; 1954 1955 if (skb_queue_empty(amsdu)) 1956 return; 1957 1958 first = skb_peek(amsdu); 1959 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1960 (void *)first->data - hw->rx_desc_ops->rx_desc_size); 1961 1962 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1963 rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd); 1964 1965 is_mgmt = !!(rxd_attention->flags & 1966 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1967 1968 enctype = MS(__le32_to_cpu(rxd_mpdu_start->info0), 1969 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1970 1971 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1972 * decapped header. It'll be used for undecapping of each MSDU. 1973 */ 1974 hdr = (void *)ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd); 1975 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1976 1977 if (rx_hdr) 1978 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1979 1980 /* Each A-MSDU subframe will use the original header as the base and be 1981 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1982 */ 1983 hdr = (void *)first_hdr; 1984 1985 if (ieee80211_is_data_qos(hdr->frame_control)) { 1986 qos = ieee80211_get_qos_ctl(hdr); 1987 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1988 } 1989 1990 /* Some attention flags are valid only in the last MSDU. */ 1991 last = skb_peek_tail(amsdu); 1992 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1993 (void *)last->data - hw->rx_desc_ops->rx_desc_size); 1994 1995 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1996 attention = __le32_to_cpu(rxd_attention->flags); 1997 1998 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1999 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 2000 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 2001 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 2002 2003 /* Note: If hardware captures an encrypted frame that it can't decrypt, 2004 * e.g. due to fcs error, missing peer or invalid key data it will 2005 * report the frame as raw. 2006 */ 2007 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 2008 !has_fcs_err && 2009 !has_crypto_err && 2010 !has_peer_idx_invalid); 2011 2012 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 2013 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 2014 RX_FLAG_MMIC_ERROR | 2015 RX_FLAG_DECRYPTED | 2016 RX_FLAG_IV_STRIPPED | 2017 RX_FLAG_ONLY_MONITOR | 2018 RX_FLAG_MMIC_STRIPPED); 2019 2020 if (has_fcs_err) 2021 status->flag |= RX_FLAG_FAILED_FCS_CRC; 2022 2023 if (has_tkip_err) 2024 status->flag |= RX_FLAG_MMIC_ERROR; 2025 2026 if (err) { 2027 if (has_fcs_err) 2028 *err = ATH10K_PKT_RX_ERR_FCS; 2029 else if (has_tkip_err) 2030 *err = ATH10K_PKT_RX_ERR_TKIP; 2031 else if (has_crypto_err) 2032 *err = ATH10K_PKT_RX_ERR_CRYPT; 2033 else if (has_peer_idx_invalid) 2034 *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL; 2035 } 2036 2037 /* Firmware reports all necessary management frames via WMI already. 2038 * They are not reported to monitor interfaces at all so pass the ones 2039 * coming via HTT to monitor interfaces instead. This simplifies 2040 * matters a lot. 2041 */ 2042 if (is_mgmt) 2043 status->flag |= RX_FLAG_ONLY_MONITOR; 2044 2045 if (is_decrypted) { 2046 status->flag |= RX_FLAG_DECRYPTED; 2047 2048 if (likely(!is_mgmt)) 2049 status->flag |= RX_FLAG_MMIC_STRIPPED; 2050 2051 if (fill_crypt_header) 2052 status->flag |= RX_FLAG_MIC_STRIPPED | 2053 RX_FLAG_ICV_STRIPPED; 2054 else 2055 status->flag |= RX_FLAG_IV_STRIPPED; 2056 } 2057 2058 skb_queue_walk(amsdu, msdu) { 2059 if (frag && !fill_crypt_header && is_decrypted && 2060 enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2) 2061 frag_pn_check = ath10k_htt_rx_h_frag_pn_check(ar, 2062 msdu, 2063 peer_id, 2064 enctype); 2065 2066 if (frag) 2067 multicast_check = ath10k_htt_rx_h_frag_multicast_check(ar, 2068 msdu); 2069 2070 if (!frag_pn_check || !multicast_check) { 2071 /* Discard the fragment with invalid PN or multicast DA 2072 */ 2073 temp = msdu->prev; 2074 __skb_unlink(msdu, amsdu); 2075 dev_kfree_skb_any(msdu); 2076 msdu = temp; 2077 frag_pn_check = true; 2078 multicast_check = true; 2079 continue; 2080 } 2081 2082 ath10k_htt_rx_h_csum_offload(&ar->hw_params, msdu); 2083 2084 if (frag && !fill_crypt_header && 2085 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 2086 status->flag &= ~RX_FLAG_MMIC_STRIPPED; 2087 2088 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 2089 is_decrypted); 2090 2091 /* Undecapping involves copying the original 802.11 header back 2092 * to sk_buff. If frame is protected and hardware has decrypted 2093 * it then remove the protected bit. 2094 */ 2095 if (!is_decrypted) 2096 continue; 2097 if (is_mgmt) 2098 continue; 2099 2100 if (fill_crypt_header) 2101 continue; 2102 2103 hdr = (void *)msdu->data; 2104 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2105 2106 if (frag && !fill_crypt_header && 2107 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 2108 status->flag &= ~RX_FLAG_IV_STRIPPED & 2109 ~RX_FLAG_MMIC_STRIPPED; 2110 } 2111 } 2112 2113 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar, 2114 struct sk_buff_head *amsdu, 2115 struct ieee80211_rx_status *status) 2116 { 2117 struct sk_buff *msdu; 2118 struct sk_buff *first_subframe; 2119 2120 first_subframe = skb_peek(amsdu); 2121 2122 while ((msdu = __skb_dequeue(amsdu))) { 2123 /* Setup per-MSDU flags */ 2124 if (skb_queue_empty(amsdu)) 2125 status->flag &= ~RX_FLAG_AMSDU_MORE; 2126 else 2127 status->flag |= RX_FLAG_AMSDU_MORE; 2128 2129 if (msdu == first_subframe) { 2130 first_subframe = NULL; 2131 status->flag &= ~RX_FLAG_ALLOW_SAME_PN; 2132 } else { 2133 status->flag |= RX_FLAG_ALLOW_SAME_PN; 2134 } 2135 2136 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 2137 } 2138 } 2139 2140 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu, 2141 unsigned long *unchain_cnt) 2142 { 2143 struct sk_buff *skb, *first; 2144 int space; 2145 int total_len = 0; 2146 int amsdu_len = skb_queue_len(amsdu); 2147 2148 /* TODO: Might could optimize this by using 2149 * skb_try_coalesce or similar method to 2150 * decrease copying, or maybe get mac80211 to 2151 * provide a way to just receive a list of 2152 * skb? 2153 */ 2154 2155 first = __skb_dequeue(amsdu); 2156 2157 /* Allocate total length all at once. */ 2158 skb_queue_walk(amsdu, skb) 2159 total_len += skb->len; 2160 2161 space = total_len - skb_tailroom(first); 2162 if ((space > 0) && 2163 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 2164 /* TODO: bump some rx-oom error stat */ 2165 /* put it back together so we can free the 2166 * whole list at once. 2167 */ 2168 __skb_queue_head(amsdu, first); 2169 return -1; 2170 } 2171 2172 /* Walk list again, copying contents into 2173 * msdu_head 2174 */ 2175 while ((skb = __skb_dequeue(amsdu))) { 2176 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 2177 skb->len); 2178 dev_kfree_skb_any(skb); 2179 } 2180 2181 __skb_queue_head(amsdu, first); 2182 2183 *unchain_cnt += amsdu_len - 1; 2184 2185 return 0; 2186 } 2187 2188 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 2189 struct sk_buff_head *amsdu, 2190 unsigned long *drop_cnt, 2191 unsigned long *unchain_cnt) 2192 { 2193 struct sk_buff *first; 2194 struct ath10k_hw_params *hw = &ar->hw_params; 2195 struct htt_rx_desc *rxd; 2196 struct rx_msdu_start_common *rxd_msdu_start_common; 2197 struct rx_frag_info_common *rxd_frag_info; 2198 enum rx_msdu_decap_format decap; 2199 2200 first = skb_peek(amsdu); 2201 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 2202 (void *)first->data - hw->rx_desc_ops->rx_desc_size); 2203 2204 rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd); 2205 rxd_frag_info = ath10k_htt_rx_desc_get_frag_info(hw, rxd); 2206 decap = MS(__le32_to_cpu(rxd_msdu_start_common->info1), 2207 RX_MSDU_START_INFO1_DECAP_FORMAT); 2208 2209 /* FIXME: Current unchaining logic can only handle simple case of raw 2210 * msdu chaining. If decapping is other than raw the chaining may be 2211 * more complex and this isn't handled by the current code. Don't even 2212 * try re-constructing such frames - it'll be pretty much garbage. 2213 */ 2214 if (decap != RX_MSDU_DECAP_RAW || 2215 skb_queue_len(amsdu) != 1 + rxd_frag_info->ring2_more_count) { 2216 *drop_cnt += skb_queue_len(amsdu); 2217 __skb_queue_purge(amsdu); 2218 return; 2219 } 2220 2221 ath10k_unchain_msdu(amsdu, unchain_cnt); 2222 } 2223 2224 static bool ath10k_htt_rx_validate_amsdu(struct ath10k *ar, 2225 struct sk_buff_head *amsdu) 2226 { 2227 u8 *subframe_hdr; 2228 struct sk_buff *first; 2229 bool is_first, is_last; 2230 struct ath10k_hw_params *hw = &ar->hw_params; 2231 struct htt_rx_desc *rxd; 2232 struct rx_msdu_end_common *rxd_msdu_end_common; 2233 struct rx_mpdu_start *rxd_mpdu_start; 2234 struct ieee80211_hdr *hdr; 2235 size_t hdr_len, crypto_len; 2236 enum htt_rx_mpdu_encrypt_type enctype; 2237 int bytes_aligned = ar->hw_params.decap_align_bytes; 2238 2239 first = skb_peek(amsdu); 2240 2241 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 2242 (void *)first->data - hw->rx_desc_ops->rx_desc_size); 2243 2244 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 2245 rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd); 2246 hdr = (void *)ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd); 2247 2248 is_first = !!(rxd_msdu_end_common->info0 & 2249 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 2250 is_last = !!(rxd_msdu_end_common->info0 & 2251 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 2252 2253 /* Return in case of non-aggregated msdu */ 2254 if (is_first && is_last) 2255 return true; 2256 2257 /* First msdu flag is not set for the first msdu of the list */ 2258 if (!is_first) 2259 return false; 2260 2261 enctype = MS(__le32_to_cpu(rxd_mpdu_start->info0), 2262 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 2263 2264 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2265 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 2266 2267 subframe_hdr = (u8 *)hdr + round_up(hdr_len, bytes_aligned) + 2268 crypto_len; 2269 2270 /* Validate if the amsdu has a proper first subframe. 2271 * There are chances a single msdu can be received as amsdu when 2272 * the unauthenticated amsdu flag of a QoS header 2273 * gets flipped in non-SPP AMSDU's, in such cases the first 2274 * subframe has llc/snap header in place of a valid da. 2275 * return false if the da matches rfc1042 pattern 2276 */ 2277 if (ether_addr_equal(subframe_hdr, rfc1042_header)) 2278 return false; 2279 2280 return true; 2281 } 2282 2283 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 2284 struct sk_buff_head *amsdu, 2285 struct ieee80211_rx_status *rx_status) 2286 { 2287 if (!rx_status->freq) { 2288 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n"); 2289 return false; 2290 } 2291 2292 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 2293 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 2294 return false; 2295 } 2296 2297 if (!ath10k_htt_rx_validate_amsdu(ar, amsdu)) { 2298 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid amsdu received\n"); 2299 return false; 2300 } 2301 2302 return true; 2303 } 2304 2305 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 2306 struct sk_buff_head *amsdu, 2307 struct ieee80211_rx_status *rx_status, 2308 unsigned long *drop_cnt) 2309 { 2310 if (skb_queue_empty(amsdu)) 2311 return; 2312 2313 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 2314 return; 2315 2316 if (drop_cnt) 2317 *drop_cnt += skb_queue_len(amsdu); 2318 2319 __skb_queue_purge(amsdu); 2320 } 2321 2322 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) 2323 { 2324 struct ath10k *ar = htt->ar; 2325 struct ieee80211_rx_status *rx_status = &htt->rx_status; 2326 struct sk_buff_head amsdu; 2327 int ret; 2328 unsigned long drop_cnt = 0; 2329 unsigned long unchain_cnt = 0; 2330 unsigned long drop_cnt_filter = 0; 2331 unsigned long msdus_to_queue, num_msdus; 2332 enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX; 2333 u8 first_hdr[RX_HTT_HDR_STATUS_LEN]; 2334 2335 __skb_queue_head_init(&amsdu); 2336 2337 spin_lock_bh(&htt->rx_ring.lock); 2338 if (htt->rx_confused) { 2339 spin_unlock_bh(&htt->rx_ring.lock); 2340 return -EIO; 2341 } 2342 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); 2343 spin_unlock_bh(&htt->rx_ring.lock); 2344 2345 if (ret < 0) { 2346 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 2347 __skb_queue_purge(&amsdu); 2348 /* FIXME: It's probably a good idea to reboot the 2349 * device instead of leaving it inoperable. 2350 */ 2351 htt->rx_confused = true; 2352 return ret; 2353 } 2354 2355 num_msdus = skb_queue_len(&amsdu); 2356 2357 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 2358 2359 /* only for ret = 1 indicates chained msdus */ 2360 if (ret > 0) 2361 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt); 2362 2363 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter); 2364 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err, 0, 2365 false); 2366 msdus_to_queue = skb_queue_len(&amsdu); 2367 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status); 2368 2369 ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err, 2370 unchain_cnt, drop_cnt, drop_cnt_filter, 2371 msdus_to_queue); 2372 2373 return 0; 2374 } 2375 2376 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc, 2377 union htt_rx_pn_t *pn, 2378 int pn_len_bits) 2379 { 2380 switch (pn_len_bits) { 2381 case 48: 2382 pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) + 2383 ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32); 2384 break; 2385 case 24: 2386 pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0); 2387 break; 2388 } 2389 } 2390 2391 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn, 2392 union htt_rx_pn_t *old_pn) 2393 { 2394 return ((new_pn->pn48 & 0xffffffffffffULL) <= 2395 (old_pn->pn48 & 0xffffffffffffULL)); 2396 } 2397 2398 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar, 2399 struct ath10k_peer *peer, 2400 struct htt_rx_indication_hl *rx) 2401 { 2402 bool last_pn_valid, pn_invalid = false; 2403 enum htt_txrx_sec_cast_type sec_index; 2404 enum htt_security_types sec_type; 2405 union htt_rx_pn_t new_pn = {0}; 2406 struct htt_hl_rx_desc *rx_desc; 2407 union htt_rx_pn_t *last_pn; 2408 u32 rx_desc_info, tid; 2409 int num_mpdu_ranges; 2410 2411 lockdep_assert_held(&ar->data_lock); 2412 2413 if (!peer) 2414 return false; 2415 2416 if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU)) 2417 return false; 2418 2419 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2420 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2421 2422 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2423 rx_desc_info = __le32_to_cpu(rx_desc->info); 2424 2425 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) 2426 return false; 2427 2428 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2429 last_pn_valid = peer->tids_last_pn_valid[tid]; 2430 last_pn = &peer->tids_last_pn[tid]; 2431 2432 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2433 sec_index = HTT_TXRX_SEC_MCAST; 2434 else 2435 sec_index = HTT_TXRX_SEC_UCAST; 2436 2437 sec_type = peer->rx_pn[sec_index].sec_type; 2438 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2439 2440 if (sec_type != HTT_SECURITY_AES_CCMP && 2441 sec_type != HTT_SECURITY_TKIP && 2442 sec_type != HTT_SECURITY_TKIP_NOMIC) 2443 return false; 2444 2445 if (last_pn_valid) 2446 pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn); 2447 else 2448 peer->tids_last_pn_valid[tid] = true; 2449 2450 if (!pn_invalid) 2451 last_pn->pn48 = new_pn.pn48; 2452 2453 return pn_invalid; 2454 } 2455 2456 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt, 2457 struct htt_rx_indication_hl *rx, 2458 struct sk_buff *skb, 2459 enum htt_rx_pn_check_type check_pn_type, 2460 enum htt_rx_tkip_demic_type tkip_mic_type) 2461 { 2462 struct ath10k *ar = htt->ar; 2463 struct ath10k_peer *peer; 2464 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2465 struct fw_rx_desc_hl *fw_desc; 2466 enum htt_txrx_sec_cast_type sec_index; 2467 enum htt_security_types sec_type; 2468 union htt_rx_pn_t new_pn = {0}; 2469 struct htt_hl_rx_desc *rx_desc; 2470 struct ieee80211_hdr *hdr; 2471 struct ieee80211_rx_status *rx_status; 2472 u16 peer_id; 2473 u8 rx_desc_len; 2474 int num_mpdu_ranges; 2475 size_t tot_hdr_len; 2476 struct ieee80211_channel *ch; 2477 bool pn_invalid, qos, first_msdu; 2478 u32 tid, rx_desc_info; 2479 2480 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2481 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2482 2483 spin_lock_bh(&ar->data_lock); 2484 peer = ath10k_peer_find_by_id(ar, peer_id); 2485 spin_unlock_bh(&ar->data_lock); 2486 if (!peer && peer_id != HTT_INVALID_PEERID) 2487 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id); 2488 2489 if (!peer) 2490 return true; 2491 2492 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2493 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2494 mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx); 2495 fw_desc = &rx->fw_desc; 2496 rx_desc_len = fw_desc->len; 2497 2498 if (fw_desc->u.bits.discard) { 2499 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt discard mpdu\n"); 2500 goto err; 2501 } 2502 2503 /* I have not yet seen any case where num_mpdu_ranges > 1. 2504 * qcacld does not seem handle that case either, so we introduce the 2505 * same limitation here as well. 2506 */ 2507 if (num_mpdu_ranges > 1) 2508 ath10k_warn(ar, 2509 "Unsupported number of MPDU ranges: %d, ignoring all but the first\n", 2510 num_mpdu_ranges); 2511 2512 if (mpdu_ranges->mpdu_range_status != 2513 HTT_RX_IND_MPDU_STATUS_OK && 2514 mpdu_ranges->mpdu_range_status != 2515 HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) { 2516 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt mpdu_range_status %d\n", 2517 mpdu_ranges->mpdu_range_status); 2518 goto err; 2519 } 2520 2521 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2522 rx_desc_info = __le32_to_cpu(rx_desc->info); 2523 2524 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2525 sec_index = HTT_TXRX_SEC_MCAST; 2526 else 2527 sec_index = HTT_TXRX_SEC_UCAST; 2528 2529 sec_type = peer->rx_pn[sec_index].sec_type; 2530 first_msdu = rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU; 2531 2532 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2533 2534 if (check_pn_type == HTT_RX_PN_CHECK && tid >= IEEE80211_NUM_TIDS) { 2535 spin_lock_bh(&ar->data_lock); 2536 pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx); 2537 spin_unlock_bh(&ar->data_lock); 2538 2539 if (pn_invalid) 2540 goto err; 2541 } 2542 2543 /* Strip off all headers before the MAC header before delivery to 2544 * mac80211 2545 */ 2546 tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) + 2547 sizeof(rx->ppdu) + sizeof(rx->prefix) + 2548 sizeof(rx->fw_desc) + 2549 sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len; 2550 2551 skb_pull(skb, tot_hdr_len); 2552 2553 hdr = (struct ieee80211_hdr *)skb->data; 2554 qos = ieee80211_is_data_qos(hdr->frame_control); 2555 2556 rx_status = IEEE80211_SKB_RXCB(skb); 2557 memset(rx_status, 0, sizeof(*rx_status)); 2558 2559 if (rx->ppdu.combined_rssi == 0) { 2560 /* SDIO firmware does not provide signal */ 2561 rx_status->signal = 0; 2562 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2563 } else { 2564 rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 2565 rx->ppdu.combined_rssi; 2566 rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 2567 } 2568 2569 spin_lock_bh(&ar->data_lock); 2570 ch = ar->scan_channel; 2571 if (!ch) 2572 ch = ar->rx_channel; 2573 if (!ch) 2574 ch = ath10k_htt_rx_h_any_channel(ar); 2575 if (!ch) 2576 ch = ar->tgt_oper_chan; 2577 spin_unlock_bh(&ar->data_lock); 2578 2579 if (ch) { 2580 rx_status->band = ch->band; 2581 rx_status->freq = ch->center_freq; 2582 } 2583 if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU) 2584 rx_status->flag &= ~RX_FLAG_AMSDU_MORE; 2585 else 2586 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2587 2588 /* Not entirely sure about this, but all frames from the chipset has 2589 * the protected flag set even though they have already been decrypted. 2590 * Unmasking this flag is necessary in order for mac80211 not to drop 2591 * the frame. 2592 * TODO: Verify this is always the case or find out a way to check 2593 * if there has been hw decryption. 2594 */ 2595 if (ieee80211_has_protected(hdr->frame_control)) { 2596 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2597 rx_status->flag |= RX_FLAG_DECRYPTED | 2598 RX_FLAG_IV_STRIPPED | 2599 RX_FLAG_MMIC_STRIPPED; 2600 2601 if (tid < IEEE80211_NUM_TIDS && 2602 first_msdu && 2603 check_pn_type == HTT_RX_PN_CHECK && 2604 (sec_type == HTT_SECURITY_AES_CCMP || 2605 sec_type == HTT_SECURITY_TKIP || 2606 sec_type == HTT_SECURITY_TKIP_NOMIC)) { 2607 u8 offset, *ivp, i; 2608 s8 keyidx = 0; 2609 __le64 pn48 = cpu_to_le64(new_pn.pn48); 2610 2611 hdr = (struct ieee80211_hdr *)skb->data; 2612 offset = ieee80211_hdrlen(hdr->frame_control); 2613 hdr->frame_control |= __cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2614 rx_status->flag &= ~RX_FLAG_IV_STRIPPED; 2615 2616 memmove(skb->data - IEEE80211_CCMP_HDR_LEN, 2617 skb->data, offset); 2618 skb_push(skb, IEEE80211_CCMP_HDR_LEN); 2619 ivp = skb->data + offset; 2620 memset(skb->data + offset, 0, IEEE80211_CCMP_HDR_LEN); 2621 /* Ext IV */ 2622 ivp[IEEE80211_WEP_IV_LEN - 1] |= ATH10K_IEEE80211_EXTIV; 2623 2624 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 2625 if (peer->keys[i] && 2626 peer->keys[i]->flags & IEEE80211_KEY_FLAG_PAIRWISE) 2627 keyidx = peer->keys[i]->keyidx; 2628 } 2629 2630 /* Key ID */ 2631 ivp[IEEE80211_WEP_IV_LEN - 1] |= keyidx << 6; 2632 2633 if (sec_type == HTT_SECURITY_AES_CCMP) { 2634 rx_status->flag |= RX_FLAG_MIC_STRIPPED; 2635 /* pn 0, pn 1 */ 2636 memcpy(skb->data + offset, &pn48, 2); 2637 /* pn 1, pn 3 , pn 34 , pn 5 */ 2638 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4); 2639 } else { 2640 rx_status->flag |= RX_FLAG_ICV_STRIPPED; 2641 /* TSC 0 */ 2642 memcpy(skb->data + offset + 2, &pn48, 1); 2643 /* TSC 1 */ 2644 memcpy(skb->data + offset, ((u8 *)&pn48) + 1, 1); 2645 /* TSC 2 , TSC 3 , TSC 4 , TSC 5*/ 2646 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4); 2647 } 2648 } 2649 } 2650 2651 if (tkip_mic_type == HTT_RX_TKIP_MIC) 2652 rx_status->flag &= ~RX_FLAG_IV_STRIPPED & 2653 ~RX_FLAG_MMIC_STRIPPED; 2654 2655 if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) 2656 rx_status->flag |= RX_FLAG_MMIC_ERROR; 2657 2658 if (!qos && tid < IEEE80211_NUM_TIDS) { 2659 u8 offset; 2660 __le16 qos_ctrl = 0; 2661 2662 hdr = (struct ieee80211_hdr *)skb->data; 2663 offset = ieee80211_hdrlen(hdr->frame_control); 2664 2665 hdr->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 2666 memmove(skb->data - IEEE80211_QOS_CTL_LEN, skb->data, offset); 2667 skb_push(skb, IEEE80211_QOS_CTL_LEN); 2668 qos_ctrl = cpu_to_le16(tid); 2669 memcpy(skb->data + offset, &qos_ctrl, IEEE80211_QOS_CTL_LEN); 2670 } 2671 2672 if (ar->napi.dev) 2673 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 2674 else 2675 ieee80211_rx_ni(ar->hw, skb); 2676 2677 /* We have delivered the skb to the upper layers (mac80211) so we 2678 * must not free it. 2679 */ 2680 return false; 2681 err: 2682 /* Tell the caller that it must free the skb since we have not 2683 * consumed it 2684 */ 2685 return true; 2686 } 2687 2688 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb, 2689 u16 head_len, 2690 u16 hdr_len) 2691 { 2692 u8 *ivp, *orig_hdr; 2693 2694 orig_hdr = skb->data; 2695 ivp = orig_hdr + hdr_len + head_len; 2696 2697 /* the ExtIV bit is always set to 1 for TKIP */ 2698 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2699 return -EINVAL; 2700 2701 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2702 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2703 skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN); 2704 return 0; 2705 } 2706 2707 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb, 2708 u16 head_len, 2709 u16 hdr_len) 2710 { 2711 u8 *ivp, *orig_hdr; 2712 2713 orig_hdr = skb->data; 2714 ivp = orig_hdr + hdr_len + head_len; 2715 2716 /* the ExtIV bit is always set to 1 for TKIP */ 2717 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2718 return -EINVAL; 2719 2720 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2721 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2722 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 2723 return 0; 2724 } 2725 2726 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb, 2727 u16 head_len, 2728 u16 hdr_len) 2729 { 2730 u8 *ivp, *orig_hdr; 2731 2732 orig_hdr = skb->data; 2733 ivp = orig_hdr + hdr_len + head_len; 2734 2735 /* the ExtIV bit is always set to 1 for CCMP */ 2736 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2737 return -EINVAL; 2738 2739 skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN); 2740 memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len); 2741 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 2742 return 0; 2743 } 2744 2745 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb, 2746 u16 head_len, 2747 u16 hdr_len) 2748 { 2749 u8 *orig_hdr; 2750 2751 orig_hdr = skb->data; 2752 2753 memmove(orig_hdr + IEEE80211_WEP_IV_LEN, 2754 orig_hdr, head_len + hdr_len); 2755 skb_pull(skb, IEEE80211_WEP_IV_LEN); 2756 skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN); 2757 return 0; 2758 } 2759 2760 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt, 2761 struct htt_rx_fragment_indication *rx, 2762 struct sk_buff *skb) 2763 { 2764 struct ath10k *ar = htt->ar; 2765 enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC; 2766 enum htt_txrx_sec_cast_type sec_index; 2767 struct htt_rx_indication_hl *rx_hl; 2768 enum htt_security_types sec_type; 2769 u32 tid, frag, seq, rx_desc_info; 2770 union htt_rx_pn_t new_pn = {0}; 2771 struct htt_hl_rx_desc *rx_desc; 2772 u16 peer_id, sc, hdr_space; 2773 union htt_rx_pn_t *last_pn; 2774 struct ieee80211_hdr *hdr; 2775 int ret, num_mpdu_ranges; 2776 struct ath10k_peer *peer; 2777 struct htt_resp *resp; 2778 size_t tot_hdr_len; 2779 2780 resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2781 skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2782 skb_trim(skb, skb->len - FCS_LEN); 2783 2784 peer_id = __le16_to_cpu(rx->peer_id); 2785 rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl); 2786 2787 spin_lock_bh(&ar->data_lock); 2788 peer = ath10k_peer_find_by_id(ar, peer_id); 2789 if (!peer) { 2790 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id); 2791 goto err; 2792 } 2793 2794 num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1), 2795 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2796 2797 tot_hdr_len = sizeof(struct htt_resp_hdr) + 2798 sizeof(rx_hl->hdr) + 2799 sizeof(rx_hl->ppdu) + 2800 sizeof(rx_hl->prefix) + 2801 sizeof(rx_hl->fw_desc) + 2802 sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges; 2803 2804 tid = MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2805 rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len); 2806 rx_desc_info = __le32_to_cpu(rx_desc->info); 2807 2808 hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len); 2809 2810 if (is_multicast_ether_addr(hdr->addr1)) { 2811 /* Discard the fragment with multicast DA */ 2812 goto err; 2813 } 2814 2815 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) { 2816 spin_unlock_bh(&ar->data_lock); 2817 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2818 HTT_RX_NON_PN_CHECK, 2819 HTT_RX_NON_TKIP_MIC); 2820 } 2821 2822 if (ieee80211_has_retry(hdr->frame_control)) 2823 goto err; 2824 2825 hdr_space = ieee80211_hdrlen(hdr->frame_control); 2826 sc = __le16_to_cpu(hdr->seq_ctrl); 2827 seq = IEEE80211_SEQ_TO_SN(sc); 2828 frag = sc & IEEE80211_SCTL_FRAG; 2829 2830 sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ? 2831 HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST; 2832 sec_type = peer->rx_pn[sec_index].sec_type; 2833 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2834 2835 switch (sec_type) { 2836 case HTT_SECURITY_TKIP: 2837 tkip_mic = HTT_RX_TKIP_MIC; 2838 ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb, 2839 tot_hdr_len + 2840 rx_hl->fw_desc.len, 2841 hdr_space); 2842 if (ret) 2843 goto err; 2844 break; 2845 case HTT_SECURITY_TKIP_NOMIC: 2846 ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb, 2847 tot_hdr_len + 2848 rx_hl->fw_desc.len, 2849 hdr_space); 2850 if (ret) 2851 goto err; 2852 break; 2853 case HTT_SECURITY_AES_CCMP: 2854 ret = ath10k_htt_rx_frag_ccmp_decap(skb, 2855 tot_hdr_len + rx_hl->fw_desc.len, 2856 hdr_space); 2857 if (ret) 2858 goto err; 2859 break; 2860 case HTT_SECURITY_WEP128: 2861 case HTT_SECURITY_WEP104: 2862 case HTT_SECURITY_WEP40: 2863 ret = ath10k_htt_rx_frag_wep_decap(skb, 2864 tot_hdr_len + rx_hl->fw_desc.len, 2865 hdr_space); 2866 if (ret) 2867 goto err; 2868 break; 2869 default: 2870 break; 2871 } 2872 2873 resp = (struct htt_resp *)(skb->data); 2874 2875 if (sec_type != HTT_SECURITY_AES_CCMP && 2876 sec_type != HTT_SECURITY_TKIP && 2877 sec_type != HTT_SECURITY_TKIP_NOMIC) { 2878 spin_unlock_bh(&ar->data_lock); 2879 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2880 HTT_RX_NON_PN_CHECK, 2881 HTT_RX_NON_TKIP_MIC); 2882 } 2883 2884 last_pn = &peer->frag_tids_last_pn[tid]; 2885 2886 if (frag == 0) { 2887 if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl)) 2888 goto err; 2889 2890 last_pn->pn48 = new_pn.pn48; 2891 peer->frag_tids_seq[tid] = seq; 2892 } else if (sec_type == HTT_SECURITY_AES_CCMP) { 2893 if (seq != peer->frag_tids_seq[tid]) 2894 goto err; 2895 2896 if (new_pn.pn48 != last_pn->pn48 + 1) 2897 goto err; 2898 2899 last_pn->pn48 = new_pn.pn48; 2900 last_pn = &peer->tids_last_pn[tid]; 2901 last_pn->pn48 = new_pn.pn48; 2902 } 2903 2904 spin_unlock_bh(&ar->data_lock); 2905 2906 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2907 HTT_RX_NON_PN_CHECK, tkip_mic); 2908 2909 err: 2910 spin_unlock_bh(&ar->data_lock); 2911 2912 /* Tell the caller that it must free the skb since we have not 2913 * consumed it 2914 */ 2915 return true; 2916 } 2917 2918 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt, 2919 struct htt_rx_indication *rx) 2920 { 2921 struct ath10k *ar = htt->ar; 2922 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2923 int num_mpdu_ranges; 2924 int i, mpdu_count = 0; 2925 u16 peer_id; 2926 u8 tid; 2927 2928 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2929 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2930 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2931 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2932 2933 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 2934 2935 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 2936 rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges)); 2937 2938 for (i = 0; i < num_mpdu_ranges; i++) 2939 mpdu_count += mpdu_ranges[i].mpdu_count; 2940 2941 atomic_add(mpdu_count, &htt->num_mpdus_ready); 2942 2943 ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges, 2944 num_mpdu_ranges); 2945 } 2946 2947 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, 2948 struct sk_buff *skb) 2949 { 2950 struct ath10k_htt *htt = &ar->htt; 2951 struct htt_resp *resp = (struct htt_resp *)skb->data; 2952 struct htt_tx_done tx_done = {}; 2953 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 2954 __le16 msdu_id, *msdus; 2955 bool rssi_enabled = false; 2956 u8 msdu_count = 0, num_airtime_records, tid; 2957 int i, htt_pad = 0; 2958 struct htt_data_tx_compl_ppdu_dur *ppdu_info; 2959 struct ath10k_peer *peer; 2960 u16 ppdu_info_offset = 0, peer_id; 2961 u32 tx_duration; 2962 2963 switch (status) { 2964 case HTT_DATA_TX_STATUS_NO_ACK: 2965 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 2966 break; 2967 case HTT_DATA_TX_STATUS_OK: 2968 tx_done.status = HTT_TX_COMPL_STATE_ACK; 2969 break; 2970 case HTT_DATA_TX_STATUS_DISCARD: 2971 case HTT_DATA_TX_STATUS_POSTPONE: 2972 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2973 break; 2974 default: 2975 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 2976 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2977 break; 2978 } 2979 2980 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 2981 resp->data_tx_completion.num_msdus); 2982 2983 msdu_count = resp->data_tx_completion.num_msdus; 2984 msdus = resp->data_tx_completion.msdus; 2985 rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp); 2986 2987 if (rssi_enabled) 2988 htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params, 2989 resp); 2990 2991 for (i = 0; i < msdu_count; i++) { 2992 msdu_id = msdus[i]; 2993 tx_done.msdu_id = __le16_to_cpu(msdu_id); 2994 2995 if (rssi_enabled) { 2996 /* Total no of MSDUs should be even, 2997 * if odd MSDUs are sent firmware fills 2998 * last msdu id with 0xffff 2999 */ 3000 if (msdu_count & 0x01) { 3001 msdu_id = msdus[msdu_count + i + 1 + htt_pad]; 3002 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 3003 } else { 3004 msdu_id = msdus[msdu_count + i + htt_pad]; 3005 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 3006 } 3007 } 3008 3009 /* kfifo_put: In practice firmware shouldn't fire off per-CE 3010 * interrupt and main interrupt (MSI/-X range case) for the same 3011 * HTC service so it should be safe to use kfifo_put w/o lock. 3012 * 3013 * From kfifo_put() documentation: 3014 * Note that with only one concurrent reader and one concurrent 3015 * writer, you don't need extra locking to use these macro. 3016 */ 3017 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) { 3018 ath10k_txrx_tx_unref(htt, &tx_done); 3019 } else if (!kfifo_put(&htt->txdone_fifo, tx_done)) { 3020 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", 3021 tx_done.msdu_id, tx_done.status); 3022 ath10k_txrx_tx_unref(htt, &tx_done); 3023 } 3024 } 3025 3026 if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT)) 3027 return; 3028 3029 ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count; 3030 3031 if (rssi_enabled) 3032 ppdu_info_offset += ppdu_info_offset; 3033 3034 if (resp->data_tx_completion.flags2 & 3035 (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT)) 3036 ppdu_info_offset += 2; 3037 3038 ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset]; 3039 num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK, 3040 __le32_to_cpu(ppdu_info->info0)); 3041 3042 for (i = 0; i < num_airtime_records; i++) { 3043 struct htt_data_tx_ppdu_dur *ppdu_dur; 3044 u32 info0; 3045 3046 ppdu_dur = &ppdu_info->ppdu_dur[i]; 3047 info0 = __le32_to_cpu(ppdu_dur->info0); 3048 3049 peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK, 3050 info0); 3051 rcu_read_lock(); 3052 spin_lock_bh(&ar->data_lock); 3053 3054 peer = ath10k_peer_find_by_id(ar, peer_id); 3055 if (!peer || !peer->sta) { 3056 spin_unlock_bh(&ar->data_lock); 3057 rcu_read_unlock(); 3058 continue; 3059 } 3060 3061 tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0) & 3062 IEEE80211_QOS_CTL_TID_MASK; 3063 tx_duration = __le32_to_cpu(ppdu_dur->tx_duration); 3064 3065 ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0); 3066 3067 spin_unlock_bh(&ar->data_lock); 3068 rcu_read_unlock(); 3069 } 3070 } 3071 3072 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 3073 { 3074 struct htt_rx_addba *ev = &resp->rx_addba; 3075 struct ath10k_peer *peer; 3076 struct ath10k_vif *arvif; 3077 u16 info0, tid, peer_id; 3078 3079 info0 = __le16_to_cpu(ev->info0); 3080 tid = MS(info0, HTT_RX_BA_INFO0_TID); 3081 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 3082 3083 ath10k_dbg(ar, ATH10K_DBG_HTT, 3084 "htt rx addba tid %u peer_id %u size %u\n", 3085 tid, peer_id, ev->window_size); 3086 3087 spin_lock_bh(&ar->data_lock); 3088 peer = ath10k_peer_find_by_id(ar, peer_id); 3089 if (!peer) { 3090 ath10k_warn(ar, "received addba event for invalid peer_id: %u\n", 3091 peer_id); 3092 spin_unlock_bh(&ar->data_lock); 3093 return; 3094 } 3095 3096 arvif = ath10k_get_arvif(ar, peer->vdev_id); 3097 if (!arvif) { 3098 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 3099 peer->vdev_id); 3100 spin_unlock_bh(&ar->data_lock); 3101 return; 3102 } 3103 3104 ath10k_dbg(ar, ATH10K_DBG_HTT, 3105 "htt rx start rx ba session sta %pM tid %u size %u\n", 3106 peer->addr, tid, ev->window_size); 3107 3108 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 3109 spin_unlock_bh(&ar->data_lock); 3110 } 3111 3112 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 3113 { 3114 struct htt_rx_delba *ev = &resp->rx_delba; 3115 struct ath10k_peer *peer; 3116 struct ath10k_vif *arvif; 3117 u16 info0, tid, peer_id; 3118 3119 info0 = __le16_to_cpu(ev->info0); 3120 tid = MS(info0, HTT_RX_BA_INFO0_TID); 3121 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 3122 3123 ath10k_dbg(ar, ATH10K_DBG_HTT, 3124 "htt rx delba tid %u peer_id %u\n", 3125 tid, peer_id); 3126 3127 spin_lock_bh(&ar->data_lock); 3128 peer = ath10k_peer_find_by_id(ar, peer_id); 3129 if (!peer) { 3130 ath10k_warn(ar, "received addba event for invalid peer_id: %u\n", 3131 peer_id); 3132 spin_unlock_bh(&ar->data_lock); 3133 return; 3134 } 3135 3136 arvif = ath10k_get_arvif(ar, peer->vdev_id); 3137 if (!arvif) { 3138 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 3139 peer->vdev_id); 3140 spin_unlock_bh(&ar->data_lock); 3141 return; 3142 } 3143 3144 ath10k_dbg(ar, ATH10K_DBG_HTT, 3145 "htt rx stop rx ba session sta %pM tid %u\n", 3146 peer->addr, tid); 3147 3148 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 3149 spin_unlock_bh(&ar->data_lock); 3150 } 3151 3152 static int ath10k_htt_rx_extract_amsdu(struct ath10k_hw_params *hw, 3153 struct sk_buff_head *list, 3154 struct sk_buff_head *amsdu) 3155 { 3156 struct sk_buff *msdu; 3157 struct htt_rx_desc *rxd; 3158 struct rx_msdu_end_common *rxd_msdu_end_common; 3159 3160 if (skb_queue_empty(list)) 3161 return -ENOBUFS; 3162 3163 if (WARN_ON(!skb_queue_empty(amsdu))) 3164 return -EINVAL; 3165 3166 while ((msdu = __skb_dequeue(list))) { 3167 __skb_queue_tail(amsdu, msdu); 3168 3169 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 3170 (void *)msdu->data - 3171 hw->rx_desc_ops->rx_desc_size); 3172 3173 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 3174 if (rxd_msdu_end_common->info0 & 3175 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 3176 break; 3177 } 3178 3179 msdu = skb_peek_tail(amsdu); 3180 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 3181 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 3182 3183 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 3184 if (!(rxd_msdu_end_common->info0 & 3185 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 3186 skb_queue_splice_init(amsdu, list); 3187 return -EAGAIN; 3188 } 3189 3190 return 0; 3191 } 3192 3193 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 3194 struct sk_buff *skb) 3195 { 3196 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3197 3198 if (!ieee80211_has_protected(hdr->frame_control)) 3199 return; 3200 3201 /* Offloaded frames are already decrypted but firmware insists they are 3202 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 3203 * will drop the frame. 3204 */ 3205 3206 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 3207 status->flag |= RX_FLAG_DECRYPTED | 3208 RX_FLAG_IV_STRIPPED | 3209 RX_FLAG_MMIC_STRIPPED; 3210 } 3211 3212 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 3213 struct sk_buff_head *list) 3214 { 3215 struct ath10k_htt *htt = &ar->htt; 3216 struct ieee80211_rx_status *status = &htt->rx_status; 3217 struct htt_rx_offload_msdu *rx; 3218 struct sk_buff *msdu; 3219 size_t offset; 3220 3221 while ((msdu = __skb_dequeue(list))) { 3222 /* Offloaded frames don't have Rx descriptor. Instead they have 3223 * a short meta information header. 3224 */ 3225 3226 rx = (void *)msdu->data; 3227 3228 skb_put(msdu, sizeof(*rx)); 3229 skb_pull(msdu, sizeof(*rx)); 3230 3231 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 3232 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 3233 dev_kfree_skb_any(msdu); 3234 continue; 3235 } 3236 3237 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 3238 3239 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 3240 * actual payload is unaligned. Align the frame. Otherwise 3241 * mac80211 complains. This shouldn't reduce performance much 3242 * because these offloaded frames are rare. 3243 */ 3244 offset = 4 - ((unsigned long)msdu->data & 3); 3245 skb_put(msdu, offset); 3246 memmove(msdu->data + offset, msdu->data, msdu->len); 3247 skb_pull(msdu, offset); 3248 3249 /* FIXME: The frame is NWifi. Re-construct QoS Control 3250 * if possible later. 3251 */ 3252 3253 memset(status, 0, sizeof(*status)); 3254 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 3255 3256 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 3257 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 3258 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 3259 } 3260 } 3261 3262 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 3263 { 3264 struct ath10k_htt *htt = &ar->htt; 3265 struct htt_resp *resp = (void *)skb->data; 3266 struct ieee80211_rx_status *status = &htt->rx_status; 3267 struct sk_buff_head list; 3268 struct sk_buff_head amsdu; 3269 u16 peer_id; 3270 u16 msdu_count; 3271 u8 vdev_id; 3272 u8 tid; 3273 bool offload; 3274 bool frag; 3275 int ret; 3276 3277 lockdep_assert_held(&htt->rx_ring.lock); 3278 3279 if (htt->rx_confused) 3280 return -EIO; 3281 3282 skb_pull(skb, sizeof(resp->hdr)); 3283 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 3284 3285 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 3286 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 3287 vdev_id = resp->rx_in_ord_ind.vdev_id; 3288 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 3289 offload = !!(resp->rx_in_ord_ind.info & 3290 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 3291 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 3292 3293 ath10k_dbg(ar, ATH10K_DBG_HTT, 3294 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 3295 vdev_id, peer_id, tid, offload, frag, msdu_count); 3296 3297 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) { 3298 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 3299 return -EINVAL; 3300 } 3301 3302 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 3303 * extracted and processed. 3304 */ 3305 __skb_queue_head_init(&list); 3306 if (ar->hw_params.target_64bit) 3307 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind, 3308 &list); 3309 else 3310 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind, 3311 &list); 3312 3313 if (ret < 0) { 3314 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 3315 htt->rx_confused = true; 3316 return -EIO; 3317 } 3318 3319 /* Offloaded frames are very different and need to be handled 3320 * separately. 3321 */ 3322 if (offload) 3323 ath10k_htt_rx_h_rx_offload(ar, &list); 3324 3325 while (!skb_queue_empty(&list)) { 3326 __skb_queue_head_init(&amsdu); 3327 ret = ath10k_htt_rx_extract_amsdu(&ar->hw_params, &list, &amsdu); 3328 switch (ret) { 3329 case 0: 3330 /* Note: The in-order indication may report interleaved 3331 * frames from different PPDUs meaning reported rx rate 3332 * to mac80211 isn't accurate/reliable. It's still 3333 * better to report something than nothing though. This 3334 * should still give an idea about rx rate to the user. 3335 */ 3336 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 3337 ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL); 3338 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL, 3339 NULL, peer_id, frag); 3340 ath10k_htt_rx_h_enqueue(ar, &amsdu, status); 3341 break; 3342 case -EAGAIN: 3343 fallthrough; 3344 default: 3345 /* Should not happen. */ 3346 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 3347 htt->rx_confused = true; 3348 __skb_queue_purge(&list); 3349 return -EIO; 3350 } 3351 } 3352 return ret; 3353 } 3354 3355 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, 3356 const __le32 *resp_ids, 3357 int num_resp_ids) 3358 { 3359 int i; 3360 u32 resp_id; 3361 3362 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", 3363 num_resp_ids); 3364 3365 for (i = 0; i < num_resp_ids; i++) { 3366 resp_id = le32_to_cpu(resp_ids[i]); 3367 3368 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", 3369 resp_id); 3370 3371 /* TODO: free resp_id */ 3372 } 3373 } 3374 3375 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) 3376 { 3377 struct ieee80211_hw *hw = ar->hw; 3378 struct ieee80211_txq *txq; 3379 struct htt_resp *resp = (struct htt_resp *)skb->data; 3380 struct htt_tx_fetch_record *record; 3381 size_t len; 3382 size_t max_num_bytes; 3383 size_t max_num_msdus; 3384 size_t num_bytes; 3385 size_t num_msdus; 3386 const __le32 *resp_ids; 3387 u16 num_records; 3388 u16 num_resp_ids; 3389 u16 peer_id; 3390 u8 tid; 3391 int ret; 3392 int i; 3393 bool may_tx; 3394 3395 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); 3396 3397 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); 3398 if (unlikely(skb->len < len)) { 3399 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); 3400 return; 3401 } 3402 3403 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); 3404 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); 3405 3406 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; 3407 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; 3408 3409 if (unlikely(skb->len < len)) { 3410 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); 3411 return; 3412 } 3413 3414 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %u num resps %u seq %u\n", 3415 num_records, num_resp_ids, 3416 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); 3417 3418 if (!ar->htt.tx_q_state.enabled) { 3419 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); 3420 return; 3421 } 3422 3423 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { 3424 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); 3425 return; 3426 } 3427 3428 rcu_read_lock(); 3429 3430 for (i = 0; i < num_records; i++) { 3431 record = &resp->tx_fetch_ind.records[i]; 3432 peer_id = MS(le16_to_cpu(record->info), 3433 HTT_TX_FETCH_RECORD_INFO_PEER_ID); 3434 tid = MS(le16_to_cpu(record->info), 3435 HTT_TX_FETCH_RECORD_INFO_TID); 3436 max_num_msdus = le16_to_cpu(record->num_msdus); 3437 max_num_bytes = le32_to_cpu(record->num_bytes); 3438 3439 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %u tid %u msdus %zu bytes %zu\n", 3440 i, peer_id, tid, max_num_msdus, max_num_bytes); 3441 3442 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3443 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3444 ath10k_warn(ar, "received out of range peer_id %u tid %u\n", 3445 peer_id, tid); 3446 continue; 3447 } 3448 3449 spin_lock_bh(&ar->data_lock); 3450 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3451 spin_unlock_bh(&ar->data_lock); 3452 3453 /* It is okay to release the lock and use txq because RCU read 3454 * lock is held. 3455 */ 3456 3457 if (unlikely(!txq)) { 3458 ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n", 3459 peer_id, tid); 3460 continue; 3461 } 3462 3463 num_msdus = 0; 3464 num_bytes = 0; 3465 3466 ieee80211_txq_schedule_start(hw, txq->ac); 3467 may_tx = ieee80211_txq_may_transmit(hw, txq); 3468 while (num_msdus < max_num_msdus && 3469 num_bytes < max_num_bytes) { 3470 if (!may_tx) 3471 break; 3472 3473 ret = ath10k_mac_tx_push_txq(hw, txq); 3474 if (ret < 0) 3475 break; 3476 3477 num_msdus++; 3478 num_bytes += ret; 3479 } 3480 ieee80211_return_txq(hw, txq, false); 3481 ieee80211_txq_schedule_end(hw, txq->ac); 3482 3483 record->num_msdus = cpu_to_le16(num_msdus); 3484 record->num_bytes = cpu_to_le32(num_bytes); 3485 3486 ath10k_htt_tx_txq_recalc(hw, txq); 3487 } 3488 3489 rcu_read_unlock(); 3490 3491 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); 3492 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); 3493 3494 ret = ath10k_htt_tx_fetch_resp(ar, 3495 resp->tx_fetch_ind.token, 3496 resp->tx_fetch_ind.fetch_seq_num, 3497 resp->tx_fetch_ind.records, 3498 num_records); 3499 if (unlikely(ret)) { 3500 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", 3501 le32_to_cpu(resp->tx_fetch_ind.token), ret); 3502 /* FIXME: request fw restart */ 3503 } 3504 3505 ath10k_htt_tx_txq_sync(ar); 3506 } 3507 3508 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, 3509 struct sk_buff *skb) 3510 { 3511 const struct htt_resp *resp = (void *)skb->data; 3512 size_t len; 3513 int num_resp_ids; 3514 3515 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); 3516 3517 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); 3518 if (unlikely(skb->len < len)) { 3519 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); 3520 return; 3521 } 3522 3523 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); 3524 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; 3525 3526 if (unlikely(skb->len < len)) { 3527 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); 3528 return; 3529 } 3530 3531 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, 3532 resp->tx_fetch_confirm.resp_ids, 3533 num_resp_ids); 3534 } 3535 3536 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, 3537 struct sk_buff *skb) 3538 { 3539 const struct htt_resp *resp = (void *)skb->data; 3540 const struct htt_tx_mode_switch_record *record; 3541 struct ieee80211_txq *txq; 3542 struct ath10k_txq *artxq; 3543 size_t len; 3544 size_t num_records; 3545 enum htt_tx_mode_switch_mode mode; 3546 bool enable; 3547 u16 info0; 3548 u16 info1; 3549 u16 threshold; 3550 u16 peer_id; 3551 u8 tid; 3552 int i; 3553 3554 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); 3555 3556 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); 3557 if (unlikely(skb->len < len)) { 3558 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); 3559 return; 3560 } 3561 3562 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); 3563 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); 3564 3565 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); 3566 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3567 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); 3568 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3569 3570 ath10k_dbg(ar, ATH10K_DBG_HTT, 3571 "htt rx tx mode switch ind info0 0x%04x info1 0x%04x enable %d num records %zd mode %d threshold %u\n", 3572 info0, info1, enable, num_records, mode, threshold); 3573 3574 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; 3575 3576 if (unlikely(skb->len < len)) { 3577 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); 3578 return; 3579 } 3580 3581 switch (mode) { 3582 case HTT_TX_MODE_SWITCH_PUSH: 3583 case HTT_TX_MODE_SWITCH_PUSH_PULL: 3584 break; 3585 default: 3586 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", 3587 mode); 3588 return; 3589 } 3590 3591 if (!enable) 3592 return; 3593 3594 ar->htt.tx_q_state.enabled = enable; 3595 ar->htt.tx_q_state.mode = mode; 3596 ar->htt.tx_q_state.num_push_allowed = threshold; 3597 3598 rcu_read_lock(); 3599 3600 for (i = 0; i < num_records; i++) { 3601 record = &resp->tx_mode_switch_ind.records[i]; 3602 info0 = le16_to_cpu(record->info0); 3603 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); 3604 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); 3605 3606 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3607 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3608 ath10k_warn(ar, "received out of range peer_id %u tid %u\n", 3609 peer_id, tid); 3610 continue; 3611 } 3612 3613 spin_lock_bh(&ar->data_lock); 3614 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3615 spin_unlock_bh(&ar->data_lock); 3616 3617 /* It is okay to release the lock and use txq because RCU read 3618 * lock is held. 3619 */ 3620 3621 if (unlikely(!txq)) { 3622 ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n", 3623 peer_id, tid); 3624 continue; 3625 } 3626 3627 spin_lock_bh(&ar->htt.tx_lock); 3628 artxq = (void *)txq->drv_priv; 3629 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); 3630 spin_unlock_bh(&ar->htt.tx_lock); 3631 } 3632 3633 rcu_read_unlock(); 3634 3635 ath10k_mac_tx_push_pending(ar); 3636 } 3637 3638 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 3639 { 3640 bool release; 3641 3642 release = ath10k_htt_t2h_msg_handler(ar, skb); 3643 3644 /* Free the indication buffer */ 3645 if (release) 3646 dev_kfree_skb_any(skb); 3647 } 3648 3649 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate) 3650 { 3651 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 3652 18, 24, 36, 48, 54}; 3653 int i; 3654 3655 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { 3656 if (rate == legacy_rates[i]) 3657 return i; 3658 } 3659 3660 ath10k_warn(ar, "Invalid legacy rate %d peer stats", rate); 3661 return -EINVAL; 3662 } 3663 3664 static void 3665 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar, 3666 struct ath10k_sta *arsta, 3667 struct ath10k_per_peer_tx_stats *pstats, 3668 s8 legacy_rate_idx) 3669 { 3670 struct rate_info *txrate = &arsta->txrate; 3671 struct ath10k_htt_tx_stats *tx_stats; 3672 int idx, ht_idx, gi, mcs, bw, nss; 3673 unsigned long flags; 3674 3675 if (!arsta->tx_stats) 3676 return; 3677 3678 tx_stats = arsta->tx_stats; 3679 flags = txrate->flags; 3680 gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags); 3681 mcs = ATH10K_HW_MCS_RATE(pstats->ratecode); 3682 bw = txrate->bw; 3683 nss = txrate->nss; 3684 ht_idx = mcs + (nss - 1) * 8; 3685 idx = mcs * 8 + 8 * 10 * (nss - 1); 3686 idx += bw * 2 + gi; 3687 3688 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name] 3689 3690 if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) { 3691 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes; 3692 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts; 3693 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes; 3694 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts; 3695 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes; 3696 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts; 3697 } else if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3698 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes; 3699 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts; 3700 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes; 3701 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts; 3702 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes; 3703 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts; 3704 } else { 3705 mcs = legacy_rate_idx; 3706 3707 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes; 3708 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts; 3709 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes; 3710 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts; 3711 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes; 3712 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts; 3713 } 3714 3715 if (ATH10K_HW_AMPDU(pstats->flags)) { 3716 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags); 3717 3718 if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3719 STATS_OP_FMT(AMPDU).ht[0][ht_idx] += 3720 pstats->succ_bytes + pstats->retry_bytes; 3721 STATS_OP_FMT(AMPDU).ht[1][ht_idx] += 3722 pstats->succ_pkts + pstats->retry_pkts; 3723 } else { 3724 STATS_OP_FMT(AMPDU).vht[0][mcs] += 3725 pstats->succ_bytes + pstats->retry_bytes; 3726 STATS_OP_FMT(AMPDU).vht[1][mcs] += 3727 pstats->succ_pkts + pstats->retry_pkts; 3728 } 3729 STATS_OP_FMT(AMPDU).bw[0][bw] += 3730 pstats->succ_bytes + pstats->retry_bytes; 3731 STATS_OP_FMT(AMPDU).nss[0][nss - 1] += 3732 pstats->succ_bytes + pstats->retry_bytes; 3733 STATS_OP_FMT(AMPDU).gi[0][gi] += 3734 pstats->succ_bytes + pstats->retry_bytes; 3735 STATS_OP_FMT(AMPDU).rate_table[0][idx] += 3736 pstats->succ_bytes + pstats->retry_bytes; 3737 STATS_OP_FMT(AMPDU).bw[1][bw] += 3738 pstats->succ_pkts + pstats->retry_pkts; 3739 STATS_OP_FMT(AMPDU).nss[1][nss - 1] += 3740 pstats->succ_pkts + pstats->retry_pkts; 3741 STATS_OP_FMT(AMPDU).gi[1][gi] += 3742 pstats->succ_pkts + pstats->retry_pkts; 3743 STATS_OP_FMT(AMPDU).rate_table[1][idx] += 3744 pstats->succ_pkts + pstats->retry_pkts; 3745 } else { 3746 tx_stats->ack_fails += 3747 ATH10K_HW_BA_FAIL(pstats->flags); 3748 } 3749 3750 STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes; 3751 STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes; 3752 STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes; 3753 3754 STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts; 3755 STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts; 3756 STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts; 3757 3758 STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes; 3759 STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes; 3760 STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes; 3761 3762 STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts; 3763 STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts; 3764 STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts; 3765 3766 STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes; 3767 STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes; 3768 STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes; 3769 3770 STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts; 3771 STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts; 3772 STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts; 3773 3774 if (txrate->flags >= RATE_INFO_FLAGS_MCS) { 3775 STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes; 3776 STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts; 3777 STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes; 3778 STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts; 3779 STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes; 3780 STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts; 3781 } 3782 3783 tx_stats->tx_duration += pstats->duration; 3784 } 3785 3786 static void 3787 ath10k_update_per_peer_tx_stats(struct ath10k *ar, 3788 struct ieee80211_sta *sta, 3789 struct ath10k_per_peer_tx_stats *peer_stats) 3790 { 3791 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 3792 struct ieee80211_chanctx_conf *conf = NULL; 3793 u8 rate = 0, sgi; 3794 s8 rate_idx = 0; 3795 bool skip_auto_rate; 3796 struct rate_info txrate; 3797 3798 lockdep_assert_held(&ar->data_lock); 3799 3800 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); 3801 txrate.bw = ATH10K_HW_BW(peer_stats->flags); 3802 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); 3803 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); 3804 sgi = ATH10K_HW_GI(peer_stats->flags); 3805 skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags); 3806 3807 /* Firmware's rate control skips broadcast/management frames, 3808 * if host has configure fixed rates and in some other special cases. 3809 */ 3810 if (skip_auto_rate) 3811 return; 3812 3813 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) { 3814 ath10k_warn(ar, "Invalid VHT mcs %d peer stats", txrate.mcs); 3815 return; 3816 } 3817 3818 if (txrate.flags == WMI_RATE_PREAMBLE_HT && 3819 (txrate.mcs > 7 || txrate.nss < 1)) { 3820 ath10k_warn(ar, "Invalid HT mcs %d nss %d peer stats", 3821 txrate.mcs, txrate.nss); 3822 return; 3823 } 3824 3825 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 3826 memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status)); 3827 if (txrate.flags == WMI_RATE_PREAMBLE_CCK || 3828 txrate.flags == WMI_RATE_PREAMBLE_OFDM) { 3829 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); 3830 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ 3831 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK) 3832 rate = 5; 3833 rate_idx = ath10k_get_legacy_rate_idx(ar, rate); 3834 if (rate_idx < 0) 3835 return; 3836 arsta->txrate.legacy = rate; 3837 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { 3838 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 3839 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1); 3840 } else { 3841 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 3842 arsta->txrate.mcs = txrate.mcs; 3843 } 3844 3845 switch (txrate.flags) { 3846 case WMI_RATE_PREAMBLE_OFDM: 3847 if (arsta->arvif && arsta->arvif->vif) 3848 conf = rcu_dereference(arsta->arvif->vif->bss_conf.chanctx_conf); 3849 if (conf && conf->def.chan->band == NL80211_BAND_5GHZ) 3850 arsta->tx_info.status.rates[0].idx = rate_idx - 4; 3851 break; 3852 case WMI_RATE_PREAMBLE_CCK: 3853 arsta->tx_info.status.rates[0].idx = rate_idx; 3854 if (sgi) 3855 arsta->tx_info.status.rates[0].flags |= 3856 (IEEE80211_TX_RC_USE_SHORT_PREAMBLE | 3857 IEEE80211_TX_RC_SHORT_GI); 3858 break; 3859 case WMI_RATE_PREAMBLE_HT: 3860 arsta->tx_info.status.rates[0].idx = 3861 txrate.mcs + ((txrate.nss - 1) * 8); 3862 if (sgi) 3863 arsta->tx_info.status.rates[0].flags |= 3864 IEEE80211_TX_RC_SHORT_GI; 3865 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS; 3866 break; 3867 case WMI_RATE_PREAMBLE_VHT: 3868 ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0], 3869 txrate.mcs, txrate.nss); 3870 if (sgi) 3871 arsta->tx_info.status.rates[0].flags |= 3872 IEEE80211_TX_RC_SHORT_GI; 3873 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS; 3874 break; 3875 } 3876 3877 arsta->txrate.nss = txrate.nss; 3878 arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw); 3879 arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate); 3880 if (sgi) 3881 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 3882 3883 switch (arsta->txrate.bw) { 3884 case RATE_INFO_BW_40: 3885 arsta->tx_info.status.rates[0].flags |= 3886 IEEE80211_TX_RC_40_MHZ_WIDTH; 3887 break; 3888 case RATE_INFO_BW_80: 3889 arsta->tx_info.status.rates[0].flags |= 3890 IEEE80211_TX_RC_80_MHZ_WIDTH; 3891 break; 3892 case RATE_INFO_BW_160: 3893 arsta->tx_info.status.rates[0].flags |= 3894 IEEE80211_TX_RC_160_MHZ_WIDTH; 3895 break; 3896 } 3897 3898 if (peer_stats->succ_pkts) { 3899 arsta->tx_info.flags = IEEE80211_TX_STAT_ACK; 3900 arsta->tx_info.status.rates[0].count = 1; 3901 ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info); 3902 } 3903 3904 if (ar->htt.disable_tx_comp) { 3905 arsta->tx_failed += peer_stats->failed_pkts; 3906 ath10k_dbg(ar, ATH10K_DBG_HTT, "tx failed %d\n", 3907 arsta->tx_failed); 3908 } 3909 3910 arsta->tx_retries += peer_stats->retry_pkts; 3911 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx retries %d", arsta->tx_retries); 3912 3913 if (ath10k_debug_is_extd_tx_stats_enabled(ar)) 3914 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats, 3915 rate_idx); 3916 } 3917 3918 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, 3919 struct sk_buff *skb) 3920 { 3921 struct htt_resp *resp = (struct htt_resp *)skb->data; 3922 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 3923 struct htt_per_peer_tx_stats_ind *tx_stats; 3924 struct ieee80211_sta *sta; 3925 struct ath10k_peer *peer; 3926 int peer_id, i; 3927 u8 ppdu_len, num_ppdu; 3928 3929 num_ppdu = resp->peer_tx_stats.num_ppdu; 3930 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); 3931 3932 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { 3933 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); 3934 return; 3935 } 3936 3937 tx_stats = (struct htt_per_peer_tx_stats_ind *) 3938 (resp->peer_tx_stats.payload); 3939 peer_id = __le16_to_cpu(tx_stats->peer_id); 3940 3941 rcu_read_lock(); 3942 spin_lock_bh(&ar->data_lock); 3943 peer = ath10k_peer_find_by_id(ar, peer_id); 3944 if (!peer || !peer->sta) { 3945 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", 3946 peer_id); 3947 goto out; 3948 } 3949 3950 sta = peer->sta; 3951 for (i = 0; i < num_ppdu; i++) { 3952 tx_stats = (struct htt_per_peer_tx_stats_ind *) 3953 (resp->peer_tx_stats.payload + i * ppdu_len); 3954 3955 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); 3956 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); 3957 p_tx_stats->failed_bytes = 3958 __le32_to_cpu(tx_stats->failed_bytes); 3959 p_tx_stats->ratecode = tx_stats->ratecode; 3960 p_tx_stats->flags = tx_stats->flags; 3961 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); 3962 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); 3963 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); 3964 p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration); 3965 3966 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 3967 } 3968 3969 out: 3970 spin_unlock_bh(&ar->data_lock); 3971 rcu_read_unlock(); 3972 } 3973 3974 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data) 3975 { 3976 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data; 3977 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 3978 struct ath10k_10_2_peer_tx_stats *tx_stats; 3979 struct ieee80211_sta *sta; 3980 struct ath10k_peer *peer; 3981 u16 log_type = __le16_to_cpu(hdr->log_type); 3982 u32 peer_id = 0, i; 3983 3984 if (log_type != ATH_PKTLOG_TYPE_TX_STAT) 3985 return; 3986 3987 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) + 3988 ATH10K_10_2_TX_STATS_OFFSET); 3989 3990 if (!tx_stats->tx_ppdu_cnt) 3991 return; 3992 3993 peer_id = tx_stats->peer_id; 3994 3995 rcu_read_lock(); 3996 spin_lock_bh(&ar->data_lock); 3997 peer = ath10k_peer_find_by_id(ar, peer_id); 3998 if (!peer || !peer->sta) { 3999 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n", 4000 peer_id); 4001 goto out; 4002 } 4003 4004 sta = peer->sta; 4005 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) { 4006 p_tx_stats->succ_bytes = 4007 __le16_to_cpu(tx_stats->success_bytes[i]); 4008 p_tx_stats->retry_bytes = 4009 __le16_to_cpu(tx_stats->retry_bytes[i]); 4010 p_tx_stats->failed_bytes = 4011 __le16_to_cpu(tx_stats->failed_bytes[i]); 4012 p_tx_stats->ratecode = tx_stats->ratecode[i]; 4013 p_tx_stats->flags = tx_stats->flags[i]; 4014 p_tx_stats->succ_pkts = tx_stats->success_pkts[i]; 4015 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i]; 4016 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i]; 4017 4018 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 4019 } 4020 spin_unlock_bh(&ar->data_lock); 4021 rcu_read_unlock(); 4022 4023 return; 4024 4025 out: 4026 spin_unlock_bh(&ar->data_lock); 4027 rcu_read_unlock(); 4028 } 4029 4030 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type) 4031 { 4032 switch (sec_type) { 4033 case HTT_SECURITY_TKIP: 4034 case HTT_SECURITY_TKIP_NOMIC: 4035 case HTT_SECURITY_AES_CCMP: 4036 return 48; 4037 default: 4038 return 0; 4039 } 4040 } 4041 4042 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar, 4043 struct htt_security_indication *ev) 4044 { 4045 enum htt_txrx_sec_cast_type sec_index; 4046 enum htt_security_types sec_type; 4047 struct ath10k_peer *peer; 4048 4049 spin_lock_bh(&ar->data_lock); 4050 4051 peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id)); 4052 if (!peer) { 4053 ath10k_warn(ar, "failed to find peer id %d for security indication", 4054 __le16_to_cpu(ev->peer_id)); 4055 goto out; 4056 } 4057 4058 sec_type = MS(ev->flags, HTT_SECURITY_TYPE); 4059 4060 if (ev->flags & HTT_SECURITY_IS_UNICAST) 4061 sec_index = HTT_TXRX_SEC_UCAST; 4062 else 4063 sec_index = HTT_TXRX_SEC_MCAST; 4064 4065 peer->rx_pn[sec_index].sec_type = sec_type; 4066 peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type); 4067 4068 memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid)); 4069 memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn)); 4070 4071 out: 4072 spin_unlock_bh(&ar->data_lock); 4073 } 4074 4075 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 4076 { 4077 struct ath10k_htt *htt = &ar->htt; 4078 struct htt_resp *resp = (struct htt_resp *)skb->data; 4079 enum htt_t2h_msg_type type; 4080 4081 /* confirm alignment */ 4082 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 4083 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 4084 4085 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 4086 resp->hdr.msg_type); 4087 4088 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 4089 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 4090 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 4091 return true; 4092 } 4093 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 4094 4095 switch (type) { 4096 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 4097 htt->target_version_major = resp->ver_resp.major; 4098 htt->target_version_minor = resp->ver_resp.minor; 4099 complete(&htt->target_version_received); 4100 break; 4101 } 4102 case HTT_T2H_MSG_TYPE_RX_IND: 4103 if (ar->bus_param.dev_type != ATH10K_DEV_TYPE_HL) { 4104 ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind); 4105 } else { 4106 skb_queue_tail(&htt->rx_indication_head, skb); 4107 return false; 4108 } 4109 break; 4110 case HTT_T2H_MSG_TYPE_PEER_MAP: { 4111 struct htt_peer_map_event ev = { 4112 .vdev_id = resp->peer_map.vdev_id, 4113 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 4114 }; 4115 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 4116 ath10k_peer_map_event(htt, &ev); 4117 break; 4118 } 4119 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 4120 struct htt_peer_unmap_event ev = { 4121 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 4122 }; 4123 ath10k_peer_unmap_event(htt, &ev); 4124 break; 4125 } 4126 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 4127 struct htt_tx_done tx_done = {}; 4128 struct ath10k_htt *htt = &ar->htt; 4129 struct ath10k_htc *htc = &ar->htc; 4130 struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid]; 4131 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 4132 int info = __le32_to_cpu(resp->mgmt_tx_completion.info); 4133 4134 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 4135 4136 switch (status) { 4137 case HTT_MGMT_TX_STATUS_OK: 4138 tx_done.status = HTT_TX_COMPL_STATE_ACK; 4139 if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, 4140 ar->wmi.svc_map) && 4141 (resp->mgmt_tx_completion.flags & 4142 HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) { 4143 tx_done.ack_rssi = 4144 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK, 4145 info); 4146 } 4147 break; 4148 case HTT_MGMT_TX_STATUS_RETRY: 4149 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 4150 break; 4151 case HTT_MGMT_TX_STATUS_DROP: 4152 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 4153 break; 4154 } 4155 4156 if (htt->disable_tx_comp) { 4157 spin_lock_bh(&htc->tx_lock); 4158 ep->tx_credits++; 4159 spin_unlock_bh(&htc->tx_lock); 4160 } 4161 4162 status = ath10k_txrx_tx_unref(htt, &tx_done); 4163 if (!status) { 4164 spin_lock_bh(&htt->tx_lock); 4165 ath10k_htt_tx_mgmt_dec_pending(htt); 4166 spin_unlock_bh(&htt->tx_lock); 4167 } 4168 break; 4169 } 4170 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 4171 ath10k_htt_rx_tx_compl_ind(htt->ar, skb); 4172 break; 4173 case HTT_T2H_MSG_TYPE_SEC_IND: { 4174 struct ath10k *ar = htt->ar; 4175 struct htt_security_indication *ev = &resp->security_indication; 4176 4177 ath10k_htt_rx_sec_ind_handler(ar, ev); 4178 ath10k_dbg(ar, ATH10K_DBG_HTT, 4179 "sec ind peer_id %d unicast %d type %d\n", 4180 __le16_to_cpu(ev->peer_id), 4181 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 4182 MS(ev->flags, HTT_SECURITY_TYPE)); 4183 complete(&ar->install_key_done); 4184 break; 4185 } 4186 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 4187 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 4188 skb->data, skb->len); 4189 atomic_inc(&htt->num_mpdus_ready); 4190 4191 return ath10k_htt_rx_proc_rx_frag_ind(htt, 4192 &resp->rx_frag_ind, 4193 skb); 4194 } 4195 case HTT_T2H_MSG_TYPE_TEST: 4196 break; 4197 case HTT_T2H_MSG_TYPE_STATS_CONF: 4198 trace_ath10k_htt_stats(ar, skb->data, skb->len); 4199 break; 4200 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 4201 /* Firmware can return tx frames if it's unable to fully 4202 * process them and suspects host may be able to fix it. ath10k 4203 * sends all tx frames as already inspected so this shouldn't 4204 * happen unless fw has a bug. 4205 */ 4206 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 4207 break; 4208 case HTT_T2H_MSG_TYPE_RX_ADDBA: 4209 ath10k_htt_rx_addba(ar, resp); 4210 break; 4211 case HTT_T2H_MSG_TYPE_RX_DELBA: 4212 ath10k_htt_rx_delba(ar, resp); 4213 break; 4214 case HTT_T2H_MSG_TYPE_PKTLOG: { 4215 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 4216 skb->len - 4217 offsetof(struct htt_resp, 4218 pktlog_msg.payload)); 4219 4220 if (ath10k_peer_stats_enabled(ar)) 4221 ath10k_fetch_10_2_tx_stats(ar, 4222 resp->pktlog_msg.payload); 4223 break; 4224 } 4225 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 4226 /* Ignore this event because mac80211 takes care of Rx 4227 * aggregation reordering. 4228 */ 4229 break; 4230 } 4231 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 4232 skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 4233 return false; 4234 } 4235 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: { 4236 struct ath10k_htt *htt = &ar->htt; 4237 struct ath10k_htc *htc = &ar->htc; 4238 struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid]; 4239 u32 msg_word = __le32_to_cpu(*(__le32 *)resp); 4240 int htt_credit_delta; 4241 4242 htt_credit_delta = HTT_TX_CREDIT_DELTA_ABS_GET(msg_word); 4243 if (HTT_TX_CREDIT_SIGN_BIT_GET(msg_word)) 4244 htt_credit_delta = -htt_credit_delta; 4245 4246 ath10k_dbg(ar, ATH10K_DBG_HTT, 4247 "htt credit update delta %d\n", 4248 htt_credit_delta); 4249 4250 if (htt->disable_tx_comp) { 4251 spin_lock_bh(&htc->tx_lock); 4252 ep->tx_credits += htt_credit_delta; 4253 spin_unlock_bh(&htc->tx_lock); 4254 ath10k_dbg(ar, ATH10K_DBG_HTT, 4255 "htt credit total %d\n", 4256 ep->tx_credits); 4257 ep->ep_ops.ep_tx_credits(htc->ar); 4258 } 4259 break; 4260 } 4261 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { 4262 u32 phymode = __le32_to_cpu(resp->chan_change.phymode); 4263 u32 freq = __le32_to_cpu(resp->chan_change.freq); 4264 4265 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq); 4266 ath10k_dbg(ar, ATH10K_DBG_HTT, 4267 "htt chan change freq %u phymode %s\n", 4268 freq, ath10k_wmi_phymode_str(phymode)); 4269 break; 4270 } 4271 case HTT_T2H_MSG_TYPE_AGGR_CONF: 4272 break; 4273 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { 4274 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); 4275 4276 if (!tx_fetch_ind) { 4277 ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); 4278 break; 4279 } 4280 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); 4281 break; 4282 } 4283 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: 4284 ath10k_htt_rx_tx_fetch_confirm(ar, skb); 4285 break; 4286 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: 4287 ath10k_htt_rx_tx_mode_switch_ind(ar, skb); 4288 break; 4289 case HTT_T2H_MSG_TYPE_PEER_STATS: 4290 ath10k_htt_fetch_peer_stats(ar, skb); 4291 break; 4292 case HTT_T2H_MSG_TYPE_EN_STATS: 4293 default: 4294 ath10k_warn(ar, "htt event (%d) not handled\n", 4295 resp->hdr.msg_type); 4296 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 4297 skb->data, skb->len); 4298 break; 4299 } 4300 return true; 4301 } 4302 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 4303 4304 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, 4305 struct sk_buff *skb) 4306 { 4307 trace_ath10k_htt_pktlog(ar, skb->data, skb->len); 4308 dev_kfree_skb_any(skb); 4309 } 4310 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); 4311 4312 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget) 4313 { 4314 struct sk_buff *skb; 4315 4316 while (quota < budget) { 4317 if (skb_queue_empty(&ar->htt.rx_msdus_q)) 4318 break; 4319 4320 skb = skb_dequeue(&ar->htt.rx_msdus_q); 4321 if (!skb) 4322 break; 4323 ath10k_process_rx(ar, skb); 4324 quota++; 4325 } 4326 4327 return quota; 4328 } 4329 4330 int ath10k_htt_rx_hl_indication(struct ath10k *ar, int budget) 4331 { 4332 struct htt_resp *resp; 4333 struct ath10k_htt *htt = &ar->htt; 4334 struct sk_buff *skb; 4335 bool release; 4336 int quota; 4337 4338 for (quota = 0; quota < budget; quota++) { 4339 skb = skb_dequeue(&htt->rx_indication_head); 4340 if (!skb) 4341 break; 4342 4343 resp = (struct htt_resp *)skb->data; 4344 4345 release = ath10k_htt_rx_proc_rx_ind_hl(htt, 4346 &resp->rx_ind_hl, 4347 skb, 4348 HTT_RX_PN_CHECK, 4349 HTT_RX_NON_TKIP_MIC); 4350 4351 if (release) 4352 dev_kfree_skb_any(skb); 4353 4354 ath10k_dbg(ar, ATH10K_DBG_HTT, "rx indication poll pending count:%d\n", 4355 skb_queue_len(&htt->rx_indication_head)); 4356 } 4357 return quota; 4358 } 4359 EXPORT_SYMBOL(ath10k_htt_rx_hl_indication); 4360 4361 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) 4362 { 4363 struct ath10k_htt *htt = &ar->htt; 4364 struct htt_tx_done tx_done = {}; 4365 struct sk_buff_head tx_ind_q; 4366 struct sk_buff *skb; 4367 unsigned long flags; 4368 int quota = 0, done, ret; 4369 bool resched_napi = false; 4370 4371 __skb_queue_head_init(&tx_ind_q); 4372 4373 /* Process pending frames before dequeuing more data 4374 * from hardware. 4375 */ 4376 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 4377 if (quota == budget) { 4378 resched_napi = true; 4379 goto exit; 4380 } 4381 4382 while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) { 4383 spin_lock_bh(&htt->rx_ring.lock); 4384 ret = ath10k_htt_rx_in_ord_ind(ar, skb); 4385 spin_unlock_bh(&htt->rx_ring.lock); 4386 4387 dev_kfree_skb_any(skb); 4388 if (ret == -EIO) { 4389 resched_napi = true; 4390 goto exit; 4391 } 4392 } 4393 4394 while (atomic_read(&htt->num_mpdus_ready)) { 4395 ret = ath10k_htt_rx_handle_amsdu(htt); 4396 if (ret == -EIO) { 4397 resched_napi = true; 4398 goto exit; 4399 } 4400 atomic_dec(&htt->num_mpdus_ready); 4401 } 4402 4403 /* Deliver received data after processing data from hardware */ 4404 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 4405 4406 /* From NAPI documentation: 4407 * The napi poll() function may also process TX completions, in which 4408 * case if it processes the entire TX ring then it should count that 4409 * work as the rest of the budget. 4410 */ 4411 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) 4412 quota = budget; 4413 4414 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. 4415 * From kfifo_get() documentation: 4416 * Note that with only one concurrent reader and one concurrent writer, 4417 * you don't need extra locking to use these macro. 4418 */ 4419 while (kfifo_get(&htt->txdone_fifo, &tx_done)) 4420 ath10k_txrx_tx_unref(htt, &tx_done); 4421 4422 ath10k_mac_tx_push_pending(ar); 4423 4424 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); 4425 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); 4426 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); 4427 4428 while ((skb = __skb_dequeue(&tx_ind_q))) { 4429 ath10k_htt_rx_tx_fetch_ind(ar, skb); 4430 dev_kfree_skb_any(skb); 4431 } 4432 4433 exit: 4434 ath10k_htt_rx_msdu_buff_replenish(htt); 4435 /* In case of rx failure or more data to read, report budget 4436 * to reschedule NAPI poll 4437 */ 4438 done = resched_napi ? budget : quota; 4439 4440 return done; 4441 } 4442 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task); 4443 4444 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = { 4445 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32, 4446 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32, 4447 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32, 4448 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32, 4449 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32, 4450 }; 4451 4452 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = { 4453 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64, 4454 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64, 4455 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64, 4456 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64, 4457 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64, 4458 }; 4459 4460 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = { 4461 .htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl, 4462 }; 4463 4464 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt) 4465 { 4466 struct ath10k *ar = htt->ar; 4467 4468 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 4469 htt->rx_ops = &htt_rx_ops_hl; 4470 else if (ar->hw_params.target_64bit) 4471 htt->rx_ops = &htt_rx_ops_64; 4472 else 4473 htt->rx_ops = &htt_rx_ops_32; 4474 } 4475