xref: /linux/drivers/net/wireless/ath/ath10k/htt_rx.c (revision 2359ccddc1c3f4752f43cc19b3db189710b15791)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "core.h"
20 #include "htc.h"
21 #include "htt.h"
22 #include "txrx.h"
23 #include "debug.h"
24 #include "trace.h"
25 #include "mac.h"
26 
27 #include <linux/log2.h>
28 
29 /* when under memory pressure rx ring refill may fail and needs a retry */
30 #define HTT_RX_RING_REFILL_RETRY_MS 50
31 
32 #define HTT_RX_RING_REFILL_RESCHED_MS 5
33 
34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35 
36 static struct sk_buff *
37 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
38 {
39 	struct ath10k_skb_rxcb *rxcb;
40 
41 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
42 		if (rxcb->paddr == paddr)
43 			return ATH10K_RXCB_SKB(rxcb);
44 
45 	WARN_ON_ONCE(1);
46 	return NULL;
47 }
48 
49 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
50 {
51 	struct sk_buff *skb;
52 	struct ath10k_skb_rxcb *rxcb;
53 	struct hlist_node *n;
54 	int i;
55 
56 	if (htt->rx_ring.in_ord_rx) {
57 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
58 			skb = ATH10K_RXCB_SKB(rxcb);
59 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
60 					 skb->len + skb_tailroom(skb),
61 					 DMA_FROM_DEVICE);
62 			hash_del(&rxcb->hlist);
63 			dev_kfree_skb_any(skb);
64 		}
65 	} else {
66 		for (i = 0; i < htt->rx_ring.size; i++) {
67 			skb = htt->rx_ring.netbufs_ring[i];
68 			if (!skb)
69 				continue;
70 
71 			rxcb = ATH10K_SKB_RXCB(skb);
72 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
73 					 skb->len + skb_tailroom(skb),
74 					 DMA_FROM_DEVICE);
75 			dev_kfree_skb_any(skb);
76 		}
77 	}
78 
79 	htt->rx_ring.fill_cnt = 0;
80 	hash_init(htt->rx_ring.skb_table);
81 	memset(htt->rx_ring.netbufs_ring, 0,
82 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
83 }
84 
85 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
86 {
87 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
88 }
89 
90 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
91 {
92 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
93 }
94 
95 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
96 					     void *vaddr)
97 {
98 	htt->rx_ring.paddrs_ring_32 = vaddr;
99 }
100 
101 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
102 					     void *vaddr)
103 {
104 	htt->rx_ring.paddrs_ring_64 = vaddr;
105 }
106 
107 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
108 					  dma_addr_t paddr, int idx)
109 {
110 	htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
111 }
112 
113 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
114 					  dma_addr_t paddr, int idx)
115 {
116 	htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
117 }
118 
119 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
120 {
121 	htt->rx_ring.paddrs_ring_32[idx] = 0;
122 }
123 
124 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
125 {
126 	htt->rx_ring.paddrs_ring_64[idx] = 0;
127 }
128 
129 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
130 {
131 	return (void *)htt->rx_ring.paddrs_ring_32;
132 }
133 
134 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
135 {
136 	return (void *)htt->rx_ring.paddrs_ring_64;
137 }
138 
139 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
140 {
141 	struct htt_rx_desc *rx_desc;
142 	struct ath10k_skb_rxcb *rxcb;
143 	struct sk_buff *skb;
144 	dma_addr_t paddr;
145 	int ret = 0, idx;
146 
147 	/* The Full Rx Reorder firmware has no way of telling the host
148 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
149 	 * To keep things simple make sure ring is always half empty. This
150 	 * guarantees there'll be no replenishment overruns possible.
151 	 */
152 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
153 
154 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
155 	while (num > 0) {
156 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
157 		if (!skb) {
158 			ret = -ENOMEM;
159 			goto fail;
160 		}
161 
162 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
163 			skb_pull(skb,
164 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
165 				 skb->data);
166 
167 		/* Clear rx_desc attention word before posting to Rx ring */
168 		rx_desc = (struct htt_rx_desc *)skb->data;
169 		rx_desc->attention.flags = __cpu_to_le32(0);
170 
171 		paddr = dma_map_single(htt->ar->dev, skb->data,
172 				       skb->len + skb_tailroom(skb),
173 				       DMA_FROM_DEVICE);
174 
175 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
176 			dev_kfree_skb_any(skb);
177 			ret = -ENOMEM;
178 			goto fail;
179 		}
180 
181 		rxcb = ATH10K_SKB_RXCB(skb);
182 		rxcb->paddr = paddr;
183 		htt->rx_ring.netbufs_ring[idx] = skb;
184 		htt->rx_ops->htt_set_paddrs_ring(htt, paddr, idx);
185 		htt->rx_ring.fill_cnt++;
186 
187 		if (htt->rx_ring.in_ord_rx) {
188 			hash_add(htt->rx_ring.skb_table,
189 				 &ATH10K_SKB_RXCB(skb)->hlist,
190 				 paddr);
191 		}
192 
193 		num--;
194 		idx++;
195 		idx &= htt->rx_ring.size_mask;
196 	}
197 
198 fail:
199 	/*
200 	 * Make sure the rx buffer is updated before available buffer
201 	 * index to avoid any potential rx ring corruption.
202 	 */
203 	mb();
204 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
205 	return ret;
206 }
207 
208 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
209 {
210 	lockdep_assert_held(&htt->rx_ring.lock);
211 	return __ath10k_htt_rx_ring_fill_n(htt, num);
212 }
213 
214 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
215 {
216 	int ret, num_deficit, num_to_fill;
217 
218 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
219 	 * reason is RX may take up significant amount of CPU cycles and starve
220 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
221 	 * with ath10k wlan interface. This ended up with very poor performance
222 	 * once CPU the host system was overwhelmed with RX on ath10k.
223 	 *
224 	 * By limiting the number of refills the replenishing occurs
225 	 * progressively. This in turns makes use of the fact tasklets are
226 	 * processed in FIFO order. This means actual RX processing can starve
227 	 * out refilling. If there's not enough buffers on RX ring FW will not
228 	 * report RX until it is refilled with enough buffers. This
229 	 * automatically balances load wrt to CPU power.
230 	 *
231 	 * This probably comes at a cost of lower maximum throughput but
232 	 * improves the average and stability.
233 	 */
234 	spin_lock_bh(&htt->rx_ring.lock);
235 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
236 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
237 	num_deficit -= num_to_fill;
238 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
239 	if (ret == -ENOMEM) {
240 		/*
241 		 * Failed to fill it to the desired level -
242 		 * we'll start a timer and try again next time.
243 		 * As long as enough buffers are left in the ring for
244 		 * another A-MPDU rx, no special recovery is needed.
245 		 */
246 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
247 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
248 	} else if (num_deficit > 0) {
249 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
250 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
251 	}
252 	spin_unlock_bh(&htt->rx_ring.lock);
253 }
254 
255 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
256 {
257 	struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
258 
259 	ath10k_htt_rx_msdu_buff_replenish(htt);
260 }
261 
262 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
263 {
264 	struct ath10k_htt *htt = &ar->htt;
265 	int ret;
266 
267 	spin_lock_bh(&htt->rx_ring.lock);
268 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
269 					      htt->rx_ring.fill_cnt));
270 	spin_unlock_bh(&htt->rx_ring.lock);
271 
272 	if (ret)
273 		ath10k_htt_rx_ring_free(htt);
274 
275 	return ret;
276 }
277 
278 void ath10k_htt_rx_free(struct ath10k_htt *htt)
279 {
280 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
281 
282 	skb_queue_purge(&htt->rx_msdus_q);
283 	skb_queue_purge(&htt->rx_in_ord_compl_q);
284 	skb_queue_purge(&htt->tx_fetch_ind_q);
285 
286 	ath10k_htt_rx_ring_free(htt);
287 
288 	dma_free_coherent(htt->ar->dev,
289 			  htt->rx_ops->htt_get_rx_ring_size(htt),
290 			  htt->rx_ops->htt_get_vaddr_ring(htt),
291 			  htt->rx_ring.base_paddr);
292 
293 	dma_free_coherent(htt->ar->dev,
294 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
295 			  htt->rx_ring.alloc_idx.vaddr,
296 			  htt->rx_ring.alloc_idx.paddr);
297 
298 	kfree(htt->rx_ring.netbufs_ring);
299 }
300 
301 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
302 {
303 	struct ath10k *ar = htt->ar;
304 	int idx;
305 	struct sk_buff *msdu;
306 
307 	lockdep_assert_held(&htt->rx_ring.lock);
308 
309 	if (htt->rx_ring.fill_cnt == 0) {
310 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
311 		return NULL;
312 	}
313 
314 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
315 	msdu = htt->rx_ring.netbufs_ring[idx];
316 	htt->rx_ring.netbufs_ring[idx] = NULL;
317 	htt->rx_ops->htt_reset_paddrs_ring(htt, idx);
318 
319 	idx++;
320 	idx &= htt->rx_ring.size_mask;
321 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
322 	htt->rx_ring.fill_cnt--;
323 
324 	dma_unmap_single(htt->ar->dev,
325 			 ATH10K_SKB_RXCB(msdu)->paddr,
326 			 msdu->len + skb_tailroom(msdu),
327 			 DMA_FROM_DEVICE);
328 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
329 			msdu->data, msdu->len + skb_tailroom(msdu));
330 
331 	return msdu;
332 }
333 
334 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
335 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
336 				   struct sk_buff_head *amsdu)
337 {
338 	struct ath10k *ar = htt->ar;
339 	int msdu_len, msdu_chaining = 0;
340 	struct sk_buff *msdu;
341 	struct htt_rx_desc *rx_desc;
342 
343 	lockdep_assert_held(&htt->rx_ring.lock);
344 
345 	for (;;) {
346 		int last_msdu, msdu_len_invalid, msdu_chained;
347 
348 		msdu = ath10k_htt_rx_netbuf_pop(htt);
349 		if (!msdu) {
350 			__skb_queue_purge(amsdu);
351 			return -ENOENT;
352 		}
353 
354 		__skb_queue_tail(amsdu, msdu);
355 
356 		rx_desc = (struct htt_rx_desc *)msdu->data;
357 
358 		/* FIXME: we must report msdu payload since this is what caller
359 		 * expects now
360 		 */
361 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
362 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
363 
364 		/*
365 		 * Sanity check - confirm the HW is finished filling in the
366 		 * rx data.
367 		 * If the HW and SW are working correctly, then it's guaranteed
368 		 * that the HW's MAC DMA is done before this point in the SW.
369 		 * To prevent the case that we handle a stale Rx descriptor,
370 		 * just assert for now until we have a way to recover.
371 		 */
372 		if (!(__le32_to_cpu(rx_desc->attention.flags)
373 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
374 			__skb_queue_purge(amsdu);
375 			return -EIO;
376 		}
377 
378 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
379 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
380 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
381 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
382 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
383 		msdu_chained = rx_desc->frag_info.ring2_more_count;
384 
385 		if (msdu_len_invalid)
386 			msdu_len = 0;
387 
388 		skb_trim(msdu, 0);
389 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
390 		msdu_len -= msdu->len;
391 
392 		/* Note: Chained buffers do not contain rx descriptor */
393 		while (msdu_chained--) {
394 			msdu = ath10k_htt_rx_netbuf_pop(htt);
395 			if (!msdu) {
396 				__skb_queue_purge(amsdu);
397 				return -ENOENT;
398 			}
399 
400 			__skb_queue_tail(amsdu, msdu);
401 			skb_trim(msdu, 0);
402 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
403 			msdu_len -= msdu->len;
404 			msdu_chaining = 1;
405 		}
406 
407 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
408 				RX_MSDU_END_INFO0_LAST_MSDU;
409 
410 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
411 					 sizeof(*rx_desc) - sizeof(u32));
412 
413 		if (last_msdu)
414 			break;
415 	}
416 
417 	if (skb_queue_empty(amsdu))
418 		msdu_chaining = -1;
419 
420 	/*
421 	 * Don't refill the ring yet.
422 	 *
423 	 * First, the elements popped here are still in use - it is not
424 	 * safe to overwrite them until the matching call to
425 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
426 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
427 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
428 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
429 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
430 	 * out of the rx ring, and then refill it just once.
431 	 */
432 
433 	return msdu_chaining;
434 }
435 
436 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
437 					       u64 paddr)
438 {
439 	struct ath10k *ar = htt->ar;
440 	struct ath10k_skb_rxcb *rxcb;
441 	struct sk_buff *msdu;
442 
443 	lockdep_assert_held(&htt->rx_ring.lock);
444 
445 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
446 	if (!msdu)
447 		return NULL;
448 
449 	rxcb = ATH10K_SKB_RXCB(msdu);
450 	hash_del(&rxcb->hlist);
451 	htt->rx_ring.fill_cnt--;
452 
453 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
454 			 msdu->len + skb_tailroom(msdu),
455 			 DMA_FROM_DEVICE);
456 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
457 			msdu->data, msdu->len + skb_tailroom(msdu));
458 
459 	return msdu;
460 }
461 
462 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
463 					  struct htt_rx_in_ord_ind *ev,
464 					  struct sk_buff_head *list)
465 {
466 	struct ath10k *ar = htt->ar;
467 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
468 	struct htt_rx_desc *rxd;
469 	struct sk_buff *msdu;
470 	int msdu_count;
471 	bool is_offload;
472 	u32 paddr;
473 
474 	lockdep_assert_held(&htt->rx_ring.lock);
475 
476 	msdu_count = __le16_to_cpu(ev->msdu_count);
477 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
478 
479 	while (msdu_count--) {
480 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
481 
482 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
483 		if (!msdu) {
484 			__skb_queue_purge(list);
485 			return -ENOENT;
486 		}
487 
488 		__skb_queue_tail(list, msdu);
489 
490 		if (!is_offload) {
491 			rxd = (void *)msdu->data;
492 
493 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
494 
495 			skb_put(msdu, sizeof(*rxd));
496 			skb_pull(msdu, sizeof(*rxd));
497 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
498 
499 			if (!(__le32_to_cpu(rxd->attention.flags) &
500 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
501 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
502 				return -EIO;
503 			}
504 		}
505 
506 		msdu_desc++;
507 	}
508 
509 	return 0;
510 }
511 
512 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
513 					  struct htt_rx_in_ord_ind *ev,
514 					  struct sk_buff_head *list)
515 {
516 	struct ath10k *ar = htt->ar;
517 	struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
518 	struct htt_rx_desc *rxd;
519 	struct sk_buff *msdu;
520 	int msdu_count;
521 	bool is_offload;
522 	u64 paddr;
523 
524 	lockdep_assert_held(&htt->rx_ring.lock);
525 
526 	msdu_count = __le16_to_cpu(ev->msdu_count);
527 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
528 
529 	while (msdu_count--) {
530 		paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
531 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
532 		if (!msdu) {
533 			__skb_queue_purge(list);
534 			return -ENOENT;
535 		}
536 
537 		__skb_queue_tail(list, msdu);
538 
539 		if (!is_offload) {
540 			rxd = (void *)msdu->data;
541 
542 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
543 
544 			skb_put(msdu, sizeof(*rxd));
545 			skb_pull(msdu, sizeof(*rxd));
546 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
547 
548 			if (!(__le32_to_cpu(rxd->attention.flags) &
549 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
550 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
551 				return -EIO;
552 			}
553 		}
554 
555 		msdu_desc++;
556 	}
557 
558 	return 0;
559 }
560 
561 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
562 {
563 	struct ath10k *ar = htt->ar;
564 	dma_addr_t paddr;
565 	void *vaddr, *vaddr_ring;
566 	size_t size;
567 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
568 
569 	htt->rx_confused = false;
570 
571 	/* XXX: The fill level could be changed during runtime in response to
572 	 * the host processing latency. Is this really worth it?
573 	 */
574 	htt->rx_ring.size = HTT_RX_RING_SIZE;
575 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
576 	htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
577 
578 	if (!is_power_of_2(htt->rx_ring.size)) {
579 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
580 		return -EINVAL;
581 	}
582 
583 	htt->rx_ring.netbufs_ring =
584 		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
585 			GFP_KERNEL);
586 	if (!htt->rx_ring.netbufs_ring)
587 		goto err_netbuf;
588 
589 	size = htt->rx_ops->htt_get_rx_ring_size(htt);
590 
591 	vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
592 	if (!vaddr_ring)
593 		goto err_dma_ring;
594 
595 	htt->rx_ops->htt_config_paddrs_ring(htt, vaddr_ring);
596 	htt->rx_ring.base_paddr = paddr;
597 
598 	vaddr = dma_alloc_coherent(htt->ar->dev,
599 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
600 				   &paddr, GFP_KERNEL);
601 	if (!vaddr)
602 		goto err_dma_idx;
603 
604 	htt->rx_ring.alloc_idx.vaddr = vaddr;
605 	htt->rx_ring.alloc_idx.paddr = paddr;
606 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
607 	*htt->rx_ring.alloc_idx.vaddr = 0;
608 
609 	/* Initialize the Rx refill retry timer */
610 	timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
611 
612 	spin_lock_init(&htt->rx_ring.lock);
613 
614 	htt->rx_ring.fill_cnt = 0;
615 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
616 	hash_init(htt->rx_ring.skb_table);
617 
618 	skb_queue_head_init(&htt->rx_msdus_q);
619 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
620 	skb_queue_head_init(&htt->tx_fetch_ind_q);
621 	atomic_set(&htt->num_mpdus_ready, 0);
622 
623 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
624 		   htt->rx_ring.size, htt->rx_ring.fill_level);
625 	return 0;
626 
627 err_dma_idx:
628 	dma_free_coherent(htt->ar->dev,
629 			  htt->rx_ops->htt_get_rx_ring_size(htt),
630 			  vaddr_ring,
631 			  htt->rx_ring.base_paddr);
632 err_dma_ring:
633 	kfree(htt->rx_ring.netbufs_ring);
634 err_netbuf:
635 	return -ENOMEM;
636 }
637 
638 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
639 					  enum htt_rx_mpdu_encrypt_type type)
640 {
641 	switch (type) {
642 	case HTT_RX_MPDU_ENCRYPT_NONE:
643 		return 0;
644 	case HTT_RX_MPDU_ENCRYPT_WEP40:
645 	case HTT_RX_MPDU_ENCRYPT_WEP104:
646 		return IEEE80211_WEP_IV_LEN;
647 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
648 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
649 		return IEEE80211_TKIP_IV_LEN;
650 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
651 		return IEEE80211_CCMP_HDR_LEN;
652 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
653 		return IEEE80211_CCMP_256_HDR_LEN;
654 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
655 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
656 		return IEEE80211_GCMP_HDR_LEN;
657 	case HTT_RX_MPDU_ENCRYPT_WEP128:
658 	case HTT_RX_MPDU_ENCRYPT_WAPI:
659 		break;
660 	}
661 
662 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
663 	return 0;
664 }
665 
666 #define MICHAEL_MIC_LEN 8
667 
668 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
669 					enum htt_rx_mpdu_encrypt_type type)
670 {
671 	switch (type) {
672 	case HTT_RX_MPDU_ENCRYPT_NONE:
673 	case HTT_RX_MPDU_ENCRYPT_WEP40:
674 	case HTT_RX_MPDU_ENCRYPT_WEP104:
675 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
676 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
677 		return 0;
678 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
679 		return IEEE80211_CCMP_MIC_LEN;
680 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
681 		return IEEE80211_CCMP_256_MIC_LEN;
682 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
683 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
684 		return IEEE80211_GCMP_MIC_LEN;
685 	case HTT_RX_MPDU_ENCRYPT_WEP128:
686 	case HTT_RX_MPDU_ENCRYPT_WAPI:
687 		break;
688 	}
689 
690 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
691 	return 0;
692 }
693 
694 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
695 					enum htt_rx_mpdu_encrypt_type type)
696 {
697 	switch (type) {
698 	case HTT_RX_MPDU_ENCRYPT_NONE:
699 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
700 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
701 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
702 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
703 		return 0;
704 	case HTT_RX_MPDU_ENCRYPT_WEP40:
705 	case HTT_RX_MPDU_ENCRYPT_WEP104:
706 		return IEEE80211_WEP_ICV_LEN;
707 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
708 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
709 		return IEEE80211_TKIP_ICV_LEN;
710 	case HTT_RX_MPDU_ENCRYPT_WEP128:
711 	case HTT_RX_MPDU_ENCRYPT_WAPI:
712 		break;
713 	}
714 
715 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
716 	return 0;
717 }
718 
719 struct amsdu_subframe_hdr {
720 	u8 dst[ETH_ALEN];
721 	u8 src[ETH_ALEN];
722 	__be16 len;
723 } __packed;
724 
725 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
726 
727 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
728 {
729 	u8 ret = 0;
730 
731 	switch (bw) {
732 	case 0:
733 		ret = RATE_INFO_BW_20;
734 		break;
735 	case 1:
736 		ret = RATE_INFO_BW_40;
737 		break;
738 	case 2:
739 		ret = RATE_INFO_BW_80;
740 		break;
741 	case 3:
742 		ret = RATE_INFO_BW_160;
743 		break;
744 	}
745 
746 	return ret;
747 }
748 
749 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
750 				  struct ieee80211_rx_status *status,
751 				  struct htt_rx_desc *rxd)
752 {
753 	struct ieee80211_supported_band *sband;
754 	u8 cck, rate, bw, sgi, mcs, nss;
755 	u8 preamble = 0;
756 	u8 group_id;
757 	u32 info1, info2, info3;
758 
759 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
760 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
761 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
762 
763 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
764 
765 	switch (preamble) {
766 	case HTT_RX_LEGACY:
767 		/* To get legacy rate index band is required. Since band can't
768 		 * be undefined check if freq is non-zero.
769 		 */
770 		if (!status->freq)
771 			return;
772 
773 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
774 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
775 		rate &= ~RX_PPDU_START_RATE_FLAG;
776 
777 		sband = &ar->mac.sbands[status->band];
778 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
779 		break;
780 	case HTT_RX_HT:
781 	case HTT_RX_HT_WITH_TXBF:
782 		/* HT-SIG - Table 20-11 in info2 and info3 */
783 		mcs = info2 & 0x1F;
784 		nss = mcs >> 3;
785 		bw = (info2 >> 7) & 1;
786 		sgi = (info3 >> 7) & 1;
787 
788 		status->rate_idx = mcs;
789 		status->encoding = RX_ENC_HT;
790 		if (sgi)
791 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
792 		if (bw)
793 			status->bw = RATE_INFO_BW_40;
794 		break;
795 	case HTT_RX_VHT:
796 	case HTT_RX_VHT_WITH_TXBF:
797 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
798 		 * TODO check this
799 		 */
800 		bw = info2 & 3;
801 		sgi = info3 & 1;
802 		group_id = (info2 >> 4) & 0x3F;
803 
804 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
805 			mcs = (info3 >> 4) & 0x0F;
806 			nss = ((info2 >> 10) & 0x07) + 1;
807 		} else {
808 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
809 			 * so it's impossible to decode MCS. Also since
810 			 * firmware consumes Group Id Management frames host
811 			 * has no knowledge regarding group/user position
812 			 * mapping so it's impossible to pick the correct Nsts
813 			 * from VHT-SIG-A1.
814 			 *
815 			 * Bandwidth and SGI are valid so report the rateinfo
816 			 * on best-effort basis.
817 			 */
818 			mcs = 0;
819 			nss = 1;
820 		}
821 
822 		if (mcs > 0x09) {
823 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
824 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
825 				    __le32_to_cpu(rxd->attention.flags),
826 				    __le32_to_cpu(rxd->mpdu_start.info0),
827 				    __le32_to_cpu(rxd->mpdu_start.info1),
828 				    __le32_to_cpu(rxd->msdu_start.common.info0),
829 				    __le32_to_cpu(rxd->msdu_start.common.info1),
830 				    rxd->ppdu_start.info0,
831 				    __le32_to_cpu(rxd->ppdu_start.info1),
832 				    __le32_to_cpu(rxd->ppdu_start.info2),
833 				    __le32_to_cpu(rxd->ppdu_start.info3),
834 				    __le32_to_cpu(rxd->ppdu_start.info4));
835 
836 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
837 				    __le32_to_cpu(rxd->msdu_end.common.info0),
838 				    __le32_to_cpu(rxd->mpdu_end.info0));
839 
840 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
841 					"rx desc msdu payload: ",
842 					rxd->msdu_payload, 50);
843 		}
844 
845 		status->rate_idx = mcs;
846 		status->nss = nss;
847 
848 		if (sgi)
849 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
850 
851 		status->bw = ath10k_bw_to_mac80211_bw(bw);
852 		status->encoding = RX_ENC_VHT;
853 		break;
854 	default:
855 		break;
856 	}
857 }
858 
859 static struct ieee80211_channel *
860 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
861 {
862 	struct ath10k_peer *peer;
863 	struct ath10k_vif *arvif;
864 	struct cfg80211_chan_def def;
865 	u16 peer_id;
866 
867 	lockdep_assert_held(&ar->data_lock);
868 
869 	if (!rxd)
870 		return NULL;
871 
872 	if (rxd->attention.flags &
873 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
874 		return NULL;
875 
876 	if (!(rxd->msdu_end.common.info0 &
877 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
878 		return NULL;
879 
880 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
881 		     RX_MPDU_START_INFO0_PEER_IDX);
882 
883 	peer = ath10k_peer_find_by_id(ar, peer_id);
884 	if (!peer)
885 		return NULL;
886 
887 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
888 	if (WARN_ON_ONCE(!arvif))
889 		return NULL;
890 
891 	if (ath10k_mac_vif_chan(arvif->vif, &def))
892 		return NULL;
893 
894 	return def.chan;
895 }
896 
897 static struct ieee80211_channel *
898 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
899 {
900 	struct ath10k_vif *arvif;
901 	struct cfg80211_chan_def def;
902 
903 	lockdep_assert_held(&ar->data_lock);
904 
905 	list_for_each_entry(arvif, &ar->arvifs, list) {
906 		if (arvif->vdev_id == vdev_id &&
907 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
908 			return def.chan;
909 	}
910 
911 	return NULL;
912 }
913 
914 static void
915 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
916 			      struct ieee80211_chanctx_conf *conf,
917 			      void *data)
918 {
919 	struct cfg80211_chan_def *def = data;
920 
921 	*def = conf->def;
922 }
923 
924 static struct ieee80211_channel *
925 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
926 {
927 	struct cfg80211_chan_def def = {};
928 
929 	ieee80211_iter_chan_contexts_atomic(ar->hw,
930 					    ath10k_htt_rx_h_any_chan_iter,
931 					    &def);
932 
933 	return def.chan;
934 }
935 
936 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
937 				    struct ieee80211_rx_status *status,
938 				    struct htt_rx_desc *rxd,
939 				    u32 vdev_id)
940 {
941 	struct ieee80211_channel *ch;
942 
943 	spin_lock_bh(&ar->data_lock);
944 	ch = ar->scan_channel;
945 	if (!ch)
946 		ch = ar->rx_channel;
947 	if (!ch)
948 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
949 	if (!ch)
950 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
951 	if (!ch)
952 		ch = ath10k_htt_rx_h_any_channel(ar);
953 	if (!ch)
954 		ch = ar->tgt_oper_chan;
955 	spin_unlock_bh(&ar->data_lock);
956 
957 	if (!ch)
958 		return false;
959 
960 	status->band = ch->band;
961 	status->freq = ch->center_freq;
962 
963 	return true;
964 }
965 
966 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
967 				   struct ieee80211_rx_status *status,
968 				   struct htt_rx_desc *rxd)
969 {
970 	int i;
971 
972 	for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
973 		status->chains &= ~BIT(i);
974 
975 		if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
976 			status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
977 				rxd->ppdu_start.rssi_chains[i].pri20_mhz;
978 
979 			status->chains |= BIT(i);
980 		}
981 	}
982 
983 	/* FIXME: Get real NF */
984 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
985 			 rxd->ppdu_start.rssi_comb;
986 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
987 }
988 
989 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
990 				    struct ieee80211_rx_status *status,
991 				    struct htt_rx_desc *rxd)
992 {
993 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
994 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
995 	 * TSF. Is it worth holding frames until end of PPDU is known?
996 	 *
997 	 * FIXME: Can we get/compute 64bit TSF?
998 	 */
999 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1000 	status->flag |= RX_FLAG_MACTIME_END;
1001 }
1002 
1003 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1004 				 struct sk_buff_head *amsdu,
1005 				 struct ieee80211_rx_status *status,
1006 				 u32 vdev_id)
1007 {
1008 	struct sk_buff *first;
1009 	struct htt_rx_desc *rxd;
1010 	bool is_first_ppdu;
1011 	bool is_last_ppdu;
1012 
1013 	if (skb_queue_empty(amsdu))
1014 		return;
1015 
1016 	first = skb_peek(amsdu);
1017 	rxd = (void *)first->data - sizeof(*rxd);
1018 
1019 	is_first_ppdu = !!(rxd->attention.flags &
1020 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1021 	is_last_ppdu = !!(rxd->attention.flags &
1022 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1023 
1024 	if (is_first_ppdu) {
1025 		/* New PPDU starts so clear out the old per-PPDU status. */
1026 		status->freq = 0;
1027 		status->rate_idx = 0;
1028 		status->nss = 0;
1029 		status->encoding = RX_ENC_LEGACY;
1030 		status->bw = RATE_INFO_BW_20;
1031 
1032 		status->flag &= ~RX_FLAG_MACTIME_END;
1033 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1034 
1035 		status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1036 		status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1037 		status->ampdu_reference = ar->ampdu_reference;
1038 
1039 		ath10k_htt_rx_h_signal(ar, status, rxd);
1040 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1041 		ath10k_htt_rx_h_rates(ar, status, rxd);
1042 	}
1043 
1044 	if (is_last_ppdu) {
1045 		ath10k_htt_rx_h_mactime(ar, status, rxd);
1046 
1047 		/* set ampdu last segment flag */
1048 		status->flag |= RX_FLAG_AMPDU_IS_LAST;
1049 		ar->ampdu_reference++;
1050 	}
1051 }
1052 
1053 static const char * const tid_to_ac[] = {
1054 	"BE",
1055 	"BK",
1056 	"BK",
1057 	"BE",
1058 	"VI",
1059 	"VI",
1060 	"VO",
1061 	"VO",
1062 };
1063 
1064 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1065 {
1066 	u8 *qc;
1067 	int tid;
1068 
1069 	if (!ieee80211_is_data_qos(hdr->frame_control))
1070 		return "";
1071 
1072 	qc = ieee80211_get_qos_ctl(hdr);
1073 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1074 	if (tid < 8)
1075 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1076 	else
1077 		snprintf(out, size, "tid %d", tid);
1078 
1079 	return out;
1080 }
1081 
1082 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1083 				       struct ieee80211_rx_status *rx_status,
1084 				       struct sk_buff *skb)
1085 {
1086 	struct ieee80211_rx_status *status;
1087 
1088 	status = IEEE80211_SKB_RXCB(skb);
1089 	*status = *rx_status;
1090 
1091 	__skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1092 }
1093 
1094 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1095 {
1096 	struct ieee80211_rx_status *status;
1097 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1098 	char tid[32];
1099 
1100 	status = IEEE80211_SKB_RXCB(skb);
1101 
1102 	ath10k_dbg(ar, ATH10K_DBG_DATA,
1103 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1104 		   skb,
1105 		   skb->len,
1106 		   ieee80211_get_SA(hdr),
1107 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
1108 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1109 							"mcast" : "ucast",
1110 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1111 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1112 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
1113 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
1114 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
1115 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
1116 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
1117 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1118 		   status->rate_idx,
1119 		   status->nss,
1120 		   status->freq,
1121 		   status->band, status->flag,
1122 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1123 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
1124 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
1125 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1126 			skb->data, skb->len);
1127 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1128 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
1129 
1130 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1131 }
1132 
1133 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1134 				      struct ieee80211_hdr *hdr)
1135 {
1136 	int len = ieee80211_hdrlen(hdr->frame_control);
1137 
1138 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1139 		      ar->running_fw->fw_file.fw_features))
1140 		len = round_up(len, 4);
1141 
1142 	return len;
1143 }
1144 
1145 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1146 					struct sk_buff *msdu,
1147 					struct ieee80211_rx_status *status,
1148 					enum htt_rx_mpdu_encrypt_type enctype,
1149 					bool is_decrypted)
1150 {
1151 	struct ieee80211_hdr *hdr;
1152 	struct htt_rx_desc *rxd;
1153 	size_t hdr_len;
1154 	size_t crypto_len;
1155 	bool is_first;
1156 	bool is_last;
1157 
1158 	rxd = (void *)msdu->data - sizeof(*rxd);
1159 	is_first = !!(rxd->msdu_end.common.info0 &
1160 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1161 	is_last = !!(rxd->msdu_end.common.info0 &
1162 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1163 
1164 	/* Delivered decapped frame:
1165 	 * [802.11 header]
1166 	 * [crypto param] <-- can be trimmed if !fcs_err &&
1167 	 *                    !decrypt_err && !peer_idx_invalid
1168 	 * [amsdu header] <-- only if A-MSDU
1169 	 * [rfc1042/llc]
1170 	 * [payload]
1171 	 * [FCS] <-- at end, needs to be trimmed
1172 	 */
1173 
1174 	/* This probably shouldn't happen but warn just in case */
1175 	if (unlikely(WARN_ON_ONCE(!is_first)))
1176 		return;
1177 
1178 	/* This probably shouldn't happen but warn just in case */
1179 	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1180 		return;
1181 
1182 	skb_trim(msdu, msdu->len - FCS_LEN);
1183 
1184 	/* In most cases this will be true for sniffed frames. It makes sense
1185 	 * to deliver them as-is without stripping the crypto param. This is
1186 	 * necessary for software based decryption.
1187 	 *
1188 	 * If there's no error then the frame is decrypted. At least that is
1189 	 * the case for frames that come in via fragmented rx indication.
1190 	 */
1191 	if (!is_decrypted)
1192 		return;
1193 
1194 	/* The payload is decrypted so strip crypto params. Start from tail
1195 	 * since hdr is used to compute some stuff.
1196 	 */
1197 
1198 	hdr = (void *)msdu->data;
1199 
1200 	/* Tail */
1201 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1202 		skb_trim(msdu, msdu->len -
1203 			 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1204 
1205 		skb_trim(msdu, msdu->len -
1206 			 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1207 	} else {
1208 		/* MIC */
1209 		if (status->flag & RX_FLAG_MIC_STRIPPED)
1210 			skb_trim(msdu, msdu->len -
1211 				 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1212 
1213 		/* ICV */
1214 		if (status->flag & RX_FLAG_ICV_STRIPPED)
1215 			skb_trim(msdu, msdu->len -
1216 				 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1217 	}
1218 
1219 	/* MMIC */
1220 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1221 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1222 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1223 		skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1224 
1225 	/* Head */
1226 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1227 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1228 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1229 
1230 		memmove((void *)msdu->data + crypto_len,
1231 			(void *)msdu->data, hdr_len);
1232 		skb_pull(msdu, crypto_len);
1233 	}
1234 }
1235 
1236 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1237 					  struct sk_buff *msdu,
1238 					  struct ieee80211_rx_status *status,
1239 					  const u8 first_hdr[64],
1240 					  enum htt_rx_mpdu_encrypt_type enctype)
1241 {
1242 	struct ieee80211_hdr *hdr;
1243 	struct htt_rx_desc *rxd;
1244 	size_t hdr_len;
1245 	u8 da[ETH_ALEN];
1246 	u8 sa[ETH_ALEN];
1247 	int l3_pad_bytes;
1248 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1249 
1250 	/* Delivered decapped frame:
1251 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1252 	 * [rfc1042/llc]
1253 	 *
1254 	 * Note: The nwifi header doesn't have QoS Control and is
1255 	 * (always?) a 3addr frame.
1256 	 *
1257 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1258 	 * of an A-MSDU.
1259 	 */
1260 
1261 	/* pull decapped header and copy SA & DA */
1262 	rxd = (void *)msdu->data - sizeof(*rxd);
1263 
1264 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1265 	skb_put(msdu, l3_pad_bytes);
1266 
1267 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1268 
1269 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1270 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1271 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1272 	skb_pull(msdu, hdr_len);
1273 
1274 	/* push original 802.11 header */
1275 	hdr = (struct ieee80211_hdr *)first_hdr;
1276 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1277 
1278 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1279 		memcpy(skb_push(msdu,
1280 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1281 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1282 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1283 	}
1284 
1285 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1286 
1287 	/* original 802.11 header has a different DA and in
1288 	 * case of 4addr it may also have different SA
1289 	 */
1290 	hdr = (struct ieee80211_hdr *)msdu->data;
1291 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1292 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1293 }
1294 
1295 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1296 					  struct sk_buff *msdu,
1297 					  enum htt_rx_mpdu_encrypt_type enctype)
1298 {
1299 	struct ieee80211_hdr *hdr;
1300 	struct htt_rx_desc *rxd;
1301 	size_t hdr_len, crypto_len;
1302 	void *rfc1042;
1303 	bool is_first, is_last, is_amsdu;
1304 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1305 
1306 	rxd = (void *)msdu->data - sizeof(*rxd);
1307 	hdr = (void *)rxd->rx_hdr_status;
1308 
1309 	is_first = !!(rxd->msdu_end.common.info0 &
1310 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1311 	is_last = !!(rxd->msdu_end.common.info0 &
1312 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1313 	is_amsdu = !(is_first && is_last);
1314 
1315 	rfc1042 = hdr;
1316 
1317 	if (is_first) {
1318 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1319 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1320 
1321 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1322 			   round_up(crypto_len, bytes_aligned);
1323 	}
1324 
1325 	if (is_amsdu)
1326 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1327 
1328 	return rfc1042;
1329 }
1330 
1331 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1332 					struct sk_buff *msdu,
1333 					struct ieee80211_rx_status *status,
1334 					const u8 first_hdr[64],
1335 					enum htt_rx_mpdu_encrypt_type enctype)
1336 {
1337 	struct ieee80211_hdr *hdr;
1338 	struct ethhdr *eth;
1339 	size_t hdr_len;
1340 	void *rfc1042;
1341 	u8 da[ETH_ALEN];
1342 	u8 sa[ETH_ALEN];
1343 	int l3_pad_bytes;
1344 	struct htt_rx_desc *rxd;
1345 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1346 
1347 	/* Delivered decapped frame:
1348 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1349 	 * [payload]
1350 	 */
1351 
1352 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1353 	if (WARN_ON_ONCE(!rfc1042))
1354 		return;
1355 
1356 	rxd = (void *)msdu->data - sizeof(*rxd);
1357 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1358 	skb_put(msdu, l3_pad_bytes);
1359 	skb_pull(msdu, l3_pad_bytes);
1360 
1361 	/* pull decapped header and copy SA & DA */
1362 	eth = (struct ethhdr *)msdu->data;
1363 	ether_addr_copy(da, eth->h_dest);
1364 	ether_addr_copy(sa, eth->h_source);
1365 	skb_pull(msdu, sizeof(struct ethhdr));
1366 
1367 	/* push rfc1042/llc/snap */
1368 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1369 	       sizeof(struct rfc1042_hdr));
1370 
1371 	/* push original 802.11 header */
1372 	hdr = (struct ieee80211_hdr *)first_hdr;
1373 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1374 
1375 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1376 		memcpy(skb_push(msdu,
1377 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1378 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1379 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1380 	}
1381 
1382 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1383 
1384 	/* original 802.11 header has a different DA and in
1385 	 * case of 4addr it may also have different SA
1386 	 */
1387 	hdr = (struct ieee80211_hdr *)msdu->data;
1388 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1389 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1390 }
1391 
1392 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1393 					 struct sk_buff *msdu,
1394 					 struct ieee80211_rx_status *status,
1395 					 const u8 first_hdr[64],
1396 					 enum htt_rx_mpdu_encrypt_type enctype)
1397 {
1398 	struct ieee80211_hdr *hdr;
1399 	size_t hdr_len;
1400 	int l3_pad_bytes;
1401 	struct htt_rx_desc *rxd;
1402 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1403 
1404 	/* Delivered decapped frame:
1405 	 * [amsdu header] <-- replaced with 802.11 hdr
1406 	 * [rfc1042/llc]
1407 	 * [payload]
1408 	 */
1409 
1410 	rxd = (void *)msdu->data - sizeof(*rxd);
1411 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1412 
1413 	skb_put(msdu, l3_pad_bytes);
1414 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1415 
1416 	hdr = (struct ieee80211_hdr *)first_hdr;
1417 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1418 
1419 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1420 		memcpy(skb_push(msdu,
1421 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1422 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1423 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1424 	}
1425 
1426 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1427 }
1428 
1429 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1430 				    struct sk_buff *msdu,
1431 				    struct ieee80211_rx_status *status,
1432 				    u8 first_hdr[64],
1433 				    enum htt_rx_mpdu_encrypt_type enctype,
1434 				    bool is_decrypted)
1435 {
1436 	struct htt_rx_desc *rxd;
1437 	enum rx_msdu_decap_format decap;
1438 
1439 	/* First msdu's decapped header:
1440 	 * [802.11 header] <-- padded to 4 bytes long
1441 	 * [crypto param] <-- padded to 4 bytes long
1442 	 * [amsdu header] <-- only if A-MSDU
1443 	 * [rfc1042/llc]
1444 	 *
1445 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1446 	 * [amsdu header] <-- only if A-MSDU
1447 	 * [rfc1042/llc]
1448 	 */
1449 
1450 	rxd = (void *)msdu->data - sizeof(*rxd);
1451 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1452 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1453 
1454 	switch (decap) {
1455 	case RX_MSDU_DECAP_RAW:
1456 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1457 					    is_decrypted);
1458 		break;
1459 	case RX_MSDU_DECAP_NATIVE_WIFI:
1460 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1461 					      enctype);
1462 		break;
1463 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1464 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1465 		break;
1466 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1467 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1468 					     enctype);
1469 		break;
1470 	}
1471 }
1472 
1473 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1474 {
1475 	struct htt_rx_desc *rxd;
1476 	u32 flags, info;
1477 	bool is_ip4, is_ip6;
1478 	bool is_tcp, is_udp;
1479 	bool ip_csum_ok, tcpudp_csum_ok;
1480 
1481 	rxd = (void *)skb->data - sizeof(*rxd);
1482 	flags = __le32_to_cpu(rxd->attention.flags);
1483 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1484 
1485 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1486 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1487 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1488 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1489 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1490 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1491 
1492 	if (!is_ip4 && !is_ip6)
1493 		return CHECKSUM_NONE;
1494 	if (!is_tcp && !is_udp)
1495 		return CHECKSUM_NONE;
1496 	if (!ip_csum_ok)
1497 		return CHECKSUM_NONE;
1498 	if (!tcpudp_csum_ok)
1499 		return CHECKSUM_NONE;
1500 
1501 	return CHECKSUM_UNNECESSARY;
1502 }
1503 
1504 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1505 {
1506 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1507 }
1508 
1509 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1510 				 struct sk_buff_head *amsdu,
1511 				 struct ieee80211_rx_status *status,
1512 				 bool fill_crypt_header,
1513 				 u8 *rx_hdr,
1514 				 enum ath10k_pkt_rx_err *err)
1515 {
1516 	struct sk_buff *first;
1517 	struct sk_buff *last;
1518 	struct sk_buff *msdu;
1519 	struct htt_rx_desc *rxd;
1520 	struct ieee80211_hdr *hdr;
1521 	enum htt_rx_mpdu_encrypt_type enctype;
1522 	u8 first_hdr[64];
1523 	u8 *qos;
1524 	bool has_fcs_err;
1525 	bool has_crypto_err;
1526 	bool has_tkip_err;
1527 	bool has_peer_idx_invalid;
1528 	bool is_decrypted;
1529 	bool is_mgmt;
1530 	u32 attention;
1531 
1532 	if (skb_queue_empty(amsdu))
1533 		return;
1534 
1535 	first = skb_peek(amsdu);
1536 	rxd = (void *)first->data - sizeof(*rxd);
1537 
1538 	is_mgmt = !!(rxd->attention.flags &
1539 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1540 
1541 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1542 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1543 
1544 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1545 	 * decapped header. It'll be used for undecapping of each MSDU.
1546 	 */
1547 	hdr = (void *)rxd->rx_hdr_status;
1548 	memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1549 
1550 	if (rx_hdr)
1551 		memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1552 
1553 	/* Each A-MSDU subframe will use the original header as the base and be
1554 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1555 	 */
1556 	hdr = (void *)first_hdr;
1557 
1558 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1559 		qos = ieee80211_get_qos_ctl(hdr);
1560 		qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1561 	}
1562 
1563 	/* Some attention flags are valid only in the last MSDU. */
1564 	last = skb_peek_tail(amsdu);
1565 	rxd = (void *)last->data - sizeof(*rxd);
1566 	attention = __le32_to_cpu(rxd->attention.flags);
1567 
1568 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1569 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1570 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1571 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1572 
1573 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1574 	 * e.g. due to fcs error, missing peer or invalid key data it will
1575 	 * report the frame as raw.
1576 	 */
1577 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1578 			!has_fcs_err &&
1579 			!has_crypto_err &&
1580 			!has_peer_idx_invalid);
1581 
1582 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1583 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1584 			  RX_FLAG_MMIC_ERROR |
1585 			  RX_FLAG_DECRYPTED |
1586 			  RX_FLAG_IV_STRIPPED |
1587 			  RX_FLAG_ONLY_MONITOR |
1588 			  RX_FLAG_MMIC_STRIPPED);
1589 
1590 	if (has_fcs_err)
1591 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1592 
1593 	if (has_tkip_err)
1594 		status->flag |= RX_FLAG_MMIC_ERROR;
1595 
1596 	if (err) {
1597 		if (has_fcs_err)
1598 			*err = ATH10K_PKT_RX_ERR_FCS;
1599 		else if (has_tkip_err)
1600 			*err = ATH10K_PKT_RX_ERR_TKIP;
1601 		else if (has_crypto_err)
1602 			*err = ATH10K_PKT_RX_ERR_CRYPT;
1603 		else if (has_peer_idx_invalid)
1604 			*err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1605 	}
1606 
1607 	/* Firmware reports all necessary management frames via WMI already.
1608 	 * They are not reported to monitor interfaces at all so pass the ones
1609 	 * coming via HTT to monitor interfaces instead. This simplifies
1610 	 * matters a lot.
1611 	 */
1612 	if (is_mgmt)
1613 		status->flag |= RX_FLAG_ONLY_MONITOR;
1614 
1615 	if (is_decrypted) {
1616 		status->flag |= RX_FLAG_DECRYPTED;
1617 
1618 		if (likely(!is_mgmt))
1619 			status->flag |= RX_FLAG_MMIC_STRIPPED;
1620 
1621 		if (fill_crypt_header)
1622 			status->flag |= RX_FLAG_MIC_STRIPPED |
1623 					RX_FLAG_ICV_STRIPPED;
1624 		else
1625 			status->flag |= RX_FLAG_IV_STRIPPED;
1626 	}
1627 
1628 	skb_queue_walk(amsdu, msdu) {
1629 		ath10k_htt_rx_h_csum_offload(msdu);
1630 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1631 					is_decrypted);
1632 
1633 		/* Undecapping involves copying the original 802.11 header back
1634 		 * to sk_buff. If frame is protected and hardware has decrypted
1635 		 * it then remove the protected bit.
1636 		 */
1637 		if (!is_decrypted)
1638 			continue;
1639 		if (is_mgmt)
1640 			continue;
1641 
1642 		if (fill_crypt_header)
1643 			continue;
1644 
1645 		hdr = (void *)msdu->data;
1646 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1647 	}
1648 }
1649 
1650 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1651 				    struct sk_buff_head *amsdu,
1652 				    struct ieee80211_rx_status *status)
1653 {
1654 	struct sk_buff *msdu;
1655 	struct sk_buff *first_subframe;
1656 
1657 	first_subframe = skb_peek(amsdu);
1658 
1659 	while ((msdu = __skb_dequeue(amsdu))) {
1660 		/* Setup per-MSDU flags */
1661 		if (skb_queue_empty(amsdu))
1662 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1663 		else
1664 			status->flag |= RX_FLAG_AMSDU_MORE;
1665 
1666 		if (msdu == first_subframe) {
1667 			first_subframe = NULL;
1668 			status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1669 		} else {
1670 			status->flag |= RX_FLAG_ALLOW_SAME_PN;
1671 		}
1672 
1673 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1674 	}
1675 }
1676 
1677 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1678 			       unsigned long int *unchain_cnt)
1679 {
1680 	struct sk_buff *skb, *first;
1681 	int space;
1682 	int total_len = 0;
1683 	int amsdu_len = skb_queue_len(amsdu);
1684 
1685 	/* TODO:  Might could optimize this by using
1686 	 * skb_try_coalesce or similar method to
1687 	 * decrease copying, or maybe get mac80211 to
1688 	 * provide a way to just receive a list of
1689 	 * skb?
1690 	 */
1691 
1692 	first = __skb_dequeue(amsdu);
1693 
1694 	/* Allocate total length all at once. */
1695 	skb_queue_walk(amsdu, skb)
1696 		total_len += skb->len;
1697 
1698 	space = total_len - skb_tailroom(first);
1699 	if ((space > 0) &&
1700 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1701 		/* TODO:  bump some rx-oom error stat */
1702 		/* put it back together so we can free the
1703 		 * whole list at once.
1704 		 */
1705 		__skb_queue_head(amsdu, first);
1706 		return -1;
1707 	}
1708 
1709 	/* Walk list again, copying contents into
1710 	 * msdu_head
1711 	 */
1712 	while ((skb = __skb_dequeue(amsdu))) {
1713 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1714 					  skb->len);
1715 		dev_kfree_skb_any(skb);
1716 	}
1717 
1718 	__skb_queue_head(amsdu, first);
1719 
1720 	*unchain_cnt += amsdu_len - 1;
1721 
1722 	return 0;
1723 }
1724 
1725 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1726 				    struct sk_buff_head *amsdu,
1727 				    unsigned long int *drop_cnt,
1728 				    unsigned long int *unchain_cnt)
1729 {
1730 	struct sk_buff *first;
1731 	struct htt_rx_desc *rxd;
1732 	enum rx_msdu_decap_format decap;
1733 
1734 	first = skb_peek(amsdu);
1735 	rxd = (void *)first->data - sizeof(*rxd);
1736 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1737 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1738 
1739 	/* FIXME: Current unchaining logic can only handle simple case of raw
1740 	 * msdu chaining. If decapping is other than raw the chaining may be
1741 	 * more complex and this isn't handled by the current code. Don't even
1742 	 * try re-constructing such frames - it'll be pretty much garbage.
1743 	 */
1744 	if (decap != RX_MSDU_DECAP_RAW ||
1745 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1746 		*drop_cnt += skb_queue_len(amsdu);
1747 		__skb_queue_purge(amsdu);
1748 		return;
1749 	}
1750 
1751 	ath10k_unchain_msdu(amsdu, unchain_cnt);
1752 }
1753 
1754 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1755 					struct sk_buff_head *amsdu,
1756 					struct ieee80211_rx_status *rx_status)
1757 {
1758 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1759 	 * invalid/dangerous frames.
1760 	 */
1761 
1762 	if (!rx_status->freq) {
1763 		ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1764 		return false;
1765 	}
1766 
1767 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1768 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1769 		return false;
1770 	}
1771 
1772 	return true;
1773 }
1774 
1775 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1776 				   struct sk_buff_head *amsdu,
1777 				   struct ieee80211_rx_status *rx_status,
1778 				   unsigned long int *drop_cnt)
1779 {
1780 	if (skb_queue_empty(amsdu))
1781 		return;
1782 
1783 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1784 		return;
1785 
1786 	if (drop_cnt)
1787 		*drop_cnt += skb_queue_len(amsdu);
1788 
1789 	__skb_queue_purge(amsdu);
1790 }
1791 
1792 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1793 {
1794 	struct ath10k *ar = htt->ar;
1795 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1796 	struct sk_buff_head amsdu;
1797 	int ret;
1798 	unsigned long int drop_cnt = 0;
1799 	unsigned long int unchain_cnt = 0;
1800 	unsigned long int drop_cnt_filter = 0;
1801 	unsigned long int msdus_to_queue, num_msdus;
1802 	enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
1803 	u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
1804 
1805 	__skb_queue_head_init(&amsdu);
1806 
1807 	spin_lock_bh(&htt->rx_ring.lock);
1808 	if (htt->rx_confused) {
1809 		spin_unlock_bh(&htt->rx_ring.lock);
1810 		return -EIO;
1811 	}
1812 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1813 	spin_unlock_bh(&htt->rx_ring.lock);
1814 
1815 	if (ret < 0) {
1816 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1817 		__skb_queue_purge(&amsdu);
1818 		/* FIXME: It's probably a good idea to reboot the
1819 		 * device instead of leaving it inoperable.
1820 		 */
1821 		htt->rx_confused = true;
1822 		return ret;
1823 	}
1824 
1825 	num_msdus = skb_queue_len(&amsdu);
1826 
1827 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1828 
1829 	/* only for ret = 1 indicates chained msdus */
1830 	if (ret > 0)
1831 		ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
1832 
1833 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
1834 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
1835 	msdus_to_queue = skb_queue_len(&amsdu);
1836 	ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
1837 
1838 	ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
1839 				       unchain_cnt, drop_cnt, drop_cnt_filter,
1840 				       msdus_to_queue);
1841 
1842 	return 0;
1843 }
1844 
1845 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1846 				      struct htt_rx_indication *rx)
1847 {
1848 	struct ath10k *ar = htt->ar;
1849 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1850 	int num_mpdu_ranges;
1851 	int i, mpdu_count = 0;
1852 	u16 peer_id;
1853 	u8 tid;
1854 
1855 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1856 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1857 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
1858 	tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
1859 
1860 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1861 
1862 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1863 			rx, sizeof(*rx) +
1864 			(sizeof(struct htt_rx_indication_mpdu_range) *
1865 				num_mpdu_ranges));
1866 
1867 	for (i = 0; i < num_mpdu_ranges; i++)
1868 		mpdu_count += mpdu_ranges[i].mpdu_count;
1869 
1870 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
1871 
1872 	ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
1873 					     num_mpdu_ranges);
1874 }
1875 
1876 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1877 				       struct sk_buff *skb)
1878 {
1879 	struct ath10k_htt *htt = &ar->htt;
1880 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1881 	struct htt_tx_done tx_done = {};
1882 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1883 	__le16 msdu_id;
1884 	int i;
1885 
1886 	switch (status) {
1887 	case HTT_DATA_TX_STATUS_NO_ACK:
1888 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1889 		break;
1890 	case HTT_DATA_TX_STATUS_OK:
1891 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
1892 		break;
1893 	case HTT_DATA_TX_STATUS_DISCARD:
1894 	case HTT_DATA_TX_STATUS_POSTPONE:
1895 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1896 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1897 		break;
1898 	default:
1899 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1900 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1901 		break;
1902 	}
1903 
1904 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1905 		   resp->data_tx_completion.num_msdus);
1906 
1907 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1908 		msdu_id = resp->data_tx_completion.msdus[i];
1909 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1910 
1911 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
1912 		 * interrupt and main interrupt (MSI/-X range case) for the same
1913 		 * HTC service so it should be safe to use kfifo_put w/o lock.
1914 		 *
1915 		 * From kfifo_put() documentation:
1916 		 *  Note that with only one concurrent reader and one concurrent
1917 		 *  writer, you don't need extra locking to use these macro.
1918 		 */
1919 		if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1920 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1921 				    tx_done.msdu_id, tx_done.status);
1922 			ath10k_txrx_tx_unref(htt, &tx_done);
1923 		}
1924 	}
1925 }
1926 
1927 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1928 {
1929 	struct htt_rx_addba *ev = &resp->rx_addba;
1930 	struct ath10k_peer *peer;
1931 	struct ath10k_vif *arvif;
1932 	u16 info0, tid, peer_id;
1933 
1934 	info0 = __le16_to_cpu(ev->info0);
1935 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1936 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1937 
1938 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1939 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1940 		   tid, peer_id, ev->window_size);
1941 
1942 	spin_lock_bh(&ar->data_lock);
1943 	peer = ath10k_peer_find_by_id(ar, peer_id);
1944 	if (!peer) {
1945 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1946 			    peer_id);
1947 		spin_unlock_bh(&ar->data_lock);
1948 		return;
1949 	}
1950 
1951 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1952 	if (!arvif) {
1953 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1954 			    peer->vdev_id);
1955 		spin_unlock_bh(&ar->data_lock);
1956 		return;
1957 	}
1958 
1959 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1960 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1961 		   peer->addr, tid, ev->window_size);
1962 
1963 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1964 	spin_unlock_bh(&ar->data_lock);
1965 }
1966 
1967 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1968 {
1969 	struct htt_rx_delba *ev = &resp->rx_delba;
1970 	struct ath10k_peer *peer;
1971 	struct ath10k_vif *arvif;
1972 	u16 info0, tid, peer_id;
1973 
1974 	info0 = __le16_to_cpu(ev->info0);
1975 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1976 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1977 
1978 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1979 		   "htt rx delba tid %hu peer_id %hu\n",
1980 		   tid, peer_id);
1981 
1982 	spin_lock_bh(&ar->data_lock);
1983 	peer = ath10k_peer_find_by_id(ar, peer_id);
1984 	if (!peer) {
1985 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1986 			    peer_id);
1987 		spin_unlock_bh(&ar->data_lock);
1988 		return;
1989 	}
1990 
1991 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1992 	if (!arvif) {
1993 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1994 			    peer->vdev_id);
1995 		spin_unlock_bh(&ar->data_lock);
1996 		return;
1997 	}
1998 
1999 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2000 		   "htt rx stop rx ba session sta %pM tid %hu\n",
2001 		   peer->addr, tid);
2002 
2003 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2004 	spin_unlock_bh(&ar->data_lock);
2005 }
2006 
2007 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2008 				       struct sk_buff_head *amsdu)
2009 {
2010 	struct sk_buff *msdu;
2011 	struct htt_rx_desc *rxd;
2012 
2013 	if (skb_queue_empty(list))
2014 		return -ENOBUFS;
2015 
2016 	if (WARN_ON(!skb_queue_empty(amsdu)))
2017 		return -EINVAL;
2018 
2019 	while ((msdu = __skb_dequeue(list))) {
2020 		__skb_queue_tail(amsdu, msdu);
2021 
2022 		rxd = (void *)msdu->data - sizeof(*rxd);
2023 		if (rxd->msdu_end.common.info0 &
2024 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2025 			break;
2026 	}
2027 
2028 	msdu = skb_peek_tail(amsdu);
2029 	rxd = (void *)msdu->data - sizeof(*rxd);
2030 	if (!(rxd->msdu_end.common.info0 &
2031 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2032 		skb_queue_splice_init(amsdu, list);
2033 		return -EAGAIN;
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2040 					    struct sk_buff *skb)
2041 {
2042 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2043 
2044 	if (!ieee80211_has_protected(hdr->frame_control))
2045 		return;
2046 
2047 	/* Offloaded frames are already decrypted but firmware insists they are
2048 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
2049 	 * will drop the frame.
2050 	 */
2051 
2052 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2053 	status->flag |= RX_FLAG_DECRYPTED |
2054 			RX_FLAG_IV_STRIPPED |
2055 			RX_FLAG_MMIC_STRIPPED;
2056 }
2057 
2058 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2059 				       struct sk_buff_head *list)
2060 {
2061 	struct ath10k_htt *htt = &ar->htt;
2062 	struct ieee80211_rx_status *status = &htt->rx_status;
2063 	struct htt_rx_offload_msdu *rx;
2064 	struct sk_buff *msdu;
2065 	size_t offset;
2066 
2067 	while ((msdu = __skb_dequeue(list))) {
2068 		/* Offloaded frames don't have Rx descriptor. Instead they have
2069 		 * a short meta information header.
2070 		 */
2071 
2072 		rx = (void *)msdu->data;
2073 
2074 		skb_put(msdu, sizeof(*rx));
2075 		skb_pull(msdu, sizeof(*rx));
2076 
2077 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2078 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2079 			dev_kfree_skb_any(msdu);
2080 			continue;
2081 		}
2082 
2083 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2084 
2085 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
2086 		 * actual payload is unaligned. Align the frame.  Otherwise
2087 		 * mac80211 complains.  This shouldn't reduce performance much
2088 		 * because these offloaded frames are rare.
2089 		 */
2090 		offset = 4 - ((unsigned long)msdu->data & 3);
2091 		skb_put(msdu, offset);
2092 		memmove(msdu->data + offset, msdu->data, msdu->len);
2093 		skb_pull(msdu, offset);
2094 
2095 		/* FIXME: The frame is NWifi. Re-construct QoS Control
2096 		 * if possible later.
2097 		 */
2098 
2099 		memset(status, 0, sizeof(*status));
2100 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2101 
2102 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2103 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2104 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2105 	}
2106 }
2107 
2108 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2109 {
2110 	struct ath10k_htt *htt = &ar->htt;
2111 	struct htt_resp *resp = (void *)skb->data;
2112 	struct ieee80211_rx_status *status = &htt->rx_status;
2113 	struct sk_buff_head list;
2114 	struct sk_buff_head amsdu;
2115 	u16 peer_id;
2116 	u16 msdu_count;
2117 	u8 vdev_id;
2118 	u8 tid;
2119 	bool offload;
2120 	bool frag;
2121 	int ret;
2122 
2123 	lockdep_assert_held(&htt->rx_ring.lock);
2124 
2125 	if (htt->rx_confused)
2126 		return -EIO;
2127 
2128 	skb_pull(skb, sizeof(resp->hdr));
2129 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2130 
2131 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2132 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2133 	vdev_id = resp->rx_in_ord_ind.vdev_id;
2134 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2135 	offload = !!(resp->rx_in_ord_ind.info &
2136 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2137 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2138 
2139 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2140 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2141 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
2142 
2143 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2144 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
2145 		return -EINVAL;
2146 	}
2147 
2148 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2149 	 * extracted and processed.
2150 	 */
2151 	__skb_queue_head_init(&list);
2152 	if (ar->hw_params.target_64bit)
2153 		ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2154 						     &list);
2155 	else
2156 		ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2157 						     &list);
2158 
2159 	if (ret < 0) {
2160 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2161 		htt->rx_confused = true;
2162 		return -EIO;
2163 	}
2164 
2165 	/* Offloaded frames are very different and need to be handled
2166 	 * separately.
2167 	 */
2168 	if (offload)
2169 		ath10k_htt_rx_h_rx_offload(ar, &list);
2170 
2171 	while (!skb_queue_empty(&list)) {
2172 		__skb_queue_head_init(&amsdu);
2173 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2174 		switch (ret) {
2175 		case 0:
2176 			/* Note: The in-order indication may report interleaved
2177 			 * frames from different PPDUs meaning reported rx rate
2178 			 * to mac80211 isn't accurate/reliable. It's still
2179 			 * better to report something than nothing though. This
2180 			 * should still give an idea about rx rate to the user.
2181 			 */
2182 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2183 			ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
2184 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
2185 					     NULL);
2186 			ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2187 			break;
2188 		case -EAGAIN:
2189 			/* fall through */
2190 		default:
2191 			/* Should not happen. */
2192 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2193 			htt->rx_confused = true;
2194 			__skb_queue_purge(&list);
2195 			return -EIO;
2196 		}
2197 	}
2198 	return ret;
2199 }
2200 
2201 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2202 						   const __le32 *resp_ids,
2203 						   int num_resp_ids)
2204 {
2205 	int i;
2206 	u32 resp_id;
2207 
2208 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2209 		   num_resp_ids);
2210 
2211 	for (i = 0; i < num_resp_ids; i++) {
2212 		resp_id = le32_to_cpu(resp_ids[i]);
2213 
2214 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2215 			   resp_id);
2216 
2217 		/* TODO: free resp_id */
2218 	}
2219 }
2220 
2221 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2222 {
2223 	struct ieee80211_hw *hw = ar->hw;
2224 	struct ieee80211_txq *txq;
2225 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2226 	struct htt_tx_fetch_record *record;
2227 	size_t len;
2228 	size_t max_num_bytes;
2229 	size_t max_num_msdus;
2230 	size_t num_bytes;
2231 	size_t num_msdus;
2232 	const __le32 *resp_ids;
2233 	u16 num_records;
2234 	u16 num_resp_ids;
2235 	u16 peer_id;
2236 	u8 tid;
2237 	int ret;
2238 	int i;
2239 
2240 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2241 
2242 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2243 	if (unlikely(skb->len < len)) {
2244 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2245 		return;
2246 	}
2247 
2248 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2249 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2250 
2251 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2252 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2253 
2254 	if (unlikely(skb->len < len)) {
2255 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2256 		return;
2257 	}
2258 
2259 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2260 		   num_records, num_resp_ids,
2261 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2262 
2263 	if (!ar->htt.tx_q_state.enabled) {
2264 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2265 		return;
2266 	}
2267 
2268 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2269 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2270 		return;
2271 	}
2272 
2273 	rcu_read_lock();
2274 
2275 	for (i = 0; i < num_records; i++) {
2276 		record = &resp->tx_fetch_ind.records[i];
2277 		peer_id = MS(le16_to_cpu(record->info),
2278 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2279 		tid = MS(le16_to_cpu(record->info),
2280 			 HTT_TX_FETCH_RECORD_INFO_TID);
2281 		max_num_msdus = le16_to_cpu(record->num_msdus);
2282 		max_num_bytes = le32_to_cpu(record->num_bytes);
2283 
2284 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2285 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
2286 
2287 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2288 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2289 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2290 				    peer_id, tid);
2291 			continue;
2292 		}
2293 
2294 		spin_lock_bh(&ar->data_lock);
2295 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2296 		spin_unlock_bh(&ar->data_lock);
2297 
2298 		/* It is okay to release the lock and use txq because RCU read
2299 		 * lock is held.
2300 		 */
2301 
2302 		if (unlikely(!txq)) {
2303 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2304 				    peer_id, tid);
2305 			continue;
2306 		}
2307 
2308 		num_msdus = 0;
2309 		num_bytes = 0;
2310 
2311 		while (num_msdus < max_num_msdus &&
2312 		       num_bytes < max_num_bytes) {
2313 			ret = ath10k_mac_tx_push_txq(hw, txq);
2314 			if (ret < 0)
2315 				break;
2316 
2317 			num_msdus++;
2318 			num_bytes += ret;
2319 		}
2320 
2321 		record->num_msdus = cpu_to_le16(num_msdus);
2322 		record->num_bytes = cpu_to_le32(num_bytes);
2323 
2324 		ath10k_htt_tx_txq_recalc(hw, txq);
2325 	}
2326 
2327 	rcu_read_unlock();
2328 
2329 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2330 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2331 
2332 	ret = ath10k_htt_tx_fetch_resp(ar,
2333 				       resp->tx_fetch_ind.token,
2334 				       resp->tx_fetch_ind.fetch_seq_num,
2335 				       resp->tx_fetch_ind.records,
2336 				       num_records);
2337 	if (unlikely(ret)) {
2338 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2339 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
2340 		/* FIXME: request fw restart */
2341 	}
2342 
2343 	ath10k_htt_tx_txq_sync(ar);
2344 }
2345 
2346 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2347 					   struct sk_buff *skb)
2348 {
2349 	const struct htt_resp *resp = (void *)skb->data;
2350 	size_t len;
2351 	int num_resp_ids;
2352 
2353 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2354 
2355 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2356 	if (unlikely(skb->len < len)) {
2357 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2358 		return;
2359 	}
2360 
2361 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2362 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2363 
2364 	if (unlikely(skb->len < len)) {
2365 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2366 		return;
2367 	}
2368 
2369 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2370 					       resp->tx_fetch_confirm.resp_ids,
2371 					       num_resp_ids);
2372 }
2373 
2374 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2375 					     struct sk_buff *skb)
2376 {
2377 	const struct htt_resp *resp = (void *)skb->data;
2378 	const struct htt_tx_mode_switch_record *record;
2379 	struct ieee80211_txq *txq;
2380 	struct ath10k_txq *artxq;
2381 	size_t len;
2382 	size_t num_records;
2383 	enum htt_tx_mode_switch_mode mode;
2384 	bool enable;
2385 	u16 info0;
2386 	u16 info1;
2387 	u16 threshold;
2388 	u16 peer_id;
2389 	u8 tid;
2390 	int i;
2391 
2392 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2393 
2394 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2395 	if (unlikely(skb->len < len)) {
2396 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2397 		return;
2398 	}
2399 
2400 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2401 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2402 
2403 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2404 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2405 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2406 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2407 
2408 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2409 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2410 		   info0, info1, enable, num_records, mode, threshold);
2411 
2412 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2413 
2414 	if (unlikely(skb->len < len)) {
2415 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2416 		return;
2417 	}
2418 
2419 	switch (mode) {
2420 	case HTT_TX_MODE_SWITCH_PUSH:
2421 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
2422 		break;
2423 	default:
2424 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2425 			    mode);
2426 		return;
2427 	}
2428 
2429 	if (!enable)
2430 		return;
2431 
2432 	ar->htt.tx_q_state.enabled = enable;
2433 	ar->htt.tx_q_state.mode = mode;
2434 	ar->htt.tx_q_state.num_push_allowed = threshold;
2435 
2436 	rcu_read_lock();
2437 
2438 	for (i = 0; i < num_records; i++) {
2439 		record = &resp->tx_mode_switch_ind.records[i];
2440 		info0 = le16_to_cpu(record->info0);
2441 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2442 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2443 
2444 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2445 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2446 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2447 				    peer_id, tid);
2448 			continue;
2449 		}
2450 
2451 		spin_lock_bh(&ar->data_lock);
2452 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2453 		spin_unlock_bh(&ar->data_lock);
2454 
2455 		/* It is okay to release the lock and use txq because RCU read
2456 		 * lock is held.
2457 		 */
2458 
2459 		if (unlikely(!txq)) {
2460 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2461 				    peer_id, tid);
2462 			continue;
2463 		}
2464 
2465 		spin_lock_bh(&ar->htt.tx_lock);
2466 		artxq = (void *)txq->drv_priv;
2467 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2468 		spin_unlock_bh(&ar->htt.tx_lock);
2469 	}
2470 
2471 	rcu_read_unlock();
2472 
2473 	ath10k_mac_tx_push_pending(ar);
2474 }
2475 
2476 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2477 {
2478 	bool release;
2479 
2480 	release = ath10k_htt_t2h_msg_handler(ar, skb);
2481 
2482 	/* Free the indication buffer */
2483 	if (release)
2484 		dev_kfree_skb_any(skb);
2485 }
2486 
2487 static inline bool is_valid_legacy_rate(u8 rate)
2488 {
2489 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2490 					  18, 24, 36, 48, 54};
2491 	int i;
2492 
2493 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2494 		if (rate == legacy_rates[i])
2495 			return true;
2496 	}
2497 
2498 	return false;
2499 }
2500 
2501 static void
2502 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2503 				struct ieee80211_sta *sta,
2504 				struct ath10k_per_peer_tx_stats *peer_stats)
2505 {
2506 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2507 	u8 rate = 0, sgi;
2508 	struct rate_info txrate;
2509 
2510 	lockdep_assert_held(&ar->data_lock);
2511 
2512 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2513 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2514 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2515 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2516 	sgi = ATH10K_HW_GI(peer_stats->flags);
2517 
2518 	if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2519 		ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
2520 		return;
2521 	}
2522 
2523 	if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2524 	    (txrate.mcs > 7 || txrate.nss < 1)) {
2525 		ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2526 			    txrate.mcs, txrate.nss);
2527 		return;
2528 	}
2529 
2530 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2531 
2532 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2533 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2534 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2535 
2536 		if (!is_valid_legacy_rate(rate)) {
2537 			ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2538 				    rate);
2539 			return;
2540 		}
2541 
2542 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2543 		rate *= 10;
2544 		if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2545 			rate = rate - 5;
2546 		arsta->txrate.legacy = rate;
2547 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2548 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2549 		arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2550 	} else {
2551 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2552 		arsta->txrate.mcs = txrate.mcs;
2553 	}
2554 
2555 	if (sgi)
2556 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2557 
2558 	arsta->txrate.nss = txrate.nss;
2559 	arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
2560 }
2561 
2562 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2563 					struct sk_buff *skb)
2564 {
2565 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2566 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2567 	struct htt_per_peer_tx_stats_ind *tx_stats;
2568 	struct ieee80211_sta *sta;
2569 	struct ath10k_peer *peer;
2570 	int peer_id, i;
2571 	u8 ppdu_len, num_ppdu;
2572 
2573 	num_ppdu = resp->peer_tx_stats.num_ppdu;
2574 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2575 
2576 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2577 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2578 		return;
2579 	}
2580 
2581 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
2582 			(resp->peer_tx_stats.payload);
2583 	peer_id = __le16_to_cpu(tx_stats->peer_id);
2584 
2585 	rcu_read_lock();
2586 	spin_lock_bh(&ar->data_lock);
2587 	peer = ath10k_peer_find_by_id(ar, peer_id);
2588 	if (!peer) {
2589 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2590 			    peer_id);
2591 		goto out;
2592 	}
2593 
2594 	sta = peer->sta;
2595 	for (i = 0; i < num_ppdu; i++) {
2596 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
2597 			   (resp->peer_tx_stats.payload + i * ppdu_len);
2598 
2599 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2600 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2601 		p_tx_stats->failed_bytes =
2602 				__le32_to_cpu(tx_stats->failed_bytes);
2603 		p_tx_stats->ratecode = tx_stats->ratecode;
2604 		p_tx_stats->flags = tx_stats->flags;
2605 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2606 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2607 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2608 
2609 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2610 	}
2611 
2612 out:
2613 	spin_unlock_bh(&ar->data_lock);
2614 	rcu_read_unlock();
2615 }
2616 
2617 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
2618 {
2619 	struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
2620 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2621 	struct ath10k_10_2_peer_tx_stats *tx_stats;
2622 	struct ieee80211_sta *sta;
2623 	struct ath10k_peer *peer;
2624 	u16 log_type = __le16_to_cpu(hdr->log_type);
2625 	u32 peer_id = 0, i;
2626 
2627 	if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
2628 		return;
2629 
2630 	tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
2631 		    ATH10K_10_2_TX_STATS_OFFSET);
2632 
2633 	if (!tx_stats->tx_ppdu_cnt)
2634 		return;
2635 
2636 	peer_id = tx_stats->peer_id;
2637 
2638 	rcu_read_lock();
2639 	spin_lock_bh(&ar->data_lock);
2640 	peer = ath10k_peer_find_by_id(ar, peer_id);
2641 	if (!peer) {
2642 		ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
2643 			    peer_id);
2644 		goto out;
2645 	}
2646 
2647 	sta = peer->sta;
2648 	for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
2649 		p_tx_stats->succ_bytes =
2650 			__le16_to_cpu(tx_stats->success_bytes[i]);
2651 		p_tx_stats->retry_bytes =
2652 			__le16_to_cpu(tx_stats->retry_bytes[i]);
2653 		p_tx_stats->failed_bytes =
2654 			__le16_to_cpu(tx_stats->failed_bytes[i]);
2655 		p_tx_stats->ratecode = tx_stats->ratecode[i];
2656 		p_tx_stats->flags = tx_stats->flags[i];
2657 		p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
2658 		p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
2659 		p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
2660 
2661 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2662 	}
2663 	spin_unlock_bh(&ar->data_lock);
2664 	rcu_read_unlock();
2665 
2666 	return;
2667 
2668 out:
2669 	spin_unlock_bh(&ar->data_lock);
2670 	rcu_read_unlock();
2671 }
2672 
2673 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2674 {
2675 	struct ath10k_htt *htt = &ar->htt;
2676 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2677 	enum htt_t2h_msg_type type;
2678 
2679 	/* confirm alignment */
2680 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
2681 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2682 
2683 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2684 		   resp->hdr.msg_type);
2685 
2686 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2687 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2688 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2689 		return true;
2690 	}
2691 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2692 
2693 	switch (type) {
2694 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2695 		htt->target_version_major = resp->ver_resp.major;
2696 		htt->target_version_minor = resp->ver_resp.minor;
2697 		complete(&htt->target_version_received);
2698 		break;
2699 	}
2700 	case HTT_T2H_MSG_TYPE_RX_IND:
2701 		ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2702 		break;
2703 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
2704 		struct htt_peer_map_event ev = {
2705 			.vdev_id = resp->peer_map.vdev_id,
2706 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2707 		};
2708 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2709 		ath10k_peer_map_event(htt, &ev);
2710 		break;
2711 	}
2712 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2713 		struct htt_peer_unmap_event ev = {
2714 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2715 		};
2716 		ath10k_peer_unmap_event(htt, &ev);
2717 		break;
2718 	}
2719 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2720 		struct htt_tx_done tx_done = {};
2721 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2722 
2723 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2724 
2725 		switch (status) {
2726 		case HTT_MGMT_TX_STATUS_OK:
2727 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
2728 			break;
2729 		case HTT_MGMT_TX_STATUS_RETRY:
2730 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2731 			break;
2732 		case HTT_MGMT_TX_STATUS_DROP:
2733 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2734 			break;
2735 		}
2736 
2737 		status = ath10k_txrx_tx_unref(htt, &tx_done);
2738 		if (!status) {
2739 			spin_lock_bh(&htt->tx_lock);
2740 			ath10k_htt_tx_mgmt_dec_pending(htt);
2741 			spin_unlock_bh(&htt->tx_lock);
2742 		}
2743 		break;
2744 	}
2745 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2746 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2747 		break;
2748 	case HTT_T2H_MSG_TYPE_SEC_IND: {
2749 		struct ath10k *ar = htt->ar;
2750 		struct htt_security_indication *ev = &resp->security_indication;
2751 
2752 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2753 			   "sec ind peer_id %d unicast %d type %d\n",
2754 			  __le16_to_cpu(ev->peer_id),
2755 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2756 			  MS(ev->flags, HTT_SECURITY_TYPE));
2757 		complete(&ar->install_key_done);
2758 		break;
2759 	}
2760 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2761 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2762 				skb->data, skb->len);
2763 		atomic_inc(&htt->num_mpdus_ready);
2764 		break;
2765 	}
2766 	case HTT_T2H_MSG_TYPE_TEST:
2767 		break;
2768 	case HTT_T2H_MSG_TYPE_STATS_CONF:
2769 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
2770 		break;
2771 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2772 		/* Firmware can return tx frames if it's unable to fully
2773 		 * process them and suspects host may be able to fix it. ath10k
2774 		 * sends all tx frames as already inspected so this shouldn't
2775 		 * happen unless fw has a bug.
2776 		 */
2777 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2778 		break;
2779 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
2780 		ath10k_htt_rx_addba(ar, resp);
2781 		break;
2782 	case HTT_T2H_MSG_TYPE_RX_DELBA:
2783 		ath10k_htt_rx_delba(ar, resp);
2784 		break;
2785 	case HTT_T2H_MSG_TYPE_PKTLOG: {
2786 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2787 					skb->len -
2788 					offsetof(struct htt_resp,
2789 						 pktlog_msg.payload));
2790 
2791 		if (ath10k_peer_stats_enabled(ar))
2792 			ath10k_fetch_10_2_tx_stats(ar,
2793 						   resp->pktlog_msg.payload);
2794 		break;
2795 	}
2796 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2797 		/* Ignore this event because mac80211 takes care of Rx
2798 		 * aggregation reordering.
2799 		 */
2800 		break;
2801 	}
2802 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2803 		__skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2804 		return false;
2805 	}
2806 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2807 		break;
2808 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2809 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2810 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
2811 
2812 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2813 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2814 			   "htt chan change freq %u phymode %s\n",
2815 			   freq, ath10k_wmi_phymode_str(phymode));
2816 		break;
2817 	}
2818 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
2819 		break;
2820 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2821 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2822 
2823 		if (!tx_fetch_ind) {
2824 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2825 			break;
2826 		}
2827 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2828 		break;
2829 	}
2830 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2831 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2832 		break;
2833 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2834 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2835 		break;
2836 	case HTT_T2H_MSG_TYPE_PEER_STATS:
2837 		ath10k_htt_fetch_peer_stats(ar, skb);
2838 		break;
2839 	case HTT_T2H_MSG_TYPE_EN_STATS:
2840 	default:
2841 		ath10k_warn(ar, "htt event (%d) not handled\n",
2842 			    resp->hdr.msg_type);
2843 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2844 				skb->data, skb->len);
2845 		break;
2846 	}
2847 	return true;
2848 }
2849 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2850 
2851 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2852 					     struct sk_buff *skb)
2853 {
2854 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2855 	dev_kfree_skb_any(skb);
2856 }
2857 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2858 
2859 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
2860 {
2861 	struct sk_buff *skb;
2862 
2863 	while (quota < budget) {
2864 		if (skb_queue_empty(&ar->htt.rx_msdus_q))
2865 			break;
2866 
2867 		skb = __skb_dequeue(&ar->htt.rx_msdus_q);
2868 		if (!skb)
2869 			break;
2870 		ath10k_process_rx(ar, skb);
2871 		quota++;
2872 	}
2873 
2874 	return quota;
2875 }
2876 
2877 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2878 {
2879 	struct ath10k_htt *htt = &ar->htt;
2880 	struct htt_tx_done tx_done = {};
2881 	struct sk_buff_head tx_ind_q;
2882 	struct sk_buff *skb;
2883 	unsigned long flags;
2884 	int quota = 0, done, ret;
2885 	bool resched_napi = false;
2886 
2887 	__skb_queue_head_init(&tx_ind_q);
2888 
2889 	/* Process pending frames before dequeuing more data
2890 	 * from hardware.
2891 	 */
2892 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2893 	if (quota == budget) {
2894 		resched_napi = true;
2895 		goto exit;
2896 	}
2897 
2898 	while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2899 		spin_lock_bh(&htt->rx_ring.lock);
2900 		ret = ath10k_htt_rx_in_ord_ind(ar, skb);
2901 		spin_unlock_bh(&htt->rx_ring.lock);
2902 
2903 		dev_kfree_skb_any(skb);
2904 		if (ret == -EIO) {
2905 			resched_napi = true;
2906 			goto exit;
2907 		}
2908 	}
2909 
2910 	while (atomic_read(&htt->num_mpdus_ready)) {
2911 		ret = ath10k_htt_rx_handle_amsdu(htt);
2912 		if (ret == -EIO) {
2913 			resched_napi = true;
2914 			goto exit;
2915 		}
2916 		atomic_dec(&htt->num_mpdus_ready);
2917 	}
2918 
2919 	/* Deliver received data after processing data from hardware */
2920 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2921 
2922 	/* From NAPI documentation:
2923 	 *  The napi poll() function may also process TX completions, in which
2924 	 *  case if it processes the entire TX ring then it should count that
2925 	 *  work as the rest of the budget.
2926 	 */
2927 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2928 		quota = budget;
2929 
2930 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2931 	 * From kfifo_get() documentation:
2932 	 *  Note that with only one concurrent reader and one concurrent writer,
2933 	 *  you don't need extra locking to use these macro.
2934 	 */
2935 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
2936 		ath10k_txrx_tx_unref(htt, &tx_done);
2937 
2938 	ath10k_mac_tx_push_pending(ar);
2939 
2940 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2941 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2942 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2943 
2944 	while ((skb = __skb_dequeue(&tx_ind_q))) {
2945 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
2946 		dev_kfree_skb_any(skb);
2947 	}
2948 
2949 exit:
2950 	ath10k_htt_rx_msdu_buff_replenish(htt);
2951 	/* In case of rx failure or more data to read, report budget
2952 	 * to reschedule NAPI poll
2953 	 */
2954 	done = resched_napi ? budget : quota;
2955 
2956 	return done;
2957 }
2958 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
2959 
2960 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
2961 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
2962 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
2963 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
2964 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
2965 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
2966 };
2967 
2968 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
2969 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
2970 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
2971 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
2972 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
2973 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
2974 };
2975 
2976 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
2977 {
2978 	struct ath10k *ar = htt->ar;
2979 
2980 	if (ar->hw_params.target_64bit)
2981 		htt->rx_ops = &htt_rx_ops_64;
2982 	else
2983 		htt->rx_ops = &htt_rx_ops_32;
2984 }
2985