xref: /linux/drivers/net/wireless/ath/ath10k/htt_rx.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25 
26 #include <linux/log2.h>
27 
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30 
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33 
34 #define HTT_RX_RING_REFILL_RESCHED_MS 5
35 
36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
37 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
38 
39 static struct sk_buff *
40 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
41 {
42 	struct ath10k_skb_rxcb *rxcb;
43 
44 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
45 		if (rxcb->paddr == paddr)
46 			return ATH10K_RXCB_SKB(rxcb);
47 
48 	WARN_ON_ONCE(1);
49 	return NULL;
50 }
51 
52 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
53 {
54 	struct sk_buff *skb;
55 	struct ath10k_skb_rxcb *rxcb;
56 	struct hlist_node *n;
57 	int i;
58 
59 	if (htt->rx_ring.in_ord_rx) {
60 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
61 			skb = ATH10K_RXCB_SKB(rxcb);
62 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
63 					 skb->len + skb_tailroom(skb),
64 					 DMA_FROM_DEVICE);
65 			hash_del(&rxcb->hlist);
66 			dev_kfree_skb_any(skb);
67 		}
68 	} else {
69 		for (i = 0; i < htt->rx_ring.size; i++) {
70 			skb = htt->rx_ring.netbufs_ring[i];
71 			if (!skb)
72 				continue;
73 
74 			rxcb = ATH10K_SKB_RXCB(skb);
75 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
76 					 skb->len + skb_tailroom(skb),
77 					 DMA_FROM_DEVICE);
78 			dev_kfree_skb_any(skb);
79 		}
80 	}
81 
82 	htt->rx_ring.fill_cnt = 0;
83 	hash_init(htt->rx_ring.skb_table);
84 	memset(htt->rx_ring.netbufs_ring, 0,
85 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
86 }
87 
88 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
89 {
90 	struct htt_rx_desc *rx_desc;
91 	struct ath10k_skb_rxcb *rxcb;
92 	struct sk_buff *skb;
93 	dma_addr_t paddr;
94 	int ret = 0, idx;
95 
96 	/* The Full Rx Reorder firmware has no way of telling the host
97 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
98 	 * To keep things simple make sure ring is always half empty. This
99 	 * guarantees there'll be no replenishment overruns possible.
100 	 */
101 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
102 
103 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
104 	while (num > 0) {
105 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
106 		if (!skb) {
107 			ret = -ENOMEM;
108 			goto fail;
109 		}
110 
111 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
112 			skb_pull(skb,
113 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
114 				 skb->data);
115 
116 		/* Clear rx_desc attention word before posting to Rx ring */
117 		rx_desc = (struct htt_rx_desc *)skb->data;
118 		rx_desc->attention.flags = __cpu_to_le32(0);
119 
120 		paddr = dma_map_single(htt->ar->dev, skb->data,
121 				       skb->len + skb_tailroom(skb),
122 				       DMA_FROM_DEVICE);
123 
124 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
125 			dev_kfree_skb_any(skb);
126 			ret = -ENOMEM;
127 			goto fail;
128 		}
129 
130 		rxcb = ATH10K_SKB_RXCB(skb);
131 		rxcb->paddr = paddr;
132 		htt->rx_ring.netbufs_ring[idx] = skb;
133 		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
134 		htt->rx_ring.fill_cnt++;
135 
136 		if (htt->rx_ring.in_ord_rx) {
137 			hash_add(htt->rx_ring.skb_table,
138 				 &ATH10K_SKB_RXCB(skb)->hlist,
139 				 (u32)paddr);
140 		}
141 
142 		num--;
143 		idx++;
144 		idx &= htt->rx_ring.size_mask;
145 	}
146 
147 fail:
148 	/*
149 	 * Make sure the rx buffer is updated before available buffer
150 	 * index to avoid any potential rx ring corruption.
151 	 */
152 	mb();
153 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
154 	return ret;
155 }
156 
157 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
158 {
159 	lockdep_assert_held(&htt->rx_ring.lock);
160 	return __ath10k_htt_rx_ring_fill_n(htt, num);
161 }
162 
163 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
164 {
165 	int ret, num_deficit, num_to_fill;
166 
167 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
168 	 * reason is RX may take up significant amount of CPU cycles and starve
169 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
170 	 * with ath10k wlan interface. This ended up with very poor performance
171 	 * once CPU the host system was overwhelmed with RX on ath10k.
172 	 *
173 	 * By limiting the number of refills the replenishing occurs
174 	 * progressively. This in turns makes use of the fact tasklets are
175 	 * processed in FIFO order. This means actual RX processing can starve
176 	 * out refilling. If there's not enough buffers on RX ring FW will not
177 	 * report RX until it is refilled with enough buffers. This
178 	 * automatically balances load wrt to CPU power.
179 	 *
180 	 * This probably comes at a cost of lower maximum throughput but
181 	 * improves the average and stability. */
182 	spin_lock_bh(&htt->rx_ring.lock);
183 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
184 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
185 	num_deficit -= num_to_fill;
186 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
187 	if (ret == -ENOMEM) {
188 		/*
189 		 * Failed to fill it to the desired level -
190 		 * we'll start a timer and try again next time.
191 		 * As long as enough buffers are left in the ring for
192 		 * another A-MPDU rx, no special recovery is needed.
193 		 */
194 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
195 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
196 	} else if (num_deficit > 0) {
197 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
198 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
199 	}
200 	spin_unlock_bh(&htt->rx_ring.lock);
201 }
202 
203 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
204 {
205 	struct ath10k_htt *htt = (struct ath10k_htt *)arg;
206 
207 	ath10k_htt_rx_msdu_buff_replenish(htt);
208 }
209 
210 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
211 {
212 	struct ath10k_htt *htt = &ar->htt;
213 	int ret;
214 
215 	spin_lock_bh(&htt->rx_ring.lock);
216 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
217 					      htt->rx_ring.fill_cnt));
218 	spin_unlock_bh(&htt->rx_ring.lock);
219 
220 	if (ret)
221 		ath10k_htt_rx_ring_free(htt);
222 
223 	return ret;
224 }
225 
226 void ath10k_htt_rx_free(struct ath10k_htt *htt)
227 {
228 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
229 	tasklet_kill(&htt->txrx_compl_task);
230 
231 	skb_queue_purge(&htt->rx_compl_q);
232 	skb_queue_purge(&htt->rx_in_ord_compl_q);
233 	skb_queue_purge(&htt->tx_fetch_ind_q);
234 
235 	ath10k_htt_rx_ring_free(htt);
236 
237 	dma_free_coherent(htt->ar->dev,
238 			  (htt->rx_ring.size *
239 			   sizeof(htt->rx_ring.paddrs_ring)),
240 			  htt->rx_ring.paddrs_ring,
241 			  htt->rx_ring.base_paddr);
242 
243 	dma_free_coherent(htt->ar->dev,
244 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
245 			  htt->rx_ring.alloc_idx.vaddr,
246 			  htt->rx_ring.alloc_idx.paddr);
247 
248 	kfree(htt->rx_ring.netbufs_ring);
249 }
250 
251 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
252 {
253 	struct ath10k *ar = htt->ar;
254 	int idx;
255 	struct sk_buff *msdu;
256 
257 	lockdep_assert_held(&htt->rx_ring.lock);
258 
259 	if (htt->rx_ring.fill_cnt == 0) {
260 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
261 		return NULL;
262 	}
263 
264 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
265 	msdu = htt->rx_ring.netbufs_ring[idx];
266 	htt->rx_ring.netbufs_ring[idx] = NULL;
267 	htt->rx_ring.paddrs_ring[idx] = 0;
268 
269 	idx++;
270 	idx &= htt->rx_ring.size_mask;
271 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
272 	htt->rx_ring.fill_cnt--;
273 
274 	dma_unmap_single(htt->ar->dev,
275 			 ATH10K_SKB_RXCB(msdu)->paddr,
276 			 msdu->len + skb_tailroom(msdu),
277 			 DMA_FROM_DEVICE);
278 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
279 			msdu->data, msdu->len + skb_tailroom(msdu));
280 
281 	return msdu;
282 }
283 
284 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
285 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
286 				   struct sk_buff_head *amsdu)
287 {
288 	struct ath10k *ar = htt->ar;
289 	int msdu_len, msdu_chaining = 0;
290 	struct sk_buff *msdu;
291 	struct htt_rx_desc *rx_desc;
292 
293 	lockdep_assert_held(&htt->rx_ring.lock);
294 
295 	for (;;) {
296 		int last_msdu, msdu_len_invalid, msdu_chained;
297 
298 		msdu = ath10k_htt_rx_netbuf_pop(htt);
299 		if (!msdu) {
300 			__skb_queue_purge(amsdu);
301 			return -ENOENT;
302 		}
303 
304 		__skb_queue_tail(amsdu, msdu);
305 
306 		rx_desc = (struct htt_rx_desc *)msdu->data;
307 
308 		/* FIXME: we must report msdu payload since this is what caller
309 		 *        expects now */
310 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
312 
313 		/*
314 		 * Sanity check - confirm the HW is finished filling in the
315 		 * rx data.
316 		 * If the HW and SW are working correctly, then it's guaranteed
317 		 * that the HW's MAC DMA is done before this point in the SW.
318 		 * To prevent the case that we handle a stale Rx descriptor,
319 		 * just assert for now until we have a way to recover.
320 		 */
321 		if (!(__le32_to_cpu(rx_desc->attention.flags)
322 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
323 			__skb_queue_purge(amsdu);
324 			return -EIO;
325 		}
326 
327 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
328 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
329 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
330 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
331 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
332 		msdu_chained = rx_desc->frag_info.ring2_more_count;
333 
334 		if (msdu_len_invalid)
335 			msdu_len = 0;
336 
337 		skb_trim(msdu, 0);
338 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
339 		msdu_len -= msdu->len;
340 
341 		/* Note: Chained buffers do not contain rx descriptor */
342 		while (msdu_chained--) {
343 			msdu = ath10k_htt_rx_netbuf_pop(htt);
344 			if (!msdu) {
345 				__skb_queue_purge(amsdu);
346 				return -ENOENT;
347 			}
348 
349 			__skb_queue_tail(amsdu, msdu);
350 			skb_trim(msdu, 0);
351 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
352 			msdu_len -= msdu->len;
353 			msdu_chaining = 1;
354 		}
355 
356 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
357 				RX_MSDU_END_INFO0_LAST_MSDU;
358 
359 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
360 					 sizeof(*rx_desc) - sizeof(u32));
361 
362 		if (last_msdu)
363 			break;
364 	}
365 
366 	if (skb_queue_empty(amsdu))
367 		msdu_chaining = -1;
368 
369 	/*
370 	 * Don't refill the ring yet.
371 	 *
372 	 * First, the elements popped here are still in use - it is not
373 	 * safe to overwrite them until the matching call to
374 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
375 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
376 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
377 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
378 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
379 	 * out of the rx ring, and then refill it just once.
380 	 */
381 
382 	return msdu_chaining;
383 }
384 
385 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
386 					       u32 paddr)
387 {
388 	struct ath10k *ar = htt->ar;
389 	struct ath10k_skb_rxcb *rxcb;
390 	struct sk_buff *msdu;
391 
392 	lockdep_assert_held(&htt->rx_ring.lock);
393 
394 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
395 	if (!msdu)
396 		return NULL;
397 
398 	rxcb = ATH10K_SKB_RXCB(msdu);
399 	hash_del(&rxcb->hlist);
400 	htt->rx_ring.fill_cnt--;
401 
402 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
403 			 msdu->len + skb_tailroom(msdu),
404 			 DMA_FROM_DEVICE);
405 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
406 			msdu->data, msdu->len + skb_tailroom(msdu));
407 
408 	return msdu;
409 }
410 
411 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
412 					struct htt_rx_in_ord_ind *ev,
413 					struct sk_buff_head *list)
414 {
415 	struct ath10k *ar = htt->ar;
416 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
417 	struct htt_rx_desc *rxd;
418 	struct sk_buff *msdu;
419 	int msdu_count;
420 	bool is_offload;
421 	u32 paddr;
422 
423 	lockdep_assert_held(&htt->rx_ring.lock);
424 
425 	msdu_count = __le16_to_cpu(ev->msdu_count);
426 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
427 
428 	while (msdu_count--) {
429 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
430 
431 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
432 		if (!msdu) {
433 			__skb_queue_purge(list);
434 			return -ENOENT;
435 		}
436 
437 		__skb_queue_tail(list, msdu);
438 
439 		if (!is_offload) {
440 			rxd = (void *)msdu->data;
441 
442 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
443 
444 			skb_put(msdu, sizeof(*rxd));
445 			skb_pull(msdu, sizeof(*rxd));
446 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
447 
448 			if (!(__le32_to_cpu(rxd->attention.flags) &
449 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
450 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
451 				return -EIO;
452 			}
453 		}
454 
455 		msdu_desc++;
456 	}
457 
458 	return 0;
459 }
460 
461 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
462 {
463 	struct ath10k *ar = htt->ar;
464 	dma_addr_t paddr;
465 	void *vaddr;
466 	size_t size;
467 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
468 
469 	htt->rx_confused = false;
470 
471 	/* XXX: The fill level could be changed during runtime in response to
472 	 * the host processing latency. Is this really worth it?
473 	 */
474 	htt->rx_ring.size = HTT_RX_RING_SIZE;
475 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
476 	htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
477 
478 	if (!is_power_of_2(htt->rx_ring.size)) {
479 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
480 		return -EINVAL;
481 	}
482 
483 	htt->rx_ring.netbufs_ring =
484 		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
485 			GFP_KERNEL);
486 	if (!htt->rx_ring.netbufs_ring)
487 		goto err_netbuf;
488 
489 	size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
490 
491 	vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
492 	if (!vaddr)
493 		goto err_dma_ring;
494 
495 	htt->rx_ring.paddrs_ring = vaddr;
496 	htt->rx_ring.base_paddr = paddr;
497 
498 	vaddr = dma_alloc_coherent(htt->ar->dev,
499 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
500 				   &paddr, GFP_KERNEL);
501 	if (!vaddr)
502 		goto err_dma_idx;
503 
504 	htt->rx_ring.alloc_idx.vaddr = vaddr;
505 	htt->rx_ring.alloc_idx.paddr = paddr;
506 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
507 	*htt->rx_ring.alloc_idx.vaddr = 0;
508 
509 	/* Initialize the Rx refill retry timer */
510 	setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
511 
512 	spin_lock_init(&htt->rx_ring.lock);
513 
514 	htt->rx_ring.fill_cnt = 0;
515 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
516 	hash_init(htt->rx_ring.skb_table);
517 
518 	skb_queue_head_init(&htt->rx_compl_q);
519 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
520 	skb_queue_head_init(&htt->tx_fetch_ind_q);
521 	atomic_set(&htt->num_mpdus_ready, 0);
522 
523 	tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
524 		     (unsigned long)htt);
525 
526 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
527 		   htt->rx_ring.size, htt->rx_ring.fill_level);
528 	return 0;
529 
530 err_dma_idx:
531 	dma_free_coherent(htt->ar->dev,
532 			  (htt->rx_ring.size *
533 			   sizeof(htt->rx_ring.paddrs_ring)),
534 			  htt->rx_ring.paddrs_ring,
535 			  htt->rx_ring.base_paddr);
536 err_dma_ring:
537 	kfree(htt->rx_ring.netbufs_ring);
538 err_netbuf:
539 	return -ENOMEM;
540 }
541 
542 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
543 					  enum htt_rx_mpdu_encrypt_type type)
544 {
545 	switch (type) {
546 	case HTT_RX_MPDU_ENCRYPT_NONE:
547 		return 0;
548 	case HTT_RX_MPDU_ENCRYPT_WEP40:
549 	case HTT_RX_MPDU_ENCRYPT_WEP104:
550 		return IEEE80211_WEP_IV_LEN;
551 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
552 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
553 		return IEEE80211_TKIP_IV_LEN;
554 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
555 		return IEEE80211_CCMP_HDR_LEN;
556 	case HTT_RX_MPDU_ENCRYPT_WEP128:
557 	case HTT_RX_MPDU_ENCRYPT_WAPI:
558 		break;
559 	}
560 
561 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
562 	return 0;
563 }
564 
565 #define MICHAEL_MIC_LEN 8
566 
567 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
568 					 enum htt_rx_mpdu_encrypt_type type)
569 {
570 	switch (type) {
571 	case HTT_RX_MPDU_ENCRYPT_NONE:
572 		return 0;
573 	case HTT_RX_MPDU_ENCRYPT_WEP40:
574 	case HTT_RX_MPDU_ENCRYPT_WEP104:
575 		return IEEE80211_WEP_ICV_LEN;
576 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
577 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
578 		return IEEE80211_TKIP_ICV_LEN;
579 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
580 		return IEEE80211_CCMP_MIC_LEN;
581 	case HTT_RX_MPDU_ENCRYPT_WEP128:
582 	case HTT_RX_MPDU_ENCRYPT_WAPI:
583 		break;
584 	}
585 
586 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
587 	return 0;
588 }
589 
590 struct amsdu_subframe_hdr {
591 	u8 dst[ETH_ALEN];
592 	u8 src[ETH_ALEN];
593 	__be16 len;
594 } __packed;
595 
596 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
597 
598 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
599 				  struct ieee80211_rx_status *status,
600 				  struct htt_rx_desc *rxd)
601 {
602 	struct ieee80211_supported_band *sband;
603 	u8 cck, rate, bw, sgi, mcs, nss;
604 	u8 preamble = 0;
605 	u8 group_id;
606 	u32 info1, info2, info3;
607 
608 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
609 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
610 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
611 
612 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
613 
614 	switch (preamble) {
615 	case HTT_RX_LEGACY:
616 		/* To get legacy rate index band is required. Since band can't
617 		 * be undefined check if freq is non-zero.
618 		 */
619 		if (!status->freq)
620 			return;
621 
622 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
623 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
624 		rate &= ~RX_PPDU_START_RATE_FLAG;
625 
626 		sband = &ar->mac.sbands[status->band];
627 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
628 		break;
629 	case HTT_RX_HT:
630 	case HTT_RX_HT_WITH_TXBF:
631 		/* HT-SIG - Table 20-11 in info2 and info3 */
632 		mcs = info2 & 0x1F;
633 		nss = mcs >> 3;
634 		bw = (info2 >> 7) & 1;
635 		sgi = (info3 >> 7) & 1;
636 
637 		status->rate_idx = mcs;
638 		status->flag |= RX_FLAG_HT;
639 		if (sgi)
640 			status->flag |= RX_FLAG_SHORT_GI;
641 		if (bw)
642 			status->flag |= RX_FLAG_40MHZ;
643 		break;
644 	case HTT_RX_VHT:
645 	case HTT_RX_VHT_WITH_TXBF:
646 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
647 		   TODO check this */
648 		bw = info2 & 3;
649 		sgi = info3 & 1;
650 		group_id = (info2 >> 4) & 0x3F;
651 
652 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
653 			mcs = (info3 >> 4) & 0x0F;
654 			nss = ((info2 >> 10) & 0x07) + 1;
655 		} else {
656 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
657 			 * so it's impossible to decode MCS. Also since
658 			 * firmware consumes Group Id Management frames host
659 			 * has no knowledge regarding group/user position
660 			 * mapping so it's impossible to pick the correct Nsts
661 			 * from VHT-SIG-A1.
662 			 *
663 			 * Bandwidth and SGI are valid so report the rateinfo
664 			 * on best-effort basis.
665 			 */
666 			mcs = 0;
667 			nss = 1;
668 		}
669 
670 		if (mcs > 0x09) {
671 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
672 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
673 				    __le32_to_cpu(rxd->attention.flags),
674 				    __le32_to_cpu(rxd->mpdu_start.info0),
675 				    __le32_to_cpu(rxd->mpdu_start.info1),
676 				    __le32_to_cpu(rxd->msdu_start.common.info0),
677 				    __le32_to_cpu(rxd->msdu_start.common.info1),
678 				    rxd->ppdu_start.info0,
679 				    __le32_to_cpu(rxd->ppdu_start.info1),
680 				    __le32_to_cpu(rxd->ppdu_start.info2),
681 				    __le32_to_cpu(rxd->ppdu_start.info3),
682 				    __le32_to_cpu(rxd->ppdu_start.info4));
683 
684 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
685 				    __le32_to_cpu(rxd->msdu_end.common.info0),
686 				    __le32_to_cpu(rxd->mpdu_end.info0));
687 
688 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
689 					"rx desc msdu payload: ",
690 					rxd->msdu_payload, 50);
691 		}
692 
693 		status->rate_idx = mcs;
694 		status->vht_nss = nss;
695 
696 		if (sgi)
697 			status->flag |= RX_FLAG_SHORT_GI;
698 
699 		switch (bw) {
700 		/* 20MHZ */
701 		case 0:
702 			break;
703 		/* 40MHZ */
704 		case 1:
705 			status->flag |= RX_FLAG_40MHZ;
706 			break;
707 		/* 80MHZ */
708 		case 2:
709 			status->vht_flag |= RX_VHT_FLAG_80MHZ;
710 		}
711 
712 		status->flag |= RX_FLAG_VHT;
713 		break;
714 	default:
715 		break;
716 	}
717 }
718 
719 static struct ieee80211_channel *
720 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
721 {
722 	struct ath10k_peer *peer;
723 	struct ath10k_vif *arvif;
724 	struct cfg80211_chan_def def;
725 	u16 peer_id;
726 
727 	lockdep_assert_held(&ar->data_lock);
728 
729 	if (!rxd)
730 		return NULL;
731 
732 	if (rxd->attention.flags &
733 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
734 		return NULL;
735 
736 	if (!(rxd->msdu_end.common.info0 &
737 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
738 		return NULL;
739 
740 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
741 		     RX_MPDU_START_INFO0_PEER_IDX);
742 
743 	peer = ath10k_peer_find_by_id(ar, peer_id);
744 	if (!peer)
745 		return NULL;
746 
747 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
748 	if (WARN_ON_ONCE(!arvif))
749 		return NULL;
750 
751 	if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
752 		return NULL;
753 
754 	return def.chan;
755 }
756 
757 static struct ieee80211_channel *
758 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
759 {
760 	struct ath10k_vif *arvif;
761 	struct cfg80211_chan_def def;
762 
763 	lockdep_assert_held(&ar->data_lock);
764 
765 	list_for_each_entry(arvif, &ar->arvifs, list) {
766 		if (arvif->vdev_id == vdev_id &&
767 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
768 			return def.chan;
769 	}
770 
771 	return NULL;
772 }
773 
774 static void
775 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
776 			      struct ieee80211_chanctx_conf *conf,
777 			      void *data)
778 {
779 	struct cfg80211_chan_def *def = data;
780 
781 	*def = conf->def;
782 }
783 
784 static struct ieee80211_channel *
785 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
786 {
787 	struct cfg80211_chan_def def = {};
788 
789 	ieee80211_iter_chan_contexts_atomic(ar->hw,
790 					    ath10k_htt_rx_h_any_chan_iter,
791 					    &def);
792 
793 	return def.chan;
794 }
795 
796 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
797 				    struct ieee80211_rx_status *status,
798 				    struct htt_rx_desc *rxd,
799 				    u32 vdev_id)
800 {
801 	struct ieee80211_channel *ch;
802 
803 	spin_lock_bh(&ar->data_lock);
804 	ch = ar->scan_channel;
805 	if (!ch)
806 		ch = ar->rx_channel;
807 	if (!ch)
808 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
809 	if (!ch)
810 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
811 	if (!ch)
812 		ch = ath10k_htt_rx_h_any_channel(ar);
813 	if (!ch)
814 		ch = ar->tgt_oper_chan;
815 	spin_unlock_bh(&ar->data_lock);
816 
817 	if (!ch)
818 		return false;
819 
820 	status->band = ch->band;
821 	status->freq = ch->center_freq;
822 
823 	return true;
824 }
825 
826 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
827 				   struct ieee80211_rx_status *status,
828 				   struct htt_rx_desc *rxd)
829 {
830 	/* FIXME: Get real NF */
831 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
832 			 rxd->ppdu_start.rssi_comb;
833 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
834 }
835 
836 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
837 				    struct ieee80211_rx_status *status,
838 				    struct htt_rx_desc *rxd)
839 {
840 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
841 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
842 	 * TSF. Is it worth holding frames until end of PPDU is known?
843 	 *
844 	 * FIXME: Can we get/compute 64bit TSF?
845 	 */
846 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
847 	status->flag |= RX_FLAG_MACTIME_END;
848 }
849 
850 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
851 				 struct sk_buff_head *amsdu,
852 				 struct ieee80211_rx_status *status,
853 				 u32 vdev_id)
854 {
855 	struct sk_buff *first;
856 	struct htt_rx_desc *rxd;
857 	bool is_first_ppdu;
858 	bool is_last_ppdu;
859 
860 	if (skb_queue_empty(amsdu))
861 		return;
862 
863 	first = skb_peek(amsdu);
864 	rxd = (void *)first->data - sizeof(*rxd);
865 
866 	is_first_ppdu = !!(rxd->attention.flags &
867 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
868 	is_last_ppdu = !!(rxd->attention.flags &
869 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
870 
871 	if (is_first_ppdu) {
872 		/* New PPDU starts so clear out the old per-PPDU status. */
873 		status->freq = 0;
874 		status->rate_idx = 0;
875 		status->vht_nss = 0;
876 		status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
877 		status->flag &= ~(RX_FLAG_HT |
878 				  RX_FLAG_VHT |
879 				  RX_FLAG_SHORT_GI |
880 				  RX_FLAG_40MHZ |
881 				  RX_FLAG_MACTIME_END);
882 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
883 
884 		ath10k_htt_rx_h_signal(ar, status, rxd);
885 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
886 		ath10k_htt_rx_h_rates(ar, status, rxd);
887 	}
888 
889 	if (is_last_ppdu)
890 		ath10k_htt_rx_h_mactime(ar, status, rxd);
891 }
892 
893 static const char * const tid_to_ac[] = {
894 	"BE",
895 	"BK",
896 	"BK",
897 	"BE",
898 	"VI",
899 	"VI",
900 	"VO",
901 	"VO",
902 };
903 
904 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
905 {
906 	u8 *qc;
907 	int tid;
908 
909 	if (!ieee80211_is_data_qos(hdr->frame_control))
910 		return "";
911 
912 	qc = ieee80211_get_qos_ctl(hdr);
913 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
914 	if (tid < 8)
915 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
916 	else
917 		snprintf(out, size, "tid %d", tid);
918 
919 	return out;
920 }
921 
922 static void ath10k_process_rx(struct ath10k *ar,
923 			      struct ieee80211_rx_status *rx_status,
924 			      struct sk_buff *skb)
925 {
926 	struct ieee80211_rx_status *status;
927 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
928 	char tid[32];
929 
930 	status = IEEE80211_SKB_RXCB(skb);
931 	*status = *rx_status;
932 
933 	ath10k_dbg(ar, ATH10K_DBG_DATA,
934 		   "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%llx fcs-err %i mic-err %i amsdu-more %i\n",
935 		   skb,
936 		   skb->len,
937 		   ieee80211_get_SA(hdr),
938 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
939 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
940 							"mcast" : "ucast",
941 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
942 		   status->flag == 0 ? "legacy" : "",
943 		   status->flag & RX_FLAG_HT ? "ht" : "",
944 		   status->flag & RX_FLAG_VHT ? "vht" : "",
945 		   status->flag & RX_FLAG_40MHZ ? "40" : "",
946 		   status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
947 		   status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
948 		   status->rate_idx,
949 		   status->vht_nss,
950 		   status->freq,
951 		   status->band, status->flag,
952 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
953 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
954 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
955 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
956 			skb->data, skb->len);
957 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
958 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
959 
960 	ieee80211_rx(ar->hw, skb);
961 }
962 
963 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
964 				      struct ieee80211_hdr *hdr)
965 {
966 	int len = ieee80211_hdrlen(hdr->frame_control);
967 
968 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
969 		      ar->running_fw->fw_file.fw_features))
970 		len = round_up(len, 4);
971 
972 	return len;
973 }
974 
975 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
976 					struct sk_buff *msdu,
977 					struct ieee80211_rx_status *status,
978 					enum htt_rx_mpdu_encrypt_type enctype,
979 					bool is_decrypted)
980 {
981 	struct ieee80211_hdr *hdr;
982 	struct htt_rx_desc *rxd;
983 	size_t hdr_len;
984 	size_t crypto_len;
985 	bool is_first;
986 	bool is_last;
987 
988 	rxd = (void *)msdu->data - sizeof(*rxd);
989 	is_first = !!(rxd->msdu_end.common.info0 &
990 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
991 	is_last = !!(rxd->msdu_end.common.info0 &
992 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
993 
994 	/* Delivered decapped frame:
995 	 * [802.11 header]
996 	 * [crypto param] <-- can be trimmed if !fcs_err &&
997 	 *                    !decrypt_err && !peer_idx_invalid
998 	 * [amsdu header] <-- only if A-MSDU
999 	 * [rfc1042/llc]
1000 	 * [payload]
1001 	 * [FCS] <-- at end, needs to be trimmed
1002 	 */
1003 
1004 	/* This probably shouldn't happen but warn just in case */
1005 	if (unlikely(WARN_ON_ONCE(!is_first)))
1006 		return;
1007 
1008 	/* This probably shouldn't happen but warn just in case */
1009 	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1010 		return;
1011 
1012 	skb_trim(msdu, msdu->len - FCS_LEN);
1013 
1014 	/* In most cases this will be true for sniffed frames. It makes sense
1015 	 * to deliver them as-is without stripping the crypto param. This is
1016 	 * necessary for software based decryption.
1017 	 *
1018 	 * If there's no error then the frame is decrypted. At least that is
1019 	 * the case for frames that come in via fragmented rx indication.
1020 	 */
1021 	if (!is_decrypted)
1022 		return;
1023 
1024 	/* The payload is decrypted so strip crypto params. Start from tail
1025 	 * since hdr is used to compute some stuff.
1026 	 */
1027 
1028 	hdr = (void *)msdu->data;
1029 
1030 	/* Tail */
1031 	if (status->flag & RX_FLAG_IV_STRIPPED)
1032 		skb_trim(msdu, msdu->len -
1033 			 ath10k_htt_rx_crypto_tail_len(ar, enctype));
1034 
1035 	/* MMIC */
1036 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1037 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1038 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1039 		skb_trim(msdu, msdu->len - 8);
1040 
1041 	/* Head */
1042 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1043 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1044 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1045 
1046 		memmove((void *)msdu->data + crypto_len,
1047 			(void *)msdu->data, hdr_len);
1048 		skb_pull(msdu, crypto_len);
1049 	}
1050 }
1051 
1052 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1053 					  struct sk_buff *msdu,
1054 					  struct ieee80211_rx_status *status,
1055 					  const u8 first_hdr[64])
1056 {
1057 	struct ieee80211_hdr *hdr;
1058 	size_t hdr_len;
1059 	u8 da[ETH_ALEN];
1060 	u8 sa[ETH_ALEN];
1061 
1062 	/* Delivered decapped frame:
1063 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1064 	 * [rfc1042/llc]
1065 	 *
1066 	 * Note: The nwifi header doesn't have QoS Control and is
1067 	 * (always?) a 3addr frame.
1068 	 *
1069 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1070 	 * of an A-MSDU.
1071 	 */
1072 
1073 	/* pull decapped header and copy SA & DA */
1074 	if ((ar->hw_params.hw_4addr_pad == ATH10K_HW_4ADDR_PAD_BEFORE) &&
1075 	    ieee80211_has_a4(((struct ieee80211_hdr *)first_hdr)->frame_control)) {
1076 		/* The QCA99X0 4 address mode pad 2 bytes at the
1077 		 * beginning of MSDU
1078 		 */
1079 		hdr = (struct ieee80211_hdr *)(msdu->data + 2);
1080 		/* The skb length need be extended 2 as the 2 bytes at the tail
1081 		 * be excluded due to the padding
1082 		 */
1083 		skb_put(msdu, 2);
1084 	} else {
1085 		hdr = (struct ieee80211_hdr *)(msdu->data);
1086 	}
1087 
1088 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1089 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1090 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1091 	skb_pull(msdu, hdr_len);
1092 
1093 	/* push original 802.11 header */
1094 	hdr = (struct ieee80211_hdr *)first_hdr;
1095 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1096 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1097 
1098 	/* original 802.11 header has a different DA and in
1099 	 * case of 4addr it may also have different SA
1100 	 */
1101 	hdr = (struct ieee80211_hdr *)msdu->data;
1102 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1103 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1104 }
1105 
1106 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1107 					  struct sk_buff *msdu,
1108 					  enum htt_rx_mpdu_encrypt_type enctype)
1109 {
1110 	struct ieee80211_hdr *hdr;
1111 	struct htt_rx_desc *rxd;
1112 	size_t hdr_len, crypto_len;
1113 	void *rfc1042;
1114 	bool is_first, is_last, is_amsdu;
1115 
1116 	rxd = (void *)msdu->data - sizeof(*rxd);
1117 	hdr = (void *)rxd->rx_hdr_status;
1118 
1119 	is_first = !!(rxd->msdu_end.common.info0 &
1120 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1121 	is_last = !!(rxd->msdu_end.common.info0 &
1122 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1123 	is_amsdu = !(is_first && is_last);
1124 
1125 	rfc1042 = hdr;
1126 
1127 	if (is_first) {
1128 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1129 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1130 
1131 		rfc1042 += round_up(hdr_len, 4) +
1132 			   round_up(crypto_len, 4);
1133 	}
1134 
1135 	if (is_amsdu)
1136 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1137 
1138 	return rfc1042;
1139 }
1140 
1141 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1142 					struct sk_buff *msdu,
1143 					struct ieee80211_rx_status *status,
1144 					const u8 first_hdr[64],
1145 					enum htt_rx_mpdu_encrypt_type enctype)
1146 {
1147 	struct ieee80211_hdr *hdr;
1148 	struct ethhdr *eth;
1149 	size_t hdr_len;
1150 	void *rfc1042;
1151 	u8 da[ETH_ALEN];
1152 	u8 sa[ETH_ALEN];
1153 
1154 	/* Delivered decapped frame:
1155 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1156 	 * [payload]
1157 	 */
1158 
1159 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1160 	if (WARN_ON_ONCE(!rfc1042))
1161 		return;
1162 
1163 	/* pull decapped header and copy SA & DA */
1164 	eth = (struct ethhdr *)msdu->data;
1165 	ether_addr_copy(da, eth->h_dest);
1166 	ether_addr_copy(sa, eth->h_source);
1167 	skb_pull(msdu, sizeof(struct ethhdr));
1168 
1169 	/* push rfc1042/llc/snap */
1170 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1171 	       sizeof(struct rfc1042_hdr));
1172 
1173 	/* push original 802.11 header */
1174 	hdr = (struct ieee80211_hdr *)first_hdr;
1175 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1176 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1177 
1178 	/* original 802.11 header has a different DA and in
1179 	 * case of 4addr it may also have different SA
1180 	 */
1181 	hdr = (struct ieee80211_hdr *)msdu->data;
1182 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1183 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1184 }
1185 
1186 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1187 					 struct sk_buff *msdu,
1188 					 struct ieee80211_rx_status *status,
1189 					 const u8 first_hdr[64])
1190 {
1191 	struct ieee80211_hdr *hdr;
1192 	size_t hdr_len;
1193 
1194 	/* Delivered decapped frame:
1195 	 * [amsdu header] <-- replaced with 802.11 hdr
1196 	 * [rfc1042/llc]
1197 	 * [payload]
1198 	 */
1199 
1200 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1201 
1202 	hdr = (struct ieee80211_hdr *)first_hdr;
1203 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1204 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1205 }
1206 
1207 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1208 				    struct sk_buff *msdu,
1209 				    struct ieee80211_rx_status *status,
1210 				    u8 first_hdr[64],
1211 				    enum htt_rx_mpdu_encrypt_type enctype,
1212 				    bool is_decrypted)
1213 {
1214 	struct htt_rx_desc *rxd;
1215 	enum rx_msdu_decap_format decap;
1216 
1217 	/* First msdu's decapped header:
1218 	 * [802.11 header] <-- padded to 4 bytes long
1219 	 * [crypto param] <-- padded to 4 bytes long
1220 	 * [amsdu header] <-- only if A-MSDU
1221 	 * [rfc1042/llc]
1222 	 *
1223 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1224 	 * [amsdu header] <-- only if A-MSDU
1225 	 * [rfc1042/llc]
1226 	 */
1227 
1228 	rxd = (void *)msdu->data - sizeof(*rxd);
1229 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1230 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1231 
1232 	switch (decap) {
1233 	case RX_MSDU_DECAP_RAW:
1234 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1235 					    is_decrypted);
1236 		break;
1237 	case RX_MSDU_DECAP_NATIVE_WIFI:
1238 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1239 		break;
1240 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1241 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1242 		break;
1243 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1244 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1245 		break;
1246 	}
1247 }
1248 
1249 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1250 {
1251 	struct htt_rx_desc *rxd;
1252 	u32 flags, info;
1253 	bool is_ip4, is_ip6;
1254 	bool is_tcp, is_udp;
1255 	bool ip_csum_ok, tcpudp_csum_ok;
1256 
1257 	rxd = (void *)skb->data - sizeof(*rxd);
1258 	flags = __le32_to_cpu(rxd->attention.flags);
1259 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1260 
1261 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1262 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1263 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1264 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1265 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1266 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1267 
1268 	if (!is_ip4 && !is_ip6)
1269 		return CHECKSUM_NONE;
1270 	if (!is_tcp && !is_udp)
1271 		return CHECKSUM_NONE;
1272 	if (!ip_csum_ok)
1273 		return CHECKSUM_NONE;
1274 	if (!tcpudp_csum_ok)
1275 		return CHECKSUM_NONE;
1276 
1277 	return CHECKSUM_UNNECESSARY;
1278 }
1279 
1280 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1281 {
1282 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1283 }
1284 
1285 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1286 				 struct sk_buff_head *amsdu,
1287 				 struct ieee80211_rx_status *status)
1288 {
1289 	struct sk_buff *first;
1290 	struct sk_buff *last;
1291 	struct sk_buff *msdu;
1292 	struct htt_rx_desc *rxd;
1293 	struct ieee80211_hdr *hdr;
1294 	enum htt_rx_mpdu_encrypt_type enctype;
1295 	u8 first_hdr[64];
1296 	u8 *qos;
1297 	size_t hdr_len;
1298 	bool has_fcs_err;
1299 	bool has_crypto_err;
1300 	bool has_tkip_err;
1301 	bool has_peer_idx_invalid;
1302 	bool is_decrypted;
1303 	bool is_mgmt;
1304 	u32 attention;
1305 
1306 	if (skb_queue_empty(amsdu))
1307 		return;
1308 
1309 	first = skb_peek(amsdu);
1310 	rxd = (void *)first->data - sizeof(*rxd);
1311 
1312 	is_mgmt = !!(rxd->attention.flags &
1313 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1314 
1315 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1316 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1317 
1318 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1319 	 * decapped header. It'll be used for undecapping of each MSDU.
1320 	 */
1321 	hdr = (void *)rxd->rx_hdr_status;
1322 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1323 	memcpy(first_hdr, hdr, hdr_len);
1324 
1325 	/* Each A-MSDU subframe will use the original header as the base and be
1326 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1327 	 */
1328 	hdr = (void *)first_hdr;
1329 	qos = ieee80211_get_qos_ctl(hdr);
1330 	qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1331 
1332 	/* Some attention flags are valid only in the last MSDU. */
1333 	last = skb_peek_tail(amsdu);
1334 	rxd = (void *)last->data - sizeof(*rxd);
1335 	attention = __le32_to_cpu(rxd->attention.flags);
1336 
1337 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1338 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1339 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1340 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1341 
1342 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1343 	 * e.g. due to fcs error, missing peer or invalid key data it will
1344 	 * report the frame as raw.
1345 	 */
1346 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1347 			!has_fcs_err &&
1348 			!has_crypto_err &&
1349 			!has_peer_idx_invalid);
1350 
1351 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1352 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1353 			  RX_FLAG_MMIC_ERROR |
1354 			  RX_FLAG_DECRYPTED |
1355 			  RX_FLAG_IV_STRIPPED |
1356 			  RX_FLAG_ONLY_MONITOR |
1357 			  RX_FLAG_MMIC_STRIPPED);
1358 
1359 	if (has_fcs_err)
1360 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1361 
1362 	if (has_tkip_err)
1363 		status->flag |= RX_FLAG_MMIC_ERROR;
1364 
1365 	/* Firmware reports all necessary management frames via WMI already.
1366 	 * They are not reported to monitor interfaces at all so pass the ones
1367 	 * coming via HTT to monitor interfaces instead. This simplifies
1368 	 * matters a lot.
1369 	 */
1370 	if (is_mgmt)
1371 		status->flag |= RX_FLAG_ONLY_MONITOR;
1372 
1373 	if (is_decrypted) {
1374 		status->flag |= RX_FLAG_DECRYPTED;
1375 
1376 		if (likely(!is_mgmt))
1377 			status->flag |= RX_FLAG_IV_STRIPPED |
1378 					RX_FLAG_MMIC_STRIPPED;
1379 }
1380 
1381 	skb_queue_walk(amsdu, msdu) {
1382 		ath10k_htt_rx_h_csum_offload(msdu);
1383 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1384 					is_decrypted);
1385 
1386 		/* Undecapping involves copying the original 802.11 header back
1387 		 * to sk_buff. If frame is protected and hardware has decrypted
1388 		 * it then remove the protected bit.
1389 		 */
1390 		if (!is_decrypted)
1391 			continue;
1392 		if (is_mgmt)
1393 			continue;
1394 
1395 		hdr = (void *)msdu->data;
1396 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1397 	}
1398 }
1399 
1400 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1401 				    struct sk_buff_head *amsdu,
1402 				    struct ieee80211_rx_status *status)
1403 {
1404 	struct sk_buff *msdu;
1405 
1406 	while ((msdu = __skb_dequeue(amsdu))) {
1407 		/* Setup per-MSDU flags */
1408 		if (skb_queue_empty(amsdu))
1409 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1410 		else
1411 			status->flag |= RX_FLAG_AMSDU_MORE;
1412 
1413 		ath10k_process_rx(ar, status, msdu);
1414 	}
1415 }
1416 
1417 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1418 {
1419 	struct sk_buff *skb, *first;
1420 	int space;
1421 	int total_len = 0;
1422 
1423 	/* TODO:  Might could optimize this by using
1424 	 * skb_try_coalesce or similar method to
1425 	 * decrease copying, or maybe get mac80211 to
1426 	 * provide a way to just receive a list of
1427 	 * skb?
1428 	 */
1429 
1430 	first = __skb_dequeue(amsdu);
1431 
1432 	/* Allocate total length all at once. */
1433 	skb_queue_walk(amsdu, skb)
1434 		total_len += skb->len;
1435 
1436 	space = total_len - skb_tailroom(first);
1437 	if ((space > 0) &&
1438 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1439 		/* TODO:  bump some rx-oom error stat */
1440 		/* put it back together so we can free the
1441 		 * whole list at once.
1442 		 */
1443 		__skb_queue_head(amsdu, first);
1444 		return -1;
1445 	}
1446 
1447 	/* Walk list again, copying contents into
1448 	 * msdu_head
1449 	 */
1450 	while ((skb = __skb_dequeue(amsdu))) {
1451 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1452 					  skb->len);
1453 		dev_kfree_skb_any(skb);
1454 	}
1455 
1456 	__skb_queue_head(amsdu, first);
1457 	return 0;
1458 }
1459 
1460 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1461 				    struct sk_buff_head *amsdu,
1462 				    bool chained)
1463 {
1464 	struct sk_buff *first;
1465 	struct htt_rx_desc *rxd;
1466 	enum rx_msdu_decap_format decap;
1467 
1468 	first = skb_peek(amsdu);
1469 	rxd = (void *)first->data - sizeof(*rxd);
1470 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1471 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1472 
1473 	if (!chained)
1474 		return;
1475 
1476 	/* FIXME: Current unchaining logic can only handle simple case of raw
1477 	 * msdu chaining. If decapping is other than raw the chaining may be
1478 	 * more complex and this isn't handled by the current code. Don't even
1479 	 * try re-constructing such frames - it'll be pretty much garbage.
1480 	 */
1481 	if (decap != RX_MSDU_DECAP_RAW ||
1482 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1483 		__skb_queue_purge(amsdu);
1484 		return;
1485 	}
1486 
1487 	ath10k_unchain_msdu(amsdu);
1488 }
1489 
1490 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1491 					struct sk_buff_head *amsdu,
1492 					struct ieee80211_rx_status *rx_status)
1493 {
1494 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1495 	 * invalid/dangerous frames.
1496 	 */
1497 
1498 	if (!rx_status->freq) {
1499 		ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1500 		return false;
1501 	}
1502 
1503 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1504 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1505 		return false;
1506 	}
1507 
1508 	return true;
1509 }
1510 
1511 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1512 				   struct sk_buff_head *amsdu,
1513 				   struct ieee80211_rx_status *rx_status)
1514 {
1515 	if (skb_queue_empty(amsdu))
1516 		return;
1517 
1518 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1519 		return;
1520 
1521 	__skb_queue_purge(amsdu);
1522 }
1523 
1524 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1525 {
1526 	struct ath10k *ar = htt->ar;
1527 	static struct ieee80211_rx_status rx_status;
1528 	struct sk_buff_head amsdu;
1529 	int ret;
1530 
1531 	__skb_queue_head_init(&amsdu);
1532 
1533 	spin_lock_bh(&htt->rx_ring.lock);
1534 	if (htt->rx_confused) {
1535 		spin_unlock_bh(&htt->rx_ring.lock);
1536 		return -EIO;
1537 	}
1538 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1539 	spin_unlock_bh(&htt->rx_ring.lock);
1540 
1541 	if (ret < 0) {
1542 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1543 		__skb_queue_purge(&amsdu);
1544 		/* FIXME: It's probably a good idea to reboot the
1545 		 * device instead of leaving it inoperable.
1546 		 */
1547 		htt->rx_confused = true;
1548 		return ret;
1549 	}
1550 
1551 	ath10k_htt_rx_h_ppdu(ar, &amsdu, &rx_status, 0xffff);
1552 	ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1553 	ath10k_htt_rx_h_filter(ar, &amsdu, &rx_status);
1554 	ath10k_htt_rx_h_mpdu(ar, &amsdu, &rx_status);
1555 	ath10k_htt_rx_h_deliver(ar, &amsdu, &rx_status);
1556 
1557 	return 0;
1558 }
1559 
1560 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1561 				      struct htt_rx_indication *rx)
1562 {
1563 	struct ath10k *ar = htt->ar;
1564 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1565 	int num_mpdu_ranges;
1566 	int i, mpdu_count = 0;
1567 
1568 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1569 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1570 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1571 
1572 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1573 			rx, sizeof(*rx) +
1574 			(sizeof(struct htt_rx_indication_mpdu_range) *
1575 				num_mpdu_ranges));
1576 
1577 	for (i = 0; i < num_mpdu_ranges; i++)
1578 		mpdu_count += mpdu_ranges[i].mpdu_count;
1579 
1580 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
1581 
1582 	tasklet_schedule(&htt->txrx_compl_task);
1583 }
1584 
1585 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt)
1586 {
1587 	atomic_inc(&htt->num_mpdus_ready);
1588 
1589 	tasklet_schedule(&htt->txrx_compl_task);
1590 }
1591 
1592 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1593 				       struct sk_buff *skb)
1594 {
1595 	struct ath10k_htt *htt = &ar->htt;
1596 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1597 	struct htt_tx_done tx_done = {};
1598 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1599 	__le16 msdu_id;
1600 	int i;
1601 
1602 	switch (status) {
1603 	case HTT_DATA_TX_STATUS_NO_ACK:
1604 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1605 		break;
1606 	case HTT_DATA_TX_STATUS_OK:
1607 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
1608 		break;
1609 	case HTT_DATA_TX_STATUS_DISCARD:
1610 	case HTT_DATA_TX_STATUS_POSTPONE:
1611 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1612 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1613 		break;
1614 	default:
1615 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1616 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1617 		break;
1618 	}
1619 
1620 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1621 		   resp->data_tx_completion.num_msdus);
1622 
1623 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1624 		msdu_id = resp->data_tx_completion.msdus[i];
1625 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1626 
1627 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
1628 		 * interrupt and main interrupt (MSI/-X range case) for the same
1629 		 * HTC service so it should be safe to use kfifo_put w/o lock.
1630 		 *
1631 		 * From kfifo_put() documentation:
1632 		 *  Note that with only one concurrent reader and one concurrent
1633 		 *  writer, you don't need extra locking to use these macro.
1634 		 */
1635 		if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1636 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1637 				    tx_done.msdu_id, tx_done.status);
1638 			ath10k_txrx_tx_unref(htt, &tx_done);
1639 		}
1640 	}
1641 }
1642 
1643 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1644 {
1645 	struct htt_rx_addba *ev = &resp->rx_addba;
1646 	struct ath10k_peer *peer;
1647 	struct ath10k_vif *arvif;
1648 	u16 info0, tid, peer_id;
1649 
1650 	info0 = __le16_to_cpu(ev->info0);
1651 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1652 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1653 
1654 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1655 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1656 		   tid, peer_id, ev->window_size);
1657 
1658 	spin_lock_bh(&ar->data_lock);
1659 	peer = ath10k_peer_find_by_id(ar, peer_id);
1660 	if (!peer) {
1661 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1662 			    peer_id);
1663 		spin_unlock_bh(&ar->data_lock);
1664 		return;
1665 	}
1666 
1667 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1668 	if (!arvif) {
1669 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1670 			    peer->vdev_id);
1671 		spin_unlock_bh(&ar->data_lock);
1672 		return;
1673 	}
1674 
1675 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1676 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1677 		   peer->addr, tid, ev->window_size);
1678 
1679 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1680 	spin_unlock_bh(&ar->data_lock);
1681 }
1682 
1683 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1684 {
1685 	struct htt_rx_delba *ev = &resp->rx_delba;
1686 	struct ath10k_peer *peer;
1687 	struct ath10k_vif *arvif;
1688 	u16 info0, tid, peer_id;
1689 
1690 	info0 = __le16_to_cpu(ev->info0);
1691 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1692 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1693 
1694 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1695 		   "htt rx delba tid %hu peer_id %hu\n",
1696 		   tid, peer_id);
1697 
1698 	spin_lock_bh(&ar->data_lock);
1699 	peer = ath10k_peer_find_by_id(ar, peer_id);
1700 	if (!peer) {
1701 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1702 			    peer_id);
1703 		spin_unlock_bh(&ar->data_lock);
1704 		return;
1705 	}
1706 
1707 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1708 	if (!arvif) {
1709 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1710 			    peer->vdev_id);
1711 		spin_unlock_bh(&ar->data_lock);
1712 		return;
1713 	}
1714 
1715 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1716 		   "htt rx stop rx ba session sta %pM tid %hu\n",
1717 		   peer->addr, tid);
1718 
1719 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1720 	spin_unlock_bh(&ar->data_lock);
1721 }
1722 
1723 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1724 				       struct sk_buff_head *amsdu)
1725 {
1726 	struct sk_buff *msdu;
1727 	struct htt_rx_desc *rxd;
1728 
1729 	if (skb_queue_empty(list))
1730 		return -ENOBUFS;
1731 
1732 	if (WARN_ON(!skb_queue_empty(amsdu)))
1733 		return -EINVAL;
1734 
1735 	while ((msdu = __skb_dequeue(list))) {
1736 		__skb_queue_tail(amsdu, msdu);
1737 
1738 		rxd = (void *)msdu->data - sizeof(*rxd);
1739 		if (rxd->msdu_end.common.info0 &
1740 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1741 			break;
1742 	}
1743 
1744 	msdu = skb_peek_tail(amsdu);
1745 	rxd = (void *)msdu->data - sizeof(*rxd);
1746 	if (!(rxd->msdu_end.common.info0 &
1747 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1748 		skb_queue_splice_init(amsdu, list);
1749 		return -EAGAIN;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1756 					    struct sk_buff *skb)
1757 {
1758 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1759 
1760 	if (!ieee80211_has_protected(hdr->frame_control))
1761 		return;
1762 
1763 	/* Offloaded frames are already decrypted but firmware insists they are
1764 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1765 	 * will drop the frame.
1766 	 */
1767 
1768 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1769 	status->flag |= RX_FLAG_DECRYPTED |
1770 			RX_FLAG_IV_STRIPPED |
1771 			RX_FLAG_MMIC_STRIPPED;
1772 }
1773 
1774 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1775 				       struct sk_buff_head *list)
1776 {
1777 	struct ath10k_htt *htt = &ar->htt;
1778 	struct ieee80211_rx_status *status = &htt->rx_status;
1779 	struct htt_rx_offload_msdu *rx;
1780 	struct sk_buff *msdu;
1781 	size_t offset;
1782 
1783 	while ((msdu = __skb_dequeue(list))) {
1784 		/* Offloaded frames don't have Rx descriptor. Instead they have
1785 		 * a short meta information header.
1786 		 */
1787 
1788 		rx = (void *)msdu->data;
1789 
1790 		skb_put(msdu, sizeof(*rx));
1791 		skb_pull(msdu, sizeof(*rx));
1792 
1793 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1794 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1795 			dev_kfree_skb_any(msdu);
1796 			continue;
1797 		}
1798 
1799 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1800 
1801 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
1802 		 * actual payload is unaligned. Align the frame.  Otherwise
1803 		 * mac80211 complains.  This shouldn't reduce performance much
1804 		 * because these offloaded frames are rare.
1805 		 */
1806 		offset = 4 - ((unsigned long)msdu->data & 3);
1807 		skb_put(msdu, offset);
1808 		memmove(msdu->data + offset, msdu->data, msdu->len);
1809 		skb_pull(msdu, offset);
1810 
1811 		/* FIXME: The frame is NWifi. Re-construct QoS Control
1812 		 * if possible later.
1813 		 */
1814 
1815 		memset(status, 0, sizeof(*status));
1816 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1817 
1818 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1819 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1820 		ath10k_process_rx(ar, status, msdu);
1821 	}
1822 }
1823 
1824 static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1825 {
1826 	struct ath10k_htt *htt = &ar->htt;
1827 	struct htt_resp *resp = (void *)skb->data;
1828 	struct ieee80211_rx_status *status = &htt->rx_status;
1829 	struct sk_buff_head list;
1830 	struct sk_buff_head amsdu;
1831 	u16 peer_id;
1832 	u16 msdu_count;
1833 	u8 vdev_id;
1834 	u8 tid;
1835 	bool offload;
1836 	bool frag;
1837 	int ret;
1838 
1839 	lockdep_assert_held(&htt->rx_ring.lock);
1840 
1841 	if (htt->rx_confused)
1842 		return;
1843 
1844 	skb_pull(skb, sizeof(resp->hdr));
1845 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1846 
1847 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1848 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1849 	vdev_id = resp->rx_in_ord_ind.vdev_id;
1850 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1851 	offload = !!(resp->rx_in_ord_ind.info &
1852 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1853 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1854 
1855 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1856 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1857 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
1858 
1859 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1860 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
1861 		return;
1862 	}
1863 
1864 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1865 	 * extracted and processed.
1866 	 */
1867 	__skb_queue_head_init(&list);
1868 	ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1869 	if (ret < 0) {
1870 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1871 		htt->rx_confused = true;
1872 		return;
1873 	}
1874 
1875 	/* Offloaded frames are very different and need to be handled
1876 	 * separately.
1877 	 */
1878 	if (offload)
1879 		ath10k_htt_rx_h_rx_offload(ar, &list);
1880 
1881 	while (!skb_queue_empty(&list)) {
1882 		__skb_queue_head_init(&amsdu);
1883 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1884 		switch (ret) {
1885 		case 0:
1886 			/* Note: The in-order indication may report interleaved
1887 			 * frames from different PPDUs meaning reported rx rate
1888 			 * to mac80211 isn't accurate/reliable. It's still
1889 			 * better to report something than nothing though. This
1890 			 * should still give an idea about rx rate to the user.
1891 			 */
1892 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1893 			ath10k_htt_rx_h_filter(ar, &amsdu, status);
1894 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1895 			ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1896 			break;
1897 		case -EAGAIN:
1898 			/* fall through */
1899 		default:
1900 			/* Should not happen. */
1901 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1902 			htt->rx_confused = true;
1903 			__skb_queue_purge(&list);
1904 			return;
1905 		}
1906 	}
1907 	ath10k_htt_rx_msdu_buff_replenish(htt);
1908 }
1909 
1910 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
1911 						   const __le32 *resp_ids,
1912 						   int num_resp_ids)
1913 {
1914 	int i;
1915 	u32 resp_id;
1916 
1917 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
1918 		   num_resp_ids);
1919 
1920 	for (i = 0; i < num_resp_ids; i++) {
1921 		resp_id = le32_to_cpu(resp_ids[i]);
1922 
1923 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
1924 			   resp_id);
1925 
1926 		/* TODO: free resp_id */
1927 	}
1928 }
1929 
1930 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
1931 {
1932 	struct ieee80211_hw *hw = ar->hw;
1933 	struct ieee80211_txq *txq;
1934 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1935 	struct htt_tx_fetch_record *record;
1936 	size_t len;
1937 	size_t max_num_bytes;
1938 	size_t max_num_msdus;
1939 	size_t num_bytes;
1940 	size_t num_msdus;
1941 	const __le32 *resp_ids;
1942 	u16 num_records;
1943 	u16 num_resp_ids;
1944 	u16 peer_id;
1945 	u8 tid;
1946 	int ret;
1947 	int i;
1948 
1949 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
1950 
1951 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
1952 	if (unlikely(skb->len < len)) {
1953 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
1954 		return;
1955 	}
1956 
1957 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
1958 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
1959 
1960 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
1961 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
1962 
1963 	if (unlikely(skb->len < len)) {
1964 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
1965 		return;
1966 	}
1967 
1968 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
1969 		   num_records, num_resp_ids,
1970 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
1971 
1972 	if (!ar->htt.tx_q_state.enabled) {
1973 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
1974 		return;
1975 	}
1976 
1977 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
1978 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
1979 		return;
1980 	}
1981 
1982 	rcu_read_lock();
1983 
1984 	for (i = 0; i < num_records; i++) {
1985 		record = &resp->tx_fetch_ind.records[i];
1986 		peer_id = MS(le16_to_cpu(record->info),
1987 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
1988 		tid = MS(le16_to_cpu(record->info),
1989 			 HTT_TX_FETCH_RECORD_INFO_TID);
1990 		max_num_msdus = le16_to_cpu(record->num_msdus);
1991 		max_num_bytes = le32_to_cpu(record->num_bytes);
1992 
1993 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
1994 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
1995 
1996 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
1997 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
1998 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
1999 				    peer_id, tid);
2000 			continue;
2001 		}
2002 
2003 		spin_lock_bh(&ar->data_lock);
2004 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2005 		spin_unlock_bh(&ar->data_lock);
2006 
2007 		/* It is okay to release the lock and use txq because RCU read
2008 		 * lock is held.
2009 		 */
2010 
2011 		if (unlikely(!txq)) {
2012 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2013 				    peer_id, tid);
2014 			continue;
2015 		}
2016 
2017 		num_msdus = 0;
2018 		num_bytes = 0;
2019 
2020 		while (num_msdus < max_num_msdus &&
2021 		       num_bytes < max_num_bytes) {
2022 			ret = ath10k_mac_tx_push_txq(hw, txq);
2023 			if (ret < 0)
2024 				break;
2025 
2026 			num_msdus++;
2027 			num_bytes += ret;
2028 		}
2029 
2030 		record->num_msdus = cpu_to_le16(num_msdus);
2031 		record->num_bytes = cpu_to_le32(num_bytes);
2032 
2033 		ath10k_htt_tx_txq_recalc(hw, txq);
2034 	}
2035 
2036 	rcu_read_unlock();
2037 
2038 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2039 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2040 
2041 	ret = ath10k_htt_tx_fetch_resp(ar,
2042 				       resp->tx_fetch_ind.token,
2043 				       resp->tx_fetch_ind.fetch_seq_num,
2044 				       resp->tx_fetch_ind.records,
2045 				       num_records);
2046 	if (unlikely(ret)) {
2047 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2048 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
2049 		/* FIXME: request fw restart */
2050 	}
2051 
2052 	ath10k_htt_tx_txq_sync(ar);
2053 }
2054 
2055 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2056 					   struct sk_buff *skb)
2057 {
2058 	const struct htt_resp *resp = (void *)skb->data;
2059 	size_t len;
2060 	int num_resp_ids;
2061 
2062 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2063 
2064 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2065 	if (unlikely(skb->len < len)) {
2066 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2067 		return;
2068 	}
2069 
2070 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2071 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2072 
2073 	if (unlikely(skb->len < len)) {
2074 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2075 		return;
2076 	}
2077 
2078 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2079 					       resp->tx_fetch_confirm.resp_ids,
2080 					       num_resp_ids);
2081 }
2082 
2083 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2084 					     struct sk_buff *skb)
2085 {
2086 	const struct htt_resp *resp = (void *)skb->data;
2087 	const struct htt_tx_mode_switch_record *record;
2088 	struct ieee80211_txq *txq;
2089 	struct ath10k_txq *artxq;
2090 	size_t len;
2091 	size_t num_records;
2092 	enum htt_tx_mode_switch_mode mode;
2093 	bool enable;
2094 	u16 info0;
2095 	u16 info1;
2096 	u16 threshold;
2097 	u16 peer_id;
2098 	u8 tid;
2099 	int i;
2100 
2101 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2102 
2103 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2104 	if (unlikely(skb->len < len)) {
2105 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2106 		return;
2107 	}
2108 
2109 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2110 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2111 
2112 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2113 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2114 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2115 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2116 
2117 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2118 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2119 		   info0, info1, enable, num_records, mode, threshold);
2120 
2121 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2122 
2123 	if (unlikely(skb->len < len)) {
2124 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2125 		return;
2126 	}
2127 
2128 	switch (mode) {
2129 	case HTT_TX_MODE_SWITCH_PUSH:
2130 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
2131 		break;
2132 	default:
2133 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2134 			    mode);
2135 		return;
2136 	}
2137 
2138 	if (!enable)
2139 		return;
2140 
2141 	ar->htt.tx_q_state.enabled = enable;
2142 	ar->htt.tx_q_state.mode = mode;
2143 	ar->htt.tx_q_state.num_push_allowed = threshold;
2144 
2145 	rcu_read_lock();
2146 
2147 	for (i = 0; i < num_records; i++) {
2148 		record = &resp->tx_mode_switch_ind.records[i];
2149 		info0 = le16_to_cpu(record->info0);
2150 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2151 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2152 
2153 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2154 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2155 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2156 				    peer_id, tid);
2157 			continue;
2158 		}
2159 
2160 		spin_lock_bh(&ar->data_lock);
2161 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2162 		spin_unlock_bh(&ar->data_lock);
2163 
2164 		/* It is okay to release the lock and use txq because RCU read
2165 		 * lock is held.
2166 		 */
2167 
2168 		if (unlikely(!txq)) {
2169 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2170 				    peer_id, tid);
2171 			continue;
2172 		}
2173 
2174 		spin_lock_bh(&ar->htt.tx_lock);
2175 		artxq = (void *)txq->drv_priv;
2176 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2177 		spin_unlock_bh(&ar->htt.tx_lock);
2178 	}
2179 
2180 	rcu_read_unlock();
2181 
2182 	ath10k_mac_tx_push_pending(ar);
2183 }
2184 
2185 static inline enum nl80211_band phy_mode_to_band(u32 phy_mode)
2186 {
2187 	enum nl80211_band band;
2188 
2189 	switch (phy_mode) {
2190 	case MODE_11A:
2191 	case MODE_11NA_HT20:
2192 	case MODE_11NA_HT40:
2193 	case MODE_11AC_VHT20:
2194 	case MODE_11AC_VHT40:
2195 	case MODE_11AC_VHT80:
2196 		band = NL80211_BAND_5GHZ;
2197 		break;
2198 	case MODE_11G:
2199 	case MODE_11B:
2200 	case MODE_11GONLY:
2201 	case MODE_11NG_HT20:
2202 	case MODE_11NG_HT40:
2203 	case MODE_11AC_VHT20_2G:
2204 	case MODE_11AC_VHT40_2G:
2205 	case MODE_11AC_VHT80_2G:
2206 	default:
2207 		band = NL80211_BAND_2GHZ;
2208 	}
2209 
2210 	return band;
2211 }
2212 
2213 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2214 {
2215 	bool release;
2216 
2217 	release = ath10k_htt_t2h_msg_handler(ar, skb);
2218 
2219 	/* Free the indication buffer */
2220 	if (release)
2221 		dev_kfree_skb_any(skb);
2222 }
2223 
2224 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2225 {
2226 	struct ath10k_htt *htt = &ar->htt;
2227 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2228 	enum htt_t2h_msg_type type;
2229 
2230 	/* confirm alignment */
2231 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
2232 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2233 
2234 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2235 		   resp->hdr.msg_type);
2236 
2237 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2238 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2239 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2240 		return true;
2241 	}
2242 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2243 
2244 	switch (type) {
2245 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2246 		htt->target_version_major = resp->ver_resp.major;
2247 		htt->target_version_minor = resp->ver_resp.minor;
2248 		complete(&htt->target_version_received);
2249 		break;
2250 	}
2251 	case HTT_T2H_MSG_TYPE_RX_IND:
2252 		ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2253 		break;
2254 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
2255 		struct htt_peer_map_event ev = {
2256 			.vdev_id = resp->peer_map.vdev_id,
2257 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2258 		};
2259 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2260 		ath10k_peer_map_event(htt, &ev);
2261 		break;
2262 	}
2263 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2264 		struct htt_peer_unmap_event ev = {
2265 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2266 		};
2267 		ath10k_peer_unmap_event(htt, &ev);
2268 		break;
2269 	}
2270 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2271 		struct htt_tx_done tx_done = {};
2272 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2273 
2274 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2275 
2276 		switch (status) {
2277 		case HTT_MGMT_TX_STATUS_OK:
2278 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
2279 			break;
2280 		case HTT_MGMT_TX_STATUS_RETRY:
2281 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2282 			break;
2283 		case HTT_MGMT_TX_STATUS_DROP:
2284 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2285 			break;
2286 		}
2287 
2288 		status = ath10k_txrx_tx_unref(htt, &tx_done);
2289 		if (!status) {
2290 			spin_lock_bh(&htt->tx_lock);
2291 			ath10k_htt_tx_mgmt_dec_pending(htt);
2292 			spin_unlock_bh(&htt->tx_lock);
2293 		}
2294 		ath10k_mac_tx_push_pending(ar);
2295 		break;
2296 	}
2297 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2298 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2299 		tasklet_schedule(&htt->txrx_compl_task);
2300 		break;
2301 	case HTT_T2H_MSG_TYPE_SEC_IND: {
2302 		struct ath10k *ar = htt->ar;
2303 		struct htt_security_indication *ev = &resp->security_indication;
2304 
2305 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2306 			   "sec ind peer_id %d unicast %d type %d\n",
2307 			  __le16_to_cpu(ev->peer_id),
2308 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2309 			  MS(ev->flags, HTT_SECURITY_TYPE));
2310 		complete(&ar->install_key_done);
2311 		break;
2312 	}
2313 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2314 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2315 				skb->data, skb->len);
2316 		ath10k_htt_rx_frag_handler(htt);
2317 		break;
2318 	}
2319 	case HTT_T2H_MSG_TYPE_TEST:
2320 		break;
2321 	case HTT_T2H_MSG_TYPE_STATS_CONF:
2322 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
2323 		break;
2324 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2325 		/* Firmware can return tx frames if it's unable to fully
2326 		 * process them and suspects host may be able to fix it. ath10k
2327 		 * sends all tx frames as already inspected so this shouldn't
2328 		 * happen unless fw has a bug.
2329 		 */
2330 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2331 		break;
2332 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
2333 		ath10k_htt_rx_addba(ar, resp);
2334 		break;
2335 	case HTT_T2H_MSG_TYPE_RX_DELBA:
2336 		ath10k_htt_rx_delba(ar, resp);
2337 		break;
2338 	case HTT_T2H_MSG_TYPE_PKTLOG: {
2339 		struct ath10k_pktlog_hdr *hdr =
2340 			(struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
2341 
2342 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2343 					sizeof(*hdr) +
2344 					__le16_to_cpu(hdr->size));
2345 		break;
2346 	}
2347 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2348 		/* Ignore this event because mac80211 takes care of Rx
2349 		 * aggregation reordering.
2350 		 */
2351 		break;
2352 	}
2353 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2354 		skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2355 		tasklet_schedule(&htt->txrx_compl_task);
2356 		return false;
2357 	}
2358 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2359 		break;
2360 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2361 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2362 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
2363 
2364 		ar->tgt_oper_chan =
2365 			__ieee80211_get_channel(ar->hw->wiphy, freq);
2366 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2367 			   "htt chan change freq %u phymode %s\n",
2368 			   freq, ath10k_wmi_phymode_str(phymode));
2369 		break;
2370 	}
2371 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
2372 		break;
2373 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2374 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2375 
2376 		if (!tx_fetch_ind) {
2377 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2378 			break;
2379 		}
2380 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2381 		tasklet_schedule(&htt->txrx_compl_task);
2382 		break;
2383 	}
2384 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2385 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2386 		break;
2387 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2388 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2389 		break;
2390 	case HTT_T2H_MSG_TYPE_EN_STATS:
2391 	default:
2392 		ath10k_warn(ar, "htt event (%d) not handled\n",
2393 			    resp->hdr.msg_type);
2394 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2395 				skb->data, skb->len);
2396 		break;
2397 	};
2398 	return true;
2399 }
2400 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2401 
2402 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2403 					     struct sk_buff *skb)
2404 {
2405 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2406 	dev_kfree_skb_any(skb);
2407 }
2408 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2409 
2410 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
2411 {
2412 	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
2413 	struct ath10k *ar = htt->ar;
2414 	struct htt_tx_done tx_done = {};
2415 	struct sk_buff_head rx_ind_q;
2416 	struct sk_buff_head tx_ind_q;
2417 	struct sk_buff *skb;
2418 	unsigned long flags;
2419 	int num_mpdus;
2420 
2421 	__skb_queue_head_init(&rx_ind_q);
2422 	__skb_queue_head_init(&tx_ind_q);
2423 
2424 	spin_lock_irqsave(&htt->rx_in_ord_compl_q.lock, flags);
2425 	skb_queue_splice_init(&htt->rx_in_ord_compl_q, &rx_ind_q);
2426 	spin_unlock_irqrestore(&htt->rx_in_ord_compl_q.lock, flags);
2427 
2428 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2429 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2430 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2431 
2432 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2433 	 * From kfifo_get() documentation:
2434 	 *  Note that with only one concurrent reader and one concurrent writer,
2435 	 *  you don't need extra locking to use these macro.
2436 	 */
2437 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
2438 		ath10k_txrx_tx_unref(htt, &tx_done);
2439 
2440 	while ((skb = __skb_dequeue(&tx_ind_q))) {
2441 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
2442 		dev_kfree_skb_any(skb);
2443 	}
2444 
2445 	ath10k_mac_tx_push_pending(ar);
2446 
2447 	num_mpdus = atomic_read(&htt->num_mpdus_ready);
2448 
2449 	while (num_mpdus) {
2450 		if (ath10k_htt_rx_handle_amsdu(htt))
2451 			break;
2452 
2453 		num_mpdus--;
2454 		atomic_dec(&htt->num_mpdus_ready);
2455 	}
2456 
2457 	while ((skb = __skb_dequeue(&rx_ind_q))) {
2458 		spin_lock_bh(&htt->rx_ring.lock);
2459 		ath10k_htt_rx_in_ord_ind(ar, skb);
2460 		spin_unlock_bh(&htt->rx_ring.lock);
2461 		dev_kfree_skb_any(skb);
2462 	}
2463 
2464 	ath10k_htt_rx_msdu_buff_replenish(htt);
2465 }
2466