xref: /linux/drivers/net/wireless/ath/ath10k/ce.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22 
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27 
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * receives an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61 
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 						       u32 ce_ctrl_addr,
64 						       unsigned int n)
65 {
66 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68 
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 						      u32 ce_ctrl_addr)
71 {
72 	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74 
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 						      u32 ce_ctrl_addr,
77 						      unsigned int n)
78 {
79 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81 
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 						     u32 ce_ctrl_addr)
84 {
85 	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87 
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 						    u32 ce_ctrl_addr)
90 {
91 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93 
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 						    u32 ce_ctrl_addr,
96 						    unsigned int addr)
97 {
98 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100 
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 					       u32 ce_ctrl_addr,
103 					       unsigned int n)
104 {
105 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107 
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 					       u32 ce_ctrl_addr,
110 					       unsigned int n)
111 {
112 	u32 ctrl1_addr = ath10k_pci_read32((ar),
113 					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114 
115 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 			   CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119 
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 						    u32 ce_ctrl_addr,
122 						    unsigned int n)
123 {
124 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125 
126 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130 
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 						     u32 ce_ctrl_addr,
133 						     unsigned int n)
134 {
135 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136 
137 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141 
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 						     u32 ce_ctrl_addr)
144 {
145 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147 
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 						     u32 ce_ctrl_addr,
150 						     u32 addr)
151 {
152 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154 
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 						u32 ce_ctrl_addr,
157 						unsigned int n)
158 {
159 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161 
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 						   u32 ce_ctrl_addr,
164 						   unsigned int n)
165 {
166 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167 
168 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 			   SRC_WATERMARK_HIGH_SET(n));
171 }
172 
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 						  u32 ce_ctrl_addr,
175 						  unsigned int n)
176 {
177 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178 
179 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181 			   SRC_WATERMARK_LOW_SET(n));
182 }
183 
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 						    u32 ce_ctrl_addr,
186 						    unsigned int n)
187 {
188 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189 
190 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192 			   DST_WATERMARK_HIGH_SET(n));
193 }
194 
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 						   u32 ce_ctrl_addr,
197 						   unsigned int n)
198 {
199 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200 
201 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 			   (addr & ~DST_WATERMARK_LOW_MASK) |
203 			   DST_WATERMARK_LOW_SET(n));
204 }
205 
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 							u32 ce_ctrl_addr)
208 {
209 	u32 host_ie_addr = ath10k_pci_read32(ar,
210 					     ce_ctrl_addr + HOST_IE_ADDRESS);
211 
212 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215 
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 							u32 ce_ctrl_addr)
218 {
219 	u32 host_ie_addr = ath10k_pci_read32(ar,
220 					     ce_ctrl_addr + HOST_IE_ADDRESS);
221 
222 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225 
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 						    u32 ce_ctrl_addr)
228 {
229 	u32 host_ie_addr = ath10k_pci_read32(ar,
230 					     ce_ctrl_addr + HOST_IE_ADDRESS);
231 
232 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 			   host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235 
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 					       u32 ce_ctrl_addr)
238 {
239 	u32 misc_ie_addr = ath10k_pci_read32(ar,
240 					     ce_ctrl_addr + MISC_IE_ADDRESS);
241 
242 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 			   misc_ie_addr | CE_ERROR_MASK);
244 }
245 
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 						u32 ce_ctrl_addr)
248 {
249 	u32 misc_ie_addr = ath10k_pci_read32(ar,
250 					     ce_ctrl_addr + MISC_IE_ADDRESS);
251 
252 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 			   misc_ie_addr & ~CE_ERROR_MASK);
254 }
255 
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 						     u32 ce_ctrl_addr,
258 						     unsigned int mask)
259 {
260 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262 
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269 			  void *per_transfer_context,
270 			  u32 buffer,
271 			  unsigned int nbytes,
272 			  unsigned int transfer_id,
273 			  unsigned int flags)
274 {
275 	struct ath10k *ar = ce_state->ar;
276 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277 	struct ce_desc *desc, sdesc;
278 	unsigned int nentries_mask = src_ring->nentries_mask;
279 	unsigned int sw_index = src_ring->sw_index;
280 	unsigned int write_index = src_ring->write_index;
281 	u32 ctrl_addr = ce_state->ctrl_addr;
282 	u32 desc_flags = 0;
283 	int ret = 0;
284 
285 	if (nbytes > ce_state->src_sz_max)
286 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287 			    __func__, nbytes, ce_state->src_sz_max);
288 
289 	if (unlikely(CE_RING_DELTA(nentries_mask,
290 				   write_index, sw_index - 1) <= 0)) {
291 		ret = -ENOSR;
292 		goto exit;
293 	}
294 
295 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296 				   write_index);
297 
298 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
299 
300 	if (flags & CE_SEND_FLAG_GATHER)
301 		desc_flags |= CE_DESC_FLAGS_GATHER;
302 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
303 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
304 
305 	sdesc.addr   = __cpu_to_le32(buffer);
306 	sdesc.nbytes = __cpu_to_le16(nbytes);
307 	sdesc.flags  = __cpu_to_le16(desc_flags);
308 
309 	*desc = sdesc;
310 
311 	src_ring->per_transfer_context[write_index] = per_transfer_context;
312 
313 	/* Update Source Ring Write Index */
314 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
315 
316 	/* WORKAROUND */
317 	if (!(flags & CE_SEND_FLAG_GATHER))
318 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
319 
320 	src_ring->write_index = write_index;
321 exit:
322 	return ret;
323 }
324 
325 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
326 {
327 	struct ath10k *ar = pipe->ar;
328 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
329 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
330 	u32 ctrl_addr = pipe->ctrl_addr;
331 
332 	lockdep_assert_held(&ar_pci->ce_lock);
333 
334 	/*
335 	 * This function must be called only if there is an incomplete
336 	 * scatter-gather transfer (before index register is updated)
337 	 * that needs to be cleaned up.
338 	 */
339 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
340 		return;
341 
342 	if (WARN_ON_ONCE(src_ring->write_index ==
343 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
344 		return;
345 
346 	src_ring->write_index--;
347 	src_ring->write_index &= src_ring->nentries_mask;
348 
349 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
350 }
351 
352 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
353 		   void *per_transfer_context,
354 		   u32 buffer,
355 		   unsigned int nbytes,
356 		   unsigned int transfer_id,
357 		   unsigned int flags)
358 {
359 	struct ath10k *ar = ce_state->ar;
360 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
361 	int ret;
362 
363 	spin_lock_bh(&ar_pci->ce_lock);
364 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
365 				    buffer, nbytes, transfer_id, flags);
366 	spin_unlock_bh(&ar_pci->ce_lock);
367 
368 	return ret;
369 }
370 
371 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
372 {
373 	struct ath10k *ar = pipe->ar;
374 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
375 	int delta;
376 
377 	spin_lock_bh(&ar_pci->ce_lock);
378 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
379 			      pipe->src_ring->write_index,
380 			      pipe->src_ring->sw_index - 1);
381 	spin_unlock_bh(&ar_pci->ce_lock);
382 
383 	return delta;
384 }
385 
386 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
387 {
388 	struct ath10k *ar = pipe->ar;
389 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
390 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
391 	unsigned int nentries_mask = dest_ring->nentries_mask;
392 	unsigned int write_index = dest_ring->write_index;
393 	unsigned int sw_index = dest_ring->sw_index;
394 
395 	lockdep_assert_held(&ar_pci->ce_lock);
396 
397 	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
398 }
399 
400 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
401 {
402 	struct ath10k *ar = pipe->ar;
403 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
404 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
405 	unsigned int nentries_mask = dest_ring->nentries_mask;
406 	unsigned int write_index = dest_ring->write_index;
407 	unsigned int sw_index = dest_ring->sw_index;
408 	struct ce_desc *base = dest_ring->base_addr_owner_space;
409 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
410 	u32 ctrl_addr = pipe->ctrl_addr;
411 
412 	lockdep_assert_held(&ar_pci->ce_lock);
413 
414 	if ((pipe->id != 5) &&
415 	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
416 		return -ENOSPC;
417 
418 	desc->addr = __cpu_to_le32(paddr);
419 	desc->nbytes = 0;
420 
421 	dest_ring->per_transfer_context[write_index] = ctx;
422 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
423 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
424 	dest_ring->write_index = write_index;
425 
426 	return 0;
427 }
428 
429 void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
430 {
431 	struct ath10k *ar = pipe->ar;
432 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
433 	unsigned int nentries_mask = dest_ring->nentries_mask;
434 	unsigned int write_index = dest_ring->write_index;
435 	u32 ctrl_addr = pipe->ctrl_addr;
436 	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
437 
438 	/* Prevent CE ring stuck issue that will occur when ring is full.
439 	 * Make sure that write index is 1 less than read index.
440 	 */
441 	if ((cur_write_idx + nentries)  == dest_ring->sw_index)
442 		nentries -= 1;
443 
444 	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
445 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
446 	dest_ring->write_index = write_index;
447 }
448 
449 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
450 {
451 	struct ath10k *ar = pipe->ar;
452 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
453 	int ret;
454 
455 	spin_lock_bh(&ar_pci->ce_lock);
456 	ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
457 	spin_unlock_bh(&ar_pci->ce_lock);
458 
459 	return ret;
460 }
461 
462 /*
463  * Guts of ath10k_ce_completed_recv_next.
464  * The caller takes responsibility for any necessary locking.
465  */
466 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
467 					 void **per_transfer_contextp,
468 					 unsigned int *nbytesp)
469 {
470 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
471 	unsigned int nentries_mask = dest_ring->nentries_mask;
472 	unsigned int sw_index = dest_ring->sw_index;
473 
474 	struct ce_desc *base = dest_ring->base_addr_owner_space;
475 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
476 	struct ce_desc sdesc;
477 	u16 nbytes;
478 
479 	/* Copy in one go for performance reasons */
480 	sdesc = *desc;
481 
482 	nbytes = __le16_to_cpu(sdesc.nbytes);
483 	if (nbytes == 0) {
484 		/*
485 		 * This closes a relatively unusual race where the Host
486 		 * sees the updated DRRI before the update to the
487 		 * corresponding descriptor has completed. We treat this
488 		 * as a descriptor that is not yet done.
489 		 */
490 		return -EIO;
491 	}
492 
493 	desc->nbytes = 0;
494 
495 	/* Return data from completed destination descriptor */
496 	*nbytesp = nbytes;
497 
498 	if (per_transfer_contextp)
499 		*per_transfer_contextp =
500 			dest_ring->per_transfer_context[sw_index];
501 
502 	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
503 	 * So update transfer context all CEs except CE5.
504 	 */
505 	if (ce_state->id != 5)
506 		dest_ring->per_transfer_context[sw_index] = NULL;
507 
508 	/* Update sw_index */
509 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
510 	dest_ring->sw_index = sw_index;
511 
512 	return 0;
513 }
514 
515 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
516 				  void **per_transfer_contextp,
517 				  unsigned int *nbytesp)
518 {
519 	struct ath10k *ar = ce_state->ar;
520 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
521 	int ret;
522 
523 	spin_lock_bh(&ar_pci->ce_lock);
524 	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
525 						   per_transfer_contextp,
526 						   nbytesp);
527 	spin_unlock_bh(&ar_pci->ce_lock);
528 
529 	return ret;
530 }
531 
532 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
533 			       void **per_transfer_contextp,
534 			       u32 *bufferp)
535 {
536 	struct ath10k_ce_ring *dest_ring;
537 	unsigned int nentries_mask;
538 	unsigned int sw_index;
539 	unsigned int write_index;
540 	int ret;
541 	struct ath10k *ar;
542 	struct ath10k_pci *ar_pci;
543 
544 	dest_ring = ce_state->dest_ring;
545 
546 	if (!dest_ring)
547 		return -EIO;
548 
549 	ar = ce_state->ar;
550 	ar_pci = ath10k_pci_priv(ar);
551 
552 	spin_lock_bh(&ar_pci->ce_lock);
553 
554 	nentries_mask = dest_ring->nentries_mask;
555 	sw_index = dest_ring->sw_index;
556 	write_index = dest_ring->write_index;
557 	if (write_index != sw_index) {
558 		struct ce_desc *base = dest_ring->base_addr_owner_space;
559 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
560 
561 		/* Return data from completed destination descriptor */
562 		*bufferp = __le32_to_cpu(desc->addr);
563 
564 		if (per_transfer_contextp)
565 			*per_transfer_contextp =
566 				dest_ring->per_transfer_context[sw_index];
567 
568 		/* sanity */
569 		dest_ring->per_transfer_context[sw_index] = NULL;
570 		desc->nbytes = 0;
571 
572 		/* Update sw_index */
573 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
574 		dest_ring->sw_index = sw_index;
575 		ret = 0;
576 	} else {
577 		ret = -EIO;
578 	}
579 
580 	spin_unlock_bh(&ar_pci->ce_lock);
581 
582 	return ret;
583 }
584 
585 /*
586  * Guts of ath10k_ce_completed_send_next.
587  * The caller takes responsibility for any necessary locking.
588  */
589 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
590 					 void **per_transfer_contextp)
591 {
592 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
593 	u32 ctrl_addr = ce_state->ctrl_addr;
594 	struct ath10k *ar = ce_state->ar;
595 	unsigned int nentries_mask = src_ring->nentries_mask;
596 	unsigned int sw_index = src_ring->sw_index;
597 	unsigned int read_index;
598 
599 	if (src_ring->hw_index == sw_index) {
600 		/*
601 		 * The SW completion index has caught up with the cached
602 		 * version of the HW completion index.
603 		 * Update the cached HW completion index to see whether
604 		 * the SW has really caught up to the HW, or if the cached
605 		 * value of the HW index has become stale.
606 		 */
607 
608 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
609 		if (read_index == 0xffffffff)
610 			return -ENODEV;
611 
612 		read_index &= nentries_mask;
613 		src_ring->hw_index = read_index;
614 	}
615 
616 	read_index = src_ring->hw_index;
617 
618 	if (read_index == sw_index)
619 		return -EIO;
620 
621 	if (per_transfer_contextp)
622 		*per_transfer_contextp =
623 			src_ring->per_transfer_context[sw_index];
624 
625 	/* sanity */
626 	src_ring->per_transfer_context[sw_index] = NULL;
627 
628 	/* Update sw_index */
629 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
630 	src_ring->sw_index = sw_index;
631 
632 	return 0;
633 }
634 
635 /* NB: Modeled after ath10k_ce_completed_send_next */
636 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
637 			       void **per_transfer_contextp,
638 			       u32 *bufferp,
639 			       unsigned int *nbytesp,
640 			       unsigned int *transfer_idp)
641 {
642 	struct ath10k_ce_ring *src_ring;
643 	unsigned int nentries_mask;
644 	unsigned int sw_index;
645 	unsigned int write_index;
646 	int ret;
647 	struct ath10k *ar;
648 	struct ath10k_pci *ar_pci;
649 
650 	src_ring = ce_state->src_ring;
651 
652 	if (!src_ring)
653 		return -EIO;
654 
655 	ar = ce_state->ar;
656 	ar_pci = ath10k_pci_priv(ar);
657 
658 	spin_lock_bh(&ar_pci->ce_lock);
659 
660 	nentries_mask = src_ring->nentries_mask;
661 	sw_index = src_ring->sw_index;
662 	write_index = src_ring->write_index;
663 
664 	if (write_index != sw_index) {
665 		struct ce_desc *base = src_ring->base_addr_owner_space;
666 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
667 
668 		/* Return data from completed source descriptor */
669 		*bufferp = __le32_to_cpu(desc->addr);
670 		*nbytesp = __le16_to_cpu(desc->nbytes);
671 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
672 						CE_DESC_FLAGS_META_DATA);
673 
674 		if (per_transfer_contextp)
675 			*per_transfer_contextp =
676 				src_ring->per_transfer_context[sw_index];
677 
678 		/* sanity */
679 		src_ring->per_transfer_context[sw_index] = NULL;
680 
681 		/* Update sw_index */
682 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
683 		src_ring->sw_index = sw_index;
684 		ret = 0;
685 	} else {
686 		ret = -EIO;
687 	}
688 
689 	spin_unlock_bh(&ar_pci->ce_lock);
690 
691 	return ret;
692 }
693 
694 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
695 				  void **per_transfer_contextp)
696 {
697 	struct ath10k *ar = ce_state->ar;
698 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
699 	int ret;
700 
701 	spin_lock_bh(&ar_pci->ce_lock);
702 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
703 						   per_transfer_contextp);
704 	spin_unlock_bh(&ar_pci->ce_lock);
705 
706 	return ret;
707 }
708 
709 /*
710  * Guts of interrupt handler for per-engine interrupts on a particular CE.
711  *
712  * Invokes registered callbacks for recv_complete,
713  * send_complete, and watermarks.
714  */
715 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
716 {
717 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
718 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
719 	u32 ctrl_addr = ce_state->ctrl_addr;
720 
721 	spin_lock_bh(&ar_pci->ce_lock);
722 
723 	/* Clear the copy-complete interrupts that will be handled here. */
724 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
725 					  HOST_IS_COPY_COMPLETE_MASK);
726 
727 	spin_unlock_bh(&ar_pci->ce_lock);
728 
729 	if (ce_state->recv_cb)
730 		ce_state->recv_cb(ce_state);
731 
732 	if (ce_state->send_cb)
733 		ce_state->send_cb(ce_state);
734 
735 	spin_lock_bh(&ar_pci->ce_lock);
736 
737 	/*
738 	 * Misc CE interrupts are not being handled, but still need
739 	 * to be cleared.
740 	 */
741 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
742 
743 	spin_unlock_bh(&ar_pci->ce_lock);
744 }
745 
746 /*
747  * Handler for per-engine interrupts on ALL active CEs.
748  * This is used in cases where the system is sharing a
749  * single interrput for all CEs
750  */
751 
752 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
753 {
754 	int ce_id;
755 	u32 intr_summary;
756 
757 	intr_summary = CE_INTERRUPT_SUMMARY(ar);
758 
759 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
760 		if (intr_summary & (1 << ce_id))
761 			intr_summary &= ~(1 << ce_id);
762 		else
763 			/* no intr pending on this CE */
764 			continue;
765 
766 		ath10k_ce_per_engine_service(ar, ce_id);
767 	}
768 }
769 
770 /*
771  * Adjust interrupts for the copy complete handler.
772  * If it's needed for either send or recv, then unmask
773  * this interrupt; otherwise, mask it.
774  *
775  * Called with ce_lock held.
776  */
777 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
778 {
779 	u32 ctrl_addr = ce_state->ctrl_addr;
780 	struct ath10k *ar = ce_state->ar;
781 	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
782 
783 	if ((!disable_copy_compl_intr) &&
784 	    (ce_state->send_cb || ce_state->recv_cb))
785 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
786 	else
787 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
788 
789 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
790 }
791 
792 int ath10k_ce_disable_interrupts(struct ath10k *ar)
793 {
794 	int ce_id;
795 
796 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
797 		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
798 
799 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
800 		ath10k_ce_error_intr_disable(ar, ctrl_addr);
801 		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
802 	}
803 
804 	return 0;
805 }
806 
807 void ath10k_ce_enable_interrupts(struct ath10k *ar)
808 {
809 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
810 	int ce_id;
811 
812 	/* Skip the last copy engine, CE7 the diagnostic window, as that
813 	 * uses polling and isn't initialized for interrupts.
814 	 */
815 	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
816 		ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
817 }
818 
819 static int ath10k_ce_init_src_ring(struct ath10k *ar,
820 				   unsigned int ce_id,
821 				   const struct ce_attr *attr)
822 {
823 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
824 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
825 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
826 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
827 
828 	nentries = roundup_pow_of_two(attr->src_nentries);
829 
830 	memset(src_ring->base_addr_owner_space, 0,
831 	       nentries * sizeof(struct ce_desc));
832 
833 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
834 	src_ring->sw_index &= src_ring->nentries_mask;
835 	src_ring->hw_index = src_ring->sw_index;
836 
837 	src_ring->write_index =
838 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
839 	src_ring->write_index &= src_ring->nentries_mask;
840 
841 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
842 					 src_ring->base_addr_ce_space);
843 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
844 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
845 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
846 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
847 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
848 
849 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
850 		   "boot init ce src ring id %d entries %d base_addr %pK\n",
851 		   ce_id, nentries, src_ring->base_addr_owner_space);
852 
853 	return 0;
854 }
855 
856 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
857 				    unsigned int ce_id,
858 				    const struct ce_attr *attr)
859 {
860 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
861 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
862 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
863 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
864 
865 	nentries = roundup_pow_of_two(attr->dest_nentries);
866 
867 	memset(dest_ring->base_addr_owner_space, 0,
868 	       nentries * sizeof(struct ce_desc));
869 
870 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
871 	dest_ring->sw_index &= dest_ring->nentries_mask;
872 	dest_ring->write_index =
873 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
874 	dest_ring->write_index &= dest_ring->nentries_mask;
875 
876 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
877 					  dest_ring->base_addr_ce_space);
878 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
879 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
880 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
881 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
882 
883 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
884 		   "boot ce dest ring id %d entries %d base_addr %pK\n",
885 		   ce_id, nentries, dest_ring->base_addr_owner_space);
886 
887 	return 0;
888 }
889 
890 static struct ath10k_ce_ring *
891 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
892 			 const struct ce_attr *attr)
893 {
894 	struct ath10k_ce_ring *src_ring;
895 	u32 nentries = attr->src_nentries;
896 	dma_addr_t base_addr;
897 
898 	nentries = roundup_pow_of_two(nentries);
899 
900 	src_ring = kzalloc(sizeof(*src_ring) +
901 			   (nentries *
902 			    sizeof(*src_ring->per_transfer_context)),
903 			   GFP_KERNEL);
904 	if (src_ring == NULL)
905 		return ERR_PTR(-ENOMEM);
906 
907 	src_ring->nentries = nentries;
908 	src_ring->nentries_mask = nentries - 1;
909 
910 	/*
911 	 * Legacy platforms that do not support cache
912 	 * coherent DMA are unsupported
913 	 */
914 	src_ring->base_addr_owner_space_unaligned =
915 		dma_alloc_coherent(ar->dev,
916 				   (nentries * sizeof(struct ce_desc) +
917 				    CE_DESC_RING_ALIGN),
918 				   &base_addr, GFP_KERNEL);
919 	if (!src_ring->base_addr_owner_space_unaligned) {
920 		kfree(src_ring);
921 		return ERR_PTR(-ENOMEM);
922 	}
923 
924 	src_ring->base_addr_ce_space_unaligned = base_addr;
925 
926 	src_ring->base_addr_owner_space = PTR_ALIGN(
927 			src_ring->base_addr_owner_space_unaligned,
928 			CE_DESC_RING_ALIGN);
929 	src_ring->base_addr_ce_space = ALIGN(
930 			src_ring->base_addr_ce_space_unaligned,
931 			CE_DESC_RING_ALIGN);
932 
933 	return src_ring;
934 }
935 
936 static struct ath10k_ce_ring *
937 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
938 			  const struct ce_attr *attr)
939 {
940 	struct ath10k_ce_ring *dest_ring;
941 	u32 nentries;
942 	dma_addr_t base_addr;
943 
944 	nentries = roundup_pow_of_two(attr->dest_nentries);
945 
946 	dest_ring = kzalloc(sizeof(*dest_ring) +
947 			    (nentries *
948 			     sizeof(*dest_ring->per_transfer_context)),
949 			    GFP_KERNEL);
950 	if (dest_ring == NULL)
951 		return ERR_PTR(-ENOMEM);
952 
953 	dest_ring->nentries = nentries;
954 	dest_ring->nentries_mask = nentries - 1;
955 
956 	/*
957 	 * Legacy platforms that do not support cache
958 	 * coherent DMA are unsupported
959 	 */
960 	dest_ring->base_addr_owner_space_unaligned =
961 		dma_zalloc_coherent(ar->dev,
962 				    (nentries * sizeof(struct ce_desc) +
963 				     CE_DESC_RING_ALIGN),
964 				    &base_addr, GFP_KERNEL);
965 	if (!dest_ring->base_addr_owner_space_unaligned) {
966 		kfree(dest_ring);
967 		return ERR_PTR(-ENOMEM);
968 	}
969 
970 	dest_ring->base_addr_ce_space_unaligned = base_addr;
971 
972 	dest_ring->base_addr_owner_space = PTR_ALIGN(
973 			dest_ring->base_addr_owner_space_unaligned,
974 			CE_DESC_RING_ALIGN);
975 	dest_ring->base_addr_ce_space = ALIGN(
976 			dest_ring->base_addr_ce_space_unaligned,
977 			CE_DESC_RING_ALIGN);
978 
979 	return dest_ring;
980 }
981 
982 /*
983  * Initialize a Copy Engine based on caller-supplied attributes.
984  * This may be called once to initialize both source and destination
985  * rings or it may be called twice for separate source and destination
986  * initialization. It may be that only one side or the other is
987  * initialized by software/firmware.
988  */
989 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
990 			const struct ce_attr *attr)
991 {
992 	int ret;
993 
994 	if (attr->src_nentries) {
995 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
996 		if (ret) {
997 			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
998 				   ce_id, ret);
999 			return ret;
1000 		}
1001 	}
1002 
1003 	if (attr->dest_nentries) {
1004 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1005 		if (ret) {
1006 			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1007 				   ce_id, ret);
1008 			return ret;
1009 		}
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1016 {
1017 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1018 
1019 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1020 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1021 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1022 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1023 }
1024 
1025 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1026 {
1027 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1028 
1029 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1030 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1031 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1032 }
1033 
1034 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1035 {
1036 	ath10k_ce_deinit_src_ring(ar, ce_id);
1037 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1038 }
1039 
1040 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1041 			 const struct ce_attr *attr)
1042 {
1043 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1044 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1045 	int ret;
1046 
1047 	/*
1048 	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1049 	 * additional TX locking checks.
1050 	 *
1051 	 * For the lack of a better place do the check here.
1052 	 */
1053 	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1054 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1055 	BUILD_BUG_ON(2 * TARGET_10X_NUM_MSDU_DESC >
1056 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1057 	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1058 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1059 
1060 	ce_state->ar = ar;
1061 	ce_state->id = ce_id;
1062 	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1063 	ce_state->attr_flags = attr->flags;
1064 	ce_state->src_sz_max = attr->src_sz_max;
1065 
1066 	if (attr->src_nentries)
1067 		ce_state->send_cb = attr->send_cb;
1068 
1069 	if (attr->dest_nentries)
1070 		ce_state->recv_cb = attr->recv_cb;
1071 
1072 	if (attr->src_nentries) {
1073 		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1074 		if (IS_ERR(ce_state->src_ring)) {
1075 			ret = PTR_ERR(ce_state->src_ring);
1076 			ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1077 				   ce_id, ret);
1078 			ce_state->src_ring = NULL;
1079 			return ret;
1080 		}
1081 	}
1082 
1083 	if (attr->dest_nentries) {
1084 		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1085 								attr);
1086 		if (IS_ERR(ce_state->dest_ring)) {
1087 			ret = PTR_ERR(ce_state->dest_ring);
1088 			ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1089 				   ce_id, ret);
1090 			ce_state->dest_ring = NULL;
1091 			return ret;
1092 		}
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1099 {
1100 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1101 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1102 
1103 	if (ce_state->src_ring) {
1104 		dma_free_coherent(ar->dev,
1105 				  (ce_state->src_ring->nentries *
1106 				   sizeof(struct ce_desc) +
1107 				   CE_DESC_RING_ALIGN),
1108 				  ce_state->src_ring->base_addr_owner_space,
1109 				  ce_state->src_ring->base_addr_ce_space);
1110 		kfree(ce_state->src_ring);
1111 	}
1112 
1113 	if (ce_state->dest_ring) {
1114 		dma_free_coherent(ar->dev,
1115 				  (ce_state->dest_ring->nentries *
1116 				   sizeof(struct ce_desc) +
1117 				   CE_DESC_RING_ALIGN),
1118 				  ce_state->dest_ring->base_addr_owner_space,
1119 				  ce_state->dest_ring->base_addr_ce_space);
1120 		kfree(ce_state->dest_ring);
1121 	}
1122 
1123 	ce_state->src_ring = NULL;
1124 	ce_state->dest_ring = NULL;
1125 }
1126 
1127 void ath10k_ce_dump_registers(struct ath10k *ar,
1128 			      struct ath10k_fw_crash_data *crash_data)
1129 {
1130 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1131 	struct ath10k_ce_crash_data ce;
1132 	u32 addr, id;
1133 
1134 	lockdep_assert_held(&ar->data_lock);
1135 
1136 	ath10k_err(ar, "Copy Engine register dump:\n");
1137 
1138 	spin_lock_bh(&ar_pci->ce_lock);
1139 	for (id = 0; id < CE_COUNT; id++) {
1140 		addr = ath10k_ce_base_address(ar, id);
1141 		ce.base_addr = cpu_to_le32(addr);
1142 
1143 		ce.src_wr_idx =
1144 			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1145 		ce.src_r_idx =
1146 			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1147 		ce.dst_wr_idx =
1148 			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1149 		ce.dst_r_idx =
1150 			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1151 
1152 		if (crash_data)
1153 			crash_data->ce_crash_data[id] = ce;
1154 
1155 		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1156 			   le32_to_cpu(ce.base_addr),
1157 			   le32_to_cpu(ce.src_wr_idx),
1158 			   le32_to_cpu(ce.src_r_idx),
1159 			   le32_to_cpu(ce.dst_wr_idx),
1160 			   le32_to_cpu(ce.dst_r_idx));
1161 	}
1162 
1163 	spin_unlock_bh(&ar_pci->ce_lock);
1164 }
1165