xref: /linux/drivers/net/wireless/ath/ath10k/ce.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22 
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27 
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * receives an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61 
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 						       u32 ce_ctrl_addr,
64 						       unsigned int n)
65 {
66 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68 
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 						      u32 ce_ctrl_addr)
71 {
72 	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74 
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 						      u32 ce_ctrl_addr,
77 						      unsigned int n)
78 {
79 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81 
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 						     u32 ce_ctrl_addr)
84 {
85 	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87 
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 						    u32 ce_ctrl_addr)
90 {
91 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93 
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 						    u32 ce_ctrl_addr,
96 						    unsigned int addr)
97 {
98 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100 
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 					       u32 ce_ctrl_addr,
103 					       unsigned int n)
104 {
105 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107 
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 					       u32 ce_ctrl_addr,
110 					       unsigned int n)
111 {
112 	u32 ctrl1_addr = ath10k_pci_read32((ar),
113 					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114 
115 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 			   CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119 
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 						    u32 ce_ctrl_addr,
122 						    unsigned int n)
123 {
124 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125 
126 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130 
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 						     u32 ce_ctrl_addr,
133 						     unsigned int n)
134 {
135 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136 
137 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141 
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 						     u32 ce_ctrl_addr)
144 {
145 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147 
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 						     u32 ce_ctrl_addr,
150 						     u32 addr)
151 {
152 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154 
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 						u32 ce_ctrl_addr,
157 						unsigned int n)
158 {
159 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161 
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 						   u32 ce_ctrl_addr,
164 						   unsigned int n)
165 {
166 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167 
168 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 			   SRC_WATERMARK_HIGH_SET(n));
171 }
172 
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 						  u32 ce_ctrl_addr,
175 						  unsigned int n)
176 {
177 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178 
179 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181 			   SRC_WATERMARK_LOW_SET(n));
182 }
183 
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 						    u32 ce_ctrl_addr,
186 						    unsigned int n)
187 {
188 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189 
190 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192 			   DST_WATERMARK_HIGH_SET(n));
193 }
194 
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 						   u32 ce_ctrl_addr,
197 						   unsigned int n)
198 {
199 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200 
201 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 			   (addr & ~DST_WATERMARK_LOW_MASK) |
203 			   DST_WATERMARK_LOW_SET(n));
204 }
205 
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 							u32 ce_ctrl_addr)
208 {
209 	u32 host_ie_addr = ath10k_pci_read32(ar,
210 					     ce_ctrl_addr + HOST_IE_ADDRESS);
211 
212 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215 
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 							u32 ce_ctrl_addr)
218 {
219 	u32 host_ie_addr = ath10k_pci_read32(ar,
220 					     ce_ctrl_addr + HOST_IE_ADDRESS);
221 
222 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225 
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 						    u32 ce_ctrl_addr)
228 {
229 	u32 host_ie_addr = ath10k_pci_read32(ar,
230 					     ce_ctrl_addr + HOST_IE_ADDRESS);
231 
232 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 			   host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235 
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 					       u32 ce_ctrl_addr)
238 {
239 	u32 misc_ie_addr = ath10k_pci_read32(ar,
240 					     ce_ctrl_addr + MISC_IE_ADDRESS);
241 
242 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 			   misc_ie_addr | CE_ERROR_MASK);
244 }
245 
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 						u32 ce_ctrl_addr)
248 {
249 	u32 misc_ie_addr = ath10k_pci_read32(ar,
250 					     ce_ctrl_addr + MISC_IE_ADDRESS);
251 
252 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 			   misc_ie_addr & ~CE_ERROR_MASK);
254 }
255 
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 						     u32 ce_ctrl_addr,
258 						     unsigned int mask)
259 {
260 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262 
263 /*
264  * Guts of ath10k_ce_send.
265  * The caller takes responsibility for any needed locking.
266  */
267 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
268 			  void *per_transfer_context,
269 			  u32 buffer,
270 			  unsigned int nbytes,
271 			  unsigned int transfer_id,
272 			  unsigned int flags)
273 {
274 	struct ath10k *ar = ce_state->ar;
275 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
276 	struct ce_desc *desc, sdesc;
277 	unsigned int nentries_mask = src_ring->nentries_mask;
278 	unsigned int sw_index = src_ring->sw_index;
279 	unsigned int write_index = src_ring->write_index;
280 	u32 ctrl_addr = ce_state->ctrl_addr;
281 	u32 desc_flags = 0;
282 	int ret = 0;
283 
284 	if (nbytes > ce_state->src_sz_max)
285 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
286 			    __func__, nbytes, ce_state->src_sz_max);
287 
288 	if (unlikely(CE_RING_DELTA(nentries_mask,
289 				   write_index, sw_index - 1) <= 0)) {
290 		ret = -ENOSR;
291 		goto exit;
292 	}
293 
294 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
295 				   write_index);
296 
297 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
298 
299 	if (flags & CE_SEND_FLAG_GATHER)
300 		desc_flags |= CE_DESC_FLAGS_GATHER;
301 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
302 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
303 
304 	sdesc.addr   = __cpu_to_le32(buffer);
305 	sdesc.nbytes = __cpu_to_le16(nbytes);
306 	sdesc.flags  = __cpu_to_le16(desc_flags);
307 
308 	*desc = sdesc;
309 
310 	src_ring->per_transfer_context[write_index] = per_transfer_context;
311 
312 	/* Update Source Ring Write Index */
313 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
314 
315 	/* WORKAROUND */
316 	if (!(flags & CE_SEND_FLAG_GATHER))
317 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
318 
319 	src_ring->write_index = write_index;
320 exit:
321 	return ret;
322 }
323 
324 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
325 {
326 	struct ath10k *ar = pipe->ar;
327 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
328 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
329 	u32 ctrl_addr = pipe->ctrl_addr;
330 
331 	lockdep_assert_held(&ar_pci->ce_lock);
332 
333 	/*
334 	 * This function must be called only if there is an incomplete
335 	 * scatter-gather transfer (before index register is updated)
336 	 * that needs to be cleaned up.
337 	 */
338 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
339 		return;
340 
341 	if (WARN_ON_ONCE(src_ring->write_index ==
342 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
343 		return;
344 
345 	src_ring->write_index--;
346 	src_ring->write_index &= src_ring->nentries_mask;
347 
348 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
349 }
350 
351 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
352 		   void *per_transfer_context,
353 		   u32 buffer,
354 		   unsigned int nbytes,
355 		   unsigned int transfer_id,
356 		   unsigned int flags)
357 {
358 	struct ath10k *ar = ce_state->ar;
359 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
360 	int ret;
361 
362 	spin_lock_bh(&ar_pci->ce_lock);
363 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
364 				    buffer, nbytes, transfer_id, flags);
365 	spin_unlock_bh(&ar_pci->ce_lock);
366 
367 	return ret;
368 }
369 
370 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
371 {
372 	struct ath10k *ar = pipe->ar;
373 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
374 	int delta;
375 
376 	spin_lock_bh(&ar_pci->ce_lock);
377 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
378 			      pipe->src_ring->write_index,
379 			      pipe->src_ring->sw_index - 1);
380 	spin_unlock_bh(&ar_pci->ce_lock);
381 
382 	return delta;
383 }
384 
385 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
386 {
387 	struct ath10k *ar = pipe->ar;
388 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
389 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
390 	unsigned int nentries_mask = dest_ring->nentries_mask;
391 	unsigned int write_index = dest_ring->write_index;
392 	unsigned int sw_index = dest_ring->sw_index;
393 
394 	lockdep_assert_held(&ar_pci->ce_lock);
395 
396 	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
397 }
398 
399 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
400 {
401 	struct ath10k *ar = pipe->ar;
402 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
403 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
404 	unsigned int nentries_mask = dest_ring->nentries_mask;
405 	unsigned int write_index = dest_ring->write_index;
406 	unsigned int sw_index = dest_ring->sw_index;
407 	struct ce_desc *base = dest_ring->base_addr_owner_space;
408 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
409 	u32 ctrl_addr = pipe->ctrl_addr;
410 
411 	lockdep_assert_held(&ar_pci->ce_lock);
412 
413 	if ((pipe->id != 5) &&
414 	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
415 		return -ENOSPC;
416 
417 	desc->addr = __cpu_to_le32(paddr);
418 	desc->nbytes = 0;
419 
420 	dest_ring->per_transfer_context[write_index] = ctx;
421 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
422 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
423 	dest_ring->write_index = write_index;
424 
425 	return 0;
426 }
427 
428 void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
429 {
430 	struct ath10k *ar = pipe->ar;
431 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
432 	unsigned int nentries_mask = dest_ring->nentries_mask;
433 	unsigned int write_index = dest_ring->write_index;
434 	u32 ctrl_addr = pipe->ctrl_addr;
435 	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
436 
437 	/* Prevent CE ring stuck issue that will occur when ring is full.
438 	 * Make sure that write index is 1 less than read index.
439 	 */
440 	if ((cur_write_idx + nentries)  == dest_ring->sw_index)
441 		nentries -= 1;
442 
443 	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
444 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
445 	dest_ring->write_index = write_index;
446 }
447 
448 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
449 {
450 	struct ath10k *ar = pipe->ar;
451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 	int ret;
453 
454 	spin_lock_bh(&ar_pci->ce_lock);
455 	ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
456 	spin_unlock_bh(&ar_pci->ce_lock);
457 
458 	return ret;
459 }
460 
461 /*
462  * Guts of ath10k_ce_completed_recv_next.
463  * The caller takes responsibility for any necessary locking.
464  */
465 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
466 					 void **per_transfer_contextp,
467 					 unsigned int *nbytesp)
468 {
469 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
470 	unsigned int nentries_mask = dest_ring->nentries_mask;
471 	unsigned int sw_index = dest_ring->sw_index;
472 
473 	struct ce_desc *base = dest_ring->base_addr_owner_space;
474 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
475 	struct ce_desc sdesc;
476 	u16 nbytes;
477 
478 	/* Copy in one go for performance reasons */
479 	sdesc = *desc;
480 
481 	nbytes = __le16_to_cpu(sdesc.nbytes);
482 	if (nbytes == 0) {
483 		/*
484 		 * This closes a relatively unusual race where the Host
485 		 * sees the updated DRRI before the update to the
486 		 * corresponding descriptor has completed. We treat this
487 		 * as a descriptor that is not yet done.
488 		 */
489 		return -EIO;
490 	}
491 
492 	desc->nbytes = 0;
493 
494 	/* Return data from completed destination descriptor */
495 	*nbytesp = nbytes;
496 
497 	if (per_transfer_contextp)
498 		*per_transfer_contextp =
499 			dest_ring->per_transfer_context[sw_index];
500 
501 	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
502 	 * So update transfer context all CEs except CE5.
503 	 */
504 	if (ce_state->id != 5)
505 		dest_ring->per_transfer_context[sw_index] = NULL;
506 
507 	/* Update sw_index */
508 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
509 	dest_ring->sw_index = sw_index;
510 
511 	return 0;
512 }
513 
514 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
515 				  void **per_transfer_contextp,
516 				  unsigned int *nbytesp)
517 {
518 	struct ath10k *ar = ce_state->ar;
519 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
520 	int ret;
521 
522 	spin_lock_bh(&ar_pci->ce_lock);
523 	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
524 						   per_transfer_contextp,
525 						   nbytesp);
526 	spin_unlock_bh(&ar_pci->ce_lock);
527 
528 	return ret;
529 }
530 
531 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
532 			       void **per_transfer_contextp,
533 			       u32 *bufferp)
534 {
535 	struct ath10k_ce_ring *dest_ring;
536 	unsigned int nentries_mask;
537 	unsigned int sw_index;
538 	unsigned int write_index;
539 	int ret;
540 	struct ath10k *ar;
541 	struct ath10k_pci *ar_pci;
542 
543 	dest_ring = ce_state->dest_ring;
544 
545 	if (!dest_ring)
546 		return -EIO;
547 
548 	ar = ce_state->ar;
549 	ar_pci = ath10k_pci_priv(ar);
550 
551 	spin_lock_bh(&ar_pci->ce_lock);
552 
553 	nentries_mask = dest_ring->nentries_mask;
554 	sw_index = dest_ring->sw_index;
555 	write_index = dest_ring->write_index;
556 	if (write_index != sw_index) {
557 		struct ce_desc *base = dest_ring->base_addr_owner_space;
558 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
559 
560 		/* Return data from completed destination descriptor */
561 		*bufferp = __le32_to_cpu(desc->addr);
562 
563 		if (per_transfer_contextp)
564 			*per_transfer_contextp =
565 				dest_ring->per_transfer_context[sw_index];
566 
567 		/* sanity */
568 		dest_ring->per_transfer_context[sw_index] = NULL;
569 		desc->nbytes = 0;
570 
571 		/* Update sw_index */
572 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
573 		dest_ring->sw_index = sw_index;
574 		ret = 0;
575 	} else {
576 		ret = -EIO;
577 	}
578 
579 	spin_unlock_bh(&ar_pci->ce_lock);
580 
581 	return ret;
582 }
583 
584 /*
585  * Guts of ath10k_ce_completed_send_next.
586  * The caller takes responsibility for any necessary locking.
587  */
588 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
589 					 void **per_transfer_contextp)
590 {
591 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
592 	u32 ctrl_addr = ce_state->ctrl_addr;
593 	struct ath10k *ar = ce_state->ar;
594 	unsigned int nentries_mask = src_ring->nentries_mask;
595 	unsigned int sw_index = src_ring->sw_index;
596 	unsigned int read_index;
597 
598 	if (src_ring->hw_index == sw_index) {
599 		/*
600 		 * The SW completion index has caught up with the cached
601 		 * version of the HW completion index.
602 		 * Update the cached HW completion index to see whether
603 		 * the SW has really caught up to the HW, or if the cached
604 		 * value of the HW index has become stale.
605 		 */
606 
607 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
608 		if (read_index == 0xffffffff)
609 			return -ENODEV;
610 
611 		read_index &= nentries_mask;
612 		src_ring->hw_index = read_index;
613 	}
614 
615 	read_index = src_ring->hw_index;
616 
617 	if (read_index == sw_index)
618 		return -EIO;
619 
620 	if (per_transfer_contextp)
621 		*per_transfer_contextp =
622 			src_ring->per_transfer_context[sw_index];
623 
624 	/* sanity */
625 	src_ring->per_transfer_context[sw_index] = NULL;
626 
627 	/* Update sw_index */
628 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
629 	src_ring->sw_index = sw_index;
630 
631 	return 0;
632 }
633 
634 /* NB: Modeled after ath10k_ce_completed_send_next */
635 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
636 			       void **per_transfer_contextp,
637 			       u32 *bufferp,
638 			       unsigned int *nbytesp,
639 			       unsigned int *transfer_idp)
640 {
641 	struct ath10k_ce_ring *src_ring;
642 	unsigned int nentries_mask;
643 	unsigned int sw_index;
644 	unsigned int write_index;
645 	int ret;
646 	struct ath10k *ar;
647 	struct ath10k_pci *ar_pci;
648 
649 	src_ring = ce_state->src_ring;
650 
651 	if (!src_ring)
652 		return -EIO;
653 
654 	ar = ce_state->ar;
655 	ar_pci = ath10k_pci_priv(ar);
656 
657 	spin_lock_bh(&ar_pci->ce_lock);
658 
659 	nentries_mask = src_ring->nentries_mask;
660 	sw_index = src_ring->sw_index;
661 	write_index = src_ring->write_index;
662 
663 	if (write_index != sw_index) {
664 		struct ce_desc *base = src_ring->base_addr_owner_space;
665 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
666 
667 		/* Return data from completed source descriptor */
668 		*bufferp = __le32_to_cpu(desc->addr);
669 		*nbytesp = __le16_to_cpu(desc->nbytes);
670 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
671 						CE_DESC_FLAGS_META_DATA);
672 
673 		if (per_transfer_contextp)
674 			*per_transfer_contextp =
675 				src_ring->per_transfer_context[sw_index];
676 
677 		/* sanity */
678 		src_ring->per_transfer_context[sw_index] = NULL;
679 
680 		/* Update sw_index */
681 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
682 		src_ring->sw_index = sw_index;
683 		ret = 0;
684 	} else {
685 		ret = -EIO;
686 	}
687 
688 	spin_unlock_bh(&ar_pci->ce_lock);
689 
690 	return ret;
691 }
692 
693 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
694 				  void **per_transfer_contextp)
695 {
696 	struct ath10k *ar = ce_state->ar;
697 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
698 	int ret;
699 
700 	spin_lock_bh(&ar_pci->ce_lock);
701 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
702 						   per_transfer_contextp);
703 	spin_unlock_bh(&ar_pci->ce_lock);
704 
705 	return ret;
706 }
707 
708 /*
709  * Guts of interrupt handler for per-engine interrupts on a particular CE.
710  *
711  * Invokes registered callbacks for recv_complete,
712  * send_complete, and watermarks.
713  */
714 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
715 {
716 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
717 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
718 	u32 ctrl_addr = ce_state->ctrl_addr;
719 
720 	spin_lock_bh(&ar_pci->ce_lock);
721 
722 	/* Clear the copy-complete interrupts that will be handled here. */
723 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
724 					  HOST_IS_COPY_COMPLETE_MASK);
725 
726 	spin_unlock_bh(&ar_pci->ce_lock);
727 
728 	if (ce_state->recv_cb)
729 		ce_state->recv_cb(ce_state);
730 
731 	if (ce_state->send_cb)
732 		ce_state->send_cb(ce_state);
733 
734 	spin_lock_bh(&ar_pci->ce_lock);
735 
736 	/*
737 	 * Misc CE interrupts are not being handled, but still need
738 	 * to be cleared.
739 	 */
740 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
741 
742 	spin_unlock_bh(&ar_pci->ce_lock);
743 }
744 
745 /*
746  * Handler for per-engine interrupts on ALL active CEs.
747  * This is used in cases where the system is sharing a
748  * single interrput for all CEs
749  */
750 
751 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
752 {
753 	int ce_id;
754 	u32 intr_summary;
755 
756 	intr_summary = CE_INTERRUPT_SUMMARY(ar);
757 
758 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
759 		if (intr_summary & (1 << ce_id))
760 			intr_summary &= ~(1 << ce_id);
761 		else
762 			/* no intr pending on this CE */
763 			continue;
764 
765 		ath10k_ce_per_engine_service(ar, ce_id);
766 	}
767 }
768 
769 /*
770  * Adjust interrupts for the copy complete handler.
771  * If it's needed for either send or recv, then unmask
772  * this interrupt; otherwise, mask it.
773  *
774  * Called with ce_lock held.
775  */
776 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
777 {
778 	u32 ctrl_addr = ce_state->ctrl_addr;
779 	struct ath10k *ar = ce_state->ar;
780 	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
781 
782 	if ((!disable_copy_compl_intr) &&
783 	    (ce_state->send_cb || ce_state->recv_cb))
784 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
785 	else
786 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
787 
788 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
789 }
790 
791 int ath10k_ce_disable_interrupts(struct ath10k *ar)
792 {
793 	int ce_id;
794 
795 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
796 		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
797 
798 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
799 		ath10k_ce_error_intr_disable(ar, ctrl_addr);
800 		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
801 	}
802 
803 	return 0;
804 }
805 
806 void ath10k_ce_enable_interrupts(struct ath10k *ar)
807 {
808 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
809 	int ce_id;
810 
811 	/* Skip the last copy engine, CE7 the diagnostic window, as that
812 	 * uses polling and isn't initialized for interrupts.
813 	 */
814 	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
815 		ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
816 }
817 
818 static int ath10k_ce_init_src_ring(struct ath10k *ar,
819 				   unsigned int ce_id,
820 				   const struct ce_attr *attr)
821 {
822 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
823 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
824 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
825 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
826 
827 	nentries = roundup_pow_of_two(attr->src_nentries);
828 
829 	memset(src_ring->base_addr_owner_space, 0,
830 	       nentries * sizeof(struct ce_desc));
831 
832 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
833 	src_ring->sw_index &= src_ring->nentries_mask;
834 	src_ring->hw_index = src_ring->sw_index;
835 
836 	src_ring->write_index =
837 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
838 	src_ring->write_index &= src_ring->nentries_mask;
839 
840 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
841 					 src_ring->base_addr_ce_space);
842 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
843 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
844 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
845 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
846 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
847 
848 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
849 		   "boot init ce src ring id %d entries %d base_addr %pK\n",
850 		   ce_id, nentries, src_ring->base_addr_owner_space);
851 
852 	return 0;
853 }
854 
855 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
856 				    unsigned int ce_id,
857 				    const struct ce_attr *attr)
858 {
859 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
860 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
861 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
862 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
863 
864 	nentries = roundup_pow_of_two(attr->dest_nentries);
865 
866 	memset(dest_ring->base_addr_owner_space, 0,
867 	       nentries * sizeof(struct ce_desc));
868 
869 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
870 	dest_ring->sw_index &= dest_ring->nentries_mask;
871 	dest_ring->write_index =
872 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
873 	dest_ring->write_index &= dest_ring->nentries_mask;
874 
875 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
876 					  dest_ring->base_addr_ce_space);
877 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
878 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
879 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
880 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
881 
882 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
883 		   "boot ce dest ring id %d entries %d base_addr %pK\n",
884 		   ce_id, nentries, dest_ring->base_addr_owner_space);
885 
886 	return 0;
887 }
888 
889 static struct ath10k_ce_ring *
890 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
891 			 const struct ce_attr *attr)
892 {
893 	struct ath10k_ce_ring *src_ring;
894 	u32 nentries = attr->src_nentries;
895 	dma_addr_t base_addr;
896 
897 	nentries = roundup_pow_of_two(nentries);
898 
899 	src_ring = kzalloc(sizeof(*src_ring) +
900 			   (nentries *
901 			    sizeof(*src_ring->per_transfer_context)),
902 			   GFP_KERNEL);
903 	if (src_ring == NULL)
904 		return ERR_PTR(-ENOMEM);
905 
906 	src_ring->nentries = nentries;
907 	src_ring->nentries_mask = nentries - 1;
908 
909 	/*
910 	 * Legacy platforms that do not support cache
911 	 * coherent DMA are unsupported
912 	 */
913 	src_ring->base_addr_owner_space_unaligned =
914 		dma_alloc_coherent(ar->dev,
915 				   (nentries * sizeof(struct ce_desc) +
916 				    CE_DESC_RING_ALIGN),
917 				   &base_addr, GFP_KERNEL);
918 	if (!src_ring->base_addr_owner_space_unaligned) {
919 		kfree(src_ring);
920 		return ERR_PTR(-ENOMEM);
921 	}
922 
923 	src_ring->base_addr_ce_space_unaligned = base_addr;
924 
925 	src_ring->base_addr_owner_space = PTR_ALIGN(
926 			src_ring->base_addr_owner_space_unaligned,
927 			CE_DESC_RING_ALIGN);
928 	src_ring->base_addr_ce_space = ALIGN(
929 			src_ring->base_addr_ce_space_unaligned,
930 			CE_DESC_RING_ALIGN);
931 
932 	return src_ring;
933 }
934 
935 static struct ath10k_ce_ring *
936 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
937 			  const struct ce_attr *attr)
938 {
939 	struct ath10k_ce_ring *dest_ring;
940 	u32 nentries;
941 	dma_addr_t base_addr;
942 
943 	nentries = roundup_pow_of_two(attr->dest_nentries);
944 
945 	dest_ring = kzalloc(sizeof(*dest_ring) +
946 			    (nentries *
947 			     sizeof(*dest_ring->per_transfer_context)),
948 			    GFP_KERNEL);
949 	if (dest_ring == NULL)
950 		return ERR_PTR(-ENOMEM);
951 
952 	dest_ring->nentries = nentries;
953 	dest_ring->nentries_mask = nentries - 1;
954 
955 	/*
956 	 * Legacy platforms that do not support cache
957 	 * coherent DMA are unsupported
958 	 */
959 	dest_ring->base_addr_owner_space_unaligned =
960 		dma_zalloc_coherent(ar->dev,
961 				    (nentries * sizeof(struct ce_desc) +
962 				     CE_DESC_RING_ALIGN),
963 				    &base_addr, GFP_KERNEL);
964 	if (!dest_ring->base_addr_owner_space_unaligned) {
965 		kfree(dest_ring);
966 		return ERR_PTR(-ENOMEM);
967 	}
968 
969 	dest_ring->base_addr_ce_space_unaligned = base_addr;
970 
971 	dest_ring->base_addr_owner_space = PTR_ALIGN(
972 			dest_ring->base_addr_owner_space_unaligned,
973 			CE_DESC_RING_ALIGN);
974 	dest_ring->base_addr_ce_space = ALIGN(
975 			dest_ring->base_addr_ce_space_unaligned,
976 			CE_DESC_RING_ALIGN);
977 
978 	return dest_ring;
979 }
980 
981 /*
982  * Initialize a Copy Engine based on caller-supplied attributes.
983  * This may be called once to initialize both source and destination
984  * rings or it may be called twice for separate source and destination
985  * initialization. It may be that only one side or the other is
986  * initialized by software/firmware.
987  */
988 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
989 			const struct ce_attr *attr)
990 {
991 	int ret;
992 
993 	if (attr->src_nentries) {
994 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
995 		if (ret) {
996 			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
997 				   ce_id, ret);
998 			return ret;
999 		}
1000 	}
1001 
1002 	if (attr->dest_nentries) {
1003 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1004 		if (ret) {
1005 			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1006 				   ce_id, ret);
1007 			return ret;
1008 		}
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1015 {
1016 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1017 
1018 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1019 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1020 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1021 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1022 }
1023 
1024 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1025 {
1026 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1027 
1028 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1029 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1030 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1031 }
1032 
1033 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1034 {
1035 	ath10k_ce_deinit_src_ring(ar, ce_id);
1036 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1037 }
1038 
1039 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1040 			 const struct ce_attr *attr)
1041 {
1042 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1043 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1044 	int ret;
1045 
1046 	/*
1047 	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1048 	 * additional TX locking checks.
1049 	 *
1050 	 * For the lack of a better place do the check here.
1051 	 */
1052 	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1053 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1054 	BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
1055 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1056 	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1057 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1058 
1059 	ce_state->ar = ar;
1060 	ce_state->id = ce_id;
1061 	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1062 	ce_state->attr_flags = attr->flags;
1063 	ce_state->src_sz_max = attr->src_sz_max;
1064 
1065 	if (attr->src_nentries)
1066 		ce_state->send_cb = attr->send_cb;
1067 
1068 	if (attr->dest_nentries)
1069 		ce_state->recv_cb = attr->recv_cb;
1070 
1071 	if (attr->src_nentries) {
1072 		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1073 		if (IS_ERR(ce_state->src_ring)) {
1074 			ret = PTR_ERR(ce_state->src_ring);
1075 			ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1076 				   ce_id, ret);
1077 			ce_state->src_ring = NULL;
1078 			return ret;
1079 		}
1080 	}
1081 
1082 	if (attr->dest_nentries) {
1083 		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1084 								attr);
1085 		if (IS_ERR(ce_state->dest_ring)) {
1086 			ret = PTR_ERR(ce_state->dest_ring);
1087 			ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1088 				   ce_id, ret);
1089 			ce_state->dest_ring = NULL;
1090 			return ret;
1091 		}
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1098 {
1099 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1100 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1101 
1102 	if (ce_state->src_ring) {
1103 		dma_free_coherent(ar->dev,
1104 				  (ce_state->src_ring->nentries *
1105 				   sizeof(struct ce_desc) +
1106 				   CE_DESC_RING_ALIGN),
1107 				  ce_state->src_ring->base_addr_owner_space,
1108 				  ce_state->src_ring->base_addr_ce_space);
1109 		kfree(ce_state->src_ring);
1110 	}
1111 
1112 	if (ce_state->dest_ring) {
1113 		dma_free_coherent(ar->dev,
1114 				  (ce_state->dest_ring->nentries *
1115 				   sizeof(struct ce_desc) +
1116 				   CE_DESC_RING_ALIGN),
1117 				  ce_state->dest_ring->base_addr_owner_space,
1118 				  ce_state->dest_ring->base_addr_ce_space);
1119 		kfree(ce_state->dest_ring);
1120 	}
1121 
1122 	ce_state->src_ring = NULL;
1123 	ce_state->dest_ring = NULL;
1124 }
1125 
1126 void ath10k_ce_dump_registers(struct ath10k *ar,
1127 			      struct ath10k_fw_crash_data *crash_data)
1128 {
1129 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1130 	struct ath10k_ce_crash_data ce;
1131 	u32 addr, id;
1132 
1133 	lockdep_assert_held(&ar->data_lock);
1134 
1135 	ath10k_err(ar, "Copy Engine register dump:\n");
1136 
1137 	spin_lock_bh(&ar_pci->ce_lock);
1138 	for (id = 0; id < CE_COUNT; id++) {
1139 		addr = ath10k_ce_base_address(ar, id);
1140 		ce.base_addr = cpu_to_le32(addr);
1141 
1142 		ce.src_wr_idx =
1143 			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1144 		ce.src_r_idx =
1145 			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1146 		ce.dst_wr_idx =
1147 			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1148 		ce.dst_r_idx =
1149 			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1150 
1151 		if (crash_data)
1152 			crash_data->ce_crash_data[id] = ce;
1153 
1154 		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1155 			   le32_to_cpu(ce.base_addr),
1156 			   le32_to_cpu(ce.src_wr_idx),
1157 			   le32_to_cpu(ce.src_r_idx),
1158 			   le32_to_cpu(ce.dst_wr_idx),
1159 			   le32_to_cpu(ce.dst_r_idx));
1160 	}
1161 
1162 	spin_unlock_bh(&ar_pci->ce_lock);
1163 }
1164