xref: /linux/drivers/net/wireless/ath/ath10k/ce.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22 
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27 
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61 
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 						       u32 ce_ctrl_addr,
64 						       unsigned int n)
65 {
66 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68 
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 						      u32 ce_ctrl_addr)
71 {
72 	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74 
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 						      u32 ce_ctrl_addr,
77 						      unsigned int n)
78 {
79 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81 
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 						     u32 ce_ctrl_addr)
84 {
85 	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87 
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 						    u32 ce_ctrl_addr)
90 {
91 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93 
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 						    u32 ce_ctrl_addr,
96 						    unsigned int addr)
97 {
98 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100 
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 					       u32 ce_ctrl_addr,
103 					       unsigned int n)
104 {
105 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107 
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 					       u32 ce_ctrl_addr,
110 					       unsigned int n)
111 {
112 	u32 ctrl1_addr = ath10k_pci_read32((ar),
113 					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114 
115 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 			   CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119 
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 						    u32 ce_ctrl_addr,
122 						    unsigned int n)
123 {
124 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125 
126 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130 
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 						     u32 ce_ctrl_addr,
133 						     unsigned int n)
134 {
135 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136 
137 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141 
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 						     u32 ce_ctrl_addr)
144 {
145 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147 
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 						     u32 ce_ctrl_addr,
150 						     u32 addr)
151 {
152 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154 
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 						u32 ce_ctrl_addr,
157 						unsigned int n)
158 {
159 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161 
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 						   u32 ce_ctrl_addr,
164 						   unsigned int n)
165 {
166 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167 
168 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 			   SRC_WATERMARK_HIGH_SET(n));
171 }
172 
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 						  u32 ce_ctrl_addr,
175 						  unsigned int n)
176 {
177 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178 
179 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181 			   SRC_WATERMARK_LOW_SET(n));
182 }
183 
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 						    u32 ce_ctrl_addr,
186 						    unsigned int n)
187 {
188 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189 
190 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192 			   DST_WATERMARK_HIGH_SET(n));
193 }
194 
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 						   u32 ce_ctrl_addr,
197 						   unsigned int n)
198 {
199 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200 
201 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 			   (addr & ~DST_WATERMARK_LOW_MASK) |
203 			   DST_WATERMARK_LOW_SET(n));
204 }
205 
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 							u32 ce_ctrl_addr)
208 {
209 	u32 host_ie_addr = ath10k_pci_read32(ar,
210 					     ce_ctrl_addr + HOST_IE_ADDRESS);
211 
212 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215 
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 							u32 ce_ctrl_addr)
218 {
219 	u32 host_ie_addr = ath10k_pci_read32(ar,
220 					     ce_ctrl_addr + HOST_IE_ADDRESS);
221 
222 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225 
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 						    u32 ce_ctrl_addr)
228 {
229 	u32 host_ie_addr = ath10k_pci_read32(ar,
230 					     ce_ctrl_addr + HOST_IE_ADDRESS);
231 
232 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 			   host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235 
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 					       u32 ce_ctrl_addr)
238 {
239 	u32 misc_ie_addr = ath10k_pci_read32(ar,
240 					     ce_ctrl_addr + MISC_IE_ADDRESS);
241 
242 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 			   misc_ie_addr | CE_ERROR_MASK);
244 }
245 
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 						u32 ce_ctrl_addr)
248 {
249 	u32 misc_ie_addr = ath10k_pci_read32(ar,
250 					     ce_ctrl_addr + MISC_IE_ADDRESS);
251 
252 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 			   misc_ie_addr & ~CE_ERROR_MASK);
254 }
255 
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 						     u32 ce_ctrl_addr,
258 						     unsigned int mask)
259 {
260 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262 
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269 			  void *per_transfer_context,
270 			  u32 buffer,
271 			  unsigned int nbytes,
272 			  unsigned int transfer_id,
273 			  unsigned int flags)
274 {
275 	struct ath10k *ar = ce_state->ar;
276 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277 	struct ce_desc *desc, *sdesc;
278 	unsigned int nentries_mask = src_ring->nentries_mask;
279 	unsigned int sw_index = src_ring->sw_index;
280 	unsigned int write_index = src_ring->write_index;
281 	u32 ctrl_addr = ce_state->ctrl_addr;
282 	u32 desc_flags = 0;
283 	int ret = 0;
284 
285 	if (nbytes > ce_state->src_sz_max)
286 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287 			    __func__, nbytes, ce_state->src_sz_max);
288 
289 	if (unlikely(CE_RING_DELTA(nentries_mask,
290 				   write_index, sw_index - 1) <= 0)) {
291 		ret = -ENOSR;
292 		goto exit;
293 	}
294 
295 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296 				   write_index);
297 	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
298 
299 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
300 
301 	if (flags & CE_SEND_FLAG_GATHER)
302 		desc_flags |= CE_DESC_FLAGS_GATHER;
303 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
304 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
305 
306 	sdesc->addr   = __cpu_to_le32(buffer);
307 	sdesc->nbytes = __cpu_to_le16(nbytes);
308 	sdesc->flags  = __cpu_to_le16(desc_flags);
309 
310 	*desc = *sdesc;
311 
312 	src_ring->per_transfer_context[write_index] = per_transfer_context;
313 
314 	/* Update Source Ring Write Index */
315 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
316 
317 	/* WORKAROUND */
318 	if (!(flags & CE_SEND_FLAG_GATHER))
319 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
320 
321 	src_ring->write_index = write_index;
322 exit:
323 	return ret;
324 }
325 
326 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
327 {
328 	struct ath10k *ar = pipe->ar;
329 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
330 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
331 	u32 ctrl_addr = pipe->ctrl_addr;
332 
333 	lockdep_assert_held(&ar_pci->ce_lock);
334 
335 	/*
336 	 * This function must be called only if there is an incomplete
337 	 * scatter-gather transfer (before index register is updated)
338 	 * that needs to be cleaned up.
339 	 */
340 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
341 		return;
342 
343 	if (WARN_ON_ONCE(src_ring->write_index ==
344 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
345 		return;
346 
347 	src_ring->write_index--;
348 	src_ring->write_index &= src_ring->nentries_mask;
349 
350 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
351 }
352 
353 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
354 		   void *per_transfer_context,
355 		   u32 buffer,
356 		   unsigned int nbytes,
357 		   unsigned int transfer_id,
358 		   unsigned int flags)
359 {
360 	struct ath10k *ar = ce_state->ar;
361 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
362 	int ret;
363 
364 	spin_lock_bh(&ar_pci->ce_lock);
365 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
366 				    buffer, nbytes, transfer_id, flags);
367 	spin_unlock_bh(&ar_pci->ce_lock);
368 
369 	return ret;
370 }
371 
372 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
373 {
374 	struct ath10k *ar = pipe->ar;
375 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376 	int delta;
377 
378 	spin_lock_bh(&ar_pci->ce_lock);
379 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
380 			      pipe->src_ring->write_index,
381 			      pipe->src_ring->sw_index - 1);
382 	spin_unlock_bh(&ar_pci->ce_lock);
383 
384 	return delta;
385 }
386 
387 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
388 {
389 	struct ath10k *ar = pipe->ar;
390 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
392 	unsigned int nentries_mask = dest_ring->nentries_mask;
393 	unsigned int write_index = dest_ring->write_index;
394 	unsigned int sw_index = dest_ring->sw_index;
395 
396 	lockdep_assert_held(&ar_pci->ce_lock);
397 
398 	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
399 }
400 
401 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
402 {
403 	struct ath10k *ar = pipe->ar;
404 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
405 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
406 	unsigned int nentries_mask = dest_ring->nentries_mask;
407 	unsigned int write_index = dest_ring->write_index;
408 	unsigned int sw_index = dest_ring->sw_index;
409 	struct ce_desc *base = dest_ring->base_addr_owner_space;
410 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
411 	u32 ctrl_addr = pipe->ctrl_addr;
412 
413 	lockdep_assert_held(&ar_pci->ce_lock);
414 
415 	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
416 		return -EIO;
417 
418 	desc->addr = __cpu_to_le32(paddr);
419 	desc->nbytes = 0;
420 
421 	dest_ring->per_transfer_context[write_index] = ctx;
422 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
423 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
424 	dest_ring->write_index = write_index;
425 
426 	return 0;
427 }
428 
429 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
430 {
431 	struct ath10k *ar = pipe->ar;
432 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 	int ret;
434 
435 	spin_lock_bh(&ar_pci->ce_lock);
436 	ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
437 	spin_unlock_bh(&ar_pci->ce_lock);
438 
439 	return ret;
440 }
441 
442 /*
443  * Guts of ath10k_ce_completed_recv_next.
444  * The caller takes responsibility for any necessary locking.
445  */
446 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
447 					 void **per_transfer_contextp,
448 					 u32 *bufferp,
449 					 unsigned int *nbytesp,
450 					 unsigned int *transfer_idp,
451 					 unsigned int *flagsp)
452 {
453 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
454 	unsigned int nentries_mask = dest_ring->nentries_mask;
455 	unsigned int sw_index = dest_ring->sw_index;
456 
457 	struct ce_desc *base = dest_ring->base_addr_owner_space;
458 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
459 	struct ce_desc sdesc;
460 	u16 nbytes;
461 
462 	/* Copy in one go for performance reasons */
463 	sdesc = *desc;
464 
465 	nbytes = __le16_to_cpu(sdesc.nbytes);
466 	if (nbytes == 0) {
467 		/*
468 		 * This closes a relatively unusual race where the Host
469 		 * sees the updated DRRI before the update to the
470 		 * corresponding descriptor has completed. We treat this
471 		 * as a descriptor that is not yet done.
472 		 */
473 		return -EIO;
474 	}
475 
476 	desc->nbytes = 0;
477 
478 	/* Return data from completed destination descriptor */
479 	*bufferp = __le32_to_cpu(sdesc.addr);
480 	*nbytesp = nbytes;
481 	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
482 
483 	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
484 		*flagsp = CE_RECV_FLAG_SWAPPED;
485 	else
486 		*flagsp = 0;
487 
488 	if (per_transfer_contextp)
489 		*per_transfer_contextp =
490 			dest_ring->per_transfer_context[sw_index];
491 
492 	/* sanity */
493 	dest_ring->per_transfer_context[sw_index] = NULL;
494 
495 	/* Update sw_index */
496 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
497 	dest_ring->sw_index = sw_index;
498 
499 	return 0;
500 }
501 
502 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
503 				  void **per_transfer_contextp,
504 				  u32 *bufferp,
505 				  unsigned int *nbytesp,
506 				  unsigned int *transfer_idp,
507 				  unsigned int *flagsp)
508 {
509 	struct ath10k *ar = ce_state->ar;
510 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
511 	int ret;
512 
513 	spin_lock_bh(&ar_pci->ce_lock);
514 	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
515 						   per_transfer_contextp,
516 						   bufferp, nbytesp,
517 						   transfer_idp, flagsp);
518 	spin_unlock_bh(&ar_pci->ce_lock);
519 
520 	return ret;
521 }
522 
523 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
524 			       void **per_transfer_contextp,
525 			       u32 *bufferp)
526 {
527 	struct ath10k_ce_ring *dest_ring;
528 	unsigned int nentries_mask;
529 	unsigned int sw_index;
530 	unsigned int write_index;
531 	int ret;
532 	struct ath10k *ar;
533 	struct ath10k_pci *ar_pci;
534 
535 	dest_ring = ce_state->dest_ring;
536 
537 	if (!dest_ring)
538 		return -EIO;
539 
540 	ar = ce_state->ar;
541 	ar_pci = ath10k_pci_priv(ar);
542 
543 	spin_lock_bh(&ar_pci->ce_lock);
544 
545 	nentries_mask = dest_ring->nentries_mask;
546 	sw_index = dest_ring->sw_index;
547 	write_index = dest_ring->write_index;
548 	if (write_index != sw_index) {
549 		struct ce_desc *base = dest_ring->base_addr_owner_space;
550 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
551 
552 		/* Return data from completed destination descriptor */
553 		*bufferp = __le32_to_cpu(desc->addr);
554 
555 		if (per_transfer_contextp)
556 			*per_transfer_contextp =
557 				dest_ring->per_transfer_context[sw_index];
558 
559 		/* sanity */
560 		dest_ring->per_transfer_context[sw_index] = NULL;
561 		desc->nbytes = 0;
562 
563 		/* Update sw_index */
564 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
565 		dest_ring->sw_index = sw_index;
566 		ret = 0;
567 	} else {
568 		ret = -EIO;
569 	}
570 
571 	spin_unlock_bh(&ar_pci->ce_lock);
572 
573 	return ret;
574 }
575 
576 /*
577  * Guts of ath10k_ce_completed_send_next.
578  * The caller takes responsibility for any necessary locking.
579  */
580 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
581 					 void **per_transfer_contextp,
582 					 u32 *bufferp,
583 					 unsigned int *nbytesp,
584 					 unsigned int *transfer_idp)
585 {
586 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
587 	u32 ctrl_addr = ce_state->ctrl_addr;
588 	struct ath10k *ar = ce_state->ar;
589 	unsigned int nentries_mask = src_ring->nentries_mask;
590 	unsigned int sw_index = src_ring->sw_index;
591 	struct ce_desc *sdesc, *sbase;
592 	unsigned int read_index;
593 
594 	if (src_ring->hw_index == sw_index) {
595 		/*
596 		 * The SW completion index has caught up with the cached
597 		 * version of the HW completion index.
598 		 * Update the cached HW completion index to see whether
599 		 * the SW has really caught up to the HW, or if the cached
600 		 * value of the HW index has become stale.
601 		 */
602 
603 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
604 		if (read_index == 0xffffffff)
605 			return -ENODEV;
606 
607 		read_index &= nentries_mask;
608 		src_ring->hw_index = read_index;
609 	}
610 
611 	read_index = src_ring->hw_index;
612 
613 	if (read_index == sw_index)
614 		return -EIO;
615 
616 	sbase = src_ring->shadow_base;
617 	sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
618 
619 	/* Return data from completed source descriptor */
620 	*bufferp = __le32_to_cpu(sdesc->addr);
621 	*nbytesp = __le16_to_cpu(sdesc->nbytes);
622 	*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
623 			   CE_DESC_FLAGS_META_DATA);
624 
625 	if (per_transfer_contextp)
626 		*per_transfer_contextp =
627 			src_ring->per_transfer_context[sw_index];
628 
629 	/* sanity */
630 	src_ring->per_transfer_context[sw_index] = NULL;
631 
632 	/* Update sw_index */
633 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
634 	src_ring->sw_index = sw_index;
635 
636 	return 0;
637 }
638 
639 /* NB: Modeled after ath10k_ce_completed_send_next */
640 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
641 			       void **per_transfer_contextp,
642 			       u32 *bufferp,
643 			       unsigned int *nbytesp,
644 			       unsigned int *transfer_idp)
645 {
646 	struct ath10k_ce_ring *src_ring;
647 	unsigned int nentries_mask;
648 	unsigned int sw_index;
649 	unsigned int write_index;
650 	int ret;
651 	struct ath10k *ar;
652 	struct ath10k_pci *ar_pci;
653 
654 	src_ring = ce_state->src_ring;
655 
656 	if (!src_ring)
657 		return -EIO;
658 
659 	ar = ce_state->ar;
660 	ar_pci = ath10k_pci_priv(ar);
661 
662 	spin_lock_bh(&ar_pci->ce_lock);
663 
664 	nentries_mask = src_ring->nentries_mask;
665 	sw_index = src_ring->sw_index;
666 	write_index = src_ring->write_index;
667 
668 	if (write_index != sw_index) {
669 		struct ce_desc *base = src_ring->base_addr_owner_space;
670 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
671 
672 		/* Return data from completed source descriptor */
673 		*bufferp = __le32_to_cpu(desc->addr);
674 		*nbytesp = __le16_to_cpu(desc->nbytes);
675 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
676 						CE_DESC_FLAGS_META_DATA);
677 
678 		if (per_transfer_contextp)
679 			*per_transfer_contextp =
680 				src_ring->per_transfer_context[sw_index];
681 
682 		/* sanity */
683 		src_ring->per_transfer_context[sw_index] = NULL;
684 
685 		/* Update sw_index */
686 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
687 		src_ring->sw_index = sw_index;
688 		ret = 0;
689 	} else {
690 		ret = -EIO;
691 	}
692 
693 	spin_unlock_bh(&ar_pci->ce_lock);
694 
695 	return ret;
696 }
697 
698 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
699 				  void **per_transfer_contextp,
700 				  u32 *bufferp,
701 				  unsigned int *nbytesp,
702 				  unsigned int *transfer_idp)
703 {
704 	struct ath10k *ar = ce_state->ar;
705 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
706 	int ret;
707 
708 	spin_lock_bh(&ar_pci->ce_lock);
709 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
710 						   per_transfer_contextp,
711 						   bufferp, nbytesp,
712 						   transfer_idp);
713 	spin_unlock_bh(&ar_pci->ce_lock);
714 
715 	return ret;
716 }
717 
718 /*
719  * Guts of interrupt handler for per-engine interrupts on a particular CE.
720  *
721  * Invokes registered callbacks for recv_complete,
722  * send_complete, and watermarks.
723  */
724 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
725 {
726 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
727 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
728 	u32 ctrl_addr = ce_state->ctrl_addr;
729 
730 	spin_lock_bh(&ar_pci->ce_lock);
731 
732 	/* Clear the copy-complete interrupts that will be handled here. */
733 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
734 					  HOST_IS_COPY_COMPLETE_MASK);
735 
736 	spin_unlock_bh(&ar_pci->ce_lock);
737 
738 	if (ce_state->recv_cb)
739 		ce_state->recv_cb(ce_state);
740 
741 	if (ce_state->send_cb)
742 		ce_state->send_cb(ce_state);
743 
744 	spin_lock_bh(&ar_pci->ce_lock);
745 
746 	/*
747 	 * Misc CE interrupts are not being handled, but still need
748 	 * to be cleared.
749 	 */
750 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
751 
752 	spin_unlock_bh(&ar_pci->ce_lock);
753 }
754 
755 /*
756  * Handler for per-engine interrupts on ALL active CEs.
757  * This is used in cases where the system is sharing a
758  * single interrput for all CEs
759  */
760 
761 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
762 {
763 	int ce_id;
764 	u32 intr_summary;
765 
766 	intr_summary = CE_INTERRUPT_SUMMARY(ar);
767 
768 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
769 		if (intr_summary & (1 << ce_id))
770 			intr_summary &= ~(1 << ce_id);
771 		else
772 			/* no intr pending on this CE */
773 			continue;
774 
775 		ath10k_ce_per_engine_service(ar, ce_id);
776 	}
777 }
778 
779 /*
780  * Adjust interrupts for the copy complete handler.
781  * If it's needed for either send or recv, then unmask
782  * this interrupt; otherwise, mask it.
783  *
784  * Called with ce_lock held.
785  */
786 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
787 {
788 	u32 ctrl_addr = ce_state->ctrl_addr;
789 	struct ath10k *ar = ce_state->ar;
790 	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
791 
792 	if ((!disable_copy_compl_intr) &&
793 	    (ce_state->send_cb || ce_state->recv_cb))
794 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
795 	else
796 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
797 
798 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
799 }
800 
801 int ath10k_ce_disable_interrupts(struct ath10k *ar)
802 {
803 	int ce_id;
804 
805 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
806 		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
807 
808 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
809 		ath10k_ce_error_intr_disable(ar, ctrl_addr);
810 		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
811 	}
812 
813 	return 0;
814 }
815 
816 void ath10k_ce_enable_interrupts(struct ath10k *ar)
817 {
818 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
819 	int ce_id;
820 
821 	/* Skip the last copy engine, CE7 the diagnostic window, as that
822 	 * uses polling and isn't initialized for interrupts.
823 	 */
824 	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
825 		ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
826 }
827 
828 static int ath10k_ce_init_src_ring(struct ath10k *ar,
829 				   unsigned int ce_id,
830 				   const struct ce_attr *attr)
831 {
832 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
833 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
834 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
835 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
836 
837 	nentries = roundup_pow_of_two(attr->src_nentries);
838 
839 	memset(src_ring->base_addr_owner_space, 0,
840 	       nentries * sizeof(struct ce_desc));
841 
842 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
843 	src_ring->sw_index &= src_ring->nentries_mask;
844 	src_ring->hw_index = src_ring->sw_index;
845 
846 	src_ring->write_index =
847 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
848 	src_ring->write_index &= src_ring->nentries_mask;
849 
850 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
851 					 src_ring->base_addr_ce_space);
852 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
853 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
854 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
855 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
856 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
857 
858 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
859 		   "boot init ce src ring id %d entries %d base_addr %p\n",
860 		   ce_id, nentries, src_ring->base_addr_owner_space);
861 
862 	return 0;
863 }
864 
865 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
866 				    unsigned int ce_id,
867 				    const struct ce_attr *attr)
868 {
869 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
870 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
871 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
872 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
873 
874 	nentries = roundup_pow_of_two(attr->dest_nentries);
875 
876 	memset(dest_ring->base_addr_owner_space, 0,
877 	       nentries * sizeof(struct ce_desc));
878 
879 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
880 	dest_ring->sw_index &= dest_ring->nentries_mask;
881 	dest_ring->write_index =
882 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
883 	dest_ring->write_index &= dest_ring->nentries_mask;
884 
885 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
886 					  dest_ring->base_addr_ce_space);
887 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
888 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
889 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
890 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
891 
892 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
893 		   "boot ce dest ring id %d entries %d base_addr %p\n",
894 		   ce_id, nentries, dest_ring->base_addr_owner_space);
895 
896 	return 0;
897 }
898 
899 static struct ath10k_ce_ring *
900 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
901 			 const struct ce_attr *attr)
902 {
903 	struct ath10k_ce_ring *src_ring;
904 	u32 nentries = attr->src_nentries;
905 	dma_addr_t base_addr;
906 
907 	nentries = roundup_pow_of_two(nentries);
908 
909 	src_ring = kzalloc(sizeof(*src_ring) +
910 			   (nentries *
911 			    sizeof(*src_ring->per_transfer_context)),
912 			   GFP_KERNEL);
913 	if (src_ring == NULL)
914 		return ERR_PTR(-ENOMEM);
915 
916 	src_ring->nentries = nentries;
917 	src_ring->nentries_mask = nentries - 1;
918 
919 	/*
920 	 * Legacy platforms that do not support cache
921 	 * coherent DMA are unsupported
922 	 */
923 	src_ring->base_addr_owner_space_unaligned =
924 		dma_alloc_coherent(ar->dev,
925 				   (nentries * sizeof(struct ce_desc) +
926 				    CE_DESC_RING_ALIGN),
927 				   &base_addr, GFP_KERNEL);
928 	if (!src_ring->base_addr_owner_space_unaligned) {
929 		kfree(src_ring);
930 		return ERR_PTR(-ENOMEM);
931 	}
932 
933 	src_ring->base_addr_ce_space_unaligned = base_addr;
934 
935 	src_ring->base_addr_owner_space = PTR_ALIGN(
936 			src_ring->base_addr_owner_space_unaligned,
937 			CE_DESC_RING_ALIGN);
938 	src_ring->base_addr_ce_space = ALIGN(
939 			src_ring->base_addr_ce_space_unaligned,
940 			CE_DESC_RING_ALIGN);
941 
942 	/*
943 	 * Also allocate a shadow src ring in regular
944 	 * mem to use for faster access.
945 	 */
946 	src_ring->shadow_base_unaligned =
947 		kmalloc((nentries * sizeof(struct ce_desc) +
948 			 CE_DESC_RING_ALIGN), GFP_KERNEL);
949 	if (!src_ring->shadow_base_unaligned) {
950 		dma_free_coherent(ar->dev,
951 				  (nentries * sizeof(struct ce_desc) +
952 				   CE_DESC_RING_ALIGN),
953 				  src_ring->base_addr_owner_space,
954 				  src_ring->base_addr_ce_space);
955 		kfree(src_ring);
956 		return ERR_PTR(-ENOMEM);
957 	}
958 
959 	src_ring->shadow_base = PTR_ALIGN(
960 			src_ring->shadow_base_unaligned,
961 			CE_DESC_RING_ALIGN);
962 
963 	return src_ring;
964 }
965 
966 static struct ath10k_ce_ring *
967 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
968 			  const struct ce_attr *attr)
969 {
970 	struct ath10k_ce_ring *dest_ring;
971 	u32 nentries;
972 	dma_addr_t base_addr;
973 
974 	nentries = roundup_pow_of_two(attr->dest_nentries);
975 
976 	dest_ring = kzalloc(sizeof(*dest_ring) +
977 			    (nentries *
978 			     sizeof(*dest_ring->per_transfer_context)),
979 			    GFP_KERNEL);
980 	if (dest_ring == NULL)
981 		return ERR_PTR(-ENOMEM);
982 
983 	dest_ring->nentries = nentries;
984 	dest_ring->nentries_mask = nentries - 1;
985 
986 	/*
987 	 * Legacy platforms that do not support cache
988 	 * coherent DMA are unsupported
989 	 */
990 	dest_ring->base_addr_owner_space_unaligned =
991 		dma_alloc_coherent(ar->dev,
992 				   (nentries * sizeof(struct ce_desc) +
993 				    CE_DESC_RING_ALIGN),
994 				   &base_addr, GFP_KERNEL);
995 	if (!dest_ring->base_addr_owner_space_unaligned) {
996 		kfree(dest_ring);
997 		return ERR_PTR(-ENOMEM);
998 	}
999 
1000 	dest_ring->base_addr_ce_space_unaligned = base_addr;
1001 
1002 	/*
1003 	 * Correctly initialize memory to 0 to prevent garbage
1004 	 * data crashing system when download firmware
1005 	 */
1006 	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1007 	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1008 
1009 	dest_ring->base_addr_owner_space = PTR_ALIGN(
1010 			dest_ring->base_addr_owner_space_unaligned,
1011 			CE_DESC_RING_ALIGN);
1012 	dest_ring->base_addr_ce_space = ALIGN(
1013 			dest_ring->base_addr_ce_space_unaligned,
1014 			CE_DESC_RING_ALIGN);
1015 
1016 	return dest_ring;
1017 }
1018 
1019 /*
1020  * Initialize a Copy Engine based on caller-supplied attributes.
1021  * This may be called once to initialize both source and destination
1022  * rings or it may be called twice for separate source and destination
1023  * initialization. It may be that only one side or the other is
1024  * initialized by software/firmware.
1025  */
1026 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1027 			const struct ce_attr *attr)
1028 {
1029 	int ret;
1030 
1031 	if (attr->src_nentries) {
1032 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1033 		if (ret) {
1034 			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1035 				   ce_id, ret);
1036 			return ret;
1037 		}
1038 	}
1039 
1040 	if (attr->dest_nentries) {
1041 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1042 		if (ret) {
1043 			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1044 				   ce_id, ret);
1045 			return ret;
1046 		}
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1053 {
1054 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1055 
1056 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1057 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1058 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1059 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1060 }
1061 
1062 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1063 {
1064 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1065 
1066 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1067 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1068 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1069 }
1070 
1071 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1072 {
1073 	ath10k_ce_deinit_src_ring(ar, ce_id);
1074 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1075 }
1076 
1077 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1078 			 const struct ce_attr *attr,
1079 			 void (*send_cb)(struct ath10k_ce_pipe *),
1080 			 void (*recv_cb)(struct ath10k_ce_pipe *))
1081 {
1082 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1083 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1084 	int ret;
1085 
1086 	/*
1087 	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1088 	 * additional TX locking checks.
1089 	 *
1090 	 * For the lack of a better place do the check here.
1091 	 */
1092 	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1093 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1094 	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1095 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1096 	BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
1097 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1098 
1099 	ce_state->ar = ar;
1100 	ce_state->id = ce_id;
1101 	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1102 	ce_state->attr_flags = attr->flags;
1103 	ce_state->src_sz_max = attr->src_sz_max;
1104 
1105 	if (attr->src_nentries)
1106 		ce_state->send_cb = send_cb;
1107 
1108 	if (attr->dest_nentries)
1109 		ce_state->recv_cb = recv_cb;
1110 
1111 	if (attr->src_nentries) {
1112 		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1113 		if (IS_ERR(ce_state->src_ring)) {
1114 			ret = PTR_ERR(ce_state->src_ring);
1115 			ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1116 				   ce_id, ret);
1117 			ce_state->src_ring = NULL;
1118 			return ret;
1119 		}
1120 	}
1121 
1122 	if (attr->dest_nentries) {
1123 		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1124 								attr);
1125 		if (IS_ERR(ce_state->dest_ring)) {
1126 			ret = PTR_ERR(ce_state->dest_ring);
1127 			ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1128 				   ce_id, ret);
1129 			ce_state->dest_ring = NULL;
1130 			return ret;
1131 		}
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1138 {
1139 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1140 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1141 
1142 	if (ce_state->src_ring) {
1143 		kfree(ce_state->src_ring->shadow_base_unaligned);
1144 		dma_free_coherent(ar->dev,
1145 				  (ce_state->src_ring->nentries *
1146 				   sizeof(struct ce_desc) +
1147 				   CE_DESC_RING_ALIGN),
1148 				  ce_state->src_ring->base_addr_owner_space,
1149 				  ce_state->src_ring->base_addr_ce_space);
1150 		kfree(ce_state->src_ring);
1151 	}
1152 
1153 	if (ce_state->dest_ring) {
1154 		dma_free_coherent(ar->dev,
1155 				  (ce_state->dest_ring->nentries *
1156 				   sizeof(struct ce_desc) +
1157 				   CE_DESC_RING_ALIGN),
1158 				  ce_state->dest_ring->base_addr_owner_space,
1159 				  ce_state->dest_ring->base_addr_ce_space);
1160 		kfree(ce_state->dest_ring);
1161 	}
1162 
1163 	ce_state->src_ring = NULL;
1164 	ce_state->dest_ring = NULL;
1165 }
1166