xref: /linux/drivers/net/wireless/ath/ath10k/ce.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2018 The Linux Foundation. All rights reserved.
6  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
7  */
8 
9 #include "hif.h"
10 #include "ce.h"
11 #include "debug.h"
12 
13 /*
14  * Support for Copy Engine hardware, which is mainly used for
15  * communication between Host and Target over a PCIe interconnect.
16  */
17 
18 /*
19  * A single CopyEngine (CE) comprises two "rings":
20  *   a source ring
21  *   a destination ring
22  *
23  * Each ring consists of a number of descriptors which specify
24  * an address, length, and meta-data.
25  *
26  * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
27  * controls one ring and the other side controls the other ring.
28  * The source side chooses when to initiate a transfer and it
29  * chooses what to send (buffer address, length). The destination
30  * side keeps a supply of "anonymous receive buffers" available and
31  * it handles incoming data as it arrives (when the destination
32  * receives an interrupt).
33  *
34  * The sender may send a simple buffer (address/length) or it may
35  * send a small list of buffers.  When a small list is sent, hardware
36  * "gathers" these and they end up in a single destination buffer
37  * with a single interrupt.
38  *
39  * There are several "contexts" managed by this layer -- more, it
40  * may seem -- than should be needed. These are provided mainly for
41  * maximum flexibility and especially to facilitate a simpler HIF
42  * implementation. There are per-CopyEngine recv, send, and watermark
43  * contexts. These are supplied by the caller when a recv, send,
44  * or watermark handler is established and they are echoed back to
45  * the caller when the respective callbacks are invoked. There is
46  * also a per-transfer context supplied by the caller when a buffer
47  * (or sendlist) is sent and when a buffer is enqueued for recv.
48  * These per-transfer contexts are echoed back to the caller when
49  * the buffer is sent/received.
50  */
51 
52 static inline u32 shadow_sr_wr_ind_addr(struct ath10k *ar,
53 					struct ath10k_ce_pipe *ce_state)
54 {
55 	u32 ce_id = ce_state->id;
56 	u32 addr = 0;
57 
58 	switch (ce_id) {
59 	case 0:
60 		addr = 0x00032000;
61 		break;
62 	case 3:
63 		addr = 0x0003200C;
64 		break;
65 	case 4:
66 		addr = 0x00032010;
67 		break;
68 	case 5:
69 		addr = 0x00032014;
70 		break;
71 	case 7:
72 		addr = 0x0003201C;
73 		break;
74 	default:
75 		ath10k_warn(ar, "invalid CE id: %d", ce_id);
76 		break;
77 	}
78 	return addr;
79 }
80 
81 static inline unsigned int
82 ath10k_set_ring_byte(unsigned int offset,
83 		     struct ath10k_hw_ce_regs_addr_map *addr_map)
84 {
85 	return ((offset << addr_map->lsb) & addr_map->mask);
86 }
87 
88 static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
89 {
90 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
91 
92 	return ce->bus_ops->read32(ar, offset);
93 }
94 
95 static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
96 {
97 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
98 
99 	ce->bus_ops->write32(ar, offset, value);
100 }
101 
102 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
103 						       u32 ce_ctrl_addr,
104 						       unsigned int n)
105 {
106 	ath10k_ce_write32(ar, ce_ctrl_addr +
107 			  ar->hw_ce_regs->dst_wr_index_addr, n);
108 }
109 
110 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
111 						      u32 ce_ctrl_addr)
112 {
113 	return ath10k_ce_read32(ar, ce_ctrl_addr +
114 				ar->hw_ce_regs->dst_wr_index_addr);
115 }
116 
117 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
118 						      u32 ce_ctrl_addr,
119 						      unsigned int n)
120 {
121 	ath10k_ce_write32(ar, ce_ctrl_addr +
122 			  ar->hw_ce_regs->sr_wr_index_addr, n);
123 }
124 
125 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
126 						     u32 ce_ctrl_addr)
127 {
128 	return ath10k_ce_read32(ar, ce_ctrl_addr +
129 				ar->hw_ce_regs->sr_wr_index_addr);
130 }
131 
132 static inline u32 ath10k_ce_src_ring_read_index_from_ddr(struct ath10k *ar,
133 							 u32 ce_id)
134 {
135 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
136 
137 	return ce->vaddr_rri[ce_id] & CE_DDR_RRI_MASK;
138 }
139 
140 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
141 						    u32 ce_ctrl_addr)
142 {
143 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
144 	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
145 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
146 	u32 index;
147 
148 	if (ar->hw_params.rri_on_ddr &&
149 	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
150 		index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_id);
151 	else
152 		index = ath10k_ce_read32(ar, ce_ctrl_addr +
153 					 ar->hw_ce_regs->current_srri_addr);
154 
155 	return index;
156 }
157 
158 static inline void
159 ath10k_ce_shadow_src_ring_write_index_set(struct ath10k *ar,
160 					  struct ath10k_ce_pipe *ce_state,
161 					  unsigned int value)
162 {
163 	ath10k_ce_write32(ar, shadow_sr_wr_ind_addr(ar, ce_state), value);
164 }
165 
166 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
167 						    u32 ce_id,
168 						    u64 addr)
169 {
170 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
171 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
172 	u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
173 	u32 addr_lo = lower_32_bits(addr);
174 
175 	ath10k_ce_write32(ar, ce_ctrl_addr +
176 			  ar->hw_ce_regs->sr_base_addr_lo, addr_lo);
177 
178 	if (ce_state->ops->ce_set_src_ring_base_addr_hi) {
179 		ce_state->ops->ce_set_src_ring_base_addr_hi(ar, ce_ctrl_addr,
180 							    addr);
181 	}
182 }
183 
184 static void ath10k_ce_set_src_ring_base_addr_hi(struct ath10k *ar,
185 						u32 ce_ctrl_addr,
186 						u64 addr)
187 {
188 	u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
189 
190 	ath10k_ce_write32(ar, ce_ctrl_addr +
191 			  ar->hw_ce_regs->sr_base_addr_hi, addr_hi);
192 }
193 
194 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
195 					       u32 ce_ctrl_addr,
196 					       unsigned int n)
197 {
198 	ath10k_ce_write32(ar, ce_ctrl_addr +
199 			  ar->hw_ce_regs->sr_size_addr, n);
200 }
201 
202 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
203 					       u32 ce_ctrl_addr,
204 					       unsigned int n)
205 {
206 	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
207 
208 	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
209 					  ctrl_regs->addr);
210 
211 	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
212 			  (ctrl1_addr &  ~(ctrl_regs->dmax->mask)) |
213 			  ath10k_set_ring_byte(n, ctrl_regs->dmax));
214 }
215 
216 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
217 						    u32 ce_ctrl_addr,
218 						    unsigned int n)
219 {
220 	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
221 
222 	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
223 					  ctrl_regs->addr);
224 
225 	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
226 			  (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
227 			  ath10k_set_ring_byte(n, ctrl_regs->src_ring));
228 }
229 
230 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
231 						     u32 ce_ctrl_addr,
232 						     unsigned int n)
233 {
234 	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
235 
236 	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
237 					  ctrl_regs->addr);
238 
239 	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
240 			  (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
241 			  ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
242 }
243 
244 static inline
245 	u32 ath10k_ce_dest_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id)
246 {
247 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
248 
249 	return (ce->vaddr_rri[ce_id] >> CE_DDR_DRRI_SHIFT) &
250 		CE_DDR_RRI_MASK;
251 }
252 
253 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
254 						     u32 ce_ctrl_addr)
255 {
256 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
257 	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
258 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
259 	u32 index;
260 
261 	if (ar->hw_params.rri_on_ddr &&
262 	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
263 		index = ath10k_ce_dest_ring_read_index_from_ddr(ar, ce_id);
264 	else
265 		index = ath10k_ce_read32(ar, ce_ctrl_addr +
266 					 ar->hw_ce_regs->current_drri_addr);
267 
268 	return index;
269 }
270 
271 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
272 						     u32 ce_id,
273 						     u64 addr)
274 {
275 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
276 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
277 	u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
278 	u32 addr_lo = lower_32_bits(addr);
279 
280 	ath10k_ce_write32(ar, ce_ctrl_addr +
281 			  ar->hw_ce_regs->dr_base_addr_lo, addr_lo);
282 
283 	if (ce_state->ops->ce_set_dest_ring_base_addr_hi) {
284 		ce_state->ops->ce_set_dest_ring_base_addr_hi(ar, ce_ctrl_addr,
285 							     addr);
286 	}
287 }
288 
289 static void ath10k_ce_set_dest_ring_base_addr_hi(struct ath10k *ar,
290 						 u32 ce_ctrl_addr,
291 						 u64 addr)
292 {
293 	u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
294 	u32 reg_value;
295 
296 	reg_value = ath10k_ce_read32(ar, ce_ctrl_addr +
297 				     ar->hw_ce_regs->dr_base_addr_hi);
298 	reg_value &= ~CE_DESC_ADDR_HI_MASK;
299 	reg_value |= addr_hi;
300 	ath10k_ce_write32(ar, ce_ctrl_addr +
301 			  ar->hw_ce_regs->dr_base_addr_hi, reg_value);
302 }
303 
304 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
305 						u32 ce_ctrl_addr,
306 						unsigned int n)
307 {
308 	ath10k_ce_write32(ar, ce_ctrl_addr +
309 			  ar->hw_ce_regs->dr_size_addr, n);
310 }
311 
312 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
313 						   u32 ce_ctrl_addr,
314 						   unsigned int n)
315 {
316 	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
317 	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
318 
319 	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
320 			  (addr & ~(srcr_wm->wm_high->mask)) |
321 			  (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
322 }
323 
324 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
325 						  u32 ce_ctrl_addr,
326 						  unsigned int n)
327 {
328 	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
329 	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
330 
331 	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
332 			  (addr & ~(srcr_wm->wm_low->mask)) |
333 			  (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
334 }
335 
336 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
337 						    u32 ce_ctrl_addr,
338 						    unsigned int n)
339 {
340 	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
341 	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
342 
343 	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
344 			  (addr & ~(dstr_wm->wm_high->mask)) |
345 			  (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
346 }
347 
348 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
349 						   u32 ce_ctrl_addr,
350 						   unsigned int n)
351 {
352 	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
353 	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
354 
355 	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
356 			  (addr & ~(dstr_wm->wm_low->mask)) |
357 			  (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
358 }
359 
360 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
361 							u32 ce_ctrl_addr)
362 {
363 	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
364 
365 	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
366 					    ar->hw_ce_regs->host_ie_addr);
367 
368 	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
369 			  host_ie_addr | host_ie->copy_complete->mask);
370 }
371 
372 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
373 							u32 ce_ctrl_addr)
374 {
375 	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
376 
377 	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
378 					    ar->hw_ce_regs->host_ie_addr);
379 
380 	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
381 			  host_ie_addr & ~(host_ie->copy_complete->mask));
382 }
383 
384 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
385 						    u32 ce_ctrl_addr)
386 {
387 	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
388 
389 	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
390 					    ar->hw_ce_regs->host_ie_addr);
391 
392 	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
393 			  host_ie_addr & ~(wm_regs->wm_mask));
394 }
395 
396 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
397 						u32 ce_ctrl_addr)
398 {
399 	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
400 
401 	u32 misc_ie_addr = ath10k_ce_read32(ar,
402 			ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);
403 
404 	ath10k_ce_write32(ar,
405 			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
406 			  misc_ie_addr & ~(misc_regs->err_mask));
407 }
408 
409 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
410 						     u32 ce_ctrl_addr,
411 						     unsigned int mask)
412 {
413 	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
414 
415 	ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
416 }
417 
418 /*
419  * Guts of ath10k_ce_send.
420  * The caller takes responsibility for any needed locking.
421  */
422 static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
423 				  void *per_transfer_context,
424 				  dma_addr_t buffer,
425 				  unsigned int nbytes,
426 				  unsigned int transfer_id,
427 				  unsigned int flags)
428 {
429 	struct ath10k *ar = ce_state->ar;
430 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
431 	struct ce_desc *desc, sdesc;
432 	unsigned int nentries_mask = src_ring->nentries_mask;
433 	unsigned int sw_index = src_ring->sw_index;
434 	unsigned int write_index = src_ring->write_index;
435 	u32 ctrl_addr = ce_state->ctrl_addr;
436 	u32 desc_flags = 0;
437 	int ret = 0;
438 
439 	if (nbytes > ce_state->src_sz_max)
440 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
441 			    __func__, nbytes, ce_state->src_sz_max);
442 
443 	if (unlikely(CE_RING_DELTA(nentries_mask,
444 				   write_index, sw_index - 1) <= 0)) {
445 		ret = -ENOSR;
446 		goto exit;
447 	}
448 
449 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
450 				   write_index);
451 
452 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
453 
454 	if (flags & CE_SEND_FLAG_GATHER)
455 		desc_flags |= CE_DESC_FLAGS_GATHER;
456 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
457 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
458 
459 	sdesc.addr   = __cpu_to_le32(buffer);
460 	sdesc.nbytes = __cpu_to_le16(nbytes);
461 	sdesc.flags  = __cpu_to_le16(desc_flags);
462 
463 	*desc = sdesc;
464 
465 	src_ring->per_transfer_context[write_index] = per_transfer_context;
466 
467 	/* Update Source Ring Write Index */
468 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
469 
470 	/* WORKAROUND */
471 	if (!(flags & CE_SEND_FLAG_GATHER))
472 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
473 
474 	src_ring->write_index = write_index;
475 exit:
476 	return ret;
477 }
478 
479 static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
480 				     void *per_transfer_context,
481 				     dma_addr_t buffer,
482 				     unsigned int nbytes,
483 				     unsigned int transfer_id,
484 				     unsigned int flags)
485 {
486 	struct ath10k *ar = ce_state->ar;
487 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
488 	struct ce_desc_64 *desc, sdesc;
489 	unsigned int nentries_mask = src_ring->nentries_mask;
490 	unsigned int sw_index;
491 	unsigned int write_index = src_ring->write_index;
492 	u32 ctrl_addr = ce_state->ctrl_addr;
493 	__le32 *addr;
494 	u32 desc_flags = 0;
495 	int ret = 0;
496 
497 	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
498 		return -ESHUTDOWN;
499 
500 	if (nbytes > ce_state->src_sz_max)
501 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
502 			    __func__, nbytes, ce_state->src_sz_max);
503 
504 	if (ar->hw_params.rri_on_ddr)
505 		sw_index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_state->id);
506 	else
507 		sw_index = src_ring->sw_index;
508 
509 	if (unlikely(CE_RING_DELTA(nentries_mask,
510 				   write_index, sw_index - 1) <= 0)) {
511 		ret = -ENOSR;
512 		goto exit;
513 	}
514 
515 	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
516 				      write_index);
517 
518 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
519 
520 	if (flags & CE_SEND_FLAG_GATHER)
521 		desc_flags |= CE_DESC_FLAGS_GATHER;
522 
523 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
524 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
525 
526 	addr = (__le32 *)&sdesc.addr;
527 
528 	flags |= upper_32_bits(buffer) & CE_DESC_ADDR_HI_MASK;
529 	addr[0] = __cpu_to_le32(buffer);
530 	addr[1] = __cpu_to_le32(flags);
531 	if (flags & CE_SEND_FLAG_GATHER)
532 		addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
533 	else
534 		addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));
535 
536 	sdesc.nbytes = __cpu_to_le16(nbytes);
537 	sdesc.flags  = __cpu_to_le16(desc_flags);
538 
539 	*desc = sdesc;
540 
541 	src_ring->per_transfer_context[write_index] = per_transfer_context;
542 
543 	/* Update Source Ring Write Index */
544 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
545 
546 	if (!(flags & CE_SEND_FLAG_GATHER)) {
547 		if (ar->hw_params.shadow_reg_support)
548 			ath10k_ce_shadow_src_ring_write_index_set(ar, ce_state,
549 								  write_index);
550 		else
551 			ath10k_ce_src_ring_write_index_set(ar, ctrl_addr,
552 							   write_index);
553 	}
554 
555 	src_ring->write_index = write_index;
556 exit:
557 	return ret;
558 }
559 
560 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
561 			  void *per_transfer_context,
562 			  dma_addr_t buffer,
563 			  unsigned int nbytes,
564 			  unsigned int transfer_id,
565 			  unsigned int flags)
566 {
567 	return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
568 				    buffer, nbytes, transfer_id, flags);
569 }
570 EXPORT_SYMBOL(ath10k_ce_send_nolock);
571 
572 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
573 {
574 	struct ath10k *ar = pipe->ar;
575 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
576 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
577 	u32 ctrl_addr = pipe->ctrl_addr;
578 
579 	lockdep_assert_held(&ce->ce_lock);
580 
581 	/*
582 	 * This function must be called only if there is an incomplete
583 	 * scatter-gather transfer (before index register is updated)
584 	 * that needs to be cleaned up.
585 	 */
586 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
587 		return;
588 
589 	if (WARN_ON_ONCE(src_ring->write_index ==
590 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
591 		return;
592 
593 	src_ring->write_index--;
594 	src_ring->write_index &= src_ring->nentries_mask;
595 
596 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
597 }
598 EXPORT_SYMBOL(__ath10k_ce_send_revert);
599 
600 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
601 		   void *per_transfer_context,
602 		   dma_addr_t buffer,
603 		   unsigned int nbytes,
604 		   unsigned int transfer_id,
605 		   unsigned int flags)
606 {
607 	struct ath10k *ar = ce_state->ar;
608 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
609 	int ret;
610 
611 	spin_lock_bh(&ce->ce_lock);
612 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
613 				    buffer, nbytes, transfer_id, flags);
614 	spin_unlock_bh(&ce->ce_lock);
615 
616 	return ret;
617 }
618 EXPORT_SYMBOL(ath10k_ce_send);
619 
620 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
621 {
622 	struct ath10k *ar = pipe->ar;
623 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
624 	int delta;
625 
626 	spin_lock_bh(&ce->ce_lock);
627 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
628 			      pipe->src_ring->write_index,
629 			      pipe->src_ring->sw_index - 1);
630 	spin_unlock_bh(&ce->ce_lock);
631 
632 	return delta;
633 }
634 EXPORT_SYMBOL(ath10k_ce_num_free_src_entries);
635 
636 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
637 {
638 	struct ath10k *ar = pipe->ar;
639 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
640 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
641 	unsigned int nentries_mask = dest_ring->nentries_mask;
642 	unsigned int write_index = dest_ring->write_index;
643 	unsigned int sw_index = dest_ring->sw_index;
644 
645 	lockdep_assert_held(&ce->ce_lock);
646 
647 	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
648 }
649 EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs);
650 
651 static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
652 				   dma_addr_t paddr)
653 {
654 	struct ath10k *ar = pipe->ar;
655 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
656 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
657 	unsigned int nentries_mask = dest_ring->nentries_mask;
658 	unsigned int write_index = dest_ring->write_index;
659 	unsigned int sw_index = dest_ring->sw_index;
660 	struct ce_desc *base = dest_ring->base_addr_owner_space;
661 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
662 	u32 ctrl_addr = pipe->ctrl_addr;
663 
664 	lockdep_assert_held(&ce->ce_lock);
665 
666 	if ((pipe->id != 5) &&
667 	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
668 		return -ENOSPC;
669 
670 	desc->addr = __cpu_to_le32(paddr);
671 	desc->nbytes = 0;
672 
673 	dest_ring->per_transfer_context[write_index] = ctx;
674 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
675 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
676 	dest_ring->write_index = write_index;
677 
678 	return 0;
679 }
680 
681 static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
682 				      void *ctx,
683 				      dma_addr_t paddr)
684 {
685 	struct ath10k *ar = pipe->ar;
686 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
687 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
688 	unsigned int nentries_mask = dest_ring->nentries_mask;
689 	unsigned int write_index = dest_ring->write_index;
690 	unsigned int sw_index = dest_ring->sw_index;
691 	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
692 	struct ce_desc_64 *desc =
693 			CE_DEST_RING_TO_DESC_64(base, write_index);
694 	u32 ctrl_addr = pipe->ctrl_addr;
695 
696 	lockdep_assert_held(&ce->ce_lock);
697 
698 	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
699 		return -ENOSPC;
700 
701 	desc->addr = __cpu_to_le64(paddr);
702 	desc->addr &= __cpu_to_le64(CE_DESC_ADDR_MASK);
703 
704 	desc->nbytes = 0;
705 
706 	dest_ring->per_transfer_context[write_index] = ctx;
707 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
708 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
709 	dest_ring->write_index = write_index;
710 
711 	return 0;
712 }
713 
714 void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
715 {
716 	struct ath10k *ar = pipe->ar;
717 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
718 	unsigned int nentries_mask = dest_ring->nentries_mask;
719 	unsigned int write_index = dest_ring->write_index;
720 	u32 ctrl_addr = pipe->ctrl_addr;
721 	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
722 
723 	/* Prevent CE ring stuck issue that will occur when ring is full.
724 	 * Make sure that write index is 1 less than read index.
725 	 */
726 	if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index)
727 		nentries -= 1;
728 
729 	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
730 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
731 	dest_ring->write_index = write_index;
732 }
733 EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx);
734 
735 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
736 			  dma_addr_t paddr)
737 {
738 	struct ath10k *ar = pipe->ar;
739 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
740 	int ret;
741 
742 	spin_lock_bh(&ce->ce_lock);
743 	ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
744 	spin_unlock_bh(&ce->ce_lock);
745 
746 	return ret;
747 }
748 EXPORT_SYMBOL(ath10k_ce_rx_post_buf);
749 
750 /*
751  * Guts of ath10k_ce_completed_recv_next.
752  * The caller takes responsibility for any necessary locking.
753  */
754 static int
755 	 _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
756 					       void **per_transfer_contextp,
757 					       unsigned int *nbytesp)
758 {
759 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
760 	unsigned int nentries_mask = dest_ring->nentries_mask;
761 	unsigned int sw_index = dest_ring->sw_index;
762 
763 	struct ce_desc *base = dest_ring->base_addr_owner_space;
764 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
765 	struct ce_desc sdesc;
766 	u16 nbytes;
767 
768 	/* Copy in one go for performance reasons */
769 	sdesc = *desc;
770 
771 	nbytes = __le16_to_cpu(sdesc.nbytes);
772 	if (nbytes == 0) {
773 		/*
774 		 * This closes a relatively unusual race where the Host
775 		 * sees the updated DRRI before the update to the
776 		 * corresponding descriptor has completed. We treat this
777 		 * as a descriptor that is not yet done.
778 		 */
779 		return -EIO;
780 	}
781 
782 	desc->nbytes = 0;
783 
784 	/* Return data from completed destination descriptor */
785 	*nbytesp = nbytes;
786 
787 	if (per_transfer_contextp)
788 		*per_transfer_contextp =
789 			dest_ring->per_transfer_context[sw_index];
790 
791 	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
792 	 * So update transfer context all CEs except CE5.
793 	 */
794 	if (ce_state->id != 5)
795 		dest_ring->per_transfer_context[sw_index] = NULL;
796 
797 	/* Update sw_index */
798 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
799 	dest_ring->sw_index = sw_index;
800 
801 	return 0;
802 }
803 
804 static int
805 _ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
806 					 void **per_transfer_contextp,
807 					 unsigned int *nbytesp)
808 {
809 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
810 	unsigned int nentries_mask = dest_ring->nentries_mask;
811 	unsigned int sw_index = dest_ring->sw_index;
812 	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
813 	struct ce_desc_64 *desc =
814 		CE_DEST_RING_TO_DESC_64(base, sw_index);
815 	struct ce_desc_64 sdesc;
816 	u16 nbytes;
817 
818 	/* Copy in one go for performance reasons */
819 	sdesc = *desc;
820 
821 	nbytes = __le16_to_cpu(sdesc.nbytes);
822 	if (nbytes == 0) {
823 		/* This closes a relatively unusual race where the Host
824 		 * sees the updated DRRI before the update to the
825 		 * corresponding descriptor has completed. We treat this
826 		 * as a descriptor that is not yet done.
827 		 */
828 		return -EIO;
829 	}
830 
831 	desc->nbytes = 0;
832 
833 	/* Return data from completed destination descriptor */
834 	*nbytesp = nbytes;
835 
836 	if (per_transfer_contextp)
837 		*per_transfer_contextp =
838 			dest_ring->per_transfer_context[sw_index];
839 
840 	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
841 	 * So update transfer context all CEs except CE5.
842 	 */
843 	if (ce_state->id != 5)
844 		dest_ring->per_transfer_context[sw_index] = NULL;
845 
846 	/* Update sw_index */
847 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
848 	dest_ring->sw_index = sw_index;
849 
850 	return 0;
851 }
852 
853 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
854 					 void **per_transfer_ctx,
855 					 unsigned int *nbytesp)
856 {
857 	return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
858 							    per_transfer_ctx,
859 							    nbytesp);
860 }
861 EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock);
862 
863 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
864 				  void **per_transfer_contextp,
865 				  unsigned int *nbytesp)
866 {
867 	struct ath10k *ar = ce_state->ar;
868 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
869 	int ret;
870 
871 	spin_lock_bh(&ce->ce_lock);
872 	ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
873 						   per_transfer_contextp,
874 						   nbytesp);
875 
876 	spin_unlock_bh(&ce->ce_lock);
877 
878 	return ret;
879 }
880 EXPORT_SYMBOL(ath10k_ce_completed_recv_next);
881 
882 static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
883 				       void **per_transfer_contextp,
884 				       dma_addr_t *bufferp)
885 {
886 	struct ath10k_ce_ring *dest_ring;
887 	unsigned int nentries_mask;
888 	unsigned int sw_index;
889 	unsigned int write_index;
890 	int ret;
891 	struct ath10k *ar;
892 	struct ath10k_ce *ce;
893 
894 	dest_ring = ce_state->dest_ring;
895 
896 	if (!dest_ring)
897 		return -EIO;
898 
899 	ar = ce_state->ar;
900 	ce = ath10k_ce_priv(ar);
901 
902 	spin_lock_bh(&ce->ce_lock);
903 
904 	nentries_mask = dest_ring->nentries_mask;
905 	sw_index = dest_ring->sw_index;
906 	write_index = dest_ring->write_index;
907 	if (write_index != sw_index) {
908 		struct ce_desc *base = dest_ring->base_addr_owner_space;
909 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
910 
911 		/* Return data from completed destination descriptor */
912 		*bufferp = __le32_to_cpu(desc->addr);
913 
914 		if (per_transfer_contextp)
915 			*per_transfer_contextp =
916 				dest_ring->per_transfer_context[sw_index];
917 
918 		/* sanity */
919 		dest_ring->per_transfer_context[sw_index] = NULL;
920 		desc->nbytes = 0;
921 
922 		/* Update sw_index */
923 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
924 		dest_ring->sw_index = sw_index;
925 		ret = 0;
926 	} else {
927 		ret = -EIO;
928 	}
929 
930 	spin_unlock_bh(&ce->ce_lock);
931 
932 	return ret;
933 }
934 
935 static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
936 					  void **per_transfer_contextp,
937 					  dma_addr_t *bufferp)
938 {
939 	struct ath10k_ce_ring *dest_ring;
940 	unsigned int nentries_mask;
941 	unsigned int sw_index;
942 	unsigned int write_index;
943 	int ret;
944 	struct ath10k *ar;
945 	struct ath10k_ce *ce;
946 
947 	dest_ring = ce_state->dest_ring;
948 
949 	if (!dest_ring)
950 		return -EIO;
951 
952 	ar = ce_state->ar;
953 	ce = ath10k_ce_priv(ar);
954 
955 	spin_lock_bh(&ce->ce_lock);
956 
957 	nentries_mask = dest_ring->nentries_mask;
958 	sw_index = dest_ring->sw_index;
959 	write_index = dest_ring->write_index;
960 	if (write_index != sw_index) {
961 		struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
962 		struct ce_desc_64 *desc =
963 			CE_DEST_RING_TO_DESC_64(base, sw_index);
964 
965 		/* Return data from completed destination descriptor */
966 		*bufferp = __le64_to_cpu(desc->addr);
967 
968 		if (per_transfer_contextp)
969 			*per_transfer_contextp =
970 				dest_ring->per_transfer_context[sw_index];
971 
972 		/* sanity */
973 		dest_ring->per_transfer_context[sw_index] = NULL;
974 		desc->nbytes = 0;
975 
976 		/* Update sw_index */
977 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
978 		dest_ring->sw_index = sw_index;
979 		ret = 0;
980 	} else {
981 		ret = -EIO;
982 	}
983 
984 	spin_unlock_bh(&ce->ce_lock);
985 
986 	return ret;
987 }
988 
989 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
990 			       void **per_transfer_contextp,
991 			       dma_addr_t *bufferp)
992 {
993 	return ce_state->ops->ce_revoke_recv_next(ce_state,
994 						  per_transfer_contextp,
995 						  bufferp);
996 }
997 EXPORT_SYMBOL(ath10k_ce_revoke_recv_next);
998 
999 /*
1000  * Guts of ath10k_ce_completed_send_next.
1001  * The caller takes responsibility for any necessary locking.
1002  */
1003 static int _ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1004 						 void **per_transfer_contextp)
1005 {
1006 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1007 	u32 ctrl_addr = ce_state->ctrl_addr;
1008 	struct ath10k *ar = ce_state->ar;
1009 	unsigned int nentries_mask = src_ring->nentries_mask;
1010 	unsigned int sw_index = src_ring->sw_index;
1011 	unsigned int read_index;
1012 	struct ce_desc *desc;
1013 
1014 	if (src_ring->hw_index == sw_index) {
1015 		/*
1016 		 * The SW completion index has caught up with the cached
1017 		 * version of the HW completion index.
1018 		 * Update the cached HW completion index to see whether
1019 		 * the SW has really caught up to the HW, or if the cached
1020 		 * value of the HW index has become stale.
1021 		 */
1022 
1023 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1024 		if (read_index == 0xffffffff)
1025 			return -ENODEV;
1026 
1027 		read_index &= nentries_mask;
1028 		src_ring->hw_index = read_index;
1029 	}
1030 
1031 	if (ar->hw_params.rri_on_ddr)
1032 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1033 	else
1034 		read_index = src_ring->hw_index;
1035 
1036 	if (read_index == sw_index)
1037 		return -EIO;
1038 
1039 	if (per_transfer_contextp)
1040 		*per_transfer_contextp =
1041 			src_ring->per_transfer_context[sw_index];
1042 
1043 	/* sanity */
1044 	src_ring->per_transfer_context[sw_index] = NULL;
1045 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
1046 				   sw_index);
1047 	desc->nbytes = 0;
1048 
1049 	/* Update sw_index */
1050 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1051 	src_ring->sw_index = sw_index;
1052 
1053 	return 0;
1054 }
1055 
1056 static int _ath10k_ce_completed_send_next_nolock_64(struct ath10k_ce_pipe *ce_state,
1057 						    void **per_transfer_contextp)
1058 {
1059 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1060 	u32 ctrl_addr = ce_state->ctrl_addr;
1061 	struct ath10k *ar = ce_state->ar;
1062 	unsigned int nentries_mask = src_ring->nentries_mask;
1063 	unsigned int sw_index = src_ring->sw_index;
1064 	unsigned int read_index;
1065 	struct ce_desc_64 *desc;
1066 
1067 	if (src_ring->hw_index == sw_index) {
1068 		/*
1069 		 * The SW completion index has caught up with the cached
1070 		 * version of the HW completion index.
1071 		 * Update the cached HW completion index to see whether
1072 		 * the SW has really caught up to the HW, or if the cached
1073 		 * value of the HW index has become stale.
1074 		 */
1075 
1076 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1077 		if (read_index == 0xffffffff)
1078 			return -ENODEV;
1079 
1080 		read_index &= nentries_mask;
1081 		src_ring->hw_index = read_index;
1082 	}
1083 
1084 	if (ar->hw_params.rri_on_ddr)
1085 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1086 	else
1087 		read_index = src_ring->hw_index;
1088 
1089 	if (read_index == sw_index)
1090 		return -EIO;
1091 
1092 	if (per_transfer_contextp)
1093 		*per_transfer_contextp =
1094 			src_ring->per_transfer_context[sw_index];
1095 
1096 	/* sanity */
1097 	src_ring->per_transfer_context[sw_index] = NULL;
1098 	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
1099 				      sw_index);
1100 	desc->nbytes = 0;
1101 
1102 	/* Update sw_index */
1103 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1104 	src_ring->sw_index = sw_index;
1105 
1106 	return 0;
1107 }
1108 
1109 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1110 					 void **per_transfer_contextp)
1111 {
1112 	return ce_state->ops->ce_completed_send_next_nolock(ce_state,
1113 							    per_transfer_contextp);
1114 }
1115 EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock);
1116 
1117 static void ath10k_ce_extract_desc_data(struct ath10k *ar,
1118 					struct ath10k_ce_ring *src_ring,
1119 					u32 sw_index,
1120 					dma_addr_t *bufferp,
1121 					u32 *nbytesp,
1122 					u32 *transfer_idp)
1123 {
1124 		struct ce_desc *base = src_ring->base_addr_owner_space;
1125 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
1126 
1127 		/* Return data from completed source descriptor */
1128 		*bufferp = __le32_to_cpu(desc->addr);
1129 		*nbytesp = __le16_to_cpu(desc->nbytes);
1130 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
1131 				   CE_DESC_FLAGS_META_DATA);
1132 }
1133 
1134 static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
1135 					   struct ath10k_ce_ring *src_ring,
1136 					   u32 sw_index,
1137 					   dma_addr_t *bufferp,
1138 					   u32 *nbytesp,
1139 					   u32 *transfer_idp)
1140 {
1141 		struct ce_desc_64 *base = src_ring->base_addr_owner_space;
1142 		struct ce_desc_64 *desc =
1143 			CE_SRC_RING_TO_DESC_64(base, sw_index);
1144 
1145 		/* Return data from completed source descriptor */
1146 		*bufferp = __le64_to_cpu(desc->addr);
1147 		*nbytesp = __le16_to_cpu(desc->nbytes);
1148 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
1149 				   CE_DESC_FLAGS_META_DATA);
1150 }
1151 
1152 /* NB: Modeled after ath10k_ce_completed_send_next */
1153 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
1154 			       void **per_transfer_contextp,
1155 			       dma_addr_t *bufferp,
1156 			       unsigned int *nbytesp,
1157 			       unsigned int *transfer_idp)
1158 {
1159 	struct ath10k_ce_ring *src_ring;
1160 	unsigned int nentries_mask;
1161 	unsigned int sw_index;
1162 	unsigned int write_index;
1163 	int ret;
1164 	struct ath10k *ar;
1165 	struct ath10k_ce *ce;
1166 
1167 	src_ring = ce_state->src_ring;
1168 
1169 	if (!src_ring)
1170 		return -EIO;
1171 
1172 	ar = ce_state->ar;
1173 	ce = ath10k_ce_priv(ar);
1174 
1175 	spin_lock_bh(&ce->ce_lock);
1176 
1177 	nentries_mask = src_ring->nentries_mask;
1178 	sw_index = src_ring->sw_index;
1179 	write_index = src_ring->write_index;
1180 
1181 	if (write_index != sw_index) {
1182 		ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
1183 						    bufferp, nbytesp,
1184 						    transfer_idp);
1185 
1186 		if (per_transfer_contextp)
1187 			*per_transfer_contextp =
1188 				src_ring->per_transfer_context[sw_index];
1189 
1190 		/* sanity */
1191 		src_ring->per_transfer_context[sw_index] = NULL;
1192 
1193 		/* Update sw_index */
1194 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1195 		src_ring->sw_index = sw_index;
1196 		ret = 0;
1197 	} else {
1198 		ret = -EIO;
1199 	}
1200 
1201 	spin_unlock_bh(&ce->ce_lock);
1202 
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL(ath10k_ce_cancel_send_next);
1206 
1207 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
1208 				  void **per_transfer_contextp)
1209 {
1210 	struct ath10k *ar = ce_state->ar;
1211 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1212 	int ret;
1213 
1214 	spin_lock_bh(&ce->ce_lock);
1215 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
1216 						   per_transfer_contextp);
1217 	spin_unlock_bh(&ce->ce_lock);
1218 
1219 	return ret;
1220 }
1221 EXPORT_SYMBOL(ath10k_ce_completed_send_next);
1222 
1223 /*
1224  * Guts of interrupt handler for per-engine interrupts on a particular CE.
1225  *
1226  * Invokes registered callbacks for recv_complete,
1227  * send_complete, and watermarks.
1228  */
1229 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
1230 {
1231 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1232 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1233 	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
1234 	u32 ctrl_addr = ce_state->ctrl_addr;
1235 
1236 	/*
1237 	 * Clear before handling
1238 	 *
1239 	 * Misc CE interrupts are not being handled, but still need
1240 	 * to be cleared.
1241 	 *
1242 	 * NOTE: When the last copy engine interrupt is cleared the
1243 	 * hardware will go to sleep.  Once this happens any access to
1244 	 * the CE registers can cause a hardware fault.
1245 	 */
1246 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
1247 					  wm_regs->cc_mask | wm_regs->wm_mask);
1248 
1249 	if (ce_state->recv_cb)
1250 		ce_state->recv_cb(ce_state);
1251 
1252 	if (ce_state->send_cb)
1253 		ce_state->send_cb(ce_state);
1254 }
1255 EXPORT_SYMBOL(ath10k_ce_per_engine_service);
1256 
1257 /*
1258  * Handler for per-engine interrupts on ALL active CEs.
1259  * This is used in cases where the system is sharing a
1260  * single interrupt for all CEs
1261  */
1262 
1263 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
1264 {
1265 	int ce_id;
1266 	u32 intr_summary;
1267 
1268 	intr_summary = ath10k_ce_interrupt_summary(ar);
1269 
1270 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
1271 		if (intr_summary & (1 << ce_id))
1272 			intr_summary &= ~(1 << ce_id);
1273 		else
1274 			/* no intr pending on this CE */
1275 			continue;
1276 
1277 		ath10k_ce_per_engine_service(ar, ce_id);
1278 	}
1279 }
1280 EXPORT_SYMBOL(ath10k_ce_per_engine_service_any);
1281 
1282 /*
1283  * Adjust interrupts for the copy complete handler.
1284  * If it's needed for either send or recv, then unmask
1285  * this interrupt; otherwise, mask it.
1286  *
1287  * Called with ce_lock held.
1288  */
1289 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
1290 {
1291 	u32 ctrl_addr = ce_state->ctrl_addr;
1292 	struct ath10k *ar = ce_state->ar;
1293 	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
1294 
1295 	if ((!disable_copy_compl_intr) &&
1296 	    (ce_state->send_cb || ce_state->recv_cb))
1297 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
1298 	else
1299 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1300 
1301 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1302 }
1303 
1304 void ath10k_ce_disable_interrupt(struct ath10k *ar, int ce_id)
1305 {
1306 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1307 	struct ath10k_ce_pipe *ce_state;
1308 	u32 ctrl_addr;
1309 
1310 	ce_state  = &ce->ce_states[ce_id];
1311 	if (ce_state->attr_flags & CE_ATTR_POLL)
1312 		return;
1313 
1314 	ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1315 
1316 	ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1317 	ath10k_ce_error_intr_disable(ar, ctrl_addr);
1318 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1319 }
1320 EXPORT_SYMBOL(ath10k_ce_disable_interrupt);
1321 
1322 void ath10k_ce_disable_interrupts(struct ath10k *ar)
1323 {
1324 	int ce_id;
1325 
1326 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
1327 		ath10k_ce_disable_interrupt(ar, ce_id);
1328 }
1329 EXPORT_SYMBOL(ath10k_ce_disable_interrupts);
1330 
1331 void ath10k_ce_enable_interrupt(struct ath10k *ar, int ce_id)
1332 {
1333 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1334 	struct ath10k_ce_pipe *ce_state;
1335 
1336 	ce_state  = &ce->ce_states[ce_id];
1337 	if (ce_state->attr_flags & CE_ATTR_POLL)
1338 		return;
1339 
1340 	ath10k_ce_per_engine_handler_adjust(ce_state);
1341 }
1342 EXPORT_SYMBOL(ath10k_ce_enable_interrupt);
1343 
1344 void ath10k_ce_enable_interrupts(struct ath10k *ar)
1345 {
1346 	int ce_id;
1347 
1348 	/* Enable interrupts for copy engine that
1349 	 * are not using polling mode.
1350 	 */
1351 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
1352 		ath10k_ce_enable_interrupt(ar, ce_id);
1353 }
1354 EXPORT_SYMBOL(ath10k_ce_enable_interrupts);
1355 
1356 static int ath10k_ce_init_src_ring(struct ath10k *ar,
1357 				   unsigned int ce_id,
1358 				   const struct ce_attr *attr)
1359 {
1360 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1361 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1362 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1363 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1364 
1365 	nentries = roundup_pow_of_two(attr->src_nentries);
1366 
1367 	if (ar->hw_params.target_64bit)
1368 		memset(src_ring->base_addr_owner_space, 0,
1369 		       nentries * sizeof(struct ce_desc_64));
1370 	else
1371 		memset(src_ring->base_addr_owner_space, 0,
1372 		       nentries * sizeof(struct ce_desc));
1373 
1374 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1375 	src_ring->sw_index &= src_ring->nentries_mask;
1376 	src_ring->hw_index = src_ring->sw_index;
1377 
1378 	src_ring->write_index =
1379 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
1380 	src_ring->write_index &= src_ring->nentries_mask;
1381 
1382 	ath10k_ce_src_ring_base_addr_set(ar, ce_id,
1383 					 src_ring->base_addr_ce_space);
1384 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
1385 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
1386 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
1387 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
1388 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
1389 
1390 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1391 		   "boot init ce src ring id %d entries %d base_addr %pK\n",
1392 		   ce_id, nentries, src_ring->base_addr_owner_space);
1393 
1394 	return 0;
1395 }
1396 
1397 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1398 				    unsigned int ce_id,
1399 				    const struct ce_attr *attr)
1400 {
1401 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1402 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1403 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
1404 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1405 
1406 	nentries = roundup_pow_of_two(attr->dest_nentries);
1407 
1408 	if (ar->hw_params.target_64bit)
1409 		memset(dest_ring->base_addr_owner_space, 0,
1410 		       nentries * sizeof(struct ce_desc_64));
1411 	else
1412 		memset(dest_ring->base_addr_owner_space, 0,
1413 		       nentries * sizeof(struct ce_desc));
1414 
1415 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1416 	dest_ring->sw_index &= dest_ring->nentries_mask;
1417 	dest_ring->write_index =
1418 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1419 	dest_ring->write_index &= dest_ring->nentries_mask;
1420 
1421 	ath10k_ce_dest_ring_base_addr_set(ar, ce_id,
1422 					  dest_ring->base_addr_ce_space);
1423 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1424 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1425 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1426 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1427 
1428 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1429 		   "boot ce dest ring id %d entries %d base_addr %pK\n",
1430 		   ce_id, nentries, dest_ring->base_addr_owner_space);
1431 
1432 	return 0;
1433 }
1434 
1435 static int ath10k_ce_alloc_shadow_base(struct ath10k *ar,
1436 				       struct ath10k_ce_ring *src_ring,
1437 				       u32 nentries)
1438 {
1439 	src_ring->shadow_base_unaligned = kcalloc(nentries,
1440 						  sizeof(struct ce_desc_64),
1441 						  GFP_KERNEL);
1442 	if (!src_ring->shadow_base_unaligned)
1443 		return -ENOMEM;
1444 
1445 	src_ring->shadow_base = (struct ce_desc_64 *)
1446 			PTR_ALIGN(src_ring->shadow_base_unaligned,
1447 				  CE_DESC_RING_ALIGN);
1448 	return 0;
1449 }
1450 
1451 static struct ath10k_ce_ring *
1452 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
1453 			 const struct ce_attr *attr)
1454 {
1455 	struct ath10k_ce_ring *src_ring;
1456 	u32 nentries = attr->src_nentries;
1457 	dma_addr_t base_addr;
1458 	int ret;
1459 
1460 	nentries = roundup_pow_of_two(nentries);
1461 
1462 	src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1463 				       nentries), GFP_KERNEL);
1464 	if (src_ring == NULL)
1465 		return ERR_PTR(-ENOMEM);
1466 
1467 	src_ring->nentries = nentries;
1468 	src_ring->nentries_mask = nentries - 1;
1469 
1470 	/*
1471 	 * Legacy platforms that do not support cache
1472 	 * coherent DMA are unsupported
1473 	 */
1474 	src_ring->base_addr_owner_space_unaligned =
1475 		dma_alloc_coherent(ar->dev,
1476 				   (nentries * sizeof(struct ce_desc) +
1477 				    CE_DESC_RING_ALIGN),
1478 				   &base_addr, GFP_KERNEL);
1479 	if (!src_ring->base_addr_owner_space_unaligned) {
1480 		kfree(src_ring);
1481 		return ERR_PTR(-ENOMEM);
1482 	}
1483 
1484 	src_ring->base_addr_ce_space_unaligned = base_addr;
1485 
1486 	src_ring->base_addr_owner_space =
1487 			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1488 				  CE_DESC_RING_ALIGN);
1489 	src_ring->base_addr_ce_space =
1490 			ALIGN(src_ring->base_addr_ce_space_unaligned,
1491 			      CE_DESC_RING_ALIGN);
1492 
1493 	if (ar->hw_params.shadow_reg_support) {
1494 		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1495 		if (ret) {
1496 			dma_free_coherent(ar->dev,
1497 					  (nentries * sizeof(struct ce_desc) +
1498 					   CE_DESC_RING_ALIGN),
1499 					  src_ring->base_addr_owner_space_unaligned,
1500 					  base_addr);
1501 			kfree(src_ring);
1502 			return ERR_PTR(ret);
1503 		}
1504 	}
1505 
1506 	return src_ring;
1507 }
1508 
1509 static struct ath10k_ce_ring *
1510 ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
1511 			    const struct ce_attr *attr)
1512 {
1513 	struct ath10k_ce_ring *src_ring;
1514 	u32 nentries = attr->src_nentries;
1515 	dma_addr_t base_addr;
1516 	int ret;
1517 
1518 	nentries = roundup_pow_of_two(nentries);
1519 
1520 	src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1521 				       nentries), GFP_KERNEL);
1522 	if (!src_ring)
1523 		return ERR_PTR(-ENOMEM);
1524 
1525 	src_ring->nentries = nentries;
1526 	src_ring->nentries_mask = nentries - 1;
1527 
1528 	/* Legacy platforms that do not support cache
1529 	 * coherent DMA are unsupported
1530 	 */
1531 	src_ring->base_addr_owner_space_unaligned =
1532 		dma_alloc_coherent(ar->dev,
1533 				   (nentries * sizeof(struct ce_desc_64) +
1534 				    CE_DESC_RING_ALIGN),
1535 				   &base_addr, GFP_KERNEL);
1536 	if (!src_ring->base_addr_owner_space_unaligned) {
1537 		kfree(src_ring);
1538 		return ERR_PTR(-ENOMEM);
1539 	}
1540 
1541 	src_ring->base_addr_ce_space_unaligned = base_addr;
1542 
1543 	src_ring->base_addr_owner_space =
1544 			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1545 				  CE_DESC_RING_ALIGN);
1546 	src_ring->base_addr_ce_space =
1547 			ALIGN(src_ring->base_addr_ce_space_unaligned,
1548 			      CE_DESC_RING_ALIGN);
1549 
1550 	if (ar->hw_params.shadow_reg_support) {
1551 		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1552 		if (ret) {
1553 			dma_free_coherent(ar->dev,
1554 					  (nentries * sizeof(struct ce_desc_64) +
1555 					   CE_DESC_RING_ALIGN),
1556 					  src_ring->base_addr_owner_space_unaligned,
1557 					  base_addr);
1558 			kfree(src_ring);
1559 			return ERR_PTR(ret);
1560 		}
1561 	}
1562 
1563 	return src_ring;
1564 }
1565 
1566 static struct ath10k_ce_ring *
1567 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1568 			  const struct ce_attr *attr)
1569 {
1570 	struct ath10k_ce_ring *dest_ring;
1571 	u32 nentries;
1572 	dma_addr_t base_addr;
1573 
1574 	nentries = roundup_pow_of_two(attr->dest_nentries);
1575 
1576 	dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1577 					nentries), GFP_KERNEL);
1578 	if (dest_ring == NULL)
1579 		return ERR_PTR(-ENOMEM);
1580 
1581 	dest_ring->nentries = nentries;
1582 	dest_ring->nentries_mask = nentries - 1;
1583 
1584 	/*
1585 	 * Legacy platforms that do not support cache
1586 	 * coherent DMA are unsupported
1587 	 */
1588 	dest_ring->base_addr_owner_space_unaligned =
1589 		dma_alloc_coherent(ar->dev,
1590 				   (nentries * sizeof(struct ce_desc) +
1591 				    CE_DESC_RING_ALIGN),
1592 				   &base_addr, GFP_KERNEL);
1593 	if (!dest_ring->base_addr_owner_space_unaligned) {
1594 		kfree(dest_ring);
1595 		return ERR_PTR(-ENOMEM);
1596 	}
1597 
1598 	dest_ring->base_addr_ce_space_unaligned = base_addr;
1599 
1600 	dest_ring->base_addr_owner_space =
1601 			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1602 				  CE_DESC_RING_ALIGN);
1603 	dest_ring->base_addr_ce_space =
1604 				ALIGN(dest_ring->base_addr_ce_space_unaligned,
1605 				      CE_DESC_RING_ALIGN);
1606 
1607 	return dest_ring;
1608 }
1609 
1610 static struct ath10k_ce_ring *
1611 ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
1612 			     const struct ce_attr *attr)
1613 {
1614 	struct ath10k_ce_ring *dest_ring;
1615 	u32 nentries;
1616 	dma_addr_t base_addr;
1617 
1618 	nentries = roundup_pow_of_two(attr->dest_nentries);
1619 
1620 	dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1621 					nentries), GFP_KERNEL);
1622 	if (!dest_ring)
1623 		return ERR_PTR(-ENOMEM);
1624 
1625 	dest_ring->nentries = nentries;
1626 	dest_ring->nentries_mask = nentries - 1;
1627 
1628 	/* Legacy platforms that do not support cache
1629 	 * coherent DMA are unsupported
1630 	 */
1631 	dest_ring->base_addr_owner_space_unaligned =
1632 		dma_alloc_coherent(ar->dev,
1633 				   (nentries * sizeof(struct ce_desc_64) +
1634 				    CE_DESC_RING_ALIGN),
1635 				   &base_addr, GFP_KERNEL);
1636 	if (!dest_ring->base_addr_owner_space_unaligned) {
1637 		kfree(dest_ring);
1638 		return ERR_PTR(-ENOMEM);
1639 	}
1640 
1641 	dest_ring->base_addr_ce_space_unaligned = base_addr;
1642 
1643 	/* Correctly initialize memory to 0 to prevent garbage
1644 	 * data crashing system when download firmware
1645 	 */
1646 	dest_ring->base_addr_owner_space =
1647 			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1648 				  CE_DESC_RING_ALIGN);
1649 	dest_ring->base_addr_ce_space =
1650 			ALIGN(dest_ring->base_addr_ce_space_unaligned,
1651 			      CE_DESC_RING_ALIGN);
1652 
1653 	return dest_ring;
1654 }
1655 
1656 /*
1657  * Initialize a Copy Engine based on caller-supplied attributes.
1658  * This may be called once to initialize both source and destination
1659  * rings or it may be called twice for separate source and destination
1660  * initialization. It may be that only one side or the other is
1661  * initialized by software/firmware.
1662  */
1663 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1664 			const struct ce_attr *attr)
1665 {
1666 	int ret;
1667 
1668 	if (attr->src_nentries) {
1669 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1670 		if (ret) {
1671 			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1672 				   ce_id, ret);
1673 			return ret;
1674 		}
1675 	}
1676 
1677 	if (attr->dest_nentries) {
1678 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1679 		if (ret) {
1680 			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1681 				   ce_id, ret);
1682 			return ret;
1683 		}
1684 	}
1685 
1686 	return 0;
1687 }
1688 EXPORT_SYMBOL(ath10k_ce_init_pipe);
1689 
1690 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1691 {
1692 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1693 
1694 	ath10k_ce_src_ring_base_addr_set(ar, ce_id, 0);
1695 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1696 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1697 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1698 }
1699 
1700 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1701 {
1702 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1703 
1704 	ath10k_ce_dest_ring_base_addr_set(ar, ce_id, 0);
1705 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1706 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1707 }
1708 
1709 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1710 {
1711 	ath10k_ce_deinit_src_ring(ar, ce_id);
1712 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1713 }
1714 EXPORT_SYMBOL(ath10k_ce_deinit_pipe);
1715 
1716 static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1717 {
1718 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1719 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1720 
1721 	if (ce_state->src_ring) {
1722 		if (ar->hw_params.shadow_reg_support)
1723 			kfree(ce_state->src_ring->shadow_base_unaligned);
1724 		dma_free_coherent(ar->dev,
1725 				  (ce_state->src_ring->nentries *
1726 				   sizeof(struct ce_desc) +
1727 				   CE_DESC_RING_ALIGN),
1728 				  ce_state->src_ring->base_addr_owner_space,
1729 				  ce_state->src_ring->base_addr_ce_space);
1730 		kfree(ce_state->src_ring);
1731 	}
1732 
1733 	if (ce_state->dest_ring) {
1734 		dma_free_coherent(ar->dev,
1735 				  (ce_state->dest_ring->nentries *
1736 				   sizeof(struct ce_desc) +
1737 				   CE_DESC_RING_ALIGN),
1738 				  ce_state->dest_ring->base_addr_owner_space,
1739 				  ce_state->dest_ring->base_addr_ce_space);
1740 		kfree(ce_state->dest_ring);
1741 	}
1742 
1743 	ce_state->src_ring = NULL;
1744 	ce_state->dest_ring = NULL;
1745 }
1746 
1747 static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
1748 {
1749 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1750 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1751 
1752 	if (ce_state->src_ring) {
1753 		if (ar->hw_params.shadow_reg_support)
1754 			kfree(ce_state->src_ring->shadow_base_unaligned);
1755 		dma_free_coherent(ar->dev,
1756 				  (ce_state->src_ring->nentries *
1757 				   sizeof(struct ce_desc_64) +
1758 				   CE_DESC_RING_ALIGN),
1759 				  ce_state->src_ring->base_addr_owner_space,
1760 				  ce_state->src_ring->base_addr_ce_space);
1761 		kfree(ce_state->src_ring);
1762 	}
1763 
1764 	if (ce_state->dest_ring) {
1765 		dma_free_coherent(ar->dev,
1766 				  (ce_state->dest_ring->nentries *
1767 				   sizeof(struct ce_desc_64) +
1768 				   CE_DESC_RING_ALIGN),
1769 				  ce_state->dest_ring->base_addr_owner_space,
1770 				  ce_state->dest_ring->base_addr_ce_space);
1771 		kfree(ce_state->dest_ring);
1772 	}
1773 
1774 	ce_state->src_ring = NULL;
1775 	ce_state->dest_ring = NULL;
1776 }
1777 
1778 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1779 {
1780 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1781 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1782 
1783 	ce_state->ops->ce_free_pipe(ar, ce_id);
1784 }
1785 EXPORT_SYMBOL(ath10k_ce_free_pipe);
1786 
1787 void ath10k_ce_dump_registers(struct ath10k *ar,
1788 			      struct ath10k_fw_crash_data *crash_data)
1789 {
1790 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1791 	struct ath10k_ce_crash_data ce_data;
1792 	u32 addr, id;
1793 
1794 	lockdep_assert_held(&ar->dump_mutex);
1795 
1796 	ath10k_err(ar, "Copy Engine register dump:\n");
1797 
1798 	spin_lock_bh(&ce->ce_lock);
1799 	for (id = 0; id < CE_COUNT; id++) {
1800 		addr = ath10k_ce_base_address(ar, id);
1801 		ce_data.base_addr = cpu_to_le32(addr);
1802 
1803 		ce_data.src_wr_idx =
1804 			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1805 		ce_data.src_r_idx =
1806 			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1807 		ce_data.dst_wr_idx =
1808 			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1809 		ce_data.dst_r_idx =
1810 			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1811 
1812 		if (crash_data)
1813 			crash_data->ce_crash_data[id] = ce_data;
1814 
1815 		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1816 			   le32_to_cpu(ce_data.base_addr),
1817 			   le32_to_cpu(ce_data.src_wr_idx),
1818 			   le32_to_cpu(ce_data.src_r_idx),
1819 			   le32_to_cpu(ce_data.dst_wr_idx),
1820 			   le32_to_cpu(ce_data.dst_r_idx));
1821 	}
1822 
1823 	spin_unlock_bh(&ce->ce_lock);
1824 }
1825 EXPORT_SYMBOL(ath10k_ce_dump_registers);
1826 
1827 static const struct ath10k_ce_ops ce_ops = {
1828 	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
1829 	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
1830 	.ce_rx_post_buf = __ath10k_ce_rx_post_buf,
1831 	.ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
1832 	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
1833 	.ce_extract_desc_data = ath10k_ce_extract_desc_data,
1834 	.ce_free_pipe = _ath10k_ce_free_pipe,
1835 	.ce_send_nolock = _ath10k_ce_send_nolock,
1836 	.ce_set_src_ring_base_addr_hi = NULL,
1837 	.ce_set_dest_ring_base_addr_hi = NULL,
1838 	.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock,
1839 };
1840 
1841 static const struct ath10k_ce_ops ce_64_ops = {
1842 	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
1843 	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
1844 	.ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
1845 	.ce_completed_recv_next_nolock =
1846 				_ath10k_ce_completed_recv_next_nolock_64,
1847 	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
1848 	.ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
1849 	.ce_free_pipe = _ath10k_ce_free_pipe_64,
1850 	.ce_send_nolock = _ath10k_ce_send_nolock_64,
1851 	.ce_set_src_ring_base_addr_hi = ath10k_ce_set_src_ring_base_addr_hi,
1852 	.ce_set_dest_ring_base_addr_hi = ath10k_ce_set_dest_ring_base_addr_hi,
1853 	.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock_64,
1854 };
1855 
1856 static void ath10k_ce_set_ops(struct ath10k *ar,
1857 			      struct ath10k_ce_pipe *ce_state)
1858 {
1859 	switch (ar->hw_rev) {
1860 	case ATH10K_HW_WCN3990:
1861 		ce_state->ops = &ce_64_ops;
1862 		break;
1863 	default:
1864 		ce_state->ops = &ce_ops;
1865 		break;
1866 	}
1867 }
1868 
1869 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1870 			 const struct ce_attr *attr)
1871 {
1872 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1873 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1874 	int ret;
1875 
1876 	ath10k_ce_set_ops(ar, ce_state);
1877 	/* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1878 	 * additional TX locking checks.
1879 	 *
1880 	 * For the lack of a better place do the check here.
1881 	 */
1882 	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1883 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1884 	BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
1885 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1886 	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1887 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1888 
1889 	ce_state->ar = ar;
1890 	ce_state->id = ce_id;
1891 	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1892 	ce_state->attr_flags = attr->flags;
1893 	ce_state->src_sz_max = attr->src_sz_max;
1894 
1895 	if (attr->src_nentries)
1896 		ce_state->send_cb = attr->send_cb;
1897 
1898 	if (attr->dest_nentries)
1899 		ce_state->recv_cb = attr->recv_cb;
1900 
1901 	if (attr->src_nentries) {
1902 		ce_state->src_ring =
1903 			ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
1904 		if (IS_ERR(ce_state->src_ring)) {
1905 			ret = PTR_ERR(ce_state->src_ring);
1906 			ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
1907 				   ce_id, ret);
1908 			ce_state->src_ring = NULL;
1909 			return ret;
1910 		}
1911 	}
1912 
1913 	if (attr->dest_nentries) {
1914 		ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
1915 									ce_id,
1916 									attr);
1917 		if (IS_ERR(ce_state->dest_ring)) {
1918 			ret = PTR_ERR(ce_state->dest_ring);
1919 			ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
1920 				   ce_id, ret);
1921 			ce_state->dest_ring = NULL;
1922 			return ret;
1923 		}
1924 	}
1925 
1926 	return 0;
1927 }
1928 EXPORT_SYMBOL(ath10k_ce_alloc_pipe);
1929 
1930 void ath10k_ce_alloc_rri(struct ath10k *ar)
1931 {
1932 	int i;
1933 	u32 value;
1934 	u32 ctrl1_regs;
1935 	u32 ce_base_addr;
1936 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1937 
1938 	ce->vaddr_rri = dma_alloc_coherent(ar->dev,
1939 					   (CE_COUNT * sizeof(u32)),
1940 					   &ce->paddr_rri, GFP_KERNEL);
1941 
1942 	if (!ce->vaddr_rri)
1943 		return;
1944 
1945 	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_low,
1946 			  lower_32_bits(ce->paddr_rri));
1947 	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_high,
1948 			  (upper_32_bits(ce->paddr_rri) &
1949 			  CE_DESC_ADDR_HI_MASK));
1950 
1951 	for (i = 0; i < CE_COUNT; i++) {
1952 		ctrl1_regs = ar->hw_ce_regs->ctrl1_regs->addr;
1953 		ce_base_addr = ath10k_ce_base_address(ar, i);
1954 		value = ath10k_ce_read32(ar, ce_base_addr + ctrl1_regs);
1955 		value |= ar->hw_ce_regs->upd->mask;
1956 		ath10k_ce_write32(ar, ce_base_addr + ctrl1_regs, value);
1957 	}
1958 }
1959 EXPORT_SYMBOL(ath10k_ce_alloc_rri);
1960 
1961 void ath10k_ce_free_rri(struct ath10k *ar)
1962 {
1963 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1964 
1965 	dma_free_coherent(ar->dev, (CE_COUNT * sizeof(u32)),
1966 			  ce->vaddr_rri,
1967 			  ce->paddr_rri);
1968 }
1969 EXPORT_SYMBOL(ath10k_ce_free_rri);
1970