xref: /linux/drivers/net/wireless/ath/ath10k/ce.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22 
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27 
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61 
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 						       u32 ce_ctrl_addr,
64 						       unsigned int n)
65 {
66 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68 
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 						      u32 ce_ctrl_addr)
71 {
72 	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74 
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 						      u32 ce_ctrl_addr,
77 						      unsigned int n)
78 {
79 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81 
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 						     u32 ce_ctrl_addr)
84 {
85 	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87 
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 						    u32 ce_ctrl_addr)
90 {
91 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93 
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 						    u32 ce_ctrl_addr,
96 						    unsigned int addr)
97 {
98 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100 
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 					       u32 ce_ctrl_addr,
103 					       unsigned int n)
104 {
105 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107 
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 					       u32 ce_ctrl_addr,
110 					       unsigned int n)
111 {
112 	u32 ctrl1_addr = ath10k_pci_read32((ar),
113 					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114 
115 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 			   CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119 
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 						    u32 ce_ctrl_addr,
122 						    unsigned int n)
123 {
124 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125 
126 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130 
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 						     u32 ce_ctrl_addr,
133 						     unsigned int n)
134 {
135 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136 
137 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141 
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 						     u32 ce_ctrl_addr)
144 {
145 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147 
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 						     u32 ce_ctrl_addr,
150 						     u32 addr)
151 {
152 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154 
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 						u32 ce_ctrl_addr,
157 						unsigned int n)
158 {
159 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161 
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 						   u32 ce_ctrl_addr,
164 						   unsigned int n)
165 {
166 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167 
168 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 			   SRC_WATERMARK_HIGH_SET(n));
171 }
172 
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 						  u32 ce_ctrl_addr,
175 						  unsigned int n)
176 {
177 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178 
179 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181 			   SRC_WATERMARK_LOW_SET(n));
182 }
183 
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 						    u32 ce_ctrl_addr,
186 						    unsigned int n)
187 {
188 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189 
190 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192 			   DST_WATERMARK_HIGH_SET(n));
193 }
194 
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 						   u32 ce_ctrl_addr,
197 						   unsigned int n)
198 {
199 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200 
201 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 			   (addr & ~DST_WATERMARK_LOW_MASK) |
203 			   DST_WATERMARK_LOW_SET(n));
204 }
205 
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 							u32 ce_ctrl_addr)
208 {
209 	u32 host_ie_addr = ath10k_pci_read32(ar,
210 					     ce_ctrl_addr + HOST_IE_ADDRESS);
211 
212 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215 
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 							u32 ce_ctrl_addr)
218 {
219 	u32 host_ie_addr = ath10k_pci_read32(ar,
220 					     ce_ctrl_addr + HOST_IE_ADDRESS);
221 
222 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225 
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 						    u32 ce_ctrl_addr)
228 {
229 	u32 host_ie_addr = ath10k_pci_read32(ar,
230 					     ce_ctrl_addr + HOST_IE_ADDRESS);
231 
232 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 			   host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235 
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 					       u32 ce_ctrl_addr)
238 {
239 	u32 misc_ie_addr = ath10k_pci_read32(ar,
240 					     ce_ctrl_addr + MISC_IE_ADDRESS);
241 
242 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 			   misc_ie_addr | CE_ERROR_MASK);
244 }
245 
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 						u32 ce_ctrl_addr)
248 {
249 	u32 misc_ie_addr = ath10k_pci_read32(ar,
250 					     ce_ctrl_addr + MISC_IE_ADDRESS);
251 
252 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 			   misc_ie_addr & ~CE_ERROR_MASK);
254 }
255 
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 						     u32 ce_ctrl_addr,
258 						     unsigned int mask)
259 {
260 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262 
263 
264 /*
265  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
266  * ath10k_ce_sendlist_send.
267  * The caller takes responsibility for any needed locking.
268  */
269 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
270 			  void *per_transfer_context,
271 			  u32 buffer,
272 			  unsigned int nbytes,
273 			  unsigned int transfer_id,
274 			  unsigned int flags)
275 {
276 	struct ath10k *ar = ce_state->ar;
277 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
278 	struct ce_desc *desc, *sdesc;
279 	unsigned int nentries_mask = src_ring->nentries_mask;
280 	unsigned int sw_index = src_ring->sw_index;
281 	unsigned int write_index = src_ring->write_index;
282 	u32 ctrl_addr = ce_state->ctrl_addr;
283 	u32 desc_flags = 0;
284 	int ret = 0;
285 
286 	if (nbytes > ce_state->src_sz_max)
287 		ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
288 			    __func__, nbytes, ce_state->src_sz_max);
289 
290 	ret = ath10k_pci_wake(ar);
291 	if (ret)
292 		return ret;
293 
294 	if (unlikely(CE_RING_DELTA(nentries_mask,
295 				   write_index, sw_index - 1) <= 0)) {
296 		ret = -ENOSR;
297 		goto exit;
298 	}
299 
300 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
301 				   write_index);
302 	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
303 
304 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
305 
306 	if (flags & CE_SEND_FLAG_GATHER)
307 		desc_flags |= CE_DESC_FLAGS_GATHER;
308 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
309 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
310 
311 	sdesc->addr   = __cpu_to_le32(buffer);
312 	sdesc->nbytes = __cpu_to_le16(nbytes);
313 	sdesc->flags  = __cpu_to_le16(desc_flags);
314 
315 	*desc = *sdesc;
316 
317 	src_ring->per_transfer_context[write_index] = per_transfer_context;
318 
319 	/* Update Source Ring Write Index */
320 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
321 
322 	/* WORKAROUND */
323 	if (!(flags & CE_SEND_FLAG_GATHER))
324 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
325 
326 	src_ring->write_index = write_index;
327 exit:
328 	ath10k_pci_sleep(ar);
329 	return ret;
330 }
331 
332 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
333 {
334 	struct ath10k *ar = pipe->ar;
335 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
336 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
337 	u32 ctrl_addr = pipe->ctrl_addr;
338 
339 	lockdep_assert_held(&ar_pci->ce_lock);
340 
341 	/*
342 	 * This function must be called only if there is an incomplete
343 	 * scatter-gather transfer (before index register is updated)
344 	 * that needs to be cleaned up.
345 	 */
346 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
347 		return;
348 
349 	if (WARN_ON_ONCE(src_ring->write_index ==
350 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
351 		return;
352 
353 	src_ring->write_index--;
354 	src_ring->write_index &= src_ring->nentries_mask;
355 
356 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
357 }
358 
359 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
360 		   void *per_transfer_context,
361 		   u32 buffer,
362 		   unsigned int nbytes,
363 		   unsigned int transfer_id,
364 		   unsigned int flags)
365 {
366 	struct ath10k *ar = ce_state->ar;
367 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
368 	int ret;
369 
370 	spin_lock_bh(&ar_pci->ce_lock);
371 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
372 				    buffer, nbytes, transfer_id, flags);
373 	spin_unlock_bh(&ar_pci->ce_lock);
374 
375 	return ret;
376 }
377 
378 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
379 {
380 	struct ath10k *ar = pipe->ar;
381 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
382 	int delta;
383 
384 	spin_lock_bh(&ar_pci->ce_lock);
385 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
386 			      pipe->src_ring->write_index,
387 			      pipe->src_ring->sw_index - 1);
388 	spin_unlock_bh(&ar_pci->ce_lock);
389 
390 	return delta;
391 }
392 
393 int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
394 			       void *per_recv_context,
395 			       u32 buffer)
396 {
397 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
398 	u32 ctrl_addr = ce_state->ctrl_addr;
399 	struct ath10k *ar = ce_state->ar;
400 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
401 	unsigned int nentries_mask = dest_ring->nentries_mask;
402 	unsigned int write_index;
403 	unsigned int sw_index;
404 	int ret;
405 
406 	spin_lock_bh(&ar_pci->ce_lock);
407 	write_index = dest_ring->write_index;
408 	sw_index = dest_ring->sw_index;
409 
410 	ret = ath10k_pci_wake(ar);
411 	if (ret)
412 		goto out;
413 
414 	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
415 		struct ce_desc *base = dest_ring->base_addr_owner_space;
416 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
417 
418 		/* Update destination descriptor */
419 		desc->addr    = __cpu_to_le32(buffer);
420 		desc->nbytes = 0;
421 
422 		dest_ring->per_transfer_context[write_index] =
423 							per_recv_context;
424 
425 		/* Update Destination Ring Write Index */
426 		write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
427 		ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
428 		dest_ring->write_index = write_index;
429 		ret = 0;
430 	} else {
431 		ret = -EIO;
432 	}
433 	ath10k_pci_sleep(ar);
434 
435 out:
436 	spin_unlock_bh(&ar_pci->ce_lock);
437 
438 	return ret;
439 }
440 
441 /*
442  * Guts of ath10k_ce_completed_recv_next.
443  * The caller takes responsibility for any necessary locking.
444  */
445 static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
446 						void **per_transfer_contextp,
447 						u32 *bufferp,
448 						unsigned int *nbytesp,
449 						unsigned int *transfer_idp,
450 						unsigned int *flagsp)
451 {
452 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
453 	unsigned int nentries_mask = dest_ring->nentries_mask;
454 	unsigned int sw_index = dest_ring->sw_index;
455 
456 	struct ce_desc *base = dest_ring->base_addr_owner_space;
457 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
458 	struct ce_desc sdesc;
459 	u16 nbytes;
460 
461 	/* Copy in one go for performance reasons */
462 	sdesc = *desc;
463 
464 	nbytes = __le16_to_cpu(sdesc.nbytes);
465 	if (nbytes == 0) {
466 		/*
467 		 * This closes a relatively unusual race where the Host
468 		 * sees the updated DRRI before the update to the
469 		 * corresponding descriptor has completed. We treat this
470 		 * as a descriptor that is not yet done.
471 		 */
472 		return -EIO;
473 	}
474 
475 	desc->nbytes = 0;
476 
477 	/* Return data from completed destination descriptor */
478 	*bufferp = __le32_to_cpu(sdesc.addr);
479 	*nbytesp = nbytes;
480 	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
481 
482 	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
483 		*flagsp = CE_RECV_FLAG_SWAPPED;
484 	else
485 		*flagsp = 0;
486 
487 	if (per_transfer_contextp)
488 		*per_transfer_contextp =
489 			dest_ring->per_transfer_context[sw_index];
490 
491 	/* sanity */
492 	dest_ring->per_transfer_context[sw_index] = NULL;
493 
494 	/* Update sw_index */
495 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
496 	dest_ring->sw_index = sw_index;
497 
498 	return 0;
499 }
500 
501 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
502 				  void **per_transfer_contextp,
503 				  u32 *bufferp,
504 				  unsigned int *nbytesp,
505 				  unsigned int *transfer_idp,
506 				  unsigned int *flagsp)
507 {
508 	struct ath10k *ar = ce_state->ar;
509 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
510 	int ret;
511 
512 	spin_lock_bh(&ar_pci->ce_lock);
513 	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
514 						   per_transfer_contextp,
515 						   bufferp, nbytesp,
516 						   transfer_idp, flagsp);
517 	spin_unlock_bh(&ar_pci->ce_lock);
518 
519 	return ret;
520 }
521 
522 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
523 			       void **per_transfer_contextp,
524 			       u32 *bufferp)
525 {
526 	struct ath10k_ce_ring *dest_ring;
527 	unsigned int nentries_mask;
528 	unsigned int sw_index;
529 	unsigned int write_index;
530 	int ret;
531 	struct ath10k *ar;
532 	struct ath10k_pci *ar_pci;
533 
534 	dest_ring = ce_state->dest_ring;
535 
536 	if (!dest_ring)
537 		return -EIO;
538 
539 	ar = ce_state->ar;
540 	ar_pci = ath10k_pci_priv(ar);
541 
542 	spin_lock_bh(&ar_pci->ce_lock);
543 
544 	nentries_mask = dest_ring->nentries_mask;
545 	sw_index = dest_ring->sw_index;
546 	write_index = dest_ring->write_index;
547 	if (write_index != sw_index) {
548 		struct ce_desc *base = dest_ring->base_addr_owner_space;
549 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
550 
551 		/* Return data from completed destination descriptor */
552 		*bufferp = __le32_to_cpu(desc->addr);
553 
554 		if (per_transfer_contextp)
555 			*per_transfer_contextp =
556 				dest_ring->per_transfer_context[sw_index];
557 
558 		/* sanity */
559 		dest_ring->per_transfer_context[sw_index] = NULL;
560 
561 		/* Update sw_index */
562 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
563 		dest_ring->sw_index = sw_index;
564 		ret = 0;
565 	} else {
566 		ret = -EIO;
567 	}
568 
569 	spin_unlock_bh(&ar_pci->ce_lock);
570 
571 	return ret;
572 }
573 
574 /*
575  * Guts of ath10k_ce_completed_send_next.
576  * The caller takes responsibility for any necessary locking.
577  */
578 static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
579 						void **per_transfer_contextp,
580 						u32 *bufferp,
581 						unsigned int *nbytesp,
582 						unsigned int *transfer_idp)
583 {
584 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
585 	u32 ctrl_addr = ce_state->ctrl_addr;
586 	struct ath10k *ar = ce_state->ar;
587 	unsigned int nentries_mask = src_ring->nentries_mask;
588 	unsigned int sw_index = src_ring->sw_index;
589 	struct ce_desc *sdesc, *sbase;
590 	unsigned int read_index;
591 	int ret;
592 
593 	if (src_ring->hw_index == sw_index) {
594 		/*
595 		 * The SW completion index has caught up with the cached
596 		 * version of the HW completion index.
597 		 * Update the cached HW completion index to see whether
598 		 * the SW has really caught up to the HW, or if the cached
599 		 * value of the HW index has become stale.
600 		 */
601 
602 		ret = ath10k_pci_wake(ar);
603 		if (ret)
604 			return ret;
605 
606 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
607 		if (read_index == 0xffffffff)
608 			return -ENODEV;
609 
610 		read_index &= nentries_mask;
611 		src_ring->hw_index = read_index;
612 
613 		ath10k_pci_sleep(ar);
614 	}
615 
616 	read_index = src_ring->hw_index;
617 
618 	if (read_index == sw_index)
619 		return -EIO;
620 
621 	sbase = src_ring->shadow_base;
622 	sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
623 
624 	/* Return data from completed source descriptor */
625 	*bufferp = __le32_to_cpu(sdesc->addr);
626 	*nbytesp = __le16_to_cpu(sdesc->nbytes);
627 	*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
628 			   CE_DESC_FLAGS_META_DATA);
629 
630 	if (per_transfer_contextp)
631 		*per_transfer_contextp =
632 			src_ring->per_transfer_context[sw_index];
633 
634 	/* sanity */
635 	src_ring->per_transfer_context[sw_index] = NULL;
636 
637 	/* Update sw_index */
638 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
639 	src_ring->sw_index = sw_index;
640 
641 	return 0;
642 }
643 
644 /* NB: Modeled after ath10k_ce_completed_send_next */
645 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
646 			       void **per_transfer_contextp,
647 			       u32 *bufferp,
648 			       unsigned int *nbytesp,
649 			       unsigned int *transfer_idp)
650 {
651 	struct ath10k_ce_ring *src_ring;
652 	unsigned int nentries_mask;
653 	unsigned int sw_index;
654 	unsigned int write_index;
655 	int ret;
656 	struct ath10k *ar;
657 	struct ath10k_pci *ar_pci;
658 
659 	src_ring = ce_state->src_ring;
660 
661 	if (!src_ring)
662 		return -EIO;
663 
664 	ar = ce_state->ar;
665 	ar_pci = ath10k_pci_priv(ar);
666 
667 	spin_lock_bh(&ar_pci->ce_lock);
668 
669 	nentries_mask = src_ring->nentries_mask;
670 	sw_index = src_ring->sw_index;
671 	write_index = src_ring->write_index;
672 
673 	if (write_index != sw_index) {
674 		struct ce_desc *base = src_ring->base_addr_owner_space;
675 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
676 
677 		/* Return data from completed source descriptor */
678 		*bufferp = __le32_to_cpu(desc->addr);
679 		*nbytesp = __le16_to_cpu(desc->nbytes);
680 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
681 						CE_DESC_FLAGS_META_DATA);
682 
683 		if (per_transfer_contextp)
684 			*per_transfer_contextp =
685 				src_ring->per_transfer_context[sw_index];
686 
687 		/* sanity */
688 		src_ring->per_transfer_context[sw_index] = NULL;
689 
690 		/* Update sw_index */
691 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
692 		src_ring->sw_index = sw_index;
693 		ret = 0;
694 	} else {
695 		ret = -EIO;
696 	}
697 
698 	spin_unlock_bh(&ar_pci->ce_lock);
699 
700 	return ret;
701 }
702 
703 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
704 				  void **per_transfer_contextp,
705 				  u32 *bufferp,
706 				  unsigned int *nbytesp,
707 				  unsigned int *transfer_idp)
708 {
709 	struct ath10k *ar = ce_state->ar;
710 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
711 	int ret;
712 
713 	spin_lock_bh(&ar_pci->ce_lock);
714 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
715 						   per_transfer_contextp,
716 						   bufferp, nbytesp,
717 						   transfer_idp);
718 	spin_unlock_bh(&ar_pci->ce_lock);
719 
720 	return ret;
721 }
722 
723 /*
724  * Guts of interrupt handler for per-engine interrupts on a particular CE.
725  *
726  * Invokes registered callbacks for recv_complete,
727  * send_complete, and watermarks.
728  */
729 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
730 {
731 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
732 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
733 	u32 ctrl_addr = ce_state->ctrl_addr;
734 	int ret;
735 
736 	ret = ath10k_pci_wake(ar);
737 	if (ret)
738 		return;
739 
740 	spin_lock_bh(&ar_pci->ce_lock);
741 
742 	/* Clear the copy-complete interrupts that will be handled here. */
743 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
744 					  HOST_IS_COPY_COMPLETE_MASK);
745 
746 	spin_unlock_bh(&ar_pci->ce_lock);
747 
748 	if (ce_state->recv_cb)
749 		ce_state->recv_cb(ce_state);
750 
751 	if (ce_state->send_cb)
752 		ce_state->send_cb(ce_state);
753 
754 	spin_lock_bh(&ar_pci->ce_lock);
755 
756 	/*
757 	 * Misc CE interrupts are not being handled, but still need
758 	 * to be cleared.
759 	 */
760 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
761 
762 	spin_unlock_bh(&ar_pci->ce_lock);
763 	ath10k_pci_sleep(ar);
764 }
765 
766 /*
767  * Handler for per-engine interrupts on ALL active CEs.
768  * This is used in cases where the system is sharing a
769  * single interrput for all CEs
770  */
771 
772 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
773 {
774 	int ce_id, ret;
775 	u32 intr_summary;
776 
777 	ret = ath10k_pci_wake(ar);
778 	if (ret)
779 		return;
780 
781 	intr_summary = CE_INTERRUPT_SUMMARY(ar);
782 
783 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
784 		if (intr_summary & (1 << ce_id))
785 			intr_summary &= ~(1 << ce_id);
786 		else
787 			/* no intr pending on this CE */
788 			continue;
789 
790 		ath10k_ce_per_engine_service(ar, ce_id);
791 	}
792 
793 	ath10k_pci_sleep(ar);
794 }
795 
796 /*
797  * Adjust interrupts for the copy complete handler.
798  * If it's needed for either send or recv, then unmask
799  * this interrupt; otherwise, mask it.
800  *
801  * Called with ce_lock held.
802  */
803 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
804 						int disable_copy_compl_intr)
805 {
806 	u32 ctrl_addr = ce_state->ctrl_addr;
807 	struct ath10k *ar = ce_state->ar;
808 	int ret;
809 
810 	ret = ath10k_pci_wake(ar);
811 	if (ret)
812 		return;
813 
814 	if ((!disable_copy_compl_intr) &&
815 	    (ce_state->send_cb || ce_state->recv_cb))
816 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
817 	else
818 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
819 
820 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
821 
822 	ath10k_pci_sleep(ar);
823 }
824 
825 int ath10k_ce_disable_interrupts(struct ath10k *ar)
826 {
827 	int ce_id, ret;
828 
829 	ret = ath10k_pci_wake(ar);
830 	if (ret)
831 		return ret;
832 
833 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
834 		u32 ctrl_addr = ath10k_ce_base_address(ce_id);
835 
836 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
837 		ath10k_ce_error_intr_disable(ar, ctrl_addr);
838 		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
839 	}
840 
841 	ath10k_pci_sleep(ar);
842 
843 	return 0;
844 }
845 
846 void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
847 				void (*send_cb)(struct ath10k_ce_pipe *),
848 				int disable_interrupts)
849 {
850 	struct ath10k *ar = ce_state->ar;
851 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
852 
853 	spin_lock_bh(&ar_pci->ce_lock);
854 	ce_state->send_cb = send_cb;
855 	ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
856 	spin_unlock_bh(&ar_pci->ce_lock);
857 }
858 
859 void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
860 				void (*recv_cb)(struct ath10k_ce_pipe *))
861 {
862 	struct ath10k *ar = ce_state->ar;
863 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
864 
865 	spin_lock_bh(&ar_pci->ce_lock);
866 	ce_state->recv_cb = recv_cb;
867 	ath10k_ce_per_engine_handler_adjust(ce_state, 0);
868 	spin_unlock_bh(&ar_pci->ce_lock);
869 }
870 
871 static int ath10k_ce_init_src_ring(struct ath10k *ar,
872 				   unsigned int ce_id,
873 				   const struct ce_attr *attr)
874 {
875 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
876 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
877 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
878 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
879 
880 	nentries = roundup_pow_of_two(attr->src_nentries);
881 
882 	memset(src_ring->per_transfer_context, 0,
883 	       nentries * sizeof(*src_ring->per_transfer_context));
884 
885 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
886 	src_ring->sw_index &= src_ring->nentries_mask;
887 	src_ring->hw_index = src_ring->sw_index;
888 
889 	src_ring->write_index =
890 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
891 	src_ring->write_index &= src_ring->nentries_mask;
892 
893 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
894 					 src_ring->base_addr_ce_space);
895 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
896 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
897 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
898 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
899 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
900 
901 	ath10k_dbg(ATH10K_DBG_BOOT,
902 		   "boot init ce src ring id %d entries %d base_addr %p\n",
903 		   ce_id, nentries, src_ring->base_addr_owner_space);
904 
905 	return 0;
906 }
907 
908 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
909 				    unsigned int ce_id,
910 				    const struct ce_attr *attr)
911 {
912 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
913 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
914 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
915 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
916 
917 	nentries = roundup_pow_of_two(attr->dest_nentries);
918 
919 	memset(dest_ring->per_transfer_context, 0,
920 	       nentries * sizeof(*dest_ring->per_transfer_context));
921 
922 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
923 	dest_ring->sw_index &= dest_ring->nentries_mask;
924 	dest_ring->write_index =
925 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
926 	dest_ring->write_index &= dest_ring->nentries_mask;
927 
928 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
929 					  dest_ring->base_addr_ce_space);
930 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
931 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
932 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
933 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
934 
935 	ath10k_dbg(ATH10K_DBG_BOOT,
936 		   "boot ce dest ring id %d entries %d base_addr %p\n",
937 		   ce_id, nentries, dest_ring->base_addr_owner_space);
938 
939 	return 0;
940 }
941 
942 static struct ath10k_ce_ring *
943 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
944 			 const struct ce_attr *attr)
945 {
946 	struct ath10k_ce_ring *src_ring;
947 	u32 nentries = attr->src_nentries;
948 	dma_addr_t base_addr;
949 
950 	nentries = roundup_pow_of_two(nentries);
951 
952 	src_ring = kzalloc(sizeof(*src_ring) +
953 			   (nentries *
954 			    sizeof(*src_ring->per_transfer_context)),
955 			   GFP_KERNEL);
956 	if (src_ring == NULL)
957 		return ERR_PTR(-ENOMEM);
958 
959 	src_ring->nentries = nentries;
960 	src_ring->nentries_mask = nentries - 1;
961 
962 	/*
963 	 * Legacy platforms that do not support cache
964 	 * coherent DMA are unsupported
965 	 */
966 	src_ring->base_addr_owner_space_unaligned =
967 		dma_alloc_coherent(ar->dev,
968 				   (nentries * sizeof(struct ce_desc) +
969 				    CE_DESC_RING_ALIGN),
970 				   &base_addr, GFP_KERNEL);
971 	if (!src_ring->base_addr_owner_space_unaligned) {
972 		kfree(src_ring);
973 		return ERR_PTR(-ENOMEM);
974 	}
975 
976 	src_ring->base_addr_ce_space_unaligned = base_addr;
977 
978 	src_ring->base_addr_owner_space = PTR_ALIGN(
979 			src_ring->base_addr_owner_space_unaligned,
980 			CE_DESC_RING_ALIGN);
981 	src_ring->base_addr_ce_space = ALIGN(
982 			src_ring->base_addr_ce_space_unaligned,
983 			CE_DESC_RING_ALIGN);
984 
985 	/*
986 	 * Also allocate a shadow src ring in regular
987 	 * mem to use for faster access.
988 	 */
989 	src_ring->shadow_base_unaligned =
990 		kmalloc((nentries * sizeof(struct ce_desc) +
991 			 CE_DESC_RING_ALIGN), GFP_KERNEL);
992 	if (!src_ring->shadow_base_unaligned) {
993 		dma_free_coherent(ar->dev,
994 				  (nentries * sizeof(struct ce_desc) +
995 				   CE_DESC_RING_ALIGN),
996 				  src_ring->base_addr_owner_space,
997 				  src_ring->base_addr_ce_space);
998 		kfree(src_ring);
999 		return ERR_PTR(-ENOMEM);
1000 	}
1001 
1002 	src_ring->shadow_base = PTR_ALIGN(
1003 			src_ring->shadow_base_unaligned,
1004 			CE_DESC_RING_ALIGN);
1005 
1006 	return src_ring;
1007 }
1008 
1009 static struct ath10k_ce_ring *
1010 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1011 			  const struct ce_attr *attr)
1012 {
1013 	struct ath10k_ce_ring *dest_ring;
1014 	u32 nentries;
1015 	dma_addr_t base_addr;
1016 
1017 	nentries = roundup_pow_of_two(attr->dest_nentries);
1018 
1019 	dest_ring = kzalloc(sizeof(*dest_ring) +
1020 			    (nentries *
1021 			     sizeof(*dest_ring->per_transfer_context)),
1022 			    GFP_KERNEL);
1023 	if (dest_ring == NULL)
1024 		return ERR_PTR(-ENOMEM);
1025 
1026 	dest_ring->nentries = nentries;
1027 	dest_ring->nentries_mask = nentries - 1;
1028 
1029 	/*
1030 	 * Legacy platforms that do not support cache
1031 	 * coherent DMA are unsupported
1032 	 */
1033 	dest_ring->base_addr_owner_space_unaligned =
1034 		dma_alloc_coherent(ar->dev,
1035 				   (nentries * sizeof(struct ce_desc) +
1036 				    CE_DESC_RING_ALIGN),
1037 				   &base_addr, GFP_KERNEL);
1038 	if (!dest_ring->base_addr_owner_space_unaligned) {
1039 		kfree(dest_ring);
1040 		return ERR_PTR(-ENOMEM);
1041 	}
1042 
1043 	dest_ring->base_addr_ce_space_unaligned = base_addr;
1044 
1045 	/*
1046 	 * Correctly initialize memory to 0 to prevent garbage
1047 	 * data crashing system when download firmware
1048 	 */
1049 	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1050 	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1051 
1052 	dest_ring->base_addr_owner_space = PTR_ALIGN(
1053 			dest_ring->base_addr_owner_space_unaligned,
1054 			CE_DESC_RING_ALIGN);
1055 	dest_ring->base_addr_ce_space = ALIGN(
1056 			dest_ring->base_addr_ce_space_unaligned,
1057 			CE_DESC_RING_ALIGN);
1058 
1059 	return dest_ring;
1060 }
1061 
1062 /*
1063  * Initialize a Copy Engine based on caller-supplied attributes.
1064  * This may be called once to initialize both source and destination
1065  * rings or it may be called twice for separate source and destination
1066  * initialization. It may be that only one side or the other is
1067  * initialized by software/firmware.
1068  */
1069 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1070 			const struct ce_attr *attr)
1071 {
1072 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1073 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1074 	int ret;
1075 
1076 	/*
1077 	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1078 	 * additional TX locking checks.
1079 	 *
1080 	 * For the lack of a better place do the check here.
1081 	 */
1082 	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1083 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1084 	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1085 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1086 
1087 	ret = ath10k_pci_wake(ar);
1088 	if (ret)
1089 		return ret;
1090 
1091 	spin_lock_bh(&ar_pci->ce_lock);
1092 	ce_state->ar = ar;
1093 	ce_state->id = ce_id;
1094 	ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
1095 	ce_state->attr_flags = attr->flags;
1096 	ce_state->src_sz_max = attr->src_sz_max;
1097 	spin_unlock_bh(&ar_pci->ce_lock);
1098 
1099 	if (attr->src_nentries) {
1100 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1101 		if (ret) {
1102 			ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
1103 				   ce_id, ret);
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	if (attr->dest_nentries) {
1109 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1110 		if (ret) {
1111 			ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
1112 				   ce_id, ret);
1113 			goto out;
1114 		}
1115 	}
1116 
1117 out:
1118 	ath10k_pci_sleep(ar);
1119 	return ret;
1120 }
1121 
1122 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1123 {
1124 	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1125 
1126 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1127 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1128 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1129 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1130 }
1131 
1132 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1133 {
1134 	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1135 
1136 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1137 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1138 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1139 }
1140 
1141 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1142 {
1143 	int ret;
1144 
1145 	ret = ath10k_pci_wake(ar);
1146 	if (ret)
1147 		return;
1148 
1149 	ath10k_ce_deinit_src_ring(ar, ce_id);
1150 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1151 
1152 	ath10k_pci_sleep(ar);
1153 }
1154 
1155 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1156 			 const struct ce_attr *attr)
1157 {
1158 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1159 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1160 	int ret;
1161 
1162 	if (attr->src_nentries) {
1163 		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1164 		if (IS_ERR(ce_state->src_ring)) {
1165 			ret = PTR_ERR(ce_state->src_ring);
1166 			ath10k_err("failed to allocate copy engine source ring %d: %d\n",
1167 				   ce_id, ret);
1168 			ce_state->src_ring = NULL;
1169 			return ret;
1170 		}
1171 	}
1172 
1173 	if (attr->dest_nentries) {
1174 		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1175 								attr);
1176 		if (IS_ERR(ce_state->dest_ring)) {
1177 			ret = PTR_ERR(ce_state->dest_ring);
1178 			ath10k_err("failed to allocate copy engine destination ring %d: %d\n",
1179 				   ce_id, ret);
1180 			ce_state->dest_ring = NULL;
1181 			return ret;
1182 		}
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1189 {
1190 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1191 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1192 
1193 	if (ce_state->src_ring) {
1194 		kfree(ce_state->src_ring->shadow_base_unaligned);
1195 		dma_free_coherent(ar->dev,
1196 				  (ce_state->src_ring->nentries *
1197 				   sizeof(struct ce_desc) +
1198 				   CE_DESC_RING_ALIGN),
1199 				  ce_state->src_ring->base_addr_owner_space,
1200 				  ce_state->src_ring->base_addr_ce_space);
1201 		kfree(ce_state->src_ring);
1202 	}
1203 
1204 	if (ce_state->dest_ring) {
1205 		dma_free_coherent(ar->dev,
1206 				  (ce_state->dest_ring->nentries *
1207 				   sizeof(struct ce_desc) +
1208 				   CE_DESC_RING_ALIGN),
1209 				  ce_state->dest_ring->base_addr_owner_space,
1210 				  ce_state->dest_ring->base_addr_ce_space);
1211 		kfree(ce_state->dest_ring);
1212 	}
1213 
1214 	ce_state->src_ring = NULL;
1215 	ce_state->dest_ring = NULL;
1216 }
1217