xref: /linux/drivers/net/wan/ixp4xx_hss.c (revision d0f482bb06f9447d44d2cae0386a0bd768c3cc16)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx HSS (synchronous serial port) driver for Linux
4  *
5  * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/bitops.h>
12 #include <linux/cdev.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/fs.h>
16 #include <linux/hdlc.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/platform_device.h>
20 #include <linux/platform_data/wan_ixp4xx_hss.h>
21 #include <linux/poll.h>
22 #include <linux/slab.h>
23 #include <linux/soc/ixp4xx/npe.h>
24 #include <linux/soc/ixp4xx/qmgr.h>
25 
26 #define DEBUG_DESC		0
27 #define DEBUG_RX		0
28 #define DEBUG_TX		0
29 #define DEBUG_PKT_BYTES		0
30 #define DEBUG_CLOSE		0
31 
32 #define DRV_NAME		"ixp4xx_hss"
33 
34 #define PKT_EXTRA_FLAGS		0 /* orig 1 */
35 #define PKT_NUM_PIPES		1 /* 1, 2 or 4 */
36 #define PKT_PIPE_FIFO_SIZEW	4 /* total 4 dwords per HSS */
37 
38 #define RX_DESCS		16 /* also length of all RX queues */
39 #define TX_DESCS		16 /* also length of all TX queues */
40 
41 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
42 #define RX_SIZE			(HDLC_MAX_MRU + 4) /* NPE needs more space */
43 #define MAX_CLOSE_WAIT		1000 /* microseconds */
44 #define HSS_COUNT		2
45 #define FRAME_SIZE		256 /* doesn't matter at this point */
46 #define FRAME_OFFSET		0
47 #define MAX_CHANNELS		(FRAME_SIZE / 8)
48 
49 #define NAPI_WEIGHT		16
50 
51 /* Queue IDs */
52 #define HSS0_CHL_RXTRIG_QUEUE	12	/* orig size = 32 dwords */
53 #define HSS0_PKT_RX_QUEUE	13	/* orig size = 32 dwords */
54 #define HSS0_PKT_TX0_QUEUE	14	/* orig size = 16 dwords */
55 #define HSS0_PKT_TX1_QUEUE	15
56 #define HSS0_PKT_TX2_QUEUE	16
57 #define HSS0_PKT_TX3_QUEUE	17
58 #define HSS0_PKT_RXFREE0_QUEUE	18	/* orig size = 16 dwords */
59 #define HSS0_PKT_RXFREE1_QUEUE	19
60 #define HSS0_PKT_RXFREE2_QUEUE	20
61 #define HSS0_PKT_RXFREE3_QUEUE	21
62 #define HSS0_PKT_TXDONE_QUEUE	22	/* orig size = 64 dwords */
63 
64 #define HSS1_CHL_RXTRIG_QUEUE	10
65 #define HSS1_PKT_RX_QUEUE	0
66 #define HSS1_PKT_TX0_QUEUE	5
67 #define HSS1_PKT_TX1_QUEUE	6
68 #define HSS1_PKT_TX2_QUEUE	7
69 #define HSS1_PKT_TX3_QUEUE	8
70 #define HSS1_PKT_RXFREE0_QUEUE	1
71 #define HSS1_PKT_RXFREE1_QUEUE	2
72 #define HSS1_PKT_RXFREE2_QUEUE	3
73 #define HSS1_PKT_RXFREE3_QUEUE	4
74 #define HSS1_PKT_TXDONE_QUEUE	9
75 
76 #define NPE_PKT_MODE_HDLC		0
77 #define NPE_PKT_MODE_RAW		1
78 #define NPE_PKT_MODE_56KMODE		2
79 #define NPE_PKT_MODE_56KENDIAN_MSB	4
80 
81 /* PKT_PIPE_HDLC_CFG_WRITE flags */
82 #define PKT_HDLC_IDLE_ONES		0x1 /* default = flags */
83 #define PKT_HDLC_CRC_32			0x2 /* default = CRC-16 */
84 #define PKT_HDLC_MSB_ENDIAN		0x4 /* default = LE */
85 
86 /* hss_config, PCRs */
87 /* Frame sync sampling, default = active low */
88 #define PCR_FRM_SYNC_ACTIVE_HIGH	0x40000000
89 #define PCR_FRM_SYNC_FALLINGEDGE	0x80000000
90 #define PCR_FRM_SYNC_RISINGEDGE		0xC0000000
91 
92 /* Frame sync pin: input (default) or output generated off a given clk edge */
93 #define PCR_FRM_SYNC_OUTPUT_FALLING	0x20000000
94 #define PCR_FRM_SYNC_OUTPUT_RISING	0x30000000
95 
96 /* Frame and data clock sampling on edge, default = falling */
97 #define PCR_FCLK_EDGE_RISING		0x08000000
98 #define PCR_DCLK_EDGE_RISING		0x04000000
99 
100 /* Clock direction, default = input */
101 #define PCR_SYNC_CLK_DIR_OUTPUT		0x02000000
102 
103 /* Generate/Receive frame pulses, default = enabled */
104 #define PCR_FRM_PULSE_DISABLED		0x01000000
105 
106  /* Data rate is full (default) or half the configured clk speed */
107 #define PCR_HALF_CLK_RATE		0x00200000
108 
109 /* Invert data between NPE and HSS FIFOs? (default = no) */
110 #define PCR_DATA_POLARITY_INVERT	0x00100000
111 
112 /* TX/RX endianness, default = LSB */
113 #define PCR_MSB_ENDIAN			0x00080000
114 
115 /* Normal (default) / open drain mode (TX only) */
116 #define PCR_TX_PINS_OPEN_DRAIN		0x00040000
117 
118 /* No framing bit transmitted and expected on RX? (default = framing bit) */
119 #define PCR_SOF_NO_FBIT			0x00020000
120 
121 /* Drive data pins? */
122 #define PCR_TX_DATA_ENABLE		0x00010000
123 
124 /* Voice 56k type: drive the data pins low (default), high, high Z */
125 #define PCR_TX_V56K_HIGH		0x00002000
126 #define PCR_TX_V56K_HIGH_IMP		0x00004000
127 
128 /* Unassigned type: drive the data pins low (default), high, high Z */
129 #define PCR_TX_UNASS_HIGH		0x00000800
130 #define PCR_TX_UNASS_HIGH_IMP		0x00001000
131 
132 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
133 #define PCR_TX_FB_HIGH_IMP		0x00000400
134 
135 /* 56k data endiannes - which bit unused: high (default) or low */
136 #define PCR_TX_56KE_BIT_0_UNUSED	0x00000200
137 
138 /* 56k data transmission type: 32/8 bit data (default) or 56K data */
139 #define PCR_TX_56KS_56K_DATA		0x00000100
140 
141 /* hss_config, cCR */
142 /* Number of packetized clients, default = 1 */
143 #define CCR_NPE_HFIFO_2_HDLC		0x04000000
144 #define CCR_NPE_HFIFO_3_OR_4HDLC	0x08000000
145 
146 /* default = no loopback */
147 #define CCR_LOOPBACK			0x02000000
148 
149 /* HSS number, default = 0 (first) */
150 #define CCR_SECOND_HSS			0x01000000
151 
152 /* hss_config, clkCR: main:10, num:10, denom:12 */
153 #define CLK42X_SPEED_EXP	((0x3FF << 22) | (2 << 12) |   15) /*65 KHz*/
154 
155 #define CLK42X_SPEED_512KHZ	((130 << 22) | (2 << 12) |   15)
156 #define CLK42X_SPEED_1536KHZ	((43 << 22) | (18 << 12) |   47)
157 #define CLK42X_SPEED_1544KHZ	((43 << 22) | (33 << 12) |  192)
158 #define CLK42X_SPEED_2048KHZ	((32 << 22) | (34 << 12) |   63)
159 #define CLK42X_SPEED_4096KHZ	((16 << 22) | (34 << 12) |  127)
160 #define CLK42X_SPEED_8192KHZ	((8 << 22) | (34 << 12) |  255)
161 
162 #define CLK46X_SPEED_512KHZ	((130 << 22) | (24 << 12) |  127)
163 #define CLK46X_SPEED_1536KHZ	((43 << 22) | (152 << 12) |  383)
164 #define CLK46X_SPEED_1544KHZ	((43 << 22) | (66 << 12) |  385)
165 #define CLK46X_SPEED_2048KHZ	((32 << 22) | (280 << 12) |  511)
166 #define CLK46X_SPEED_4096KHZ	((16 << 22) | (280 << 12) | 1023)
167 #define CLK46X_SPEED_8192KHZ	((8 << 22) | (280 << 12) | 2047)
168 
169 /* HSS_CONFIG_CLOCK_CR register consists of 3 parts:
170  *     A (10 bits), B (10 bits) and C (12 bits).
171  * IXP42x HSS clock generator operation (verified with an oscilloscope):
172  * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
173  * The clock sequence consists of (C - B) states of 0s and 1s, each state is
174  * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
175  * (A + 1) bits wide.
176  *
177  * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
178  * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
179  * minimum freq = 66.666 MHz / (A + 1)
180  * maximum freq = 66.666 MHz / A
181  *
182  * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
183  * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
184  * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
185  * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
186  * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
187  * The sequence consists of 4 complete clock periods, thus the average
188  * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
189  * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
190  */
191 
192 /* hss_config, LUT entries */
193 #define TDMMAP_UNASSIGNED	0
194 #define TDMMAP_HDLC		1	/* HDLC - packetized */
195 #define TDMMAP_VOICE56K		2	/* Voice56K - 7-bit channelized */
196 #define TDMMAP_VOICE64K		3	/* Voice64K - 8-bit channelized */
197 
198 /* offsets into HSS config */
199 #define HSS_CONFIG_TX_PCR	0x00 /* port configuration registers */
200 #define HSS_CONFIG_RX_PCR	0x04
201 #define HSS_CONFIG_CORE_CR	0x08 /* loopback control, HSS# */
202 #define HSS_CONFIG_CLOCK_CR	0x0C /* clock generator control */
203 #define HSS_CONFIG_TX_FCR	0x10 /* frame configuration registers */
204 #define HSS_CONFIG_RX_FCR	0x14
205 #define HSS_CONFIG_TX_LUT	0x18 /* channel look-up tables */
206 #define HSS_CONFIG_RX_LUT	0x38
207 
208 /* NPE command codes */
209 /* writes the ConfigWord value to the location specified by offset */
210 #define PORT_CONFIG_WRITE		0x40
211 
212 /* triggers the NPE to load the contents of the configuration table */
213 #define PORT_CONFIG_LOAD		0x41
214 
215 /* triggers the NPE to return an HssErrorReadResponse message */
216 #define PORT_ERROR_READ			0x42
217 
218 /* triggers the NPE to reset internal status and enable the HssPacketized
219  * operation for the flow specified by pPipe
220  */
221 #define PKT_PIPE_FLOW_ENABLE		0x50
222 #define PKT_PIPE_FLOW_DISABLE		0x51
223 #define PKT_NUM_PIPES_WRITE		0x52
224 #define PKT_PIPE_FIFO_SIZEW_WRITE	0x53
225 #define PKT_PIPE_HDLC_CFG_WRITE		0x54
226 #define PKT_PIPE_IDLE_PATTERN_WRITE	0x55
227 #define PKT_PIPE_RX_SIZE_WRITE		0x56
228 #define PKT_PIPE_MODE_WRITE		0x57
229 
230 /* HDLC packet status values - desc->status */
231 #define ERR_SHUTDOWN		1 /* stop or shutdown occurrence */
232 #define ERR_HDLC_ALIGN		2 /* HDLC alignment error */
233 #define ERR_HDLC_FCS		3 /* HDLC Frame Check Sum error */
234 #define ERR_RXFREE_Q_EMPTY	4 /* RX-free queue became empty while receiving
235 				   * this packet (if buf_len < pkt_len)
236 				   */
237 #define ERR_HDLC_TOO_LONG	5 /* HDLC frame size too long */
238 #define ERR_HDLC_ABORT		6 /* abort sequence received */
239 #define ERR_DISCONNECTING	7 /* disconnect is in progress */
240 
241 #ifdef __ARMEB__
242 typedef struct sk_buff buffer_t;
243 #define free_buffer dev_kfree_skb
244 #define free_buffer_irq dev_consume_skb_irq
245 #else
246 typedef void buffer_t;
247 #define free_buffer kfree
248 #define free_buffer_irq kfree
249 #endif
250 
251 struct port {
252 	struct device *dev;
253 	struct npe *npe;
254 	struct net_device *netdev;
255 	struct napi_struct napi;
256 	struct hss_plat_info *plat;
257 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
258 	struct desc *desc_tab;	/* coherent */
259 	dma_addr_t desc_tab_phys;
260 	unsigned int id;
261 	unsigned int clock_type, clock_rate, loopback;
262 	unsigned int initialized, carrier;
263 	u8 hdlc_cfg;
264 	u32 clock_reg;
265 };
266 
267 /* NPE message structure */
268 struct msg {
269 #ifdef __ARMEB__
270 	u8 cmd, unused, hss_port, index;
271 	union {
272 		struct { u8 data8a, data8b, data8c, data8d; };
273 		struct { u16 data16a, data16b; };
274 		struct { u32 data32; };
275 	};
276 #else
277 	u8 index, hss_port, unused, cmd;
278 	union {
279 		struct { u8 data8d, data8c, data8b, data8a; };
280 		struct { u16 data16b, data16a; };
281 		struct { u32 data32; };
282 	};
283 #endif
284 };
285 
286 /* HDLC packet descriptor */
287 struct desc {
288 	u32 next;		/* pointer to next buffer, unused */
289 
290 #ifdef __ARMEB__
291 	u16 buf_len;		/* buffer length */
292 	u16 pkt_len;		/* packet length */
293 	u32 data;		/* pointer to data buffer in RAM */
294 	u8 status;
295 	u8 error_count;
296 	u16 __reserved;
297 #else
298 	u16 pkt_len;		/* packet length */
299 	u16 buf_len;		/* buffer length */
300 	u32 data;		/* pointer to data buffer in RAM */
301 	u16 __reserved;
302 	u8 error_count;
303 	u8 status;
304 #endif
305 	u32 __reserved1[4];
306 };
307 
308 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
309 				 (n) * sizeof(struct desc))
310 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
311 
312 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
313 				 ((n) + RX_DESCS) * sizeof(struct desc))
314 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
315 
316 /*****************************************************************************
317  * global variables
318  ****************************************************************************/
319 
320 static int ports_open;
321 static struct dma_pool *dma_pool;
322 static DEFINE_SPINLOCK(npe_lock);
323 
324 static const struct {
325 	int tx, txdone, rx, rxfree;
326 } queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
327 		  HSS0_PKT_RXFREE0_QUEUE},
328 		 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
329 		  HSS1_PKT_RXFREE0_QUEUE},
330 };
331 
332 /*****************************************************************************
333  * utility functions
334  ****************************************************************************/
335 
336 static inline struct port *dev_to_port(struct net_device *dev)
337 {
338 	return dev_to_hdlc(dev)->priv;
339 }
340 
341 #ifndef __ARMEB__
342 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
343 {
344 	int i;
345 
346 	for (i = 0; i < cnt; i++)
347 		dest[i] = swab32(src[i]);
348 }
349 #endif
350 
351 /*****************************************************************************
352  * HSS access
353  ****************************************************************************/
354 
355 static void hss_npe_send(struct port *port, struct msg *msg, const char *what)
356 {
357 	u32 *val = (u32 *)msg;
358 
359 	if (npe_send_message(port->npe, msg, what)) {
360 		pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
361 			port->id, val[0], val[1], npe_name(port->npe));
362 		BUG();
363 	}
364 }
365 
366 static void hss_config_set_lut(struct port *port)
367 {
368 	struct msg msg;
369 	int ch;
370 
371 	memset(&msg, 0, sizeof(msg));
372 	msg.cmd = PORT_CONFIG_WRITE;
373 	msg.hss_port = port->id;
374 
375 	for (ch = 0; ch < MAX_CHANNELS; ch++) {
376 		msg.data32 >>= 2;
377 		msg.data32 |= TDMMAP_HDLC << 30;
378 
379 		if (ch % 16 == 15) {
380 			msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
381 			hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
382 
383 			msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
384 			hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
385 		}
386 	}
387 }
388 
389 static void hss_config(struct port *port)
390 {
391 	struct msg msg;
392 
393 	memset(&msg, 0, sizeof(msg));
394 	msg.cmd = PORT_CONFIG_WRITE;
395 	msg.hss_port = port->id;
396 	msg.index = HSS_CONFIG_TX_PCR;
397 	msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
398 		PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
399 	if (port->clock_type == CLOCK_INT)
400 		msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
401 	hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
402 
403 	msg.index = HSS_CONFIG_RX_PCR;
404 	msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
405 	hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
406 
407 	memset(&msg, 0, sizeof(msg));
408 	msg.cmd = PORT_CONFIG_WRITE;
409 	msg.hss_port = port->id;
410 	msg.index = HSS_CONFIG_CORE_CR;
411 	msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
412 		(port->id ? CCR_SECOND_HSS : 0);
413 	hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
414 
415 	memset(&msg, 0, sizeof(msg));
416 	msg.cmd = PORT_CONFIG_WRITE;
417 	msg.hss_port = port->id;
418 	msg.index = HSS_CONFIG_CLOCK_CR;
419 	msg.data32 = port->clock_reg;
420 	hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
421 
422 	memset(&msg, 0, sizeof(msg));
423 	msg.cmd = PORT_CONFIG_WRITE;
424 	msg.hss_port = port->id;
425 	msg.index = HSS_CONFIG_TX_FCR;
426 	msg.data16a = FRAME_OFFSET;
427 	msg.data16b = FRAME_SIZE - 1;
428 	hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
429 
430 	memset(&msg, 0, sizeof(msg));
431 	msg.cmd = PORT_CONFIG_WRITE;
432 	msg.hss_port = port->id;
433 	msg.index = HSS_CONFIG_RX_FCR;
434 	msg.data16a = FRAME_OFFSET;
435 	msg.data16b = FRAME_SIZE - 1;
436 	hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
437 
438 	hss_config_set_lut(port);
439 
440 	memset(&msg, 0, sizeof(msg));
441 	msg.cmd = PORT_CONFIG_LOAD;
442 	msg.hss_port = port->id;
443 	hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
444 
445 	if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
446 	    /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
447 	    msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
448 		pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
449 		BUG();
450 	}
451 
452 	/* HDLC may stop working without this - check FIXME */
453 	npe_recv_message(port->npe, &msg, "FLUSH_IT");
454 }
455 
456 static void hss_set_hdlc_cfg(struct port *port)
457 {
458 	struct msg msg;
459 
460 	memset(&msg, 0, sizeof(msg));
461 	msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
462 	msg.hss_port = port->id;
463 	msg.data8a = port->hdlc_cfg; /* rx_cfg */
464 	msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
465 	hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
466 }
467 
468 static u32 hss_get_status(struct port *port)
469 {
470 	struct msg msg;
471 
472 	memset(&msg, 0, sizeof(msg));
473 	msg.cmd = PORT_ERROR_READ;
474 	msg.hss_port = port->id;
475 	hss_npe_send(port, &msg, "PORT_ERROR_READ");
476 	if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
477 		pr_crit("HSS-%i: unable to read HSS status\n", port->id);
478 		BUG();
479 	}
480 
481 	return msg.data32;
482 }
483 
484 static void hss_start_hdlc(struct port *port)
485 {
486 	struct msg msg;
487 
488 	memset(&msg, 0, sizeof(msg));
489 	msg.cmd = PKT_PIPE_FLOW_ENABLE;
490 	msg.hss_port = port->id;
491 	msg.data32 = 0;
492 	hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
493 }
494 
495 static void hss_stop_hdlc(struct port *port)
496 {
497 	struct msg msg;
498 
499 	memset(&msg, 0, sizeof(msg));
500 	msg.cmd = PKT_PIPE_FLOW_DISABLE;
501 	msg.hss_port = port->id;
502 	hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
503 	hss_get_status(port); /* make sure it's halted */
504 }
505 
506 static int hss_load_firmware(struct port *port)
507 {
508 	struct msg msg;
509 	int err;
510 
511 	if (port->initialized)
512 		return 0;
513 
514 	if (!npe_running(port->npe)) {
515 		err = npe_load_firmware(port->npe, npe_name(port->npe),
516 					port->dev);
517 		if (err)
518 			return err;
519 	}
520 
521 	/* HDLC mode configuration */
522 	memset(&msg, 0, sizeof(msg));
523 	msg.cmd = PKT_NUM_PIPES_WRITE;
524 	msg.hss_port = port->id;
525 	msg.data8a = PKT_NUM_PIPES;
526 	hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
527 
528 	msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
529 	msg.data8a = PKT_PIPE_FIFO_SIZEW;
530 	hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
531 
532 	msg.cmd = PKT_PIPE_MODE_WRITE;
533 	msg.data8a = NPE_PKT_MODE_HDLC;
534 	/* msg.data8b = inv_mask */
535 	/* msg.data8c = or_mask */
536 	hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
537 
538 	msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
539 	msg.data16a = HDLC_MAX_MRU; /* including CRC */
540 	hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
541 
542 	msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
543 	msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
544 	hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
545 
546 	port->initialized = 1;
547 	return 0;
548 }
549 
550 /*****************************************************************************
551  * packetized (HDLC) operation
552  ****************************************************************************/
553 
554 static inline void debug_pkt(struct net_device *dev, const char *func,
555 			     u8 *data, int len)
556 {
557 #if DEBUG_PKT_BYTES
558 	int i;
559 
560 	printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
561 	for (i = 0; i < len; i++) {
562 		if (i >= DEBUG_PKT_BYTES)
563 			break;
564 		printk("%s%02X", !(i % 4) ? " " : "", data[i]);
565 	}
566 	printk("\n");
567 #endif
568 }
569 
570 static inline void debug_desc(u32 phys, struct desc *desc)
571 {
572 #if DEBUG_DESC
573 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
574 	       phys, desc->next, desc->buf_len, desc->pkt_len,
575 	       desc->data, desc->status, desc->error_count);
576 #endif
577 }
578 
579 static inline int queue_get_desc(unsigned int queue, struct port *port,
580 				 int is_tx)
581 {
582 	u32 phys, tab_phys, n_desc;
583 	struct desc *tab;
584 
585 	phys = qmgr_get_entry(queue);
586 	if (!phys)
587 		return -1;
588 
589 	BUG_ON(phys & 0x1F);
590 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
591 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
592 	n_desc = (phys - tab_phys) / sizeof(struct desc);
593 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
594 	debug_desc(phys, &tab[n_desc]);
595 	BUG_ON(tab[n_desc].next);
596 	return n_desc;
597 }
598 
599 static inline void queue_put_desc(unsigned int queue, u32 phys,
600 				  struct desc *desc)
601 {
602 	debug_desc(phys, desc);
603 	BUG_ON(phys & 0x1F);
604 	qmgr_put_entry(queue, phys);
605 	/* Don't check for queue overflow here, we've allocated sufficient
606 	 * length and queues >= 32 don't support this check anyway.
607 	 */
608 }
609 
610 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
611 {
612 #ifdef __ARMEB__
613 	dma_unmap_single(&port->netdev->dev, desc->data,
614 			 desc->buf_len, DMA_TO_DEVICE);
615 #else
616 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
617 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
618 			 DMA_TO_DEVICE);
619 #endif
620 }
621 
622 static void hss_hdlc_set_carrier(void *pdev, int carrier)
623 {
624 	struct net_device *netdev = pdev;
625 	struct port *port = dev_to_port(netdev);
626 	unsigned long flags;
627 
628 	spin_lock_irqsave(&npe_lock, flags);
629 	port->carrier = carrier;
630 	if (!port->loopback) {
631 		if (carrier)
632 			netif_carrier_on(netdev);
633 		else
634 			netif_carrier_off(netdev);
635 	}
636 	spin_unlock_irqrestore(&npe_lock, flags);
637 }
638 
639 static void hss_hdlc_rx_irq(void *pdev)
640 {
641 	struct net_device *dev = pdev;
642 	struct port *port = dev_to_port(dev);
643 
644 #if DEBUG_RX
645 	printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
646 #endif
647 	qmgr_disable_irq(queue_ids[port->id].rx);
648 	napi_schedule(&port->napi);
649 }
650 
651 static int hss_hdlc_poll(struct napi_struct *napi, int budget)
652 {
653 	struct port *port = container_of(napi, struct port, napi);
654 	struct net_device *dev = port->netdev;
655 	unsigned int rxq = queue_ids[port->id].rx;
656 	unsigned int rxfreeq = queue_ids[port->id].rxfree;
657 	int received = 0;
658 
659 #if DEBUG_RX
660 	printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
661 #endif
662 
663 	while (received < budget) {
664 		struct sk_buff *skb;
665 		struct desc *desc;
666 		int n;
667 #ifdef __ARMEB__
668 		struct sk_buff *temp;
669 		u32 phys;
670 #endif
671 
672 		n = queue_get_desc(rxq, port, 0);
673 		if (n < 0) {
674 #if DEBUG_RX
675 			printk(KERN_DEBUG "%s: hss_hdlc_poll"
676 			       " napi_complete\n", dev->name);
677 #endif
678 			napi_complete(napi);
679 			qmgr_enable_irq(rxq);
680 			if (!qmgr_stat_empty(rxq) &&
681 			    napi_reschedule(napi)) {
682 #if DEBUG_RX
683 				printk(KERN_DEBUG "%s: hss_hdlc_poll"
684 				       " napi_reschedule succeeded\n",
685 				       dev->name);
686 #endif
687 				qmgr_disable_irq(rxq);
688 				continue;
689 			}
690 #if DEBUG_RX
691 			printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
692 			       dev->name);
693 #endif
694 			return received; /* all work done */
695 		}
696 
697 		desc = rx_desc_ptr(port, n);
698 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
699 		if (desc->error_count)
700 			printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
701 			       " errors %u\n", dev->name, desc->status,
702 			       desc->error_count);
703 #endif
704 		skb = NULL;
705 		switch (desc->status) {
706 		case 0:
707 #ifdef __ARMEB__
708 			skb = netdev_alloc_skb(dev, RX_SIZE);
709 			if (skb) {
710 				phys = dma_map_single(&dev->dev, skb->data,
711 						      RX_SIZE,
712 						      DMA_FROM_DEVICE);
713 				if (dma_mapping_error(&dev->dev, phys)) {
714 					dev_kfree_skb(skb);
715 					skb = NULL;
716 				}
717 			}
718 #else
719 			skb = netdev_alloc_skb(dev, desc->pkt_len);
720 #endif
721 			if (!skb)
722 				dev->stats.rx_dropped++;
723 			break;
724 		case ERR_HDLC_ALIGN:
725 		case ERR_HDLC_ABORT:
726 			dev->stats.rx_frame_errors++;
727 			dev->stats.rx_errors++;
728 			break;
729 		case ERR_HDLC_FCS:
730 			dev->stats.rx_crc_errors++;
731 			dev->stats.rx_errors++;
732 			break;
733 		case ERR_HDLC_TOO_LONG:
734 			dev->stats.rx_length_errors++;
735 			dev->stats.rx_errors++;
736 			break;
737 		default:	/* FIXME - remove printk */
738 			netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
739 				   desc->status, desc->error_count);
740 			dev->stats.rx_errors++;
741 		}
742 
743 		if (!skb) {
744 			/* put the desc back on RX-ready queue */
745 			desc->buf_len = RX_SIZE;
746 			desc->pkt_len = desc->status = 0;
747 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
748 			continue;
749 		}
750 
751 		/* process received frame */
752 #ifdef __ARMEB__
753 		temp = skb;
754 		skb = port->rx_buff_tab[n];
755 		dma_unmap_single(&dev->dev, desc->data,
756 				 RX_SIZE, DMA_FROM_DEVICE);
757 #else
758 		dma_sync_single_for_cpu(&dev->dev, desc->data,
759 					RX_SIZE, DMA_FROM_DEVICE);
760 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
761 			      ALIGN(desc->pkt_len, 4) / 4);
762 #endif
763 		skb_put(skb, desc->pkt_len);
764 
765 		debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
766 
767 		skb->protocol = hdlc_type_trans(skb, dev);
768 		dev->stats.rx_packets++;
769 		dev->stats.rx_bytes += skb->len;
770 		netif_receive_skb(skb);
771 
772 		/* put the new buffer on RX-free queue */
773 #ifdef __ARMEB__
774 		port->rx_buff_tab[n] = temp;
775 		desc->data = phys;
776 #endif
777 		desc->buf_len = RX_SIZE;
778 		desc->pkt_len = 0;
779 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
780 		received++;
781 	}
782 #if DEBUG_RX
783 	printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
784 #endif
785 	return received;	/* not all work done */
786 }
787 
788 static void hss_hdlc_txdone_irq(void *pdev)
789 {
790 	struct net_device *dev = pdev;
791 	struct port *port = dev_to_port(dev);
792 	int n_desc;
793 
794 #if DEBUG_TX
795 	printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
796 #endif
797 	while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
798 					port, 1)) >= 0) {
799 		struct desc *desc;
800 		int start;
801 
802 		desc = tx_desc_ptr(port, n_desc);
803 
804 		dev->stats.tx_packets++;
805 		dev->stats.tx_bytes += desc->pkt_len;
806 
807 		dma_unmap_tx(port, desc);
808 #if DEBUG_TX
809 		printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
810 		       dev->name, port->tx_buff_tab[n_desc]);
811 #endif
812 		free_buffer_irq(port->tx_buff_tab[n_desc]);
813 		port->tx_buff_tab[n_desc] = NULL;
814 
815 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
816 		queue_put_desc(port->plat->txreadyq,
817 			       tx_desc_phys(port, n_desc), desc);
818 		if (start) { /* TX-ready queue was empty */
819 #if DEBUG_TX
820 			printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
821 			       " ready\n", dev->name);
822 #endif
823 			netif_wake_queue(dev);
824 		}
825 	}
826 }
827 
828 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
829 {
830 	struct port *port = dev_to_port(dev);
831 	unsigned int txreadyq = port->plat->txreadyq;
832 	int len, offset, bytes, n;
833 	void *mem;
834 	u32 phys;
835 	struct desc *desc;
836 
837 #if DEBUG_TX
838 	printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
839 #endif
840 
841 	if (unlikely(skb->len > HDLC_MAX_MRU)) {
842 		dev_kfree_skb(skb);
843 		dev->stats.tx_errors++;
844 		return NETDEV_TX_OK;
845 	}
846 
847 	debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
848 
849 	len = skb->len;
850 #ifdef __ARMEB__
851 	offset = 0; /* no need to keep alignment */
852 	bytes = len;
853 	mem = skb->data;
854 #else
855 	offset = (int)skb->data & 3; /* keep 32-bit alignment */
856 	bytes = ALIGN(offset + len, 4);
857 	mem = kmalloc(bytes, GFP_ATOMIC);
858 	if (!mem) {
859 		dev_kfree_skb(skb);
860 		dev->stats.tx_dropped++;
861 		return NETDEV_TX_OK;
862 	}
863 	memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
864 	dev_kfree_skb(skb);
865 #endif
866 
867 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
868 	if (dma_mapping_error(&dev->dev, phys)) {
869 #ifdef __ARMEB__
870 		dev_kfree_skb(skb);
871 #else
872 		kfree(mem);
873 #endif
874 		dev->stats.tx_dropped++;
875 		return NETDEV_TX_OK;
876 	}
877 
878 	n = queue_get_desc(txreadyq, port, 1);
879 	BUG_ON(n < 0);
880 	desc = tx_desc_ptr(port, n);
881 
882 #ifdef __ARMEB__
883 	port->tx_buff_tab[n] = skb;
884 #else
885 	port->tx_buff_tab[n] = mem;
886 #endif
887 	desc->data = phys + offset;
888 	desc->buf_len = desc->pkt_len = len;
889 
890 	wmb();
891 	queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
892 
893 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
894 #if DEBUG_TX
895 		printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
896 #endif
897 		netif_stop_queue(dev);
898 		/* we could miss TX ready interrupt */
899 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
900 #if DEBUG_TX
901 			printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
902 			       dev->name);
903 #endif
904 			netif_wake_queue(dev);
905 		}
906 	}
907 
908 #if DEBUG_TX
909 	printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
910 #endif
911 	return NETDEV_TX_OK;
912 }
913 
914 static int request_hdlc_queues(struct port *port)
915 {
916 	int err;
917 
918 	err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
919 				 "%s:RX-free", port->netdev->name);
920 	if (err)
921 		return err;
922 
923 	err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
924 				 "%s:RX", port->netdev->name);
925 	if (err)
926 		goto rel_rxfree;
927 
928 	err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
929 				 "%s:TX", port->netdev->name);
930 	if (err)
931 		goto rel_rx;
932 
933 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
934 				 "%s:TX-ready", port->netdev->name);
935 	if (err)
936 		goto rel_tx;
937 
938 	err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
939 				 "%s:TX-done", port->netdev->name);
940 	if (err)
941 		goto rel_txready;
942 	return 0;
943 
944 rel_txready:
945 	qmgr_release_queue(port->plat->txreadyq);
946 rel_tx:
947 	qmgr_release_queue(queue_ids[port->id].tx);
948 rel_rx:
949 	qmgr_release_queue(queue_ids[port->id].rx);
950 rel_rxfree:
951 	qmgr_release_queue(queue_ids[port->id].rxfree);
952 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
953 	       port->netdev->name);
954 	return err;
955 }
956 
957 static void release_hdlc_queues(struct port *port)
958 {
959 	qmgr_release_queue(queue_ids[port->id].rxfree);
960 	qmgr_release_queue(queue_ids[port->id].rx);
961 	qmgr_release_queue(queue_ids[port->id].txdone);
962 	qmgr_release_queue(queue_ids[port->id].tx);
963 	qmgr_release_queue(port->plat->txreadyq);
964 }
965 
966 static int init_hdlc_queues(struct port *port)
967 {
968 	int i;
969 
970 	if (!ports_open) {
971 		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
972 					   POOL_ALLOC_SIZE, 32, 0);
973 		if (!dma_pool)
974 			return -ENOMEM;
975 	}
976 
977 	port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
978 					&port->desc_tab_phys);
979 	if (!port->desc_tab)
980 		return -ENOMEM;
981 	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
982 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
983 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
984 
985 	/* Setup RX buffers */
986 	for (i = 0; i < RX_DESCS; i++) {
987 		struct desc *desc = rx_desc_ptr(port, i);
988 		buffer_t *buff;
989 		void *data;
990 #ifdef __ARMEB__
991 		buff = netdev_alloc_skb(port->netdev, RX_SIZE);
992 		if (!buff)
993 			return -ENOMEM;
994 		data = buff->data;
995 #else
996 		buff = kmalloc(RX_SIZE, GFP_KERNEL);
997 		if (!buff)
998 			return -ENOMEM;
999 		data = buff;
1000 #endif
1001 		desc->buf_len = RX_SIZE;
1002 		desc->data = dma_map_single(&port->netdev->dev, data,
1003 					    RX_SIZE, DMA_FROM_DEVICE);
1004 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1005 			free_buffer(buff);
1006 			return -EIO;
1007 		}
1008 		port->rx_buff_tab[i] = buff;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static void destroy_hdlc_queues(struct port *port)
1015 {
1016 	int i;
1017 
1018 	if (port->desc_tab) {
1019 		for (i = 0; i < RX_DESCS; i++) {
1020 			struct desc *desc = rx_desc_ptr(port, i);
1021 			buffer_t *buff = port->rx_buff_tab[i];
1022 
1023 			if (buff) {
1024 				dma_unmap_single(&port->netdev->dev,
1025 						 desc->data, RX_SIZE,
1026 						 DMA_FROM_DEVICE);
1027 				free_buffer(buff);
1028 			}
1029 		}
1030 		for (i = 0; i < TX_DESCS; i++) {
1031 			struct desc *desc = tx_desc_ptr(port, i);
1032 			buffer_t *buff = port->tx_buff_tab[i];
1033 
1034 			if (buff) {
1035 				dma_unmap_tx(port, desc);
1036 				free_buffer(buff);
1037 			}
1038 		}
1039 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1040 		port->desc_tab = NULL;
1041 	}
1042 
1043 	if (!ports_open && dma_pool) {
1044 		dma_pool_destroy(dma_pool);
1045 		dma_pool = NULL;
1046 	}
1047 }
1048 
1049 static int hss_hdlc_open(struct net_device *dev)
1050 {
1051 	struct port *port = dev_to_port(dev);
1052 	unsigned long flags;
1053 	int i, err = 0;
1054 
1055 	err = hdlc_open(dev);
1056 	if (err)
1057 		return err;
1058 
1059 	err = hss_load_firmware(port);
1060 	if (err)
1061 		goto err_hdlc_close;
1062 
1063 	err = request_hdlc_queues(port);
1064 	if (err)
1065 		goto err_hdlc_close;
1066 
1067 	err = init_hdlc_queues(port);
1068 	if (err)
1069 		goto err_destroy_queues;
1070 
1071 	spin_lock_irqsave(&npe_lock, flags);
1072 	if (port->plat->open) {
1073 		err = port->plat->open(port->id, dev, hss_hdlc_set_carrier);
1074 		if (err)
1075 			goto err_unlock;
1076 	}
1077 
1078 	spin_unlock_irqrestore(&npe_lock, flags);
1079 
1080 	/* Populate queues with buffers, no failure after this point */
1081 	for (i = 0; i < TX_DESCS; i++)
1082 		queue_put_desc(port->plat->txreadyq,
1083 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1084 
1085 	for (i = 0; i < RX_DESCS; i++)
1086 		queue_put_desc(queue_ids[port->id].rxfree,
1087 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1088 
1089 	napi_enable(&port->napi);
1090 	netif_start_queue(dev);
1091 
1092 	qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1093 		     hss_hdlc_rx_irq, dev);
1094 
1095 	qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1096 		     hss_hdlc_txdone_irq, dev);
1097 	qmgr_enable_irq(queue_ids[port->id].txdone);
1098 
1099 	ports_open++;
1100 
1101 	hss_set_hdlc_cfg(port);
1102 	hss_config(port);
1103 
1104 	hss_start_hdlc(port);
1105 
1106 	/* we may already have RX data, enables IRQ */
1107 	napi_schedule(&port->napi);
1108 	return 0;
1109 
1110 err_unlock:
1111 	spin_unlock_irqrestore(&npe_lock, flags);
1112 err_destroy_queues:
1113 	destroy_hdlc_queues(port);
1114 	release_hdlc_queues(port);
1115 err_hdlc_close:
1116 	hdlc_close(dev);
1117 	return err;
1118 }
1119 
1120 static int hss_hdlc_close(struct net_device *dev)
1121 {
1122 	struct port *port = dev_to_port(dev);
1123 	unsigned long flags;
1124 	int i, buffs = RX_DESCS; /* allocated RX buffers */
1125 
1126 	spin_lock_irqsave(&npe_lock, flags);
1127 	ports_open--;
1128 	qmgr_disable_irq(queue_ids[port->id].rx);
1129 	netif_stop_queue(dev);
1130 	napi_disable(&port->napi);
1131 
1132 	hss_stop_hdlc(port);
1133 
1134 	while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1135 		buffs--;
1136 	while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1137 		buffs--;
1138 
1139 	if (buffs)
1140 		netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1141 			    buffs);
1142 
1143 	buffs = TX_DESCS;
1144 	while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1145 		buffs--; /* cancel TX */
1146 
1147 	i = 0;
1148 	do {
1149 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1150 			buffs--;
1151 		if (!buffs)
1152 			break;
1153 	} while (++i < MAX_CLOSE_WAIT);
1154 
1155 	if (buffs)
1156 		netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1157 			    buffs);
1158 #if DEBUG_CLOSE
1159 	if (!buffs)
1160 		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1161 #endif
1162 	qmgr_disable_irq(queue_ids[port->id].txdone);
1163 
1164 	if (port->plat->close)
1165 		port->plat->close(port->id, dev);
1166 	spin_unlock_irqrestore(&npe_lock, flags);
1167 
1168 	destroy_hdlc_queues(port);
1169 	release_hdlc_queues(port);
1170 	hdlc_close(dev);
1171 	return 0;
1172 }
1173 
1174 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1175 			   unsigned short parity)
1176 {
1177 	struct port *port = dev_to_port(dev);
1178 
1179 	if (encoding != ENCODING_NRZ)
1180 		return -EINVAL;
1181 
1182 	switch (parity) {
1183 	case PARITY_CRC16_PR1_CCITT:
1184 		port->hdlc_cfg = 0;
1185 		return 0;
1186 
1187 	case PARITY_CRC32_PR1_CCITT:
1188 		port->hdlc_cfg = PKT_HDLC_CRC_32;
1189 		return 0;
1190 
1191 	default:
1192 		return -EINVAL;
1193 	}
1194 }
1195 
1196 static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c,
1197 		       u32 *best, u32 *best_diff, u32 *reg)
1198 {
1199 	/* a is 10-bit, b is 10-bit, c is 12-bit */
1200 	u64 new_rate;
1201 	u32 new_diff;
1202 
1203 	new_rate = timer_freq * (u64)(c + 1);
1204 	do_div(new_rate, a * (c + 1) + b + 1);
1205 	new_diff = abs((u32)new_rate - rate);
1206 
1207 	if (new_diff < *best_diff) {
1208 		*best = new_rate;
1209 		*best_diff = new_diff;
1210 		*reg = (a << 22) | (b << 12) | c;
1211 	}
1212 	return new_diff;
1213 }
1214 
1215 static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg)
1216 {
1217 	u32 a, b, diff = 0xFFFFFFFF;
1218 
1219 	a = timer_freq / rate;
1220 
1221 	if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1222 		check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg);
1223 		return;
1224 	}
1225 	if (a == 0) { /* > 66.666 MHz */
1226 		a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1227 		rate = timer_freq;
1228 	}
1229 
1230 	if (rate * a == timer_freq) { /* don't divide by 0 later */
1231 		check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg);
1232 		return;
1233 	}
1234 
1235 	for (b = 0; b < 0x400; b++) {
1236 		u64 c = (b + 1) * (u64)rate;
1237 
1238 		do_div(c, timer_freq - rate * a);
1239 		c--;
1240 		if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1241 			if (b == 0 && /* also try a bit higher rate */
1242 			    !check_clock(timer_freq, rate, a - 1, 1, 1, best,
1243 					 &diff, reg))
1244 				return;
1245 			check_clock(timer_freq, rate, a, b, 0xFFF, best,
1246 				    &diff, reg);
1247 			return;
1248 		}
1249 		if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg))
1250 			return;
1251 		if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff,
1252 				 reg))
1253 			return;
1254 	}
1255 }
1256 
1257 static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1258 {
1259 	const size_t size = sizeof(sync_serial_settings);
1260 	sync_serial_settings new_line;
1261 	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1262 	struct port *port = dev_to_port(dev);
1263 	unsigned long flags;
1264 	int clk;
1265 
1266 	if (cmd != SIOCWANDEV)
1267 		return hdlc_ioctl(dev, ifr, cmd);
1268 
1269 	switch (ifr->ifr_settings.type) {
1270 	case IF_GET_IFACE:
1271 		ifr->ifr_settings.type = IF_IFACE_V35;
1272 		if (ifr->ifr_settings.size < size) {
1273 			ifr->ifr_settings.size = size; /* data size wanted */
1274 			return -ENOBUFS;
1275 		}
1276 		memset(&new_line, 0, sizeof(new_line));
1277 		new_line.clock_type = port->clock_type;
1278 		new_line.clock_rate = port->clock_rate;
1279 		new_line.loopback = port->loopback;
1280 		if (copy_to_user(line, &new_line, size))
1281 			return -EFAULT;
1282 		return 0;
1283 
1284 	case IF_IFACE_SYNC_SERIAL:
1285 	case IF_IFACE_V35:
1286 		if (!capable(CAP_NET_ADMIN))
1287 			return -EPERM;
1288 		if (copy_from_user(&new_line, line, size))
1289 			return -EFAULT;
1290 
1291 		clk = new_line.clock_type;
1292 		if (port->plat->set_clock)
1293 			clk = port->plat->set_clock(port->id, clk);
1294 
1295 		if (clk != CLOCK_EXT && clk != CLOCK_INT)
1296 			return -EINVAL;	/* No such clock setting */
1297 
1298 		if (new_line.loopback != 0 && new_line.loopback != 1)
1299 			return -EINVAL;
1300 
1301 		port->clock_type = clk; /* Update settings */
1302 		if (clk == CLOCK_INT) {
1303 			find_best_clock(port->plat->timer_freq,
1304 					new_line.clock_rate,
1305 					&port->clock_rate, &port->clock_reg);
1306 		} else {
1307 			port->clock_rate = 0;
1308 			port->clock_reg = CLK42X_SPEED_2048KHZ;
1309 		}
1310 		port->loopback = new_line.loopback;
1311 
1312 		spin_lock_irqsave(&npe_lock, flags);
1313 
1314 		if (dev->flags & IFF_UP)
1315 			hss_config(port);
1316 
1317 		if (port->loopback || port->carrier)
1318 			netif_carrier_on(port->netdev);
1319 		else
1320 			netif_carrier_off(port->netdev);
1321 		spin_unlock_irqrestore(&npe_lock, flags);
1322 
1323 		return 0;
1324 
1325 	default:
1326 		return hdlc_ioctl(dev, ifr, cmd);
1327 	}
1328 }
1329 
1330 /*****************************************************************************
1331  * initialization
1332  ****************************************************************************/
1333 
1334 static const struct net_device_ops hss_hdlc_ops = {
1335 	.ndo_open       = hss_hdlc_open,
1336 	.ndo_stop       = hss_hdlc_close,
1337 	.ndo_start_xmit = hdlc_start_xmit,
1338 	.ndo_do_ioctl   = hss_hdlc_ioctl,
1339 };
1340 
1341 static int hss_init_one(struct platform_device *pdev)
1342 {
1343 	struct port *port;
1344 	struct net_device *dev;
1345 	hdlc_device *hdlc;
1346 	int err;
1347 
1348 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1349 	if (!port)
1350 		return -ENOMEM;
1351 
1352 	port->npe = npe_request(0);
1353 	if (!port->npe) {
1354 		err = -ENODEV;
1355 		goto err_free;
1356 	}
1357 
1358 	dev = alloc_hdlcdev(port);
1359 	port->netdev = alloc_hdlcdev(port);
1360 	if (!port->netdev) {
1361 		err = -ENOMEM;
1362 		goto err_plat;
1363 	}
1364 
1365 	SET_NETDEV_DEV(dev, &pdev->dev);
1366 	hdlc = dev_to_hdlc(dev);
1367 	hdlc->attach = hss_hdlc_attach;
1368 	hdlc->xmit = hss_hdlc_xmit;
1369 	dev->netdev_ops = &hss_hdlc_ops;
1370 	dev->tx_queue_len = 100;
1371 	port->clock_type = CLOCK_EXT;
1372 	port->clock_rate = 0;
1373 	port->clock_reg = CLK42X_SPEED_2048KHZ;
1374 	port->id = pdev->id;
1375 	port->dev = &pdev->dev;
1376 	port->plat = pdev->dev.platform_data;
1377 	netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1378 
1379 	err = register_hdlc_device(dev);
1380 	if (err)
1381 		goto err_free_netdev;
1382 
1383 	platform_set_drvdata(pdev, port);
1384 
1385 	netdev_info(dev, "initialized\n");
1386 	return 0;
1387 
1388 err_free_netdev:
1389 	free_netdev(dev);
1390 err_plat:
1391 	npe_release(port->npe);
1392 err_free:
1393 	kfree(port);
1394 	return err;
1395 }
1396 
1397 static int hss_remove_one(struct platform_device *pdev)
1398 {
1399 	struct port *port = platform_get_drvdata(pdev);
1400 
1401 	unregister_hdlc_device(port->netdev);
1402 	free_netdev(port->netdev);
1403 	npe_release(port->npe);
1404 	kfree(port);
1405 	return 0;
1406 }
1407 
1408 static struct platform_driver ixp4xx_hss_driver = {
1409 	.driver.name	= DRV_NAME,
1410 	.probe		= hss_init_one,
1411 	.remove		= hss_remove_one,
1412 };
1413 
1414 static int __init hss_init_module(void)
1415 {
1416 	if ((ixp4xx_read_feature_bits() &
1417 	     (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1418 	    (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1419 		return -ENODEV;
1420 
1421 	return platform_driver_register(&ixp4xx_hss_driver);
1422 }
1423 
1424 static void __exit hss_cleanup_module(void)
1425 {
1426 	platform_driver_unregister(&ixp4xx_hss_driver);
1427 }
1428 
1429 MODULE_AUTHOR("Krzysztof Halasa");
1430 MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1431 MODULE_LICENSE("GPL v2");
1432 MODULE_ALIAS("platform:ixp4xx_hss");
1433 module_init(hss_init_module);
1434 module_exit(hss_cleanup_module);
1435