1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
4 *
5 * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl>
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/bitops.h>
12 #include <linux/cdev.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/fs.h>
16 #include <linux/hdlc.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/platform_device.h>
21 #include <linux/poll.h>
22 #include <linux/regmap.h>
23 #include <linux/slab.h>
24 #include <linux/gpio/consumer.h>
25 #include <linux/of.h>
26 #include <linux/soc/ixp4xx/npe.h>
27 #include <linux/soc/ixp4xx/qmgr.h>
28 #include <linux/soc/ixp4xx/cpu.h>
29
30 /* This is what all IXP4xx platforms we know uses, if more frequencies
31 * are needed, we need to migrate to the clock framework.
32 */
33 #define IXP4XX_TIMER_FREQ 66666000
34
35 #define DEBUG_DESC 0
36 #define DEBUG_RX 0
37 #define DEBUG_TX 0
38 #define DEBUG_PKT_BYTES 0
39 #define DEBUG_CLOSE 0
40
41 #define DRV_NAME "ixp4xx_hss"
42
43 #define PKT_EXTRA_FLAGS 0 /* orig 1 */
44 #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */
45 #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */
46
47 #define RX_DESCS 16 /* also length of all RX queues */
48 #define TX_DESCS 16 /* also length of all TX queues */
49
50 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
51 #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */
52 #define MAX_CLOSE_WAIT 1000 /* microseconds */
53 #define HSS_COUNT 2
54 #define FRAME_SIZE 256 /* doesn't matter at this point */
55 #define FRAME_OFFSET 0
56 #define MAX_CHANNELS (FRAME_SIZE / 8)
57
58 #define NAPI_WEIGHT 16
59
60 /* Queue IDs */
61 #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */
62 #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */
63 #define HSS0_PKT_TX1_QUEUE 15
64 #define HSS0_PKT_TX2_QUEUE 16
65 #define HSS0_PKT_TX3_QUEUE 17
66 #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */
67 #define HSS0_PKT_RXFREE1_QUEUE 19
68 #define HSS0_PKT_RXFREE2_QUEUE 20
69 #define HSS0_PKT_RXFREE3_QUEUE 21
70 #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */
71
72 #define HSS1_PKT_RX_QUEUE 0
73 #define HSS1_PKT_TX0_QUEUE 5
74 #define HSS1_PKT_TX1_QUEUE 6
75 #define HSS1_PKT_TX2_QUEUE 7
76 #define HSS1_PKT_TX3_QUEUE 8
77 #define HSS1_PKT_RXFREE0_QUEUE 1
78 #define HSS1_PKT_RXFREE1_QUEUE 2
79 #define HSS1_PKT_RXFREE2_QUEUE 3
80 #define HSS1_PKT_RXFREE3_QUEUE 4
81 #define HSS1_PKT_TXDONE_QUEUE 9
82
83 #define NPE_PKT_MODE_HDLC 0
84 #define NPE_PKT_MODE_RAW 1
85 #define NPE_PKT_MODE_56KMODE 2
86 #define NPE_PKT_MODE_56KENDIAN_MSB 4
87
88 /* PKT_PIPE_HDLC_CFG_WRITE flags */
89 #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */
90 #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */
91 #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */
92
93 /* hss_config, PCRs */
94 /* Frame sync sampling, default = active low */
95 #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000
96 #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000
97 #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000
98
99 /* Frame sync pin: input (default) or output generated off a given clk edge */
100 #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000
101 #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000
102
103 /* Frame and data clock sampling on edge, default = falling */
104 #define PCR_FCLK_EDGE_RISING 0x08000000
105 #define PCR_DCLK_EDGE_RISING 0x04000000
106
107 /* Clock direction, default = input */
108 #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000
109
110 /* Generate/Receive frame pulses, default = enabled */
111 #define PCR_FRM_PULSE_DISABLED 0x01000000
112
113 /* Data rate is full (default) or half the configured clk speed */
114 #define PCR_HALF_CLK_RATE 0x00200000
115
116 /* Invert data between NPE and HSS FIFOs? (default = no) */
117 #define PCR_DATA_POLARITY_INVERT 0x00100000
118
119 /* TX/RX endianness, default = LSB */
120 #define PCR_MSB_ENDIAN 0x00080000
121
122 /* Normal (default) / open drain mode (TX only) */
123 #define PCR_TX_PINS_OPEN_DRAIN 0x00040000
124
125 /* No framing bit transmitted and expected on RX? (default = framing bit) */
126 #define PCR_SOF_NO_FBIT 0x00020000
127
128 /* Drive data pins? */
129 #define PCR_TX_DATA_ENABLE 0x00010000
130
131 /* Voice 56k type: drive the data pins low (default), high, high Z */
132 #define PCR_TX_V56K_HIGH 0x00002000
133 #define PCR_TX_V56K_HIGH_IMP 0x00004000
134
135 /* Unassigned type: drive the data pins low (default), high, high Z */
136 #define PCR_TX_UNASS_HIGH 0x00000800
137 #define PCR_TX_UNASS_HIGH_IMP 0x00001000
138
139 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
140 #define PCR_TX_FB_HIGH_IMP 0x00000400
141
142 /* 56k data endiannes - which bit unused: high (default) or low */
143 #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200
144
145 /* 56k data transmission type: 32/8 bit data (default) or 56K data */
146 #define PCR_TX_56KS_56K_DATA 0x00000100
147
148 /* hss_config, cCR */
149 /* Number of packetized clients, default = 1 */
150 #define CCR_NPE_HFIFO_2_HDLC 0x04000000
151 #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000
152
153 /* default = no loopback */
154 #define CCR_LOOPBACK 0x02000000
155
156 /* HSS number, default = 0 (first) */
157 #define CCR_SECOND_HSS 0x01000000
158
159 /* hss_config, clkCR: main:10, num:10, denom:12 */
160 #define CLK42X_SPEED_EXP ((0x3FF << 22) | (2 << 12) | 15) /*65 KHz*/
161
162 #define CLK42X_SPEED_512KHZ ((130 << 22) | (2 << 12) | 15)
163 #define CLK42X_SPEED_1536KHZ ((43 << 22) | (18 << 12) | 47)
164 #define CLK42X_SPEED_1544KHZ ((43 << 22) | (33 << 12) | 192)
165 #define CLK42X_SPEED_2048KHZ ((32 << 22) | (34 << 12) | 63)
166 #define CLK42X_SPEED_4096KHZ ((16 << 22) | (34 << 12) | 127)
167 #define CLK42X_SPEED_8192KHZ ((8 << 22) | (34 << 12) | 255)
168
169 #define CLK46X_SPEED_512KHZ ((130 << 22) | (24 << 12) | 127)
170 #define CLK46X_SPEED_1536KHZ ((43 << 22) | (152 << 12) | 383)
171 #define CLK46X_SPEED_1544KHZ ((43 << 22) | (66 << 12) | 385)
172 #define CLK46X_SPEED_2048KHZ ((32 << 22) | (280 << 12) | 511)
173 #define CLK46X_SPEED_4096KHZ ((16 << 22) | (280 << 12) | 1023)
174 #define CLK46X_SPEED_8192KHZ ((8 << 22) | (280 << 12) | 2047)
175
176 /* HSS_CONFIG_CLOCK_CR register consists of 3 parts:
177 * A (10 bits), B (10 bits) and C (12 bits).
178 * IXP42x HSS clock generator operation (verified with an oscilloscope):
179 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
180 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
181 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
182 * (A + 1) bits wide.
183 *
184 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
185 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
186 * minimum freq = 66.666 MHz / (A + 1)
187 * maximum freq = 66.666 MHz / A
188 *
189 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
190 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
191 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
192 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
193 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
194 * The sequence consists of 4 complete clock periods, thus the average
195 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
196 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
197 */
198
199 /* hss_config, LUT entries */
200 #define TDMMAP_UNASSIGNED 0
201 #define TDMMAP_HDLC 1 /* HDLC - packetized */
202 #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */
203 #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */
204
205 /* offsets into HSS config */
206 #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */
207 #define HSS_CONFIG_RX_PCR 0x04
208 #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */
209 #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */
210 #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */
211 #define HSS_CONFIG_RX_FCR 0x14
212 #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */
213 #define HSS_CONFIG_RX_LUT 0x38
214
215 /* NPE command codes */
216 /* writes the ConfigWord value to the location specified by offset */
217 #define PORT_CONFIG_WRITE 0x40
218
219 /* triggers the NPE to load the contents of the configuration table */
220 #define PORT_CONFIG_LOAD 0x41
221
222 /* triggers the NPE to return an HssErrorReadResponse message */
223 #define PORT_ERROR_READ 0x42
224
225 /* triggers the NPE to reset internal status and enable the HssPacketized
226 * operation for the flow specified by pPipe
227 */
228 #define PKT_PIPE_FLOW_ENABLE 0x50
229 #define PKT_PIPE_FLOW_DISABLE 0x51
230 #define PKT_NUM_PIPES_WRITE 0x52
231 #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53
232 #define PKT_PIPE_HDLC_CFG_WRITE 0x54
233 #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55
234 #define PKT_PIPE_RX_SIZE_WRITE 0x56
235 #define PKT_PIPE_MODE_WRITE 0x57
236
237 /* HDLC packet status values - desc->status */
238 #define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */
239 #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */
240 #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */
241 #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving
242 * this packet (if buf_len < pkt_len)
243 */
244 #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */
245 #define ERR_HDLC_ABORT 6 /* abort sequence received */
246 #define ERR_DISCONNECTING 7 /* disconnect is in progress */
247
248 #ifdef __ARMEB__
249 typedef struct sk_buff buffer_t;
250 #define free_buffer dev_kfree_skb
251 #define free_buffer_irq dev_consume_skb_irq
252 #else
253 typedef void buffer_t;
254 #define free_buffer kfree
255 #define free_buffer_irq kfree
256 #endif
257
258 struct port {
259 struct device *dev;
260 struct npe *npe;
261 unsigned int txreadyq;
262 unsigned int rxtrigq;
263 unsigned int rxfreeq;
264 unsigned int rxq;
265 unsigned int txq;
266 unsigned int txdoneq;
267 struct gpio_desc *cts;
268 struct gpio_desc *rts;
269 struct gpio_desc *dcd;
270 struct gpio_desc *dtr;
271 struct gpio_desc *clk_internal;
272 struct net_device *netdev;
273 struct napi_struct napi;
274 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
275 struct desc *desc_tab; /* coherent */
276 dma_addr_t desc_tab_phys;
277 unsigned int id;
278 unsigned int clock_type, clock_rate, loopback;
279 unsigned int initialized, carrier;
280 u8 hdlc_cfg;
281 u32 clock_reg;
282 };
283
284 /* NPE message structure */
285 struct msg {
286 #ifdef __ARMEB__
287 u8 cmd, unused, hss_port, index;
288 union {
289 struct { u8 data8a, data8b, data8c, data8d; };
290 struct { u16 data16a, data16b; };
291 struct { u32 data32; };
292 };
293 #else
294 u8 index, hss_port, unused, cmd;
295 union {
296 struct { u8 data8d, data8c, data8b, data8a; };
297 struct { u16 data16b, data16a; };
298 struct { u32 data32; };
299 };
300 #endif
301 };
302
303 /* HDLC packet descriptor */
304 struct desc {
305 u32 next; /* pointer to next buffer, unused */
306
307 #ifdef __ARMEB__
308 u16 buf_len; /* buffer length */
309 u16 pkt_len; /* packet length */
310 u32 data; /* pointer to data buffer in RAM */
311 u8 status;
312 u8 error_count;
313 u16 __reserved;
314 #else
315 u16 pkt_len; /* packet length */
316 u16 buf_len; /* buffer length */
317 u32 data; /* pointer to data buffer in RAM */
318 u16 __reserved;
319 u8 error_count;
320 u8 status;
321 #endif
322 u32 __reserved1[4];
323 };
324
325 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
326 (n) * sizeof(struct desc))
327 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
328
329 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
330 ((n) + RX_DESCS) * sizeof(struct desc))
331 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
332
333 /*****************************************************************************
334 * global variables
335 ****************************************************************************/
336
337 static int ports_open;
338 static struct dma_pool *dma_pool;
339 static DEFINE_SPINLOCK(npe_lock);
340
341 /*****************************************************************************
342 * utility functions
343 ****************************************************************************/
344
dev_to_port(struct net_device * dev)345 static inline struct port *dev_to_port(struct net_device *dev)
346 {
347 return dev_to_hdlc(dev)->priv;
348 }
349
350 #ifndef __ARMEB__
memcpy_swab32(u32 * dest,u32 * src,int cnt)351 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
352 {
353 int i;
354
355 for (i = 0; i < cnt; i++)
356 dest[i] = swab32(src[i]);
357 }
358 #endif
359
360 /*****************************************************************************
361 * HSS access
362 ****************************************************************************/
363
hss_npe_send(struct port * port,struct msg * msg,const char * what)364 static void hss_npe_send(struct port *port, struct msg *msg, const char *what)
365 {
366 u32 *val = (u32 *)msg;
367
368 if (npe_send_message(port->npe, msg, what)) {
369 pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
370 port->id, val[0], val[1], npe_name(port->npe));
371 BUG();
372 }
373 }
374
hss_config_set_lut(struct port * port)375 static void hss_config_set_lut(struct port *port)
376 {
377 struct msg msg;
378 int ch;
379
380 memset(&msg, 0, sizeof(msg));
381 msg.cmd = PORT_CONFIG_WRITE;
382 msg.hss_port = port->id;
383
384 for (ch = 0; ch < MAX_CHANNELS; ch++) {
385 msg.data32 >>= 2;
386 msg.data32 |= TDMMAP_HDLC << 30;
387
388 if (ch % 16 == 15) {
389 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
390 hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
391
392 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
393 hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
394 }
395 }
396 }
397
hss_config(struct port * port)398 static void hss_config(struct port *port)
399 {
400 struct msg msg;
401
402 memset(&msg, 0, sizeof(msg));
403 msg.cmd = PORT_CONFIG_WRITE;
404 msg.hss_port = port->id;
405 msg.index = HSS_CONFIG_TX_PCR;
406 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
407 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
408 if (port->clock_type == CLOCK_INT)
409 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
410 hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
411
412 msg.index = HSS_CONFIG_RX_PCR;
413 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
414 hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
415
416 memset(&msg, 0, sizeof(msg));
417 msg.cmd = PORT_CONFIG_WRITE;
418 msg.hss_port = port->id;
419 msg.index = HSS_CONFIG_CORE_CR;
420 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
421 (port->id ? CCR_SECOND_HSS : 0);
422 hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
423
424 memset(&msg, 0, sizeof(msg));
425 msg.cmd = PORT_CONFIG_WRITE;
426 msg.hss_port = port->id;
427 msg.index = HSS_CONFIG_CLOCK_CR;
428 msg.data32 = port->clock_reg;
429 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
430
431 memset(&msg, 0, sizeof(msg));
432 msg.cmd = PORT_CONFIG_WRITE;
433 msg.hss_port = port->id;
434 msg.index = HSS_CONFIG_TX_FCR;
435 msg.data16a = FRAME_OFFSET;
436 msg.data16b = FRAME_SIZE - 1;
437 hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
438
439 memset(&msg, 0, sizeof(msg));
440 msg.cmd = PORT_CONFIG_WRITE;
441 msg.hss_port = port->id;
442 msg.index = HSS_CONFIG_RX_FCR;
443 msg.data16a = FRAME_OFFSET;
444 msg.data16b = FRAME_SIZE - 1;
445 hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
446
447 hss_config_set_lut(port);
448
449 memset(&msg, 0, sizeof(msg));
450 msg.cmd = PORT_CONFIG_LOAD;
451 msg.hss_port = port->id;
452 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
453
454 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
455 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
456 msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
457 pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
458 BUG();
459 }
460
461 /* HDLC may stop working without this - check FIXME */
462 npe_recv_message(port->npe, &msg, "FLUSH_IT");
463 }
464
hss_set_hdlc_cfg(struct port * port)465 static void hss_set_hdlc_cfg(struct port *port)
466 {
467 struct msg msg;
468
469 memset(&msg, 0, sizeof(msg));
470 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
471 msg.hss_port = port->id;
472 msg.data8a = port->hdlc_cfg; /* rx_cfg */
473 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
474 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
475 }
476
hss_get_status(struct port * port)477 static u32 hss_get_status(struct port *port)
478 {
479 struct msg msg;
480
481 memset(&msg, 0, sizeof(msg));
482 msg.cmd = PORT_ERROR_READ;
483 msg.hss_port = port->id;
484 hss_npe_send(port, &msg, "PORT_ERROR_READ");
485 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
486 pr_crit("HSS-%i: unable to read HSS status\n", port->id);
487 BUG();
488 }
489
490 return msg.data32;
491 }
492
hss_start_hdlc(struct port * port)493 static void hss_start_hdlc(struct port *port)
494 {
495 struct msg msg;
496
497 memset(&msg, 0, sizeof(msg));
498 msg.cmd = PKT_PIPE_FLOW_ENABLE;
499 msg.hss_port = port->id;
500 msg.data32 = 0;
501 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
502 }
503
hss_stop_hdlc(struct port * port)504 static void hss_stop_hdlc(struct port *port)
505 {
506 struct msg msg;
507
508 memset(&msg, 0, sizeof(msg));
509 msg.cmd = PKT_PIPE_FLOW_DISABLE;
510 msg.hss_port = port->id;
511 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
512 hss_get_status(port); /* make sure it's halted */
513 }
514
hss_load_firmware(struct port * port)515 static int hss_load_firmware(struct port *port)
516 {
517 struct msg msg;
518 int err;
519
520 if (port->initialized)
521 return 0;
522
523 if (!npe_running(port->npe)) {
524 err = npe_load_firmware(port->npe, npe_name(port->npe),
525 port->dev);
526 if (err)
527 return err;
528 }
529
530 /* HDLC mode configuration */
531 memset(&msg, 0, sizeof(msg));
532 msg.cmd = PKT_NUM_PIPES_WRITE;
533 msg.hss_port = port->id;
534 msg.data8a = PKT_NUM_PIPES;
535 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
536
537 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
538 msg.data8a = PKT_PIPE_FIFO_SIZEW;
539 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
540
541 msg.cmd = PKT_PIPE_MODE_WRITE;
542 msg.data8a = NPE_PKT_MODE_HDLC;
543 /* msg.data8b = inv_mask */
544 /* msg.data8c = or_mask */
545 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
546
547 msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
548 msg.data16a = HDLC_MAX_MRU; /* including CRC */
549 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
550
551 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
552 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
553 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
554
555 port->initialized = 1;
556 return 0;
557 }
558
559 /*****************************************************************************
560 * packetized (HDLC) operation
561 ****************************************************************************/
562
debug_pkt(struct net_device * dev,const char * func,u8 * data,int len)563 static inline void debug_pkt(struct net_device *dev, const char *func,
564 u8 *data, int len)
565 {
566 #if DEBUG_PKT_BYTES
567 int i;
568
569 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
570 for (i = 0; i < len; i++) {
571 if (i >= DEBUG_PKT_BYTES)
572 break;
573 printk("%s%02X", !(i % 4) ? " " : "", data[i]);
574 }
575 printk("\n");
576 #endif
577 }
578
debug_desc(u32 phys,struct desc * desc)579 static inline void debug_desc(u32 phys, struct desc *desc)
580 {
581 #if DEBUG_DESC
582 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
583 phys, desc->next, desc->buf_len, desc->pkt_len,
584 desc->data, desc->status, desc->error_count);
585 #endif
586 }
587
queue_get_desc(unsigned int queue,struct port * port,int is_tx)588 static inline int queue_get_desc(unsigned int queue, struct port *port,
589 int is_tx)
590 {
591 u32 phys, tab_phys, n_desc;
592 struct desc *tab;
593
594 phys = qmgr_get_entry(queue);
595 if (!phys)
596 return -1;
597
598 BUG_ON(phys & 0x1F);
599 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
600 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
601 n_desc = (phys - tab_phys) / sizeof(struct desc);
602 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
603 debug_desc(phys, &tab[n_desc]);
604 BUG_ON(tab[n_desc].next);
605 return n_desc;
606 }
607
queue_put_desc(unsigned int queue,u32 phys,struct desc * desc)608 static inline void queue_put_desc(unsigned int queue, u32 phys,
609 struct desc *desc)
610 {
611 debug_desc(phys, desc);
612 BUG_ON(phys & 0x1F);
613 qmgr_put_entry(queue, phys);
614 /* Don't check for queue overflow here, we've allocated sufficient
615 * length and queues >= 32 don't support this check anyway.
616 */
617 }
618
dma_unmap_tx(struct port * port,struct desc * desc)619 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
620 {
621 #ifdef __ARMEB__
622 dma_unmap_single(&port->netdev->dev, desc->data,
623 desc->buf_len, DMA_TO_DEVICE);
624 #else
625 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
626 ALIGN((desc->data & 3) + desc->buf_len, 4),
627 DMA_TO_DEVICE);
628 #endif
629 }
630
hss_hdlc_set_carrier(void * pdev,int carrier)631 static void hss_hdlc_set_carrier(void *pdev, int carrier)
632 {
633 struct net_device *netdev = pdev;
634 struct port *port = dev_to_port(netdev);
635 unsigned long flags;
636
637 spin_lock_irqsave(&npe_lock, flags);
638 port->carrier = carrier;
639 if (!port->loopback) {
640 if (carrier)
641 netif_carrier_on(netdev);
642 else
643 netif_carrier_off(netdev);
644 }
645 spin_unlock_irqrestore(&npe_lock, flags);
646 }
647
hss_hdlc_rx_irq(void * pdev)648 static void hss_hdlc_rx_irq(void *pdev)
649 {
650 struct net_device *dev = pdev;
651 struct port *port = dev_to_port(dev);
652
653 #if DEBUG_RX
654 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
655 #endif
656 qmgr_disable_irq(port->rxq);
657 napi_schedule(&port->napi);
658 }
659
hss_hdlc_poll(struct napi_struct * napi,int budget)660 static int hss_hdlc_poll(struct napi_struct *napi, int budget)
661 {
662 struct port *port = container_of(napi, struct port, napi);
663 struct net_device *dev = port->netdev;
664 unsigned int rxq = port->rxq;
665 unsigned int rxfreeq = port->rxfreeq;
666 int received = 0;
667
668 #if DEBUG_RX
669 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
670 #endif
671
672 while (received < budget) {
673 struct sk_buff *skb;
674 struct desc *desc;
675 int n;
676 #ifdef __ARMEB__
677 struct sk_buff *temp;
678 u32 phys;
679 #endif
680
681 n = queue_get_desc(rxq, port, 0);
682 if (n < 0) {
683 #if DEBUG_RX
684 printk(KERN_DEBUG "%s: hss_hdlc_poll"
685 " napi_complete\n", dev->name);
686 #endif
687 napi_complete(napi);
688 qmgr_enable_irq(rxq);
689 if (!qmgr_stat_empty(rxq) &&
690 napi_schedule(napi)) {
691 #if DEBUG_RX
692 printk(KERN_DEBUG "%s: hss_hdlc_poll"
693 " napi_schedule succeeded\n",
694 dev->name);
695 #endif
696 qmgr_disable_irq(rxq);
697 continue;
698 }
699 #if DEBUG_RX
700 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
701 dev->name);
702 #endif
703 return received; /* all work done */
704 }
705
706 desc = rx_desc_ptr(port, n);
707 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
708 if (desc->error_count)
709 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
710 " errors %u\n", dev->name, desc->status,
711 desc->error_count);
712 #endif
713 skb = NULL;
714 switch (desc->status) {
715 case 0:
716 #ifdef __ARMEB__
717 skb = netdev_alloc_skb(dev, RX_SIZE);
718 if (skb) {
719 phys = dma_map_single(&dev->dev, skb->data,
720 RX_SIZE,
721 DMA_FROM_DEVICE);
722 if (dma_mapping_error(&dev->dev, phys)) {
723 dev_kfree_skb(skb);
724 skb = NULL;
725 }
726 }
727 #else
728 skb = netdev_alloc_skb(dev, desc->pkt_len);
729 #endif
730 if (!skb)
731 dev->stats.rx_dropped++;
732 break;
733 case ERR_HDLC_ALIGN:
734 case ERR_HDLC_ABORT:
735 dev->stats.rx_frame_errors++;
736 dev->stats.rx_errors++;
737 break;
738 case ERR_HDLC_FCS:
739 dev->stats.rx_crc_errors++;
740 dev->stats.rx_errors++;
741 break;
742 case ERR_HDLC_TOO_LONG:
743 dev->stats.rx_length_errors++;
744 dev->stats.rx_errors++;
745 break;
746 default: /* FIXME - remove printk */
747 netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
748 desc->status, desc->error_count);
749 dev->stats.rx_errors++;
750 }
751
752 if (!skb) {
753 /* put the desc back on RX-ready queue */
754 desc->buf_len = RX_SIZE;
755 desc->pkt_len = desc->status = 0;
756 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
757 continue;
758 }
759
760 /* process received frame */
761 #ifdef __ARMEB__
762 temp = skb;
763 skb = port->rx_buff_tab[n];
764 dma_unmap_single(&dev->dev, desc->data,
765 RX_SIZE, DMA_FROM_DEVICE);
766 #else
767 dma_sync_single_for_cpu(&dev->dev, desc->data,
768 RX_SIZE, DMA_FROM_DEVICE);
769 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
770 ALIGN(desc->pkt_len, 4) / 4);
771 #endif
772 skb_put(skb, desc->pkt_len);
773
774 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
775
776 skb->protocol = hdlc_type_trans(skb, dev);
777 dev->stats.rx_packets++;
778 dev->stats.rx_bytes += skb->len;
779 netif_receive_skb(skb);
780
781 /* put the new buffer on RX-free queue */
782 #ifdef __ARMEB__
783 port->rx_buff_tab[n] = temp;
784 desc->data = phys;
785 #endif
786 desc->buf_len = RX_SIZE;
787 desc->pkt_len = 0;
788 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
789 received++;
790 }
791 #if DEBUG_RX
792 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
793 #endif
794 return received; /* not all work done */
795 }
796
hss_hdlc_txdone_irq(void * pdev)797 static void hss_hdlc_txdone_irq(void *pdev)
798 {
799 struct net_device *dev = pdev;
800 struct port *port = dev_to_port(dev);
801 int n_desc;
802
803 #if DEBUG_TX
804 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
805 #endif
806 while ((n_desc = queue_get_desc(port->txdoneq,
807 port, 1)) >= 0) {
808 struct desc *desc;
809 int start;
810
811 desc = tx_desc_ptr(port, n_desc);
812
813 dev->stats.tx_packets++;
814 dev->stats.tx_bytes += desc->pkt_len;
815
816 dma_unmap_tx(port, desc);
817 #if DEBUG_TX
818 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
819 dev->name, port->tx_buff_tab[n_desc]);
820 #endif
821 free_buffer_irq(port->tx_buff_tab[n_desc]);
822 port->tx_buff_tab[n_desc] = NULL;
823
824 start = qmgr_stat_below_low_watermark(port->txreadyq);
825 queue_put_desc(port->txreadyq,
826 tx_desc_phys(port, n_desc), desc);
827 if (start) { /* TX-ready queue was empty */
828 #if DEBUG_TX
829 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
830 " ready\n", dev->name);
831 #endif
832 netif_wake_queue(dev);
833 }
834 }
835 }
836
hss_hdlc_xmit(struct sk_buff * skb,struct net_device * dev)837 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
838 {
839 struct port *port = dev_to_port(dev);
840 unsigned int txreadyq = port->txreadyq;
841 int len, offset, bytes, n;
842 void *mem;
843 u32 phys;
844 struct desc *desc;
845
846 #if DEBUG_TX
847 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
848 #endif
849
850 if (unlikely(skb->len > HDLC_MAX_MRU)) {
851 dev_kfree_skb(skb);
852 dev->stats.tx_errors++;
853 return NETDEV_TX_OK;
854 }
855
856 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
857
858 len = skb->len;
859 #ifdef __ARMEB__
860 offset = 0; /* no need to keep alignment */
861 bytes = len;
862 mem = skb->data;
863 #else
864 offset = (int)skb->data & 3; /* keep 32-bit alignment */
865 bytes = ALIGN(offset + len, 4);
866 mem = kmalloc(bytes, GFP_ATOMIC);
867 if (!mem) {
868 dev_kfree_skb(skb);
869 dev->stats.tx_dropped++;
870 return NETDEV_TX_OK;
871 }
872 memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
873 dev_kfree_skb(skb);
874 #endif
875
876 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
877 if (dma_mapping_error(&dev->dev, phys)) {
878 #ifdef __ARMEB__
879 dev_kfree_skb(skb);
880 #else
881 kfree(mem);
882 #endif
883 dev->stats.tx_dropped++;
884 return NETDEV_TX_OK;
885 }
886
887 n = queue_get_desc(txreadyq, port, 1);
888 BUG_ON(n < 0);
889 desc = tx_desc_ptr(port, n);
890
891 #ifdef __ARMEB__
892 port->tx_buff_tab[n] = skb;
893 #else
894 port->tx_buff_tab[n] = mem;
895 #endif
896 desc->data = phys + offset;
897 desc->buf_len = desc->pkt_len = len;
898
899 wmb();
900 queue_put_desc(port->txq, tx_desc_phys(port, n), desc);
901
902 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
903 #if DEBUG_TX
904 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
905 #endif
906 netif_stop_queue(dev);
907 /* we could miss TX ready interrupt */
908 if (!qmgr_stat_below_low_watermark(txreadyq)) {
909 #if DEBUG_TX
910 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
911 dev->name);
912 #endif
913 netif_wake_queue(dev);
914 }
915 }
916
917 #if DEBUG_TX
918 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
919 #endif
920 return NETDEV_TX_OK;
921 }
922
request_hdlc_queues(struct port * port)923 static int request_hdlc_queues(struct port *port)
924 {
925 int err;
926
927 err = qmgr_request_queue(port->rxfreeq, RX_DESCS, 0, 0,
928 "%s:RX-free", port->netdev->name);
929 if (err)
930 return err;
931
932 err = qmgr_request_queue(port->rxq, RX_DESCS, 0, 0,
933 "%s:RX", port->netdev->name);
934 if (err)
935 goto rel_rxfree;
936
937 err = qmgr_request_queue(port->txq, TX_DESCS, 0, 0,
938 "%s:TX", port->netdev->name);
939 if (err)
940 goto rel_rx;
941
942 err = qmgr_request_queue(port->txreadyq, TX_DESCS, 0, 0,
943 "%s:TX-ready", port->netdev->name);
944 if (err)
945 goto rel_tx;
946
947 err = qmgr_request_queue(port->txdoneq, TX_DESCS, 0, 0,
948 "%s:TX-done", port->netdev->name);
949 if (err)
950 goto rel_txready;
951 return 0;
952
953 rel_txready:
954 qmgr_release_queue(port->txreadyq);
955 rel_tx:
956 qmgr_release_queue(port->txq);
957 rel_rx:
958 qmgr_release_queue(port->rxq);
959 rel_rxfree:
960 qmgr_release_queue(port->rxfreeq);
961 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
962 port->netdev->name);
963 return err;
964 }
965
release_hdlc_queues(struct port * port)966 static void release_hdlc_queues(struct port *port)
967 {
968 qmgr_release_queue(port->rxfreeq);
969 qmgr_release_queue(port->rxq);
970 qmgr_release_queue(port->txdoneq);
971 qmgr_release_queue(port->txq);
972 qmgr_release_queue(port->txreadyq);
973 }
974
init_hdlc_queues(struct port * port)975 static int init_hdlc_queues(struct port *port)
976 {
977 int i;
978
979 if (!ports_open) {
980 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
981 POOL_ALLOC_SIZE, 32, 0);
982 if (!dma_pool)
983 return -ENOMEM;
984 }
985
986 port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL,
987 &port->desc_tab_phys);
988 if (!port->desc_tab)
989 return -ENOMEM;
990 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
991 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
992
993 /* Setup RX buffers */
994 for (i = 0; i < RX_DESCS; i++) {
995 struct desc *desc = rx_desc_ptr(port, i);
996 buffer_t *buff;
997 void *data;
998 #ifdef __ARMEB__
999 buff = netdev_alloc_skb(port->netdev, RX_SIZE);
1000 if (!buff)
1001 return -ENOMEM;
1002 data = buff->data;
1003 #else
1004 buff = kmalloc(RX_SIZE, GFP_KERNEL);
1005 if (!buff)
1006 return -ENOMEM;
1007 data = buff;
1008 #endif
1009 desc->buf_len = RX_SIZE;
1010 desc->data = dma_map_single(&port->netdev->dev, data,
1011 RX_SIZE, DMA_FROM_DEVICE);
1012 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1013 free_buffer(buff);
1014 return -EIO;
1015 }
1016 port->rx_buff_tab[i] = buff;
1017 }
1018
1019 return 0;
1020 }
1021
destroy_hdlc_queues(struct port * port)1022 static void destroy_hdlc_queues(struct port *port)
1023 {
1024 int i;
1025
1026 if (port->desc_tab) {
1027 for (i = 0; i < RX_DESCS; i++) {
1028 struct desc *desc = rx_desc_ptr(port, i);
1029 buffer_t *buff = port->rx_buff_tab[i];
1030
1031 if (buff) {
1032 dma_unmap_single(&port->netdev->dev,
1033 desc->data, RX_SIZE,
1034 DMA_FROM_DEVICE);
1035 free_buffer(buff);
1036 }
1037 }
1038 for (i = 0; i < TX_DESCS; i++) {
1039 struct desc *desc = tx_desc_ptr(port, i);
1040 buffer_t *buff = port->tx_buff_tab[i];
1041
1042 if (buff) {
1043 dma_unmap_tx(port, desc);
1044 free_buffer(buff);
1045 }
1046 }
1047 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1048 port->desc_tab = NULL;
1049 }
1050
1051 if (!ports_open && dma_pool) {
1052 dma_pool_destroy(dma_pool);
1053 dma_pool = NULL;
1054 }
1055 }
1056
hss_hdlc_dcd_irq(int irq,void * data)1057 static irqreturn_t hss_hdlc_dcd_irq(int irq, void *data)
1058 {
1059 struct net_device *dev = data;
1060 struct port *port = dev_to_port(dev);
1061 int val;
1062
1063 val = gpiod_get_value(port->dcd);
1064 hss_hdlc_set_carrier(dev, val);
1065
1066 return IRQ_HANDLED;
1067 }
1068
hss_hdlc_open(struct net_device * dev)1069 static int hss_hdlc_open(struct net_device *dev)
1070 {
1071 struct port *port = dev_to_port(dev);
1072 unsigned long flags;
1073 int i, err = 0;
1074 int val;
1075
1076 err = hdlc_open(dev);
1077 if (err)
1078 return err;
1079
1080 err = hss_load_firmware(port);
1081 if (err)
1082 goto err_hdlc_close;
1083
1084 err = request_hdlc_queues(port);
1085 if (err)
1086 goto err_hdlc_close;
1087
1088 err = init_hdlc_queues(port);
1089 if (err)
1090 goto err_destroy_queues;
1091
1092 spin_lock_irqsave(&npe_lock, flags);
1093
1094 /* Set the carrier, the GPIO is flagged active low so this will return
1095 * 1 if DCD is asserted.
1096 */
1097 val = gpiod_get_value(port->dcd);
1098 hss_hdlc_set_carrier(dev, val);
1099
1100 /* Set up an IRQ for DCD */
1101 err = request_irq(gpiod_to_irq(port->dcd), hss_hdlc_dcd_irq, 0, "IXP4xx HSS", dev);
1102 if (err) {
1103 dev_err(&dev->dev, "ixp4xx_hss: failed to request DCD IRQ (%i)\n", err);
1104 goto err_unlock;
1105 }
1106
1107 /* GPIOs are flagged active low so this asserts DTR and RTS */
1108 gpiod_set_value(port->dtr, 1);
1109 gpiod_set_value(port->rts, 1);
1110
1111 spin_unlock_irqrestore(&npe_lock, flags);
1112
1113 /* Populate queues with buffers, no failure after this point */
1114 for (i = 0; i < TX_DESCS; i++)
1115 queue_put_desc(port->txreadyq,
1116 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1117
1118 for (i = 0; i < RX_DESCS; i++)
1119 queue_put_desc(port->rxfreeq,
1120 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1121
1122 napi_enable(&port->napi);
1123 netif_start_queue(dev);
1124
1125 qmgr_set_irq(port->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1126 hss_hdlc_rx_irq, dev);
1127
1128 qmgr_set_irq(port->txdoneq, QUEUE_IRQ_SRC_NOT_EMPTY,
1129 hss_hdlc_txdone_irq, dev);
1130 qmgr_enable_irq(port->txdoneq);
1131
1132 ports_open++;
1133
1134 hss_set_hdlc_cfg(port);
1135 hss_config(port);
1136
1137 hss_start_hdlc(port);
1138
1139 /* we may already have RX data, enables IRQ */
1140 napi_schedule(&port->napi);
1141 return 0;
1142
1143 err_unlock:
1144 spin_unlock_irqrestore(&npe_lock, flags);
1145 err_destroy_queues:
1146 destroy_hdlc_queues(port);
1147 release_hdlc_queues(port);
1148 err_hdlc_close:
1149 hdlc_close(dev);
1150 return err;
1151 }
1152
hss_hdlc_close(struct net_device * dev)1153 static int hss_hdlc_close(struct net_device *dev)
1154 {
1155 struct port *port = dev_to_port(dev);
1156 unsigned long flags;
1157 int i, buffs = RX_DESCS; /* allocated RX buffers */
1158
1159 spin_lock_irqsave(&npe_lock, flags);
1160 ports_open--;
1161 qmgr_disable_irq(port->rxq);
1162 netif_stop_queue(dev);
1163 napi_disable(&port->napi);
1164
1165 hss_stop_hdlc(port);
1166
1167 while (queue_get_desc(port->rxfreeq, port, 0) >= 0)
1168 buffs--;
1169 while (queue_get_desc(port->rxq, port, 0) >= 0)
1170 buffs--;
1171
1172 if (buffs)
1173 netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1174 buffs);
1175
1176 buffs = TX_DESCS;
1177 while (queue_get_desc(port->txq, port, 1) >= 0)
1178 buffs--; /* cancel TX */
1179
1180 i = 0;
1181 do {
1182 while (queue_get_desc(port->txreadyq, port, 1) >= 0)
1183 buffs--;
1184 if (!buffs)
1185 break;
1186 } while (++i < MAX_CLOSE_WAIT);
1187
1188 if (buffs)
1189 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1190 buffs);
1191 #if DEBUG_CLOSE
1192 if (!buffs)
1193 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1194 #endif
1195 qmgr_disable_irq(port->txdoneq);
1196
1197 free_irq(gpiod_to_irq(port->dcd), dev);
1198 /* GPIOs are flagged active low so this de-asserts DTR and RTS */
1199 gpiod_set_value(port->dtr, 0);
1200 gpiod_set_value(port->rts, 0);
1201 spin_unlock_irqrestore(&npe_lock, flags);
1202
1203 destroy_hdlc_queues(port);
1204 release_hdlc_queues(port);
1205 hdlc_close(dev);
1206 return 0;
1207 }
1208
hss_hdlc_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)1209 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1210 unsigned short parity)
1211 {
1212 struct port *port = dev_to_port(dev);
1213
1214 if (encoding != ENCODING_NRZ)
1215 return -EINVAL;
1216
1217 switch (parity) {
1218 case PARITY_CRC16_PR1_CCITT:
1219 port->hdlc_cfg = 0;
1220 return 0;
1221
1222 case PARITY_CRC32_PR1_CCITT:
1223 port->hdlc_cfg = PKT_HDLC_CRC_32;
1224 return 0;
1225
1226 default:
1227 return -EINVAL;
1228 }
1229 }
1230
check_clock(u32 timer_freq,u32 rate,u32 a,u32 b,u32 c,u32 * best,u32 * best_diff,u32 * reg)1231 static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c,
1232 u32 *best, u32 *best_diff, u32 *reg)
1233 {
1234 /* a is 10-bit, b is 10-bit, c is 12-bit */
1235 u64 new_rate;
1236 u32 new_diff;
1237
1238 new_rate = timer_freq * (u64)(c + 1);
1239 do_div(new_rate, a * (c + 1) + b + 1);
1240 new_diff = abs((u32)new_rate - rate);
1241
1242 if (new_diff < *best_diff) {
1243 *best = new_rate;
1244 *best_diff = new_diff;
1245 *reg = (a << 22) | (b << 12) | c;
1246 }
1247 return new_diff;
1248 }
1249
find_best_clock(u32 timer_freq,u32 rate,u32 * best,u32 * reg)1250 static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg)
1251 {
1252 u32 a, b, diff = 0xFFFFFFFF;
1253
1254 a = timer_freq / rate;
1255
1256 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1257 check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg);
1258 return;
1259 }
1260 if (a == 0) { /* > 66.666 MHz */
1261 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1262 rate = timer_freq;
1263 }
1264
1265 if (rate * a == timer_freq) { /* don't divide by 0 later */
1266 check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg);
1267 return;
1268 }
1269
1270 for (b = 0; b < 0x400; b++) {
1271 u64 c = (b + 1) * (u64)rate;
1272
1273 do_div(c, timer_freq - rate * a);
1274 c--;
1275 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1276 if (b == 0 && /* also try a bit higher rate */
1277 !check_clock(timer_freq, rate, a - 1, 1, 1, best,
1278 &diff, reg))
1279 return;
1280 check_clock(timer_freq, rate, a, b, 0xFFF, best,
1281 &diff, reg);
1282 return;
1283 }
1284 if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg))
1285 return;
1286 if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff,
1287 reg))
1288 return;
1289 }
1290 }
1291
hss_hdlc_set_clock(struct port * port,unsigned int clock_type)1292 static int hss_hdlc_set_clock(struct port *port, unsigned int clock_type)
1293 {
1294 switch (clock_type) {
1295 case CLOCK_DEFAULT:
1296 case CLOCK_EXT:
1297 gpiod_set_value(port->clk_internal, 0);
1298 return CLOCK_EXT;
1299 case CLOCK_INT:
1300 gpiod_set_value(port->clk_internal, 1);
1301 return CLOCK_INT;
1302 default:
1303 return -EINVAL;
1304 }
1305 }
1306
hss_hdlc_ioctl(struct net_device * dev,struct if_settings * ifs)1307 static int hss_hdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
1308 {
1309 const size_t size = sizeof(sync_serial_settings);
1310 sync_serial_settings new_line;
1311 sync_serial_settings __user *line = ifs->ifs_ifsu.sync;
1312 struct port *port = dev_to_port(dev);
1313 unsigned long flags;
1314 int clk;
1315
1316 switch (ifs->type) {
1317 case IF_GET_IFACE:
1318 ifs->type = IF_IFACE_V35;
1319 if (ifs->size < size) {
1320 ifs->size = size; /* data size wanted */
1321 return -ENOBUFS;
1322 }
1323 memset(&new_line, 0, sizeof(new_line));
1324 new_line.clock_type = port->clock_type;
1325 new_line.clock_rate = port->clock_rate;
1326 new_line.loopback = port->loopback;
1327 if (copy_to_user(line, &new_line, size))
1328 return -EFAULT;
1329 return 0;
1330
1331 case IF_IFACE_SYNC_SERIAL:
1332 case IF_IFACE_V35:
1333 if (!capable(CAP_NET_ADMIN))
1334 return -EPERM;
1335 if (copy_from_user(&new_line, line, size))
1336 return -EFAULT;
1337
1338 clk = new_line.clock_type;
1339 hss_hdlc_set_clock(port, clk);
1340
1341 if (clk != CLOCK_EXT && clk != CLOCK_INT)
1342 return -EINVAL; /* No such clock setting */
1343
1344 if (new_line.loopback != 0 && new_line.loopback != 1)
1345 return -EINVAL;
1346
1347 port->clock_type = clk; /* Update settings */
1348 if (clk == CLOCK_INT) {
1349 find_best_clock(IXP4XX_TIMER_FREQ,
1350 new_line.clock_rate,
1351 &port->clock_rate, &port->clock_reg);
1352 } else {
1353 port->clock_rate = 0;
1354 port->clock_reg = CLK42X_SPEED_2048KHZ;
1355 }
1356 port->loopback = new_line.loopback;
1357
1358 spin_lock_irqsave(&npe_lock, flags);
1359
1360 if (dev->flags & IFF_UP)
1361 hss_config(port);
1362
1363 if (port->loopback || port->carrier)
1364 netif_carrier_on(port->netdev);
1365 else
1366 netif_carrier_off(port->netdev);
1367 spin_unlock_irqrestore(&npe_lock, flags);
1368
1369 return 0;
1370
1371 default:
1372 return hdlc_ioctl(dev, ifs);
1373 }
1374 }
1375
1376 /*****************************************************************************
1377 * initialization
1378 ****************************************************************************/
1379
1380 static const struct net_device_ops hss_hdlc_ops = {
1381 .ndo_open = hss_hdlc_open,
1382 .ndo_stop = hss_hdlc_close,
1383 .ndo_start_xmit = hdlc_start_xmit,
1384 .ndo_siocwandev = hss_hdlc_ioctl,
1385 };
1386
ixp4xx_hss_probe(struct platform_device * pdev)1387 static int ixp4xx_hss_probe(struct platform_device *pdev)
1388 {
1389 struct of_phandle_args queue_spec;
1390 struct of_phandle_args npe_spec;
1391 struct device *dev = &pdev->dev;
1392 struct net_device *ndev;
1393 struct device_node *np;
1394 struct regmap *rmap;
1395 struct port *port;
1396 hdlc_device *hdlc;
1397 int err;
1398 u32 val;
1399
1400 /*
1401 * Go into the syscon and check if we have the HSS and HDLC
1402 * features available, else this will not work.
1403 */
1404 rmap = syscon_regmap_lookup_by_compatible("syscon");
1405 if (IS_ERR(rmap))
1406 return dev_err_probe(dev, PTR_ERR(rmap),
1407 "failed to look up syscon\n");
1408
1409 val = cpu_ixp4xx_features(rmap);
1410
1411 if ((val & (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1412 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) {
1413 dev_err(dev, "HDLC and HSS feature unavailable in platform\n");
1414 return -ENODEV;
1415 }
1416
1417 np = dev->of_node;
1418
1419 port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
1420 if (!port)
1421 return -ENOMEM;
1422
1423 err = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0,
1424 &npe_spec);
1425 if (err)
1426 return dev_err_probe(dev, err, "no NPE engine specified\n");
1427 /* NPE ID 0x00, 0x10, 0x20... */
1428 port->npe = npe_request(npe_spec.args[0] << 4);
1429 if (!port->npe) {
1430 dev_err(dev, "unable to obtain NPE instance\n");
1431 return -ENODEV;
1432 }
1433
1434 /* Get the TX ready queue as resource from queue manager */
1435 err = of_parse_phandle_with_fixed_args(np, "intek,queue-chl-txready", 1, 0,
1436 &queue_spec);
1437 if (err)
1438 return dev_err_probe(dev, err, "no txready queue phandle\n");
1439 port->txreadyq = queue_spec.args[0];
1440 /* Get the RX trig queue as resource from queue manager */
1441 err = of_parse_phandle_with_fixed_args(np, "intek,queue-chl-rxtrig", 1, 0,
1442 &queue_spec);
1443 if (err)
1444 return dev_err_probe(dev, err, "no rxtrig queue phandle\n");
1445 port->rxtrigq = queue_spec.args[0];
1446 /* Get the RX queue as resource from queue manager */
1447 err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-rx", 1, 0,
1448 &queue_spec);
1449 if (err)
1450 return dev_err_probe(dev, err, "no RX queue phandle\n");
1451 port->rxq = queue_spec.args[0];
1452 /* Get the TX queue as resource from queue manager */
1453 err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-tx", 1, 0,
1454 &queue_spec);
1455 if (err)
1456 return dev_err_probe(dev, err, "no RX queue phandle\n");
1457 port->txq = queue_spec.args[0];
1458 /* Get the RX free queue as resource from queue manager */
1459 err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-rxfree", 1, 0,
1460 &queue_spec);
1461 if (err)
1462 return dev_err_probe(dev, err, "no RX free queue phandle\n");
1463 port->rxfreeq = queue_spec.args[0];
1464 /* Get the TX done queue as resource from queue manager */
1465 err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-txdone", 1, 0,
1466 &queue_spec);
1467 if (err)
1468 return dev_err_probe(dev, err, "no TX done queue phandle\n");
1469 port->txdoneq = queue_spec.args[0];
1470
1471 /* Obtain all the line control GPIOs */
1472 port->cts = devm_gpiod_get(dev, "cts", GPIOD_OUT_LOW);
1473 if (IS_ERR(port->cts))
1474 return dev_err_probe(dev, PTR_ERR(port->cts), "unable to get CTS GPIO\n");
1475 port->rts = devm_gpiod_get(dev, "rts", GPIOD_OUT_LOW);
1476 if (IS_ERR(port->rts))
1477 return dev_err_probe(dev, PTR_ERR(port->rts), "unable to get RTS GPIO\n");
1478 port->dcd = devm_gpiod_get(dev, "dcd", GPIOD_IN);
1479 if (IS_ERR(port->dcd))
1480 return dev_err_probe(dev, PTR_ERR(port->dcd), "unable to get DCD GPIO\n");
1481 port->dtr = devm_gpiod_get(dev, "dtr", GPIOD_OUT_LOW);
1482 if (IS_ERR(port->dtr))
1483 return dev_err_probe(dev, PTR_ERR(port->dtr), "unable to get DTR GPIO\n");
1484 port->clk_internal = devm_gpiod_get(dev, "clk-internal", GPIOD_OUT_LOW);
1485 if (IS_ERR(port->clk_internal))
1486 return dev_err_probe(dev, PTR_ERR(port->clk_internal),
1487 "unable to get CLK internal GPIO\n");
1488
1489 ndev = alloc_hdlcdev(port);
1490 port->netdev = alloc_hdlcdev(port);
1491 if (!port->netdev) {
1492 err = -ENOMEM;
1493 goto err_plat;
1494 }
1495
1496 SET_NETDEV_DEV(ndev, &pdev->dev);
1497 hdlc = dev_to_hdlc(ndev);
1498 hdlc->attach = hss_hdlc_attach;
1499 hdlc->xmit = hss_hdlc_xmit;
1500 ndev->netdev_ops = &hss_hdlc_ops;
1501 ndev->tx_queue_len = 100;
1502 port->clock_type = CLOCK_EXT;
1503 port->clock_rate = 0;
1504 port->clock_reg = CLK42X_SPEED_2048KHZ;
1505 port->id = pdev->id;
1506 port->dev = &pdev->dev;
1507 netif_napi_add_weight(ndev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1508
1509 err = register_hdlc_device(ndev);
1510 if (err)
1511 goto err_free_netdev;
1512
1513 platform_set_drvdata(pdev, port);
1514
1515 netdev_info(ndev, "initialized\n");
1516 return 0;
1517
1518 err_free_netdev:
1519 free_netdev(ndev);
1520 err_plat:
1521 npe_release(port->npe);
1522 return err;
1523 }
1524
ixp4xx_hss_remove(struct platform_device * pdev)1525 static void ixp4xx_hss_remove(struct platform_device *pdev)
1526 {
1527 struct port *port = platform_get_drvdata(pdev);
1528
1529 unregister_hdlc_device(port->netdev);
1530 free_netdev(port->netdev);
1531 npe_release(port->npe);
1532 }
1533
1534 static struct platform_driver ixp4xx_hss_driver = {
1535 .driver.name = DRV_NAME,
1536 .probe = ixp4xx_hss_probe,
1537 .remove_new = ixp4xx_hss_remove,
1538 };
1539 module_platform_driver(ixp4xx_hss_driver);
1540
1541 MODULE_AUTHOR("Krzysztof Halasa");
1542 MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1543 MODULE_LICENSE("GPL v2");
1544 MODULE_ALIAS("platform:ixp4xx_hss");
1545