xref: /linux/drivers/net/wan/fsl_ucc_hdlc.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /* Freescale QUICC Engine HDLC Device Driver
2  *
3  * Copyright 2016 Freescale Semiconductor Inc.
4  *
5  * This program is free software; you can redistribute  it and/or modify it
6  * under  the terms of  the GNU General  Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/hdlc.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sched.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stddef.h>
30 #include <soc/fsl/qe/qe_tdm.h>
31 #include <uapi/linux/if_arp.h>
32 
33 #include "fsl_ucc_hdlc.h"
34 
35 #define DRV_DESC "Freescale QE UCC HDLC Driver"
36 #define DRV_NAME "ucc_hdlc"
37 
38 #define TDM_PPPOHT_SLIC_MAXIN
39 #define BROKEN_FRAME_INFO
40 
41 static struct ucc_tdm_info utdm_primary_info = {
42 	.uf_info = {
43 		.tsa = 0,
44 		.cdp = 0,
45 		.cds = 1,
46 		.ctsp = 1,
47 		.ctss = 1,
48 		.revd = 0,
49 		.urfs = 256,
50 		.utfs = 256,
51 		.urfet = 128,
52 		.urfset = 192,
53 		.utfet = 128,
54 		.utftt = 0x40,
55 		.ufpt = 256,
56 		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
57 		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
58 		.tenc = UCC_FAST_TX_ENCODING_NRZ,
59 		.renc = UCC_FAST_RX_ENCODING_NRZ,
60 		.tcrc = UCC_FAST_16_BIT_CRC,
61 		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
62 	},
63 
64 	.si_info = {
65 #ifdef TDM_PPPOHT_SLIC_MAXIN
66 		.simr_rfsd = 1,
67 		.simr_tfsd = 2,
68 #else
69 		.simr_rfsd = 0,
70 		.simr_tfsd = 0,
71 #endif
72 		.simr_crt = 0,
73 		.simr_sl = 0,
74 		.simr_ce = 1,
75 		.simr_fe = 1,
76 		.simr_gm = 0,
77 	},
78 };
79 
80 static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
81 
82 static int uhdlc_init(struct ucc_hdlc_private *priv)
83 {
84 	struct ucc_tdm_info *ut_info;
85 	struct ucc_fast_info *uf_info;
86 	u32 cecr_subblock;
87 	u16 bd_status;
88 	int ret, i;
89 	void *bd_buffer;
90 	dma_addr_t bd_dma_addr;
91 	u32 riptr;
92 	u32 tiptr;
93 	u32 gumr;
94 
95 	ut_info = priv->ut_info;
96 	uf_info = &ut_info->uf_info;
97 
98 	if (priv->tsa) {
99 		uf_info->tsa = 1;
100 		uf_info->ctsp = 1;
101 	}
102 	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
103 				UCC_HDLC_UCCE_TXB) << 16);
104 
105 	ret = ucc_fast_init(uf_info, &priv->uccf);
106 	if (ret) {
107 		dev_err(priv->dev, "Failed to init uccf.");
108 		return ret;
109 	}
110 
111 	priv->uf_regs = priv->uccf->uf_regs;
112 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
113 
114 	/* Loopback mode */
115 	if (priv->loopback) {
116 		dev_info(priv->dev, "Loopback Mode\n");
117 		gumr = ioread32be(&priv->uf_regs->gumr);
118 		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
119 			 UCC_FAST_GUMR_TCI);
120 		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
121 		iowrite32be(gumr, &priv->uf_regs->gumr);
122 	}
123 
124 	/* Initialize SI */
125 	if (priv->tsa)
126 		ucc_tdm_init(priv->utdm, priv->ut_info);
127 
128 	/* Write to QE CECR, UCCx channel to Stop Transmission */
129 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
130 	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
131 			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
132 
133 	/* Set UPSMR normal mode (need fixed)*/
134 	iowrite32be(0, &priv->uf_regs->upsmr);
135 
136 	priv->rx_ring_size = RX_BD_RING_LEN;
137 	priv->tx_ring_size = TX_BD_RING_LEN;
138 	/* Alloc Rx BD */
139 	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
140 			RX_BD_RING_LEN * sizeof(struct qe_bd *),
141 			&priv->dma_rx_bd, GFP_KERNEL);
142 
143 	if (!priv->rx_bd_base) {
144 		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
145 		ret = -ENOMEM;
146 		goto free_uccf;
147 	}
148 
149 	/* Alloc Tx BD */
150 	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
151 			TX_BD_RING_LEN * sizeof(struct qe_bd *),
152 			&priv->dma_tx_bd, GFP_KERNEL);
153 
154 	if (!priv->tx_bd_base) {
155 		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
156 		ret = -ENOMEM;
157 		goto free_rx_bd;
158 	}
159 
160 	/* Alloc parameter ram for ucc hdlc */
161 	priv->ucc_pram_offset = qe_muram_alloc(sizeof(priv->ucc_pram),
162 				ALIGNMENT_OF_UCC_HDLC_PRAM);
163 
164 	if (priv->ucc_pram_offset < 0) {
165 		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
166 		ret = -ENOMEM;
167 		goto free_tx_bd;
168 	}
169 
170 	priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
171 				  GFP_KERNEL);
172 	if (!priv->rx_skbuff)
173 		goto free_ucc_pram;
174 
175 	priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
176 				  GFP_KERNEL);
177 	if (!priv->tx_skbuff)
178 		goto free_rx_skbuff;
179 
180 	priv->skb_curtx = 0;
181 	priv->skb_dirtytx = 0;
182 	priv->curtx_bd = priv->tx_bd_base;
183 	priv->dirty_tx = priv->tx_bd_base;
184 	priv->currx_bd = priv->rx_bd_base;
185 	priv->currx_bdnum = 0;
186 
187 	/* init parameter base */
188 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
189 	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
190 			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
191 
192 	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
193 					qe_muram_addr(priv->ucc_pram_offset);
194 
195 	/* Zero out parameter ram */
196 	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
197 
198 	/* Alloc riptr, tiptr */
199 	riptr = qe_muram_alloc(32, 32);
200 	if (riptr < 0) {
201 		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
202 		ret = -ENOMEM;
203 		goto free_tx_skbuff;
204 	}
205 
206 	tiptr = qe_muram_alloc(32, 32);
207 	if (tiptr < 0) {
208 		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
209 		ret = -ENOMEM;
210 		goto free_riptr;
211 	}
212 
213 	/* Set RIPTR, TIPTR */
214 	iowrite16be(riptr, &priv->ucc_pram->riptr);
215 	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
216 
217 	/* Set MRBLR */
218 	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
219 
220 	/* Set RBASE, TBASE */
221 	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
222 	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
223 
224 	/* Set RSTATE, TSTATE */
225 	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
226 	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
227 
228 	/* Set C_MASK, C_PRES for 16bit CRC */
229 	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
230 	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
231 
232 	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
233 	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
234 	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
235 	iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
236 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
237 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
238 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
239 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
240 
241 	/* Get BD buffer */
242 	bd_buffer = dma_alloc_coherent(priv->dev,
243 				       (RX_BD_RING_LEN + TX_BD_RING_LEN) *
244 				       MAX_RX_BUF_LENGTH,
245 				       &bd_dma_addr, GFP_KERNEL);
246 
247 	if (!bd_buffer) {
248 		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
249 		ret = -ENOMEM;
250 		goto free_tiptr;
251 	}
252 
253 	memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
254 			* MAX_RX_BUF_LENGTH);
255 
256 	priv->rx_buffer = bd_buffer;
257 	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
258 
259 	priv->dma_rx_addr = bd_dma_addr;
260 	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
261 
262 	for (i = 0; i < RX_BD_RING_LEN; i++) {
263 		if (i < (RX_BD_RING_LEN - 1))
264 			bd_status = R_E_S | R_I_S;
265 		else
266 			bd_status = R_E_S | R_I_S | R_W_S;
267 
268 		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
269 		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
270 			    &priv->rx_bd_base[i].buf);
271 	}
272 
273 	for (i = 0; i < TX_BD_RING_LEN; i++) {
274 		if (i < (TX_BD_RING_LEN - 1))
275 			bd_status =  T_I_S | T_TC_S;
276 		else
277 			bd_status =  T_I_S | T_TC_S | T_W_S;
278 
279 		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
280 		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
281 			    &priv->tx_bd_base[i].buf);
282 	}
283 
284 	return 0;
285 
286 free_tiptr:
287 	qe_muram_free(tiptr);
288 free_riptr:
289 	qe_muram_free(riptr);
290 free_tx_skbuff:
291 	kfree(priv->tx_skbuff);
292 free_rx_skbuff:
293 	kfree(priv->rx_skbuff);
294 free_ucc_pram:
295 	qe_muram_free(priv->ucc_pram_offset);
296 free_tx_bd:
297 	dma_free_coherent(priv->dev,
298 			  TX_BD_RING_LEN * sizeof(struct qe_bd *),
299 			  priv->tx_bd_base, priv->dma_tx_bd);
300 free_rx_bd:
301 	dma_free_coherent(priv->dev,
302 			  RX_BD_RING_LEN * sizeof(struct qe_bd *),
303 			  priv->rx_bd_base, priv->dma_rx_bd);
304 free_uccf:
305 	ucc_fast_free(priv->uccf);
306 
307 	return ret;
308 }
309 
310 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
311 {
312 	hdlc_device *hdlc = dev_to_hdlc(dev);
313 	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
314 	struct qe_bd __iomem *bd;
315 	u16 bd_status;
316 	unsigned long flags;
317 	u8 *send_buf;
318 	int i;
319 	u16 *proto_head;
320 
321 	switch (dev->type) {
322 	case ARPHRD_RAWHDLC:
323 		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
324 			dev->stats.tx_dropped++;
325 			dev_kfree_skb(skb);
326 			netdev_err(dev, "No enough space for hdlc head\n");
327 			return -ENOMEM;
328 		}
329 
330 		skb_push(skb, HDLC_HEAD_LEN);
331 
332 		proto_head = (u16 *)skb->data;
333 		*proto_head = htons(DEFAULT_HDLC_HEAD);
334 
335 		dev->stats.tx_bytes += skb->len;
336 		break;
337 
338 	case ARPHRD_PPP:
339 		proto_head = (u16 *)skb->data;
340 		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
341 			dev->stats.tx_dropped++;
342 			dev_kfree_skb(skb);
343 			netdev_err(dev, "Wrong ppp header\n");
344 			return -ENOMEM;
345 		}
346 
347 		dev->stats.tx_bytes += skb->len;
348 		break;
349 
350 	default:
351 		dev->stats.tx_dropped++;
352 		dev_kfree_skb(skb);
353 		return -ENOMEM;
354 	}
355 
356 	pr_info("Tx data skb->len:%d ", skb->len);
357 	send_buf = (u8 *)skb->data;
358 	pr_info("\nTransmitted data:\n");
359 	for (i = 0; i < 16; i++) {
360 		if (i == skb->len)
361 			pr_info("++++");
362 		else
363 		pr_info("%02x\n", send_buf[i]);
364 	}
365 	spin_lock_irqsave(&priv->lock, flags);
366 
367 	/* Start from the next BD that should be filled */
368 	bd = priv->curtx_bd;
369 	bd_status = ioread16be(&bd->status);
370 	/* Save the skb pointer so we can free it later */
371 	priv->tx_skbuff[priv->skb_curtx] = skb;
372 
373 	/* Update the current skb pointer (wrapping if this was the last) */
374 	priv->skb_curtx =
375 	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
376 
377 	/* copy skb data to tx buffer for sdma processing */
378 	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
379 	       skb->data, skb->len);
380 
381 	/* set bd status and length */
382 	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
383 
384 	iowrite16be(skb->len, &bd->length);
385 	iowrite16be(bd_status, &bd->status);
386 
387 	/* Move to next BD in the ring */
388 	if (!(bd_status & T_W_S))
389 		bd += 1;
390 	else
391 		bd = priv->tx_bd_base;
392 
393 	if (bd == priv->dirty_tx) {
394 		if (!netif_queue_stopped(dev))
395 			netif_stop_queue(dev);
396 	}
397 
398 	priv->curtx_bd = bd;
399 
400 	spin_unlock_irqrestore(&priv->lock, flags);
401 
402 	return NETDEV_TX_OK;
403 }
404 
405 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
406 {
407 	/* Start from the next BD that should be filled */
408 	struct net_device *dev = priv->ndev;
409 	struct qe_bd *bd;		/* BD pointer */
410 	u16 bd_status;
411 
412 	bd = priv->dirty_tx;
413 	bd_status = ioread16be(&bd->status);
414 
415 	/* Normal processing. */
416 	while ((bd_status & T_R_S) == 0) {
417 		struct sk_buff *skb;
418 
419 		/* BD contains already transmitted buffer.   */
420 		/* Handle the transmitted buffer and release */
421 		/* the BD to be used with the current frame  */
422 
423 		skb = priv->tx_skbuff[priv->skb_dirtytx];
424 		if (!skb)
425 			break;
426 		pr_info("TxBD: %x\n", bd_status);
427 		dev->stats.tx_packets++;
428 		memset(priv->tx_buffer +
429 		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
430 		       0, skb->len);
431 		dev_kfree_skb_irq(skb);
432 
433 		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
434 		priv->skb_dirtytx =
435 		    (priv->skb_dirtytx +
436 		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
437 
438 		/* We freed a buffer, so now we can restart transmission */
439 		if (netif_queue_stopped(dev))
440 			netif_wake_queue(dev);
441 
442 		/* Advance the confirmation BD pointer */
443 		if (!(bd_status & T_W_S))
444 			bd += 1;
445 		else
446 			bd = priv->tx_bd_base;
447 		bd_status = ioread16be(&bd->status);
448 	}
449 	priv->dirty_tx = bd;
450 
451 	return 0;
452 }
453 
454 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
455 {
456 	struct net_device *dev = priv->ndev;
457 	struct sk_buff *skb;
458 	hdlc_device *hdlc = dev_to_hdlc(dev);
459 	struct qe_bd *bd;
460 	u16 bd_status;
461 	u16 length, howmany = 0;
462 	u8 *bdbuffer;
463 	int i;
464 	static int entry;
465 
466 	bd = priv->currx_bd;
467 	bd_status = ioread16be(&bd->status);
468 
469 	/* while there are received buffers and BD is full (~R_E) */
470 	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
471 		if (bd_status & R_OV_S)
472 			dev->stats.rx_over_errors++;
473 		if (bd_status & R_CR_S) {
474 #ifdef BROKEN_FRAME_INFO
475 			pr_info("Broken Frame with RxBD: %x\n", bd_status);
476 #endif
477 			dev->stats.rx_crc_errors++;
478 			dev->stats.rx_dropped++;
479 			goto recycle;
480 		}
481 		bdbuffer = priv->rx_buffer +
482 			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
483 		length = ioread16be(&bd->length);
484 
485 		pr_info("Received data length:%d", length);
486 		pr_info("while entry times:%d", entry++);
487 
488 		pr_info("\nReceived data:\n");
489 		for (i = 0; (i < 16); i++) {
490 			if (i == length)
491 				pr_info("++++");
492 			else
493 			pr_info("%02x\n", bdbuffer[i]);
494 		}
495 
496 		switch (dev->type) {
497 		case ARPHRD_RAWHDLC:
498 			bdbuffer += HDLC_HEAD_LEN;
499 			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
500 
501 			skb = dev_alloc_skb(length);
502 			if (!skb) {
503 				dev->stats.rx_dropped++;
504 				return -ENOMEM;
505 			}
506 
507 			skb_put(skb, length);
508 			skb->len = length;
509 			skb->dev = dev;
510 			memcpy(skb->data, bdbuffer, length);
511 			break;
512 
513 		case ARPHRD_PPP:
514 			length -= HDLC_CRC_SIZE;
515 
516 			skb = dev_alloc_skb(length);
517 			if (!skb) {
518 				dev->stats.rx_dropped++;
519 				return -ENOMEM;
520 			}
521 
522 			skb_put(skb, length);
523 			skb->len = length;
524 			skb->dev = dev;
525 			memcpy(skb->data, bdbuffer, length);
526 			break;
527 		}
528 
529 		dev->stats.rx_packets++;
530 		dev->stats.rx_bytes += skb->len;
531 		howmany++;
532 		if (hdlc->proto)
533 			skb->protocol = hdlc_type_trans(skb, dev);
534 		pr_info("skb->protocol:%x\n", skb->protocol);
535 		netif_receive_skb(skb);
536 
537 recycle:
538 		iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
539 
540 		/* update to point at the next bd */
541 		if (bd_status & R_W_S) {
542 			priv->currx_bdnum = 0;
543 			bd = priv->rx_bd_base;
544 		} else {
545 			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
546 				priv->currx_bdnum += 1;
547 			else
548 				priv->currx_bdnum = RX_BD_RING_LEN - 1;
549 
550 			bd += 1;
551 		}
552 
553 		bd_status = ioread16be(&bd->status);
554 	}
555 
556 	priv->currx_bd = bd;
557 	return howmany;
558 }
559 
560 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
561 {
562 	struct ucc_hdlc_private *priv = container_of(napi,
563 						     struct ucc_hdlc_private,
564 						     napi);
565 	int howmany;
566 
567 	/* Tx event processing */
568 	spin_lock(&priv->lock);
569 		hdlc_tx_done(priv);
570 	spin_unlock(&priv->lock);
571 
572 	howmany = 0;
573 	howmany += hdlc_rx_done(priv, budget - howmany);
574 
575 	if (howmany < budget) {
576 		napi_complete_done(napi, howmany);
577 		qe_setbits32(priv->uccf->p_uccm,
578 			     (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
579 	}
580 
581 	return howmany;
582 }
583 
584 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
585 {
586 	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
587 	struct net_device *dev = priv->ndev;
588 	struct ucc_fast_private *uccf;
589 	struct ucc_tdm_info *ut_info;
590 	u32 ucce;
591 	u32 uccm;
592 
593 	ut_info = priv->ut_info;
594 	uccf = priv->uccf;
595 
596 	ucce = ioread32be(uccf->p_ucce);
597 	uccm = ioread32be(uccf->p_uccm);
598 	ucce &= uccm;
599 	iowrite32be(ucce, uccf->p_ucce);
600 	pr_info("irq ucce:%x\n", ucce);
601 	if (!ucce)
602 		return IRQ_NONE;
603 
604 	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
605 		if (napi_schedule_prep(&priv->napi)) {
606 			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
607 				  << 16);
608 			iowrite32be(uccm, uccf->p_uccm);
609 			__napi_schedule(&priv->napi);
610 		}
611 	}
612 
613 	/* Errors and other events */
614 	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
615 		dev->stats.rx_errors++;
616 	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
617 		dev->stats.tx_errors++;
618 
619 	return IRQ_HANDLED;
620 }
621 
622 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
623 {
624 	const size_t size = sizeof(te1_settings);
625 	te1_settings line;
626 	struct ucc_hdlc_private *priv = netdev_priv(dev);
627 
628 	if (cmd != SIOCWANDEV)
629 		return hdlc_ioctl(dev, ifr, cmd);
630 
631 	switch (ifr->ifr_settings.type) {
632 	case IF_GET_IFACE:
633 		ifr->ifr_settings.type = IF_IFACE_E1;
634 		if (ifr->ifr_settings.size < size) {
635 			ifr->ifr_settings.size = size; /* data size wanted */
636 			return -ENOBUFS;
637 		}
638 		memset(&line, 0, sizeof(line));
639 		line.clock_type = priv->clocking;
640 
641 		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
642 			return -EFAULT;
643 		return 0;
644 
645 	default:
646 		return hdlc_ioctl(dev, ifr, cmd);
647 	}
648 }
649 
650 static int uhdlc_open(struct net_device *dev)
651 {
652 	u32 cecr_subblock;
653 	hdlc_device *hdlc = dev_to_hdlc(dev);
654 	struct ucc_hdlc_private *priv = hdlc->priv;
655 	struct ucc_tdm *utdm = priv->utdm;
656 
657 	if (priv->hdlc_busy != 1) {
658 		if (request_irq(priv->ut_info->uf_info.irq,
659 				ucc_hdlc_irq_handler, 0, "hdlc", priv))
660 			return -ENODEV;
661 
662 		cecr_subblock = ucc_fast_get_qe_cr_subblock(
663 					priv->ut_info->uf_info.ucc_num);
664 
665 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
666 			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
667 
668 		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
669 
670 		/* Enable the TDM port */
671 		if (priv->tsa)
672 			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
673 
674 		priv->hdlc_busy = 1;
675 		netif_device_attach(priv->ndev);
676 		napi_enable(&priv->napi);
677 		netif_start_queue(dev);
678 		hdlc_open(dev);
679 	}
680 
681 	return 0;
682 }
683 
684 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
685 {
686 	qe_muram_free(priv->ucc_pram->riptr);
687 	qe_muram_free(priv->ucc_pram->tiptr);
688 
689 	if (priv->rx_bd_base) {
690 		dma_free_coherent(priv->dev,
691 				  RX_BD_RING_LEN * sizeof(struct qe_bd *),
692 				  priv->rx_bd_base, priv->dma_rx_bd);
693 
694 		priv->rx_bd_base = NULL;
695 		priv->dma_rx_bd = 0;
696 	}
697 
698 	if (priv->tx_bd_base) {
699 		dma_free_coherent(priv->dev,
700 				  TX_BD_RING_LEN * sizeof(struct qe_bd *),
701 				  priv->tx_bd_base, priv->dma_tx_bd);
702 
703 		priv->tx_bd_base = NULL;
704 		priv->dma_tx_bd = 0;
705 	}
706 
707 	if (priv->ucc_pram) {
708 		qe_muram_free(priv->ucc_pram_offset);
709 		priv->ucc_pram = NULL;
710 		priv->ucc_pram_offset = 0;
711 	 }
712 
713 	kfree(priv->rx_skbuff);
714 	priv->rx_skbuff = NULL;
715 
716 	kfree(priv->tx_skbuff);
717 	priv->tx_skbuff = NULL;
718 
719 	if (priv->uf_regs) {
720 		iounmap(priv->uf_regs);
721 		priv->uf_regs = NULL;
722 	}
723 
724 	if (priv->uccf) {
725 		ucc_fast_free(priv->uccf);
726 		priv->uccf = NULL;
727 	}
728 
729 	if (priv->rx_buffer) {
730 		dma_free_coherent(priv->dev,
731 				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
732 				  priv->rx_buffer, priv->dma_rx_addr);
733 		priv->rx_buffer = NULL;
734 		priv->dma_rx_addr = 0;
735 	}
736 
737 	if (priv->tx_buffer) {
738 		dma_free_coherent(priv->dev,
739 				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
740 				  priv->tx_buffer, priv->dma_tx_addr);
741 		priv->tx_buffer = NULL;
742 		priv->dma_tx_addr = 0;
743 	}
744 }
745 
746 static int uhdlc_close(struct net_device *dev)
747 {
748 	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
749 	struct ucc_tdm *utdm = priv->utdm;
750 	u32 cecr_subblock;
751 
752 	napi_disable(&priv->napi);
753 	cecr_subblock = ucc_fast_get_qe_cr_subblock(
754 				priv->ut_info->uf_info.ucc_num);
755 
756 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
757 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
758 	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
759 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
760 
761 	if (priv->tsa)
762 		utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
763 
764 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
765 
766 	free_irq(priv->ut_info->uf_info.irq, priv);
767 	netif_stop_queue(dev);
768 	priv->hdlc_busy = 0;
769 
770 	return 0;
771 }
772 
773 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
774 			   unsigned short parity)
775 {
776 	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
777 
778 	if (encoding != ENCODING_NRZ &&
779 	    encoding != ENCODING_NRZI)
780 		return -EINVAL;
781 
782 	if (parity != PARITY_NONE &&
783 	    parity != PARITY_CRC32_PR1_CCITT &&
784 	    parity != PARITY_CRC16_PR1_CCITT)
785 		return -EINVAL;
786 
787 	priv->encoding = encoding;
788 	priv->parity = parity;
789 
790 	return 0;
791 }
792 
793 #ifdef CONFIG_PM
794 static void store_clk_config(struct ucc_hdlc_private *priv)
795 {
796 	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
797 
798 	/* store si clk */
799 	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
800 	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
801 
802 	/* store si sync */
803 	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
804 
805 	/* store ucc clk */
806 	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
807 }
808 
809 static void resume_clk_config(struct ucc_hdlc_private *priv)
810 {
811 	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
812 
813 	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
814 
815 	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
816 	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
817 
818 	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
819 }
820 
821 static int uhdlc_suspend(struct device *dev)
822 {
823 	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
824 	struct ucc_tdm_info *ut_info;
825 	struct ucc_fast __iomem *uf_regs;
826 
827 	if (!priv)
828 		return -EINVAL;
829 
830 	if (!netif_running(priv->ndev))
831 		return 0;
832 
833 	netif_device_detach(priv->ndev);
834 	napi_disable(&priv->napi);
835 
836 	ut_info = priv->ut_info;
837 	uf_regs = priv->uf_regs;
838 
839 	/* backup gumr guemr*/
840 	priv->gumr = ioread32be(&uf_regs->gumr);
841 	priv->guemr = ioread8(&uf_regs->guemr);
842 
843 	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
844 					GFP_KERNEL);
845 	if (!priv->ucc_pram_bak)
846 		return -ENOMEM;
847 
848 	/* backup HDLC parameter */
849 	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
850 		      sizeof(struct ucc_hdlc_param));
851 
852 	/* store the clk configuration */
853 	store_clk_config(priv);
854 
855 	/* save power */
856 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
857 
858 	dev_dbg(dev, "ucc hdlc suspend\n");
859 	return 0;
860 }
861 
862 static int uhdlc_resume(struct device *dev)
863 {
864 	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
865 	struct ucc_tdm *utdm;
866 	struct ucc_tdm_info *ut_info;
867 	struct ucc_fast __iomem *uf_regs;
868 	struct ucc_fast_private *uccf;
869 	struct ucc_fast_info *uf_info;
870 	int ret, i;
871 	u32 cecr_subblock;
872 	u16 bd_status;
873 
874 	if (!priv)
875 		return -EINVAL;
876 
877 	if (!netif_running(priv->ndev))
878 		return 0;
879 
880 	utdm = priv->utdm;
881 	ut_info = priv->ut_info;
882 	uf_info = &ut_info->uf_info;
883 	uf_regs = priv->uf_regs;
884 	uccf = priv->uccf;
885 
886 	/* restore gumr guemr */
887 	iowrite8(priv->guemr, &uf_regs->guemr);
888 	iowrite32be(priv->gumr, &uf_regs->gumr);
889 
890 	/* Set Virtual Fifo registers */
891 	iowrite16be(uf_info->urfs, &uf_regs->urfs);
892 	iowrite16be(uf_info->urfet, &uf_regs->urfet);
893 	iowrite16be(uf_info->urfset, &uf_regs->urfset);
894 	iowrite16be(uf_info->utfs, &uf_regs->utfs);
895 	iowrite16be(uf_info->utfet, &uf_regs->utfet);
896 	iowrite16be(uf_info->utftt, &uf_regs->utftt);
897 	/* utfb, urfb are offsets from MURAM base */
898 	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
899 	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
900 
901 	/* Rx Tx and sync clock routing */
902 	resume_clk_config(priv);
903 
904 	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
905 	iowrite32be(0xffffffff, &uf_regs->ucce);
906 
907 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
908 
909 	/* rebuild SIRAM */
910 	if (priv->tsa)
911 		ucc_tdm_init(priv->utdm, priv->ut_info);
912 
913 	/* Write to QE CECR, UCCx channel to Stop Transmission */
914 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
915 	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
916 			   (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
917 
918 	/* Set UPSMR normal mode */
919 	iowrite32be(0, &uf_regs->upsmr);
920 
921 	/* init parameter base */
922 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
923 	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
924 			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
925 
926 	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
927 				qe_muram_addr(priv->ucc_pram_offset);
928 
929 	/* restore ucc parameter */
930 	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
931 		    sizeof(struct ucc_hdlc_param));
932 	kfree(priv->ucc_pram_bak);
933 
934 	/* rebuild BD entry */
935 	for (i = 0; i < RX_BD_RING_LEN; i++) {
936 		if (i < (RX_BD_RING_LEN - 1))
937 			bd_status = R_E_S | R_I_S;
938 		else
939 			bd_status = R_E_S | R_I_S | R_W_S;
940 
941 		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
942 		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
943 			    &priv->rx_bd_base[i].buf);
944 	}
945 
946 	for (i = 0; i < TX_BD_RING_LEN; i++) {
947 		if (i < (TX_BD_RING_LEN - 1))
948 			bd_status =  T_I_S | T_TC_S;
949 		else
950 			bd_status =  T_I_S | T_TC_S | T_W_S;
951 
952 		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
953 		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
954 			    &priv->tx_bd_base[i].buf);
955 	}
956 
957 	/* if hdlc is busy enable TX and RX */
958 	if (priv->hdlc_busy == 1) {
959 		cecr_subblock = ucc_fast_get_qe_cr_subblock(
960 					priv->ut_info->uf_info.ucc_num);
961 
962 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
963 			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
964 
965 		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
966 
967 		/* Enable the TDM port */
968 		if (priv->tsa)
969 			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
970 	}
971 
972 	napi_enable(&priv->napi);
973 	netif_device_attach(priv->ndev);
974 
975 	return 0;
976 }
977 
978 static const struct dev_pm_ops uhdlc_pm_ops = {
979 	.suspend = uhdlc_suspend,
980 	.resume = uhdlc_resume,
981 	.freeze = uhdlc_suspend,
982 	.thaw = uhdlc_resume,
983 };
984 
985 #define HDLC_PM_OPS (&uhdlc_pm_ops)
986 
987 #else
988 
989 #define HDLC_PM_OPS NULL
990 
991 #endif
992 static const struct net_device_ops uhdlc_ops = {
993 	.ndo_open       = uhdlc_open,
994 	.ndo_stop       = uhdlc_close,
995 	.ndo_start_xmit = hdlc_start_xmit,
996 	.ndo_do_ioctl   = uhdlc_ioctl,
997 };
998 
999 static int ucc_hdlc_probe(struct platform_device *pdev)
1000 {
1001 	struct device_node *np = pdev->dev.of_node;
1002 	struct ucc_hdlc_private *uhdlc_priv = NULL;
1003 	struct ucc_tdm_info *ut_info;
1004 	struct ucc_tdm *utdm;
1005 	struct resource res;
1006 	struct net_device *dev;
1007 	hdlc_device *hdlc;
1008 	int ucc_num;
1009 	const char *sprop;
1010 	int ret;
1011 	u32 val;
1012 
1013 	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1014 	if (ret) {
1015 		dev_err(&pdev->dev, "Invalid ucc property\n");
1016 		return -ENODEV;
1017 	}
1018 
1019 	ucc_num = val - 1;
1020 	if ((ucc_num > 3) || (ucc_num < 0)) {
1021 		dev_err(&pdev->dev, ": Invalid UCC num\n");
1022 		return -EINVAL;
1023 	}
1024 
1025 	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1026 	       sizeof(utdm_primary_info));
1027 
1028 	ut_info = &utdm_info[ucc_num];
1029 	ut_info->uf_info.ucc_num = ucc_num;
1030 
1031 	sprop = of_get_property(np, "rx-clock-name", NULL);
1032 	if (sprop) {
1033 		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1034 		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1035 		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1036 			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1037 			return -EINVAL;
1038 		}
1039 	} else {
1040 		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1041 		return -EINVAL;
1042 	}
1043 
1044 	sprop = of_get_property(np, "tx-clock-name", NULL);
1045 	if (sprop) {
1046 		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1047 		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1048 		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1049 			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1050 			return -EINVAL;
1051 		}
1052 	} else {
1053 		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1054 		return -EINVAL;
1055 	}
1056 
1057 	/* use the same clock when work in loopback */
1058 	if (ut_info->uf_info.rx_clock == ut_info->uf_info.tx_clock)
1059 		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
1060 
1061 	ret = of_address_to_resource(np, 0, &res);
1062 	if (ret)
1063 		return -EINVAL;
1064 
1065 	ut_info->uf_info.regs = res.start;
1066 	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1067 
1068 	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1069 	if (!uhdlc_priv) {
1070 		return -ENOMEM;
1071 	}
1072 
1073 	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1074 	uhdlc_priv->dev = &pdev->dev;
1075 	uhdlc_priv->ut_info = ut_info;
1076 
1077 	if (of_get_property(np, "fsl,tdm-interface", NULL))
1078 		uhdlc_priv->tsa = 1;
1079 
1080 	if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1081 		uhdlc_priv->loopback = 1;
1082 
1083 	if (uhdlc_priv->tsa == 1) {
1084 		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1085 		if (!utdm) {
1086 			ret = -ENOMEM;
1087 			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1088 			goto free_uhdlc_priv;
1089 		}
1090 		uhdlc_priv->utdm = utdm;
1091 		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1092 		if (ret)
1093 			goto free_utdm;
1094 	}
1095 
1096 	ret = uhdlc_init(uhdlc_priv);
1097 	if (ret) {
1098 		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1099 		goto free_utdm;
1100 	}
1101 
1102 	dev = alloc_hdlcdev(uhdlc_priv);
1103 	if (!dev) {
1104 		ret = -ENOMEM;
1105 		pr_err("ucc_hdlc: unable to allocate memory\n");
1106 		goto undo_uhdlc_init;
1107 	}
1108 
1109 	uhdlc_priv->ndev = dev;
1110 	hdlc = dev_to_hdlc(dev);
1111 	dev->tx_queue_len = 16;
1112 	dev->netdev_ops = &uhdlc_ops;
1113 	hdlc->attach = ucc_hdlc_attach;
1114 	hdlc->xmit = ucc_hdlc_tx;
1115 	netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1116 	if (register_hdlc_device(dev)) {
1117 		ret = -ENOBUFS;
1118 		pr_err("ucc_hdlc: unable to register hdlc device\n");
1119 		free_netdev(dev);
1120 		goto free_dev;
1121 	}
1122 
1123 	return 0;
1124 
1125 free_dev:
1126 	free_netdev(dev);
1127 undo_uhdlc_init:
1128 free_utdm:
1129 	if (uhdlc_priv->tsa)
1130 		kfree(utdm);
1131 free_uhdlc_priv:
1132 	kfree(uhdlc_priv);
1133 	return ret;
1134 }
1135 
1136 static int ucc_hdlc_remove(struct platform_device *pdev)
1137 {
1138 	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1139 
1140 	uhdlc_memclean(priv);
1141 
1142 	if (priv->utdm->si_regs) {
1143 		iounmap(priv->utdm->si_regs);
1144 		priv->utdm->si_regs = NULL;
1145 	}
1146 
1147 	if (priv->utdm->siram) {
1148 		iounmap(priv->utdm->siram);
1149 		priv->utdm->siram = NULL;
1150 	}
1151 	kfree(priv);
1152 
1153 	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1154 
1155 	return 0;
1156 }
1157 
1158 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1159 	{
1160 	.compatible = "fsl,ucc-hdlc",
1161 	},
1162 	{},
1163 };
1164 
1165 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1166 
1167 static struct platform_driver ucc_hdlc_driver = {
1168 	.probe	= ucc_hdlc_probe,
1169 	.remove	= ucc_hdlc_remove,
1170 	.driver	= {
1171 		.name		= DRV_NAME,
1172 		.pm		= HDLC_PM_OPS,
1173 		.of_match_table	= fsl_ucc_hdlc_of_match,
1174 	},
1175 };
1176 
1177 module_platform_driver(ucc_hdlc_driver);
1178 MODULE_LICENSE("GPL");
1179