xref: /linux/drivers/net/wan/farsync.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*      FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7  *      www.farsite.co.uk
8  *
9  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
10  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/version.h>
18 #include <linux/pci.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/ioport.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/if.h>
26 #include <linux/hdlc.h>
27 #include <asm/io.h>
28 #include <linux/uaccess.h>
29 
30 #include "farsync.h"
31 
32 /*      Module info
33  */
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
37 
38 /*      Driver configuration and global parameters
39  *      ==========================================
40  */
41 
42 /*      Number of ports (per card) and cards supported
43  */
44 #define FST_MAX_PORTS           4
45 #define FST_MAX_CARDS           32
46 
47 /*      Default parameters for the link
48  */
49 #define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
50 					 * useful
51 					 */
52 #define FST_TXQ_DEPTH           16	/* This one is for the buffering
53 					 * of frames on the way down to the card
54 					 * so that we can keep the card busy
55 					 * and maximise throughput
56 					 */
57 #define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
58 					 * network layer
59 					 */
60 #define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
61 					 * control from network layer
62 					 */
63 #define FST_MAX_MTU             8000	/* Huge but possible */
64 #define FST_DEF_MTU             1500	/* Common sane value */
65 
66 #define FST_TX_TIMEOUT          (2 * HZ)
67 
68 #ifdef ARPHRD_RAWHDLC
69 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
70 #else
71 #define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
72 #endif
73 
74 /* Modules parameters and associated variables
75  */
76 static int fst_txq_low = FST_LOW_WATER_MARK;
77 static int fst_txq_high = FST_HIGH_WATER_MARK;
78 static int fst_max_reads = 7;
79 static int fst_excluded_cards;
80 static int fst_excluded_list[FST_MAX_CARDS];
81 
82 module_param(fst_txq_low, int, 0);
83 module_param(fst_txq_high, int, 0);
84 module_param(fst_max_reads, int, 0);
85 module_param(fst_excluded_cards, int, 0);
86 module_param_array(fst_excluded_list, int, NULL, 0);
87 
88 /*      Card shared memory layout
89  *      =========================
90  */
91 #pragma pack(1)
92 
93 /*      This information is derived in part from the FarSite FarSync Smc.h
94  *      file. Unfortunately various name clashes and the non-portability of the
95  *      bit field declarations in that file have meant that I have chosen to
96  *      recreate the information here.
97  *
98  *      The SMC (Shared Memory Configuration) has a version number that is
99  *      incremented every time there is a significant change. This number can
100  *      be used to check that we have not got out of step with the firmware
101  *      contained in the .CDE files.
102  */
103 #define SMC_VERSION 24
104 
105 #define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
106 
107 #define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
108 				 * configuration structure
109 				 */
110 #define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
111 				 * buffers
112 				 */
113 
114 #define LEN_TX_BUFFER 8192	/* Size of packet buffers */
115 #define LEN_RX_BUFFER 8192
116 
117 #define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
118 #define LEN_SMALL_RX_BUFFER 256
119 
120 #define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
121 #define NUM_RX_BUFFER 8
122 
123 /* Interrupt retry time in milliseconds */
124 #define INT_RETRY_TIME 2
125 
126 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
127  *      of buffer descriptors. The structure is almost identical to that used
128  *      in the LANCE Ethernet controllers. Details available as PDF from the
129  *      AMD web site: https://www.amd.com/products/epd/processors/\
130  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
131  */
132 struct txdesc {			/* Transmit descriptor */
133 	volatile u16 ladr;	/* Low order address of packet. This is a
134 				 * linear address in the Am186 memory space
135 				 */
136 	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
137 				 * bits must be zero
138 				 */
139 	volatile u8 bits;	/* Status and config */
140 	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
141 				 * Transmit terminal count interrupt enable in
142 				 * top bit.
143 				 */
144 	u16 unused;		/* Not used in Tx */
145 };
146 
147 struct rxdesc {			/* Receive descriptor */
148 	volatile u16 ladr;	/* Low order address of packet */
149 	volatile u8 hadr;	/* High order address */
150 	volatile u8 bits;	/* Status and config */
151 	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
152 				 * Receive terminal count interrupt enable in
153 				 * top bit.
154 				 */
155 	volatile u16 mcnt;	/* Message byte count (15 bits) */
156 };
157 
158 /* Convert a length into the 15 bit 2's complement */
159 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
160 /* Since we need to set the high bit to enable the completion interrupt this
161  * can be made a lot simpler
162  */
163 #define cnv_bcnt(len)   (-(len))
164 
165 /* Status and config bits for the above */
166 #define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
167 #define TX_STP          0x02	/* Tx: start of packet */
168 #define TX_ENP          0x01	/* Tx: end of packet */
169 #define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
170 #define RX_FRAM         0x20	/* Rx: framing error */
171 #define RX_OFLO         0x10	/* Rx: overflow error */
172 #define RX_CRC          0x08	/* Rx: CRC error */
173 #define RX_HBUF         0x04	/* Rx: buffer error */
174 #define RX_STP          0x02	/* Rx: start of packet */
175 #define RX_ENP          0x01	/* Rx: end of packet */
176 
177 /* Interrupts from the card are caused by various events which are presented
178  * in a circular buffer as several events may be processed on one physical int
179  */
180 #define MAX_CIRBUFF     32
181 
182 struct cirbuff {
183 	u8 rdindex;		/* read, then increment and wrap */
184 	u8 wrindex;		/* write, then increment and wrap */
185 	u8 evntbuff[MAX_CIRBUFF];
186 };
187 
188 /* Interrupt event codes.
189  * Where appropriate the two low order bits indicate the port number
190  */
191 #define CTLA_CHG        0x18	/* Control signal changed */
192 #define CTLB_CHG        0x19
193 #define CTLC_CHG        0x1A
194 #define CTLD_CHG        0x1B
195 
196 #define INIT_CPLT       0x20	/* Initialisation complete */
197 #define INIT_FAIL       0x21	/* Initialisation failed */
198 
199 #define ABTA_SENT       0x24	/* Abort sent */
200 #define ABTB_SENT       0x25
201 #define ABTC_SENT       0x26
202 #define ABTD_SENT       0x27
203 
204 #define TXA_UNDF        0x28	/* Transmission underflow */
205 #define TXB_UNDF        0x29
206 #define TXC_UNDF        0x2A
207 #define TXD_UNDF        0x2B
208 
209 #define F56_INT         0x2C
210 #define M32_INT         0x2D
211 
212 #define TE1_ALMA        0x30
213 
214 /* Port physical configuration. See farsync.h for field values */
215 struct port_cfg {
216 	u16 lineInterface;	/* Physical interface type */
217 	u8 x25op;		/* Unused at present */
218 	u8 internalClock;	/* 1 => internal clock, 0 => external */
219 	u8 transparentMode;	/* 1 => on, 0 => off */
220 	u8 invertClock;		/* 0 => normal, 1 => inverted */
221 	u8 padBytes[6];		/* Padding */
222 	u32 lineSpeed;		/* Speed in bps */
223 };
224 
225 /* TE1 port physical configuration */
226 struct su_config {
227 	u32 dataRate;
228 	u8 clocking;
229 	u8 framing;
230 	u8 structure;
231 	u8 interface;
232 	u8 coding;
233 	u8 lineBuildOut;
234 	u8 equalizer;
235 	u8 transparentMode;
236 	u8 loopMode;
237 	u8 range;
238 	u8 txBufferMode;
239 	u8 rxBufferMode;
240 	u8 startingSlot;
241 	u8 losThreshold;
242 	u8 enableIdleCode;
243 	u8 idleCode;
244 	u8 spare[44];
245 };
246 
247 /* TE1 Status */
248 struct su_status {
249 	u32 receiveBufferDelay;
250 	u32 framingErrorCount;
251 	u32 codeViolationCount;
252 	u32 crcErrorCount;
253 	u32 lineAttenuation;
254 	u8 portStarted;
255 	u8 lossOfSignal;
256 	u8 receiveRemoteAlarm;
257 	u8 alarmIndicationSignal;
258 	u8 spare[40];
259 };
260 
261 /* Finally sling all the above together into the shared memory structure.
262  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
263  * evolving under NT for some time so I guess we're stuck with it.
264  * The structure starts at offset SMC_BASE.
265  * See farsync.h for some field values.
266  */
267 struct fst_shared {
268 	/* DMA descriptor rings */
269 	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
270 	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
271 
272 	/* Obsolete small buffers */
273 	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
274 	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
275 
276 	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
277 				 * 0xFF => halted
278 				 */
279 
280 	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
281 				 * set to 0xEE by host to acknowledge interrupt
282 				 */
283 
284 	u16 smcVersion;		/* Must match SMC_VERSION */
285 
286 	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
287 				 * version, RR = revision and BB = build
288 				 */
289 
290 	u16 txa_done;		/* Obsolete completion flags */
291 	u16 rxa_done;
292 	u16 txb_done;
293 	u16 rxb_done;
294 	u16 txc_done;
295 	u16 rxc_done;
296 	u16 txd_done;
297 	u16 rxd_done;
298 
299 	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
300 
301 	struct cirbuff interruptEvent;	/* interrupt causes */
302 
303 	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
304 	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
305 
306 	struct port_cfg portConfig[FST_MAX_PORTS];
307 
308 	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
309 
310 	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
311 
312 	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
313 	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
314 
315 	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
316 	u16 cardMailbox[4];	/* Not used */
317 
318 	/* Number of times the card thinks the host has
319 	 * missed an interrupt by not acknowledging
320 	 * within 2mS (I guess NT has problems)
321 	 */
322 	u32 interruptRetryCount;
323 
324 	/* Driver private data used as an ID. We'll not
325 	 * use this as I'd rather keep such things
326 	 * in main memory rather than on the PCI bus
327 	 */
328 	u32 portHandle[FST_MAX_PORTS];
329 
330 	/* Count of Tx underflows for stats */
331 	u32 transmitBufferUnderflow[FST_MAX_PORTS];
332 
333 	/* Debounced V.24 control input status */
334 	u32 v24DebouncedSts[FST_MAX_PORTS];
335 
336 	/* Adapter debounce timers. Don't touch */
337 	u32 ctsTimer[FST_MAX_PORTS];
338 	u32 ctsTimerRun[FST_MAX_PORTS];
339 	u32 dcdTimer[FST_MAX_PORTS];
340 	u32 dcdTimerRun[FST_MAX_PORTS];
341 
342 	u32 numberOfPorts;	/* Number of ports detected at startup */
343 
344 	u16 _reserved[64];
345 
346 	u16 cardMode;		/* Bit-mask to enable features:
347 				 * Bit 0: 1 enables LED identify mode
348 				 */
349 
350 	u16 portScheduleOffset;
351 
352 	struct su_config suConfig;	/* TE1 Bits */
353 	struct su_status suStatus;
354 
355 	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
356 				 * the structure and marks the end of shared
357 				 * memory. Adapter code initializes it as
358 				 * END_SIG.
359 				 */
360 };
361 
362 /* endOfSmcSignature value */
363 #define END_SIG                 0x12345678
364 
365 /* Mailbox values. (portMailbox) */
366 #define NOP             0	/* No operation */
367 #define ACK             1	/* Positive acknowledgement to PC driver */
368 #define NAK             2	/* Negative acknowledgement to PC driver */
369 #define STARTPORT       3	/* Start an HDLC port */
370 #define STOPPORT        4	/* Stop an HDLC port */
371 #define ABORTTX         5	/* Abort the transmitter for a port */
372 #define SETV24O         6	/* Set V24 outputs */
373 
374 /* PLX Chip Register Offsets */
375 #define CNTRL_9052      0x50	/* Control Register */
376 #define CNTRL_9054      0x6c	/* Control Register */
377 
378 #define INTCSR_9052     0x4c	/* Interrupt control/status register */
379 #define INTCSR_9054     0x68	/* Interrupt control/status register */
380 
381 /* 9054 DMA Registers */
382 /* Note that we will be using DMA Channel 0 for copying rx data
383  * and Channel 1 for copying tx data
384  */
385 #define DMAMODE0        0x80
386 #define DMAPADR0        0x84
387 #define DMALADR0        0x88
388 #define DMASIZ0         0x8c
389 #define DMADPR0         0x90
390 #define DMAMODE1        0x94
391 #define DMAPADR1        0x98
392 #define DMALADR1        0x9c
393 #define DMASIZ1         0xa0
394 #define DMADPR1         0xa4
395 #define DMACSR0         0xa8
396 #define DMACSR1         0xa9
397 #define DMAARB          0xac
398 #define DMATHR          0xb0
399 #define DMADAC0         0xb4
400 #define DMADAC1         0xb8
401 #define DMAMARBR        0xac
402 
403 #define FST_MIN_DMA_LEN 64
404 #define FST_RX_DMA_INT  0x01
405 #define FST_TX_DMA_INT  0x02
406 #define FST_CARD_INT    0x04
407 
408 /* Larger buffers are positioned in memory at offset BFM_BASE */
409 struct buf_window {
410 	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411 	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
412 };
413 
414 /* Calculate offset of a buffer object within the shared memory window */
415 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
416 
417 #pragma pack()
418 
419 /*      Device driver private information
420  *      =================================
421  */
422 /*      Per port (line or channel) information
423  */
424 struct fst_port_info {
425 	struct net_device *dev; /* Device struct - must be first */
426 	struct fst_card_info *card;	/* Card we're associated with */
427 	int index;		/* Port index on the card */
428 	int hwif;		/* Line hardware (lineInterface copy) */
429 	int run;		/* Port is running */
430 	int mode;		/* Normal or FarSync raw */
431 	int rxpos;		/* Next Rx buffer to use */
432 	int txpos;		/* Next Tx buffer to use */
433 	int txipos;		/* Next Tx buffer to check for free */
434 	int start;		/* Indication of start/stop to network */
435 	/* A sixteen entry transmit queue
436 	 */
437 	int txqs;		/* index to get next buffer to tx */
438 	int txqe;		/* index to queue next packet */
439 	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
440 	int rxqdepth;
441 };
442 
443 /*      Per card information
444  */
445 struct fst_card_info {
446 	char __iomem *mem;	/* Card memory mapped to kernel space */
447 	char __iomem *ctlmem;	/* Control memory for PCI cards */
448 	unsigned int phys_mem;	/* Physical memory window address */
449 	unsigned int phys_ctlmem;	/* Physical control memory address */
450 	unsigned int irq;	/* Interrupt request line number */
451 	unsigned int nports;	/* Number of serial ports */
452 	unsigned int type;	/* Type index of card */
453 	unsigned int state;	/* State of card */
454 	spinlock_t card_lock;	/* Lock for SMP access */
455 	unsigned short pci_conf;	/* PCI card config in I/O space */
456 	/* Per port info */
457 	struct fst_port_info ports[FST_MAX_PORTS];
458 	struct pci_dev *device;	/* Information about the pci device */
459 	int card_no;		/* Inst of the card on the system */
460 	int family;		/* TxP or TxU */
461 	int dmarx_in_progress;
462 	int dmatx_in_progress;
463 	unsigned long int_count;
464 	unsigned long int_time_ave;
465 	void *rx_dma_handle_host;
466 	dma_addr_t rx_dma_handle_card;
467 	void *tx_dma_handle_host;
468 	dma_addr_t tx_dma_handle_card;
469 	struct sk_buff *dma_skb_rx;
470 	struct fst_port_info *dma_port_rx;
471 	struct fst_port_info *dma_port_tx;
472 	int dma_len_rx;
473 	int dma_len_tx;
474 	int dma_txpos;
475 	int dma_rxpos;
476 };
477 
478 /* Convert an HDLC device pointer into a port info pointer and similar */
479 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
480 #define port_to_dev(P)  ((P)->dev)
481 
482 /*      Shared memory window access macros
483  *
484  *      We have a nice memory based structure above, which could be directly
485  *      mapped on i386 but might not work on other architectures unless we use
486  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
487  *      physical offsets so we have to convert. The only saving grace is that
488  *      this should all collapse back to a simple indirection eventually.
489  */
490 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
491 
492 #define FST_RDB(C, E)    (readb((C)->mem + WIN_OFFSET(E)))
493 #define FST_RDW(C, E)    (readw((C)->mem + WIN_OFFSET(E)))
494 #define FST_RDL(C, E)    (readl((C)->mem + WIN_OFFSET(E)))
495 
496 #define FST_WRB(C, E, B)  (writeb((B), (C)->mem + WIN_OFFSET(E)))
497 #define FST_WRW(C, E, W)  (writew((W), (C)->mem + WIN_OFFSET(E)))
498 #define FST_WRL(C, E, L)  (writel((L), (C)->mem + WIN_OFFSET(E)))
499 
500 /*      Debug support
501  */
502 #if FST_DEBUG
503 
504 static int fst_debug_mask = { FST_DEBUG };
505 
506 /* Most common debug activity is to print something if the corresponding bit
507  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
508  * support variable numbers of macro parameters. The inverted if prevents us
509  * eating someone else's else clause.
510  */
511 #define dbg(F, fmt, args...)					\
512 do {								\
513 	if (fst_debug_mask & (F))				\
514 		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
515 } while (0)
516 #else
517 #define dbg(F, fmt, args...)					\
518 do {								\
519 	if (0)							\
520 		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
521 } while (0)
522 #endif
523 
524 /*      PCI ID lookup table
525  */
526 static const struct pci_device_id fst_pci_dev_id[] = {
527 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
528 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
529 
530 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
531 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
532 
533 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
534 	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
535 
536 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
537 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
538 
539 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
540 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
541 
542 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
543 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
544 
545 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
546 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
547 	{0,}			/* End */
548 };
549 
550 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
551 
552 /*      Device Driver Work Queues
553  *
554  *      So that we don't spend too much time processing events in the
555  *      Interrupt Service routine, we will declare a work queue per Card
556  *      and make the ISR schedule a task in the queue for later execution.
557  *      In the 2.4 Kernel we used to use the immediate queue for BH's
558  *      Now that they are gone, tasklets seem to be much better than work
559  *      queues.
560  */
561 
562 static void do_bottom_half_tx(struct fst_card_info *card);
563 static void do_bottom_half_rx(struct fst_card_info *card);
564 static void fst_process_tx_work_q(struct tasklet_struct *unused);
565 static void fst_process_int_work_q(struct tasklet_struct *unused);
566 
567 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q);
568 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q);
569 
570 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
571 static DEFINE_SPINLOCK(fst_work_q_lock);
572 static u64 fst_work_txq;
573 static u64 fst_work_intq;
574 
575 static void
576 fst_q_work_item(u64 *queue, int card_index)
577 {
578 	unsigned long flags;
579 	u64 mask;
580 
581 	/* Grab the queue exclusively
582 	 */
583 	spin_lock_irqsave(&fst_work_q_lock, flags);
584 
585 	/* Making an entry in the queue is simply a matter of setting
586 	 * a bit for the card indicating that there is work to do in the
587 	 * bottom half for the card.  Note the limitation of 64 cards.
588 	 * That ought to be enough
589 	 */
590 	mask = (u64)1 << card_index;
591 	*queue |= mask;
592 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
593 }
594 
595 static void
596 fst_process_tx_work_q(struct tasklet_struct *unused)
597 {
598 	unsigned long flags;
599 	u64 work_txq;
600 	int i;
601 
602 	/* Grab the queue exclusively
603 	 */
604 	dbg(DBG_TX, "fst_process_tx_work_q\n");
605 	spin_lock_irqsave(&fst_work_q_lock, flags);
606 	work_txq = fst_work_txq;
607 	fst_work_txq = 0;
608 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
609 
610 	/* Call the bottom half for each card with work waiting
611 	 */
612 	for (i = 0; i < FST_MAX_CARDS; i++) {
613 		if (work_txq & 0x01) {
614 			if (fst_card_array[i]) {
615 				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
616 				do_bottom_half_tx(fst_card_array[i]);
617 			}
618 		}
619 		work_txq = work_txq >> 1;
620 	}
621 }
622 
623 static void
624 fst_process_int_work_q(struct tasklet_struct *unused)
625 {
626 	unsigned long flags;
627 	u64 work_intq;
628 	int i;
629 
630 	/* Grab the queue exclusively
631 	 */
632 	dbg(DBG_INTR, "fst_process_int_work_q\n");
633 	spin_lock_irqsave(&fst_work_q_lock, flags);
634 	work_intq = fst_work_intq;
635 	fst_work_intq = 0;
636 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
637 
638 	/* Call the bottom half for each card with work waiting
639 	 */
640 	for (i = 0; i < FST_MAX_CARDS; i++) {
641 		if (work_intq & 0x01) {
642 			if (fst_card_array[i]) {
643 				dbg(DBG_INTR,
644 				    "Calling rx & tx bh for card %d\n", i);
645 				do_bottom_half_rx(fst_card_array[i]);
646 				do_bottom_half_tx(fst_card_array[i]);
647 			}
648 		}
649 		work_intq = work_intq >> 1;
650 	}
651 }
652 
653 /*      Card control functions
654  *      ======================
655  */
656 /*      Place the processor in reset state
657  *
658  * Used to be a simple write to card control space but a glitch in the latest
659  * AMD Am186CH processor means that we now have to do it by asserting and de-
660  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
661  * at offset 9052_CNTRL.  Note the updates for the TXU.
662  */
663 static inline void
664 fst_cpureset(struct fst_card_info *card)
665 {
666 	unsigned char interrupt_line_register;
667 	unsigned int regval;
668 
669 	if (card->family == FST_FAMILY_TXU) {
670 		if (pci_read_config_byte
671 		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
672 			dbg(DBG_ASS,
673 			    "Error in reading interrupt line register\n");
674 		}
675 		/* Assert PLX software reset and Am186 hardware reset
676 		 * and then deassert the PLX software reset but 186 still in reset
677 		 */
678 		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
679 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
680 		/* We are delaying here to allow the 9054 to reset itself
681 		 */
682 		usleep_range(10, 20);
683 		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
684 		/* We are delaying here to allow the 9054 to reload its eeprom
685 		 */
686 		usleep_range(10, 20);
687 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
688 
689 		if (pci_write_config_byte
690 		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
691 			dbg(DBG_ASS,
692 			    "Error in writing interrupt line register\n");
693 		}
694 
695 	} else {
696 		regval = inl(card->pci_conf + CNTRL_9052);
697 
698 		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
699 		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
700 	}
701 }
702 
703 /*      Release the processor from reset
704  */
705 static inline void
706 fst_cpurelease(struct fst_card_info *card)
707 {
708 	if (card->family == FST_FAMILY_TXU) {
709 		/* Force posted writes to complete
710 		 */
711 		(void)readb(card->mem);
712 
713 		/* Release LRESET DO = 1
714 		 * Then release Local Hold, DO = 1
715 		 */
716 		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
717 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
718 	} else {
719 		(void)readb(card->ctlmem);
720 	}
721 }
722 
723 /*      Clear the cards interrupt flag
724  */
725 static inline void
726 fst_clear_intr(struct fst_card_info *card)
727 {
728 	if (card->family == FST_FAMILY_TXU) {
729 		(void)readb(card->ctlmem);
730 	} else {
731 		/* Poke the appropriate PLX chip register (same as enabling interrupts)
732 		 */
733 		outw(0x0543, card->pci_conf + INTCSR_9052);
734 	}
735 }
736 
737 /*      Enable card interrupts
738  */
739 static inline void
740 fst_enable_intr(struct fst_card_info *card)
741 {
742 	if (card->family == FST_FAMILY_TXU)
743 		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
744 	else
745 		outw(0x0543, card->pci_conf + INTCSR_9052);
746 }
747 
748 /*      Disable card interrupts
749  */
750 static inline void
751 fst_disable_intr(struct fst_card_info *card)
752 {
753 	if (card->family == FST_FAMILY_TXU)
754 		outl(0x00000000, card->pci_conf + INTCSR_9054);
755 	else
756 		outw(0x0000, card->pci_conf + INTCSR_9052);
757 }
758 
759 /*      Process the result of trying to pass a received frame up the stack
760  */
761 static void
762 fst_process_rx_status(int rx_status, char *name)
763 {
764 	switch (rx_status) {
765 	case NET_RX_SUCCESS:
766 		{
767 			/* Nothing to do here
768 			 */
769 			break;
770 		}
771 	case NET_RX_DROP:
772 		{
773 			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
774 			break;
775 		}
776 	}
777 }
778 
779 /*      Initilaise DMA for PLX 9054
780  */
781 static inline void
782 fst_init_dma(struct fst_card_info *card)
783 {
784 	/* This is only required for the PLX 9054
785 	 */
786 	if (card->family == FST_FAMILY_TXU) {
787 		pci_set_master(card->device);
788 		outl(0x00020441, card->pci_conf + DMAMODE0);
789 		outl(0x00020441, card->pci_conf + DMAMODE1);
790 		outl(0x0, card->pci_conf + DMATHR);
791 	}
792 }
793 
794 /*      Tx dma complete interrupt
795  */
796 static void
797 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
798 		    int len, int txpos)
799 {
800 	struct net_device *dev = port_to_dev(port);
801 
802 	/* Everything is now set, just tell the card to go
803 	 */
804 	dbg(DBG_TX, "fst_tx_dma_complete\n");
805 	FST_WRB(card, txDescrRing[port->index][txpos].bits,
806 		DMA_OWN | TX_STP | TX_ENP);
807 	dev->stats.tx_packets++;
808 	dev->stats.tx_bytes += len;
809 	netif_trans_update(dev);
810 }
811 
812 /* Mark it for our own raw sockets interface
813  */
814 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
815 {
816 	skb->dev = dev;
817 	skb_reset_mac_header(skb);
818 	skb->pkt_type = PACKET_HOST;
819 	return htons(ETH_P_CUST);
820 }
821 
822 /*      Rx dma complete interrupt
823  */
824 static void
825 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826 		    int len, struct sk_buff *skb, int rxp)
827 {
828 	struct net_device *dev = port_to_dev(port);
829 	int pi;
830 	int rx_status;
831 
832 	dbg(DBG_TX, "fst_rx_dma_complete\n");
833 	pi = port->index;
834 	skb_put_data(skb, card->rx_dma_handle_host, len);
835 
836 	/* Reset buffer descriptor */
837 	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
838 
839 	/* Update stats */
840 	dev->stats.rx_packets++;
841 	dev->stats.rx_bytes += len;
842 
843 	/* Push upstream */
844 	dbg(DBG_RX, "Pushing the frame up the stack\n");
845 	if (port->mode == FST_RAW)
846 		skb->protocol = farsync_type_trans(skb, dev);
847 	else
848 		skb->protocol = hdlc_type_trans(skb, dev);
849 	rx_status = netif_rx(skb);
850 	fst_process_rx_status(rx_status, port_to_dev(port)->name);
851 	if (rx_status == NET_RX_DROP)
852 		dev->stats.rx_dropped++;
853 }
854 
855 /*      Receive a frame through the DMA
856  */
857 static inline void
858 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
859 {
860 	/* This routine will setup the DMA and start it
861 	 */
862 
863 	dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
864 	if (card->dmarx_in_progress)
865 		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
866 
867 	outl(dma, card->pci_conf + DMAPADR0);	/* Copy to here */
868 	outl(mem, card->pci_conf + DMALADR0);	/* from here */
869 	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
870 	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
871 
872 	/* We use the dmarx_in_progress flag to flag the channel as busy
873 	 */
874 	card->dmarx_in_progress = 1;
875 	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
876 }
877 
878 /*      Send a frame through the DMA
879  */
880 static inline void
881 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
882 {
883 	/* This routine will setup the DMA and start it.
884 	 */
885 
886 	dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
887 	if (card->dmatx_in_progress)
888 		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
889 
890 	outl(dma, card->pci_conf + DMAPADR1);	/* Copy from here */
891 	outl(mem, card->pci_conf + DMALADR1);	/* to here */
892 	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
893 	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
894 
895 	/* We use the dmatx_in_progress to flag the channel as busy
896 	 */
897 	card->dmatx_in_progress = 1;
898 	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
899 }
900 
901 /*      Issue a Mailbox command for a port.
902  *      Note we issue them on a fire and forget basis, not expecting to see an
903  *      error and not waiting for completion.
904  */
905 static void
906 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
907 {
908 	struct fst_card_info *card;
909 	unsigned short mbval;
910 	unsigned long flags;
911 	int safety;
912 
913 	card = port->card;
914 	spin_lock_irqsave(&card->card_lock, flags);
915 	mbval = FST_RDW(card, portMailbox[port->index][0]);
916 
917 	safety = 0;
918 	/* Wait for any previous command to complete */
919 	while (mbval > NAK) {
920 		spin_unlock_irqrestore(&card->card_lock, flags);
921 		schedule_timeout_uninterruptible(1);
922 		spin_lock_irqsave(&card->card_lock, flags);
923 
924 		if (++safety > 2000) {
925 			pr_err("Mailbox safety timeout\n");
926 			break;
927 		}
928 
929 		mbval = FST_RDW(card, portMailbox[port->index][0]);
930 	}
931 	if (safety > 0)
932 		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
933 
934 	if (mbval == NAK)
935 		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
936 
937 	FST_WRW(card, portMailbox[port->index][0], cmd);
938 
939 	if (cmd == ABORTTX || cmd == STARTPORT) {
940 		port->txpos = 0;
941 		port->txipos = 0;
942 		port->start = 0;
943 	}
944 
945 	spin_unlock_irqrestore(&card->card_lock, flags);
946 }
947 
948 /*      Port output signals control
949  */
950 static inline void
951 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
952 {
953 	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
954 	FST_WRL(port->card, v24OpSts[port->index], outputs);
955 
956 	if (port->run)
957 		fst_issue_cmd(port, SETV24O);
958 }
959 
960 static inline void
961 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
962 {
963 	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
964 	FST_WRL(port->card, v24OpSts[port->index], outputs);
965 
966 	if (port->run)
967 		fst_issue_cmd(port, SETV24O);
968 }
969 
970 /*      Setup port Rx buffers
971  */
972 static void
973 fst_rx_config(struct fst_port_info *port)
974 {
975 	int i;
976 	int pi;
977 	unsigned int offset;
978 	unsigned long flags;
979 	struct fst_card_info *card;
980 
981 	pi = port->index;
982 	card = port->card;
983 	spin_lock_irqsave(&card->card_lock, flags);
984 	for (i = 0; i < NUM_RX_BUFFER; i++) {
985 		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
986 
987 		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16)offset);
988 		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8)(offset >> 16));
989 		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
990 		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
991 		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
992 	}
993 	port->rxpos = 0;
994 	spin_unlock_irqrestore(&card->card_lock, flags);
995 }
996 
997 /*      Setup port Tx buffers
998  */
999 static void
1000 fst_tx_config(struct fst_port_info *port)
1001 {
1002 	int i;
1003 	int pi;
1004 	unsigned int offset;
1005 	unsigned long flags;
1006 	struct fst_card_info *card;
1007 
1008 	pi = port->index;
1009 	card = port->card;
1010 	spin_lock_irqsave(&card->card_lock, flags);
1011 	for (i = 0; i < NUM_TX_BUFFER; i++) {
1012 		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1013 
1014 		FST_WRW(card, txDescrRing[pi][i].ladr, (u16)offset);
1015 		FST_WRB(card, txDescrRing[pi][i].hadr, (u8)(offset >> 16));
1016 		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1017 		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1018 	}
1019 	port->txpos = 0;
1020 	port->txipos = 0;
1021 	port->start = 0;
1022 	spin_unlock_irqrestore(&card->card_lock, flags);
1023 }
1024 
1025 /*      TE1 Alarm change interrupt event
1026  */
1027 static void
1028 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1029 {
1030 	u8 los;
1031 	u8 rra;
1032 	u8 ais;
1033 
1034 	los = FST_RDB(card, suStatus.lossOfSignal);
1035 	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1036 	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1037 
1038 	if (los) {
1039 		/* Lost the link
1040 		 */
1041 		if (netif_carrier_ok(port_to_dev(port))) {
1042 			dbg(DBG_INTR, "Net carrier off\n");
1043 			netif_carrier_off(port_to_dev(port));
1044 		}
1045 	} else {
1046 		/* Link available
1047 		 */
1048 		if (!netif_carrier_ok(port_to_dev(port))) {
1049 			dbg(DBG_INTR, "Net carrier on\n");
1050 			netif_carrier_on(port_to_dev(port));
1051 		}
1052 	}
1053 
1054 	if (los)
1055 		dbg(DBG_INTR, "Assert LOS Alarm\n");
1056 	else
1057 		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1058 	if (rra)
1059 		dbg(DBG_INTR, "Assert RRA Alarm\n");
1060 	else
1061 		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1062 
1063 	if (ais)
1064 		dbg(DBG_INTR, "Assert AIS Alarm\n");
1065 	else
1066 		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1067 }
1068 
1069 /*      Control signal change interrupt event
1070  */
1071 static void
1072 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1073 {
1074 	int signals;
1075 
1076 	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1077 
1078 	if (signals & ((port->hwif == X21 || port->hwif == X21D)
1079 		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1080 		if (!netif_carrier_ok(port_to_dev(port))) {
1081 			dbg(DBG_INTR, "DCD active\n");
1082 			netif_carrier_on(port_to_dev(port));
1083 		}
1084 	} else {
1085 		if (netif_carrier_ok(port_to_dev(port))) {
1086 			dbg(DBG_INTR, "DCD lost\n");
1087 			netif_carrier_off(port_to_dev(port));
1088 		}
1089 	}
1090 }
1091 
1092 /*      Log Rx Errors
1093  */
1094 static void
1095 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1096 		 unsigned char dmabits, int rxp, unsigned short len)
1097 {
1098 	struct net_device *dev = port_to_dev(port);
1099 
1100 	/* Increment the appropriate error counter
1101 	 */
1102 	dev->stats.rx_errors++;
1103 	if (dmabits & RX_OFLO) {
1104 		dev->stats.rx_fifo_errors++;
1105 		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1106 		    card->card_no, port->index, rxp);
1107 	}
1108 	if (dmabits & RX_CRC) {
1109 		dev->stats.rx_crc_errors++;
1110 		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1111 		    card->card_no, port->index);
1112 	}
1113 	if (dmabits & RX_FRAM) {
1114 		dev->stats.rx_frame_errors++;
1115 		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1116 		    card->card_no, port->index);
1117 	}
1118 	if (dmabits == (RX_STP | RX_ENP)) {
1119 		dev->stats.rx_length_errors++;
1120 		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1121 		    len, card->card_no, port->index);
1122 	}
1123 }
1124 
1125 /*      Rx Error Recovery
1126  */
1127 static void
1128 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1129 		     unsigned char dmabits, int rxp, unsigned short len)
1130 {
1131 	int i;
1132 	int pi;
1133 
1134 	pi = port->index;
1135 	/* Discard buffer descriptors until we see the start of the
1136 	 * next frame.  Note that for long frames this could be in
1137 	 * a subsequent interrupt.
1138 	 */
1139 	i = 0;
1140 	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1141 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1142 		rxp = (rxp + 1) % NUM_RX_BUFFER;
1143 		if (++i > NUM_RX_BUFFER) {
1144 			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1145 			    " than we have\n");
1146 			break;
1147 		}
1148 		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1149 		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1150 	}
1151 	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1152 
1153 	/* Discard the terminal buffer */
1154 	if (!(dmabits & DMA_OWN)) {
1155 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1156 		rxp = (rxp + 1) % NUM_RX_BUFFER;
1157 	}
1158 	port->rxpos = rxp;
1159 }
1160 
1161 /*      Rx complete interrupt
1162  */
1163 static void
1164 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1165 {
1166 	unsigned char dmabits;
1167 	int pi;
1168 	int rxp;
1169 	int rx_status;
1170 	unsigned short len;
1171 	struct sk_buff *skb;
1172 	struct net_device *dev = port_to_dev(port);
1173 
1174 	/* Check we have a buffer to process */
1175 	pi = port->index;
1176 	rxp = port->rxpos;
1177 	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1178 	if (dmabits & DMA_OWN) {
1179 		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1180 		    pi, rxp);
1181 		return;
1182 	}
1183 	if (card->dmarx_in_progress)
1184 		return;
1185 
1186 	/* Get buffer length */
1187 	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1188 	/* Discard the CRC */
1189 	len -= 2;
1190 	if (len == 0) {
1191 		/* This seems to happen on the TE1 interface sometimes
1192 		 * so throw the frame away and log the event.
1193 		 */
1194 		pr_err("Frame received with 0 length. Card %d Port %d\n",
1195 		       card->card_no, port->index);
1196 		/* Return descriptor to card */
1197 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1198 
1199 		rxp = (rxp + 1) % NUM_RX_BUFFER;
1200 		port->rxpos = rxp;
1201 		return;
1202 	}
1203 
1204 	/* Check buffer length and for other errors. We insist on one packet
1205 	 * in one buffer. This simplifies things greatly and since we've
1206 	 * allocated 8K it shouldn't be a real world limitation
1207 	 */
1208 	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1209 	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1210 		fst_log_rx_error(card, port, dmabits, rxp, len);
1211 		fst_recover_rx_error(card, port, dmabits, rxp, len);
1212 		return;
1213 	}
1214 
1215 	/* Allocate SKB */
1216 	skb = dev_alloc_skb(len);
1217 	if (!skb) {
1218 		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1219 
1220 		dev->stats.rx_dropped++;
1221 
1222 		/* Return descriptor to card */
1223 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1224 
1225 		rxp = (rxp + 1) % NUM_RX_BUFFER;
1226 		port->rxpos = rxp;
1227 		return;
1228 	}
1229 
1230 	/* We know the length we need to receive, len.
1231 	 * It's not worth using the DMA for reads of less than
1232 	 * FST_MIN_DMA_LEN
1233 	 */
1234 
1235 	if (len < FST_MIN_DMA_LEN || card->family == FST_FAMILY_TXP) {
1236 		memcpy_fromio(skb_put(skb, len),
1237 			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1238 			      len);
1239 
1240 		/* Reset buffer descriptor */
1241 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1242 
1243 		/* Update stats */
1244 		dev->stats.rx_packets++;
1245 		dev->stats.rx_bytes += len;
1246 
1247 		/* Push upstream */
1248 		dbg(DBG_RX, "Pushing frame up the stack\n");
1249 		if (port->mode == FST_RAW)
1250 			skb->protocol = farsync_type_trans(skb, dev);
1251 		else
1252 			skb->protocol = hdlc_type_trans(skb, dev);
1253 		rx_status = netif_rx(skb);
1254 		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1255 		if (rx_status == NET_RX_DROP)
1256 			dev->stats.rx_dropped++;
1257 	} else {
1258 		card->dma_skb_rx = skb;
1259 		card->dma_port_rx = port;
1260 		card->dma_len_rx = len;
1261 		card->dma_rxpos = rxp;
1262 		fst_rx_dma(card, card->rx_dma_handle_card,
1263 			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1264 	}
1265 	if (rxp != port->rxpos) {
1266 		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1267 		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1268 	}
1269 	rxp = (rxp + 1) % NUM_RX_BUFFER;
1270 	port->rxpos = rxp;
1271 }
1272 
1273 /*      The bottom half to the ISR
1274  *
1275  */
1276 
1277 static void
1278 do_bottom_half_tx(struct fst_card_info *card)
1279 {
1280 	struct fst_port_info *port;
1281 	int pi;
1282 	int txq_length;
1283 	struct sk_buff *skb;
1284 	unsigned long flags;
1285 	struct net_device *dev;
1286 
1287 	/*  Find a free buffer for the transmit
1288 	 *  Step through each port on this card
1289 	 */
1290 
1291 	dbg(DBG_TX, "do_bottom_half_tx\n");
1292 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1293 		if (!port->run)
1294 			continue;
1295 
1296 		dev = port_to_dev(port);
1297 		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1298 			 DMA_OWN) &&
1299 		       !(card->dmatx_in_progress)) {
1300 			/* There doesn't seem to be a txdone event per-se
1301 			 * We seem to have to deduce it, by checking the DMA_OWN
1302 			 * bit on the next buffer we think we can use
1303 			 */
1304 			spin_lock_irqsave(&card->card_lock, flags);
1305 			txq_length = port->txqe - port->txqs;
1306 			if (txq_length < 0) {
1307 				/* This is the case where one has wrapped and the
1308 				 * maths gives us a negative number
1309 				 */
1310 				txq_length = txq_length + FST_TXQ_DEPTH;
1311 			}
1312 			spin_unlock_irqrestore(&card->card_lock, flags);
1313 			if (txq_length > 0) {
1314 				/* There is something to send
1315 				 */
1316 				spin_lock_irqsave(&card->card_lock, flags);
1317 				skb = port->txq[port->txqs];
1318 				port->txqs++;
1319 				if (port->txqs == FST_TXQ_DEPTH)
1320 					port->txqs = 0;
1321 
1322 				spin_unlock_irqrestore(&card->card_lock, flags);
1323 				/* copy the data and set the required indicators on the
1324 				 * card.
1325 				 */
1326 				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1327 					cnv_bcnt(skb->len));
1328 				if (skb->len < FST_MIN_DMA_LEN ||
1329 				    card->family == FST_FAMILY_TXP) {
1330 					/* Enqueue the packet with normal io */
1331 					memcpy_toio(card->mem +
1332 						    BUF_OFFSET(txBuffer[pi]
1333 							       [port->
1334 								txpos][0]),
1335 						    skb->data, skb->len);
1336 					FST_WRB(card,
1337 						txDescrRing[pi][port->txpos].
1338 						bits,
1339 						DMA_OWN | TX_STP | TX_ENP);
1340 					dev->stats.tx_packets++;
1341 					dev->stats.tx_bytes += skb->len;
1342 					netif_trans_update(dev);
1343 				} else {
1344 					/* Or do it through dma */
1345 					memcpy(card->tx_dma_handle_host,
1346 					       skb->data, skb->len);
1347 					card->dma_port_tx = port;
1348 					card->dma_len_tx = skb->len;
1349 					card->dma_txpos = port->txpos;
1350 					fst_tx_dma(card,
1351 						   card->tx_dma_handle_card,
1352 						   BUF_OFFSET(txBuffer[pi]
1353 							      [port->txpos][0]),
1354 						   skb->len);
1355 				}
1356 				if (++port->txpos >= NUM_TX_BUFFER)
1357 					port->txpos = 0;
1358 				/* If we have flow control on, can we now release it?
1359 				 */
1360 				if (port->start) {
1361 					if (txq_length < fst_txq_low) {
1362 						netif_wake_queue(port_to_dev
1363 								 (port));
1364 						port->start = 0;
1365 					}
1366 				}
1367 				dev_kfree_skb(skb);
1368 			} else {
1369 				/* Nothing to send so break out of the while loop
1370 				 */
1371 				break;
1372 			}
1373 		}
1374 	}
1375 }
1376 
1377 static void
1378 do_bottom_half_rx(struct fst_card_info *card)
1379 {
1380 	struct fst_port_info *port;
1381 	int pi;
1382 	int rx_count = 0;
1383 
1384 	/* Check for rx completions on all ports on this card */
1385 	dbg(DBG_RX, "do_bottom_half_rx\n");
1386 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1387 		if (!port->run)
1388 			continue;
1389 
1390 		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1391 			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1392 			if (rx_count > fst_max_reads) {
1393 				/* Don't spend forever in receive processing
1394 				 * Schedule another event
1395 				 */
1396 				fst_q_work_item(&fst_work_intq, card->card_no);
1397 				tasklet_schedule(&fst_int_task);
1398 				break;	/* Leave the loop */
1399 			}
1400 			fst_intr_rx(card, port);
1401 			rx_count++;
1402 		}
1403 	}
1404 }
1405 
1406 /*      The interrupt service routine
1407  *      Dev_id is our fst_card_info pointer
1408  */
1409 static irqreturn_t
1410 fst_intr(int dummy, void *dev_id)
1411 {
1412 	struct fst_card_info *card = dev_id;
1413 	struct fst_port_info *port;
1414 	int rdidx;		/* Event buffer indices */
1415 	int wridx;
1416 	int event;		/* Actual event for processing */
1417 	unsigned int dma_intcsr = 0;
1418 	unsigned int do_card_interrupt;
1419 	unsigned int int_retry_count;
1420 
1421 	/* Check to see if the interrupt was for this card
1422 	 * return if not
1423 	 * Note that the call to clear the interrupt is important
1424 	 */
1425 	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1426 	if (card->state != FST_RUNNING) {
1427 		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1428 		       card->card_no, card->state);
1429 
1430 		/* It is possible to really be running, i.e. we have re-loaded
1431 		 * a running card
1432 		 * Clear and reprime the interrupt source
1433 		 */
1434 		fst_clear_intr(card);
1435 		return IRQ_HANDLED;
1436 	}
1437 
1438 	/* Clear and reprime the interrupt source */
1439 	fst_clear_intr(card);
1440 
1441 	/* Is the interrupt for this card (handshake == 1)
1442 	 */
1443 	do_card_interrupt = 0;
1444 	if (FST_RDB(card, interruptHandshake) == 1) {
1445 		do_card_interrupt += FST_CARD_INT;
1446 		/* Set the software acknowledge */
1447 		FST_WRB(card, interruptHandshake, 0xEE);
1448 	}
1449 	if (card->family == FST_FAMILY_TXU) {
1450 		/* Is it a DMA Interrupt
1451 		 */
1452 		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1453 		if (dma_intcsr & 0x00200000) {
1454 			/* DMA Channel 0 (Rx transfer complete)
1455 			 */
1456 			dbg(DBG_RX, "DMA Rx xfer complete\n");
1457 			outb(0x8, card->pci_conf + DMACSR0);
1458 			fst_rx_dma_complete(card, card->dma_port_rx,
1459 					    card->dma_len_rx, card->dma_skb_rx,
1460 					    card->dma_rxpos);
1461 			card->dmarx_in_progress = 0;
1462 			do_card_interrupt += FST_RX_DMA_INT;
1463 		}
1464 		if (dma_intcsr & 0x00400000) {
1465 			/* DMA Channel 1 (Tx transfer complete)
1466 			 */
1467 			dbg(DBG_TX, "DMA Tx xfer complete\n");
1468 			outb(0x8, card->pci_conf + DMACSR1);
1469 			fst_tx_dma_complete(card, card->dma_port_tx,
1470 					    card->dma_len_tx, card->dma_txpos);
1471 			card->dmatx_in_progress = 0;
1472 			do_card_interrupt += FST_TX_DMA_INT;
1473 		}
1474 	}
1475 
1476 	/* Have we been missing Interrupts
1477 	 */
1478 	int_retry_count = FST_RDL(card, interruptRetryCount);
1479 	if (int_retry_count) {
1480 		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1481 		    card->card_no, int_retry_count);
1482 		FST_WRL(card, interruptRetryCount, 0);
1483 	}
1484 
1485 	if (!do_card_interrupt)
1486 		return IRQ_HANDLED;
1487 
1488 	/* Scehdule the bottom half of the ISR */
1489 	fst_q_work_item(&fst_work_intq, card->card_no);
1490 	tasklet_schedule(&fst_int_task);
1491 
1492 	/* Drain the event queue */
1493 	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1494 	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1495 	while (rdidx != wridx) {
1496 		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1497 		port = &card->ports[event & 0x03];
1498 
1499 		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1500 
1501 		switch (event) {
1502 		case TE1_ALMA:
1503 			dbg(DBG_INTR, "TE1 Alarm intr\n");
1504 			if (port->run)
1505 				fst_intr_te1_alarm(card, port);
1506 			break;
1507 
1508 		case CTLA_CHG:
1509 		case CTLB_CHG:
1510 		case CTLC_CHG:
1511 		case CTLD_CHG:
1512 			if (port->run)
1513 				fst_intr_ctlchg(card, port);
1514 			break;
1515 
1516 		case ABTA_SENT:
1517 		case ABTB_SENT:
1518 		case ABTC_SENT:
1519 		case ABTD_SENT:
1520 			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1521 			break;
1522 
1523 		case TXA_UNDF:
1524 		case TXB_UNDF:
1525 		case TXC_UNDF:
1526 		case TXD_UNDF:
1527 			/* Difficult to see how we'd get this given that we
1528 			 * always load up the entire packet for DMA.
1529 			 */
1530 			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1531 			port_to_dev(port)->stats.tx_errors++;
1532 			port_to_dev(port)->stats.tx_fifo_errors++;
1533 			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1534 			    card->card_no, port->index);
1535 			break;
1536 
1537 		case INIT_CPLT:
1538 			dbg(DBG_INIT, "Card init OK intr\n");
1539 			break;
1540 
1541 		case INIT_FAIL:
1542 			dbg(DBG_INIT, "Card init FAILED intr\n");
1543 			card->state = FST_IFAILED;
1544 			break;
1545 
1546 		default:
1547 			pr_err("intr: unknown card event %d. ignored\n", event);
1548 			break;
1549 		}
1550 
1551 		/* Bump and wrap the index */
1552 		if (++rdidx >= MAX_CIRBUFF)
1553 			rdidx = 0;
1554 	}
1555 	FST_WRB(card, interruptEvent.rdindex, rdidx);
1556 	return IRQ_HANDLED;
1557 }
1558 
1559 /*      Check that the shared memory configuration is one that we can handle
1560  *      and that some basic parameters are correct
1561  */
1562 static void
1563 check_started_ok(struct fst_card_info *card)
1564 {
1565 	int i;
1566 
1567 	/* Check structure version and end marker */
1568 	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1569 		pr_err("Bad shared memory version %d expected %d\n",
1570 		       FST_RDW(card, smcVersion), SMC_VERSION);
1571 		card->state = FST_BADVERSION;
1572 		return;
1573 	}
1574 	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1575 		pr_err("Missing shared memory signature\n");
1576 		card->state = FST_BADVERSION;
1577 		return;
1578 	}
1579 	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1580 	i = FST_RDB(card, taskStatus);
1581 	if (i == 0x01) {
1582 		card->state = FST_RUNNING;
1583 	} else if (i == 0xFF) {
1584 		pr_err("Firmware initialisation failed. Card halted\n");
1585 		card->state = FST_HALTED;
1586 		return;
1587 	} else if (i != 0x00) {
1588 		pr_err("Unknown firmware status 0x%x\n", i);
1589 		card->state = FST_HALTED;
1590 		return;
1591 	}
1592 
1593 	/* Finally check the number of ports reported by firmware against the
1594 	 * number we assumed at card detection. Should never happen with
1595 	 * existing firmware etc so we just report it for the moment.
1596 	 */
1597 	if (FST_RDL(card, numberOfPorts) != card->nports) {
1598 		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1599 			card->card_no,
1600 			FST_RDL(card, numberOfPorts), card->nports);
1601 	}
1602 }
1603 
1604 static int
1605 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1606 		   struct fstioc_info *info)
1607 {
1608 	int err;
1609 	unsigned char my_framing;
1610 
1611 	/* Set things according to the user set valid flags
1612 	 * Several of the old options have been invalidated/replaced by the
1613 	 * generic hdlc package.
1614 	 */
1615 	err = 0;
1616 	if (info->valid & FSTVAL_PROTO) {
1617 		if (info->proto == FST_RAW)
1618 			port->mode = FST_RAW;
1619 		else
1620 			port->mode = FST_GEN_HDLC;
1621 	}
1622 
1623 	if (info->valid & FSTVAL_CABLE)
1624 		err = -EINVAL;
1625 
1626 	if (info->valid & FSTVAL_SPEED)
1627 		err = -EINVAL;
1628 
1629 	if (info->valid & FSTVAL_PHASE)
1630 		FST_WRB(card, portConfig[port->index].invertClock,
1631 			info->invertClock);
1632 	if (info->valid & FSTVAL_MODE)
1633 		FST_WRW(card, cardMode, info->cardMode);
1634 	if (info->valid & FSTVAL_TE1) {
1635 		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1636 		FST_WRB(card, suConfig.clocking, info->clockSource);
1637 		my_framing = FRAMING_E1;
1638 		if (info->framing == E1)
1639 			my_framing = FRAMING_E1;
1640 		if (info->framing == T1)
1641 			my_framing = FRAMING_T1;
1642 		if (info->framing == J1)
1643 			my_framing = FRAMING_J1;
1644 		FST_WRB(card, suConfig.framing, my_framing);
1645 		FST_WRB(card, suConfig.structure, info->structure);
1646 		FST_WRB(card, suConfig.interface, info->interface);
1647 		FST_WRB(card, suConfig.coding, info->coding);
1648 		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1649 		FST_WRB(card, suConfig.equalizer, info->equalizer);
1650 		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1651 		FST_WRB(card, suConfig.loopMode, info->loopMode);
1652 		FST_WRB(card, suConfig.range, info->range);
1653 		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1654 		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1655 		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1656 		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1657 		if (info->idleCode)
1658 			FST_WRB(card, suConfig.enableIdleCode, 1);
1659 		else
1660 			FST_WRB(card, suConfig.enableIdleCode, 0);
1661 		FST_WRB(card, suConfig.idleCode, info->idleCode);
1662 #if FST_DEBUG
1663 		if (info->valid & FSTVAL_TE1) {
1664 			printk("Setting TE1 data\n");
1665 			printk("Line Speed = %d\n", info->lineSpeed);
1666 			printk("Start slot = %d\n", info->startingSlot);
1667 			printk("Clock source = %d\n", info->clockSource);
1668 			printk("Framing = %d\n", my_framing);
1669 			printk("Structure = %d\n", info->structure);
1670 			printk("interface = %d\n", info->interface);
1671 			printk("Coding = %d\n", info->coding);
1672 			printk("Line build out = %d\n", info->lineBuildOut);
1673 			printk("Equaliser = %d\n", info->equalizer);
1674 			printk("Transparent mode = %d\n",
1675 			       info->transparentMode);
1676 			printk("Loop mode = %d\n", info->loopMode);
1677 			printk("Range = %d\n", info->range);
1678 			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1679 			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1680 			printk("LOS Threshold = %d\n", info->losThreshold);
1681 			printk("Idle Code = %d\n", info->idleCode);
1682 		}
1683 #endif
1684 	}
1685 #if FST_DEBUG
1686 	if (info->valid & FSTVAL_DEBUG)
1687 		fst_debug_mask = info->debug;
1688 #endif
1689 
1690 	return err;
1691 }
1692 
1693 static void
1694 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1695 		 struct fstioc_info *info)
1696 {
1697 	int i;
1698 
1699 	memset(info, 0, sizeof(struct fstioc_info));
1700 
1701 	i = port->index;
1702 	info->kernelVersion = LINUX_VERSION_CODE;
1703 	info->nports = card->nports;
1704 	info->type = card->type;
1705 	info->state = card->state;
1706 	info->proto = FST_GEN_HDLC;
1707 	info->index = i;
1708 #if FST_DEBUG
1709 	info->debug = fst_debug_mask;
1710 #endif
1711 
1712 	/* Only mark information as valid if card is running.
1713 	 * Copy the data anyway in case it is useful for diagnostics
1714 	 */
1715 	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1716 #if FST_DEBUG
1717 	    | FSTVAL_DEBUG
1718 #endif
1719 	    ;
1720 
1721 	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1722 	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1723 	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1724 	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1725 	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1726 	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1727 	info->clockStatus = FST_RDW(card, clockStatus[i]);
1728 	info->cableStatus = FST_RDW(card, cableStatus);
1729 	info->cardMode = FST_RDW(card, cardMode);
1730 	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1731 
1732 	/* The T2U can report cable presence for both A or B
1733 	 * in bits 0 and 1 of cableStatus.  See which port we are and
1734 	 * do the mapping.
1735 	 */
1736 	if (card->family == FST_FAMILY_TXU) {
1737 		if (port->index == 0) {
1738 			/* Port A
1739 			 */
1740 			info->cableStatus = info->cableStatus & 1;
1741 		} else {
1742 			/* Port B
1743 			 */
1744 			info->cableStatus = info->cableStatus >> 1;
1745 			info->cableStatus = info->cableStatus & 1;
1746 		}
1747 	}
1748 	/* Some additional bits if we are TE1
1749 	 */
1750 	if (card->type == FST_TYPE_TE1) {
1751 		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1752 		info->clockSource = FST_RDB(card, suConfig.clocking);
1753 		info->framing = FST_RDB(card, suConfig.framing);
1754 		info->structure = FST_RDB(card, suConfig.structure);
1755 		info->interface = FST_RDB(card, suConfig.interface);
1756 		info->coding = FST_RDB(card, suConfig.coding);
1757 		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1758 		info->equalizer = FST_RDB(card, suConfig.equalizer);
1759 		info->loopMode = FST_RDB(card, suConfig.loopMode);
1760 		info->range = FST_RDB(card, suConfig.range);
1761 		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1762 		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1763 		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1764 		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1765 		if (FST_RDB(card, suConfig.enableIdleCode))
1766 			info->idleCode = FST_RDB(card, suConfig.idleCode);
1767 		else
1768 			info->idleCode = 0;
1769 		info->receiveBufferDelay =
1770 		    FST_RDL(card, suStatus.receiveBufferDelay);
1771 		info->framingErrorCount =
1772 		    FST_RDL(card, suStatus.framingErrorCount);
1773 		info->codeViolationCount =
1774 		    FST_RDL(card, suStatus.codeViolationCount);
1775 		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1776 		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1777 		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1778 		info->receiveRemoteAlarm =
1779 		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1780 		info->alarmIndicationSignal =
1781 		    FST_RDB(card, suStatus.alarmIndicationSignal);
1782 	}
1783 }
1784 
1785 static int
1786 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1787 	      struct if_settings *ifs)
1788 {
1789 	sync_serial_settings sync;
1790 	int i;
1791 
1792 	if (ifs->size != sizeof(sync))
1793 		return -ENOMEM;
1794 
1795 	if (copy_from_user(&sync, ifs->ifs_ifsu.sync, sizeof(sync)))
1796 		return -EFAULT;
1797 
1798 	if (sync.loopback)
1799 		return -EINVAL;
1800 
1801 	i = port->index;
1802 
1803 	switch (ifs->type) {
1804 	case IF_IFACE_V35:
1805 		FST_WRW(card, portConfig[i].lineInterface, V35);
1806 		port->hwif = V35;
1807 		break;
1808 
1809 	case IF_IFACE_V24:
1810 		FST_WRW(card, portConfig[i].lineInterface, V24);
1811 		port->hwif = V24;
1812 		break;
1813 
1814 	case IF_IFACE_X21:
1815 		FST_WRW(card, portConfig[i].lineInterface, X21);
1816 		port->hwif = X21;
1817 		break;
1818 
1819 	case IF_IFACE_X21D:
1820 		FST_WRW(card, portConfig[i].lineInterface, X21D);
1821 		port->hwif = X21D;
1822 		break;
1823 
1824 	case IF_IFACE_T1:
1825 		FST_WRW(card, portConfig[i].lineInterface, T1);
1826 		port->hwif = T1;
1827 		break;
1828 
1829 	case IF_IFACE_E1:
1830 		FST_WRW(card, portConfig[i].lineInterface, E1);
1831 		port->hwif = E1;
1832 		break;
1833 
1834 	case IF_IFACE_SYNC_SERIAL:
1835 		break;
1836 
1837 	default:
1838 		return -EINVAL;
1839 	}
1840 
1841 	switch (sync.clock_type) {
1842 	case CLOCK_EXT:
1843 		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1844 		break;
1845 
1846 	case CLOCK_INT:
1847 		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1848 		break;
1849 
1850 	default:
1851 		return -EINVAL;
1852 	}
1853 	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1854 	return 0;
1855 }
1856 
1857 static int
1858 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1859 	      struct if_settings *ifs)
1860 {
1861 	sync_serial_settings sync;
1862 	int i;
1863 
1864 	/* First check what line type is set, we'll default to reporting X.21
1865 	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1866 	 * changed
1867 	 */
1868 	switch (port->hwif) {
1869 	case E1:
1870 		ifs->type = IF_IFACE_E1;
1871 		break;
1872 	case T1:
1873 		ifs->type = IF_IFACE_T1;
1874 		break;
1875 	case V35:
1876 		ifs->type = IF_IFACE_V35;
1877 		break;
1878 	case V24:
1879 		ifs->type = IF_IFACE_V24;
1880 		break;
1881 	case X21D:
1882 		ifs->type = IF_IFACE_X21D;
1883 		break;
1884 	case X21:
1885 	default:
1886 		ifs->type = IF_IFACE_X21;
1887 		break;
1888 	}
1889 	if (!ifs->size)
1890 		return 0;	/* only type requested */
1891 
1892 	if (ifs->size < sizeof(sync))
1893 		return -ENOMEM;
1894 
1895 	i = port->index;
1896 	memset(&sync, 0, sizeof(sync));
1897 	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1898 	/* Lucky card and linux use same encoding here */
1899 	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1900 	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1901 	sync.loopback = 0;
1902 
1903 	if (copy_to_user(ifs->ifs_ifsu.sync, &sync, sizeof(sync)))
1904 		return -EFAULT;
1905 
1906 	ifs->size = sizeof(sync);
1907 	return 0;
1908 }
1909 
1910 static int
1911 fst_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd)
1912 {
1913 	struct fst_card_info *card;
1914 	struct fst_port_info *port;
1915 	struct fstioc_write wrthdr;
1916 	struct fstioc_info info;
1917 	unsigned long flags;
1918 	void *buf;
1919 
1920 	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, data);
1921 
1922 	port = dev_to_port(dev);
1923 	card = port->card;
1924 
1925 	if (!capable(CAP_NET_ADMIN))
1926 		return -EPERM;
1927 
1928 	switch (cmd) {
1929 	case FSTCPURESET:
1930 		fst_cpureset(card);
1931 		card->state = FST_RESET;
1932 		return 0;
1933 
1934 	case FSTCPURELEASE:
1935 		fst_cpurelease(card);
1936 		card->state = FST_STARTING;
1937 		return 0;
1938 
1939 	case FSTWRITE:		/* Code write (download) */
1940 
1941 		/* First copy in the header with the length and offset of data
1942 		 * to write
1943 		 */
1944 		if (!data)
1945 			return -EINVAL;
1946 
1947 		if (copy_from_user(&wrthdr, data, sizeof(struct fstioc_write)))
1948 			return -EFAULT;
1949 
1950 		/* Sanity check the parameters. We don't support partial writes
1951 		 * when going over the top
1952 		 */
1953 		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
1954 		    wrthdr.size + wrthdr.offset > FST_MEMSIZE)
1955 			return -ENXIO;
1956 
1957 		/* Now copy the data to the card. */
1958 
1959 		buf = memdup_user(data + sizeof(struct fstioc_write),
1960 				  wrthdr.size);
1961 		if (IS_ERR(buf))
1962 			return PTR_ERR(buf);
1963 
1964 		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
1965 		kfree(buf);
1966 
1967 		/* Writes to the memory of a card in the reset state constitute
1968 		 * a download
1969 		 */
1970 		if (card->state == FST_RESET)
1971 			card->state = FST_DOWNLOAD;
1972 
1973 		return 0;
1974 
1975 	case FSTGETCONF:
1976 
1977 		/* If card has just been started check the shared memory config
1978 		 * version and marker
1979 		 */
1980 		if (card->state == FST_STARTING) {
1981 			check_started_ok(card);
1982 
1983 			/* If everything checked out enable card interrupts */
1984 			if (card->state == FST_RUNNING) {
1985 				spin_lock_irqsave(&card->card_lock, flags);
1986 				fst_enable_intr(card);
1987 				FST_WRB(card, interruptHandshake, 0xEE);
1988 				spin_unlock_irqrestore(&card->card_lock, flags);
1989 			}
1990 		}
1991 
1992 		if (!data)
1993 			return -EINVAL;
1994 
1995 		gather_conf_info(card, port, &info);
1996 
1997 		if (copy_to_user(data, &info, sizeof(info)))
1998 			return -EFAULT;
1999 
2000 		return 0;
2001 
2002 	case FSTSETCONF:
2003 		/* Most of the settings have been moved to the generic ioctls
2004 		 * this just covers debug and board ident now
2005 		 */
2006 
2007 		if (card->state != FST_RUNNING) {
2008 			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2009 			       card->card_no, card->state);
2010 			return -EIO;
2011 		}
2012 		if (copy_from_user(&info, data, sizeof(info)))
2013 			return -EFAULT;
2014 
2015 		return set_conf_from_info(card, port, &info);
2016 	default:
2017 		return -EINVAL;
2018 	}
2019 }
2020 
2021 static int
2022 fst_ioctl(struct net_device *dev, struct if_settings *ifs)
2023 {
2024 	struct fst_card_info *card;
2025 	struct fst_port_info *port;
2026 
2027 	dbg(DBG_IOCTL, "SIOCDEVPRIVATE, %x\n", ifs->type);
2028 
2029 	port = dev_to_port(dev);
2030 	card = port->card;
2031 
2032 	if (!capable(CAP_NET_ADMIN))
2033 		return -EPERM;
2034 
2035 	switch (ifs->type) {
2036 	case IF_GET_IFACE:
2037 		return fst_get_iface(card, port, ifs);
2038 
2039 	case IF_IFACE_SYNC_SERIAL:
2040 	case IF_IFACE_V35:
2041 	case IF_IFACE_V24:
2042 	case IF_IFACE_X21:
2043 	case IF_IFACE_X21D:
2044 	case IF_IFACE_T1:
2045 	case IF_IFACE_E1:
2046 		return fst_set_iface(card, port, ifs);
2047 
2048 	case IF_PROTO_RAW:
2049 		port->mode = FST_RAW;
2050 		return 0;
2051 
2052 	case IF_GET_PROTO:
2053 		if (port->mode == FST_RAW) {
2054 			ifs->type = IF_PROTO_RAW;
2055 			return 0;
2056 		}
2057 		return hdlc_ioctl(dev, ifs);
2058 
2059 	default:
2060 		port->mode = FST_GEN_HDLC;
2061 		dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2062 		    ifs->type);
2063 		return hdlc_ioctl(dev, ifs);
2064 	}
2065 }
2066 
2067 static void
2068 fst_openport(struct fst_port_info *port)
2069 {
2070 	int signals;
2071 
2072 	/* Only init things if card is actually running. This allows open to
2073 	 * succeed for downloads etc.
2074 	 */
2075 	if (port->card->state == FST_RUNNING) {
2076 		if (port->run) {
2077 			dbg(DBG_OPEN, "open: found port already running\n");
2078 
2079 			fst_issue_cmd(port, STOPPORT);
2080 			port->run = 0;
2081 		}
2082 
2083 		fst_rx_config(port);
2084 		fst_tx_config(port);
2085 		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2086 
2087 		fst_issue_cmd(port, STARTPORT);
2088 		port->run = 1;
2089 
2090 		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2091 		if (signals & ((port->hwif == X21 || port->hwif == X21D)
2092 			       ? IPSTS_INDICATE : IPSTS_DCD))
2093 			netif_carrier_on(port_to_dev(port));
2094 		else
2095 			netif_carrier_off(port_to_dev(port));
2096 
2097 		port->txqe = 0;
2098 		port->txqs = 0;
2099 	}
2100 }
2101 
2102 static void
2103 fst_closeport(struct fst_port_info *port)
2104 {
2105 	if (port->card->state == FST_RUNNING) {
2106 		if (port->run) {
2107 			port->run = 0;
2108 			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2109 
2110 			fst_issue_cmd(port, STOPPORT);
2111 		} else {
2112 			dbg(DBG_OPEN, "close: port not running\n");
2113 		}
2114 	}
2115 }
2116 
2117 static int
2118 fst_open(struct net_device *dev)
2119 {
2120 	int err;
2121 	struct fst_port_info *port;
2122 
2123 	port = dev_to_port(dev);
2124 	if (!try_module_get(THIS_MODULE))
2125 		return -EBUSY;
2126 
2127 	if (port->mode != FST_RAW) {
2128 		err = hdlc_open(dev);
2129 		if (err) {
2130 			module_put(THIS_MODULE);
2131 			return err;
2132 		}
2133 	}
2134 
2135 	fst_openport(port);
2136 	netif_wake_queue(dev);
2137 	return 0;
2138 }
2139 
2140 static int
2141 fst_close(struct net_device *dev)
2142 {
2143 	struct fst_port_info *port;
2144 	struct fst_card_info *card;
2145 	unsigned char tx_dma_done;
2146 	unsigned char rx_dma_done;
2147 
2148 	port = dev_to_port(dev);
2149 	card = port->card;
2150 
2151 	tx_dma_done = inb(card->pci_conf + DMACSR1);
2152 	rx_dma_done = inb(card->pci_conf + DMACSR0);
2153 	dbg(DBG_OPEN,
2154 	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2155 	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2156 	    rx_dma_done);
2157 
2158 	netif_stop_queue(dev);
2159 	fst_closeport(dev_to_port(dev));
2160 	if (port->mode != FST_RAW)
2161 		hdlc_close(dev);
2162 
2163 	module_put(THIS_MODULE);
2164 	return 0;
2165 }
2166 
2167 static int
2168 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2169 {
2170 	/* Setting currently fixed in FarSync card so we check and forget
2171 	 */
2172 	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2173 		return -EINVAL;
2174 	return 0;
2175 }
2176 
2177 static void
2178 fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2179 {
2180 	struct fst_port_info *port;
2181 	struct fst_card_info *card;
2182 
2183 	port = dev_to_port(dev);
2184 	card = port->card;
2185 	dev->stats.tx_errors++;
2186 	dev->stats.tx_aborted_errors++;
2187 	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2188 	    card->card_no, port->index);
2189 	fst_issue_cmd(port, ABORTTX);
2190 
2191 	netif_trans_update(dev);
2192 	netif_wake_queue(dev);
2193 	port->start = 0;
2194 }
2195 
2196 static netdev_tx_t
2197 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2198 {
2199 	struct fst_card_info *card;
2200 	struct fst_port_info *port;
2201 	unsigned long flags;
2202 	int txq_length;
2203 
2204 	port = dev_to_port(dev);
2205 	card = port->card;
2206 	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2207 
2208 	/* Drop packet with error if we don't have carrier */
2209 	if (!netif_carrier_ok(dev)) {
2210 		dev_kfree_skb(skb);
2211 		dev->stats.tx_errors++;
2212 		dev->stats.tx_carrier_errors++;
2213 		dbg(DBG_ASS,
2214 		    "Tried to transmit but no carrier on card %d port %d\n",
2215 		    card->card_no, port->index);
2216 		return NETDEV_TX_OK;
2217 	}
2218 
2219 	/* Drop it if it's too big! MTU failure ? */
2220 	if (skb->len > LEN_TX_BUFFER) {
2221 		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2222 		    LEN_TX_BUFFER);
2223 		dev_kfree_skb(skb);
2224 		dev->stats.tx_errors++;
2225 		return NETDEV_TX_OK;
2226 	}
2227 
2228 	/* We are always going to queue the packet
2229 	 * so that the bottom half is the only place we tx from
2230 	 * Check there is room in the port txq
2231 	 */
2232 	spin_lock_irqsave(&card->card_lock, flags);
2233 	txq_length = port->txqe - port->txqs;
2234 	if (txq_length < 0) {
2235 		/* This is the case where the next free has wrapped but the
2236 		 * last used hasn't
2237 		 */
2238 		txq_length = txq_length + FST_TXQ_DEPTH;
2239 	}
2240 	spin_unlock_irqrestore(&card->card_lock, flags);
2241 	if (txq_length > fst_txq_high) {
2242 		/* We have got enough buffers in the pipeline.  Ask the network
2243 		 * layer to stop sending frames down
2244 		 */
2245 		netif_stop_queue(dev);
2246 		port->start = 1;	/* I'm using this to signal stop sent up */
2247 	}
2248 
2249 	if (txq_length == FST_TXQ_DEPTH - 1) {
2250 		/* This shouldn't have happened but such is life
2251 		 */
2252 		dev_kfree_skb(skb);
2253 		dev->stats.tx_errors++;
2254 		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2255 		    card->card_no, port->index);
2256 		return NETDEV_TX_OK;
2257 	}
2258 
2259 	/* queue the buffer
2260 	 */
2261 	spin_lock_irqsave(&card->card_lock, flags);
2262 	port->txq[port->txqe] = skb;
2263 	port->txqe++;
2264 	if (port->txqe == FST_TXQ_DEPTH)
2265 		port->txqe = 0;
2266 	spin_unlock_irqrestore(&card->card_lock, flags);
2267 
2268 	/* Scehdule the bottom half which now does transmit processing */
2269 	fst_q_work_item(&fst_work_txq, card->card_no);
2270 	tasklet_schedule(&fst_tx_task);
2271 
2272 	return NETDEV_TX_OK;
2273 }
2274 
2275 /*      Card setup having checked hardware resources.
2276  *      Should be pretty bizarre if we get an error here (kernel memory
2277  *      exhaustion is one possibility). If we do see a problem we report it
2278  *      via a printk and leave the corresponding interface and all that follow
2279  *      disabled.
2280  */
2281 static char *type_strings[] = {
2282 	"no hardware",		/* Should never be seen */
2283 	"FarSync T2P",
2284 	"FarSync T4P",
2285 	"FarSync T1U",
2286 	"FarSync T2U",
2287 	"FarSync T4U",
2288 	"FarSync TE1"
2289 };
2290 
2291 static int
2292 fst_init_card(struct fst_card_info *card)
2293 {
2294 	int i;
2295 	int err;
2296 
2297 	/* We're working on a number of ports based on the card ID. If the
2298 	 * firmware detects something different later (should never happen)
2299 	 * we'll have to revise it in some way then.
2300 	 */
2301 	for (i = 0; i < card->nports; i++) {
2302 		err = register_hdlc_device(card->ports[i].dev);
2303 		if (err < 0) {
2304 			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2305 			       i, -err);
2306 			while (i--)
2307 				unregister_hdlc_device(card->ports[i].dev);
2308 			return err;
2309 		}
2310 	}
2311 
2312 	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2313 		port_to_dev(&card->ports[0])->name,
2314 		port_to_dev(&card->ports[card->nports - 1])->name,
2315 		type_strings[card->type], card->irq, card->nports);
2316 	return 0;
2317 }
2318 
2319 static const struct net_device_ops fst_ops = {
2320 	.ndo_open       = fst_open,
2321 	.ndo_stop       = fst_close,
2322 	.ndo_start_xmit = hdlc_start_xmit,
2323 	.ndo_siocwandev	= fst_ioctl,
2324 	.ndo_siocdevprivate = fst_siocdevprivate,
2325 	.ndo_tx_timeout = fst_tx_timeout,
2326 };
2327 
2328 /*      Initialise card when detected.
2329  *      Returns 0 to indicate success, or errno otherwise.
2330  */
2331 static int
2332 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2333 {
2334 	static int no_of_cards_added;
2335 	struct fst_card_info *card;
2336 	int err = 0;
2337 	int i;
2338 
2339 	printk_once(KERN_INFO
2340 		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2341 			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2342 #if FST_DEBUG
2343 	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2344 #endif
2345 	/* We are going to be clever and allow certain cards not to be
2346 	 * configured.  An exclude list can be provided in /etc/modules.conf
2347 	 */
2348 	if (fst_excluded_cards != 0) {
2349 		/* There are cards to exclude
2350 		 *
2351 		 */
2352 		for (i = 0; i < fst_excluded_cards; i++) {
2353 			if (pdev->devfn >> 3 == fst_excluded_list[i]) {
2354 				pr_info("FarSync PCI device %d not assigned\n",
2355 					(pdev->devfn) >> 3);
2356 				return -EBUSY;
2357 			}
2358 		}
2359 	}
2360 
2361 	/* Allocate driver private data */
2362 	card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2363 	if (!card)
2364 		return -ENOMEM;
2365 
2366 	/* Try to enable the device */
2367 	err = pci_enable_device(pdev);
2368 	if (err) {
2369 		pr_err("Failed to enable card. Err %d\n", -err);
2370 		goto enable_fail;
2371 	}
2372 
2373 	err = pci_request_regions(pdev, "FarSync");
2374 	if (err) {
2375 		pr_err("Failed to allocate regions. Err %d\n", -err);
2376 		goto regions_fail;
2377 	}
2378 
2379 	/* Get virtual addresses of memory regions */
2380 	card->pci_conf = pci_resource_start(pdev, 1);
2381 	card->phys_mem = pci_resource_start(pdev, 2);
2382 	card->phys_ctlmem = pci_resource_start(pdev, 3);
2383 	card->mem = ioremap(card->phys_mem, FST_MEMSIZE);
2384 	if (!card->mem) {
2385 		pr_err("Physical memory remap failed\n");
2386 		err = -ENODEV;
2387 		goto ioremap_physmem_fail;
2388 	}
2389 	card->ctlmem = ioremap(card->phys_ctlmem, 0x10);
2390 	if (!card->ctlmem) {
2391 		pr_err("Control memory remap failed\n");
2392 		err = -ENODEV;
2393 		goto ioremap_ctlmem_fail;
2394 	}
2395 	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2396 
2397 	/* Register the interrupt handler */
2398 	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2399 		pr_err("Unable to register interrupt %d\n", card->irq);
2400 		err = -ENODEV;
2401 		goto irq_fail;
2402 	}
2403 
2404 	/* Record info we need */
2405 	card->irq = pdev->irq;
2406 	card->type = ent->driver_data;
2407 	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2408 			(ent->driver_data == FST_TYPE_T4P))
2409 	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2410 	if (ent->driver_data == FST_TYPE_T1U ||
2411 	    ent->driver_data == FST_TYPE_TE1)
2412 		card->nports = 1;
2413 	else
2414 		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2415 				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2416 
2417 	card->state = FST_UNINIT;
2418 	spin_lock_init(&card->card_lock);
2419 
2420 	for (i = 0; i < card->nports; i++) {
2421 		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2422 		hdlc_device *hdlc;
2423 
2424 		if (!dev) {
2425 			while (i--)
2426 				free_netdev(card->ports[i].dev);
2427 			pr_err("FarSync: out of memory\n");
2428 			err = -ENOMEM;
2429 			goto hdlcdev_fail;
2430 		}
2431 		card->ports[i].dev    = dev;
2432 		card->ports[i].card   = card;
2433 		card->ports[i].index  = i;
2434 		card->ports[i].run    = 0;
2435 
2436 		hdlc = dev_to_hdlc(dev);
2437 
2438 		/* Fill in the net device info */
2439 		/* Since this is a PCI setup this is purely
2440 		 * informational. Give them the buffer addresses
2441 		 * and basic card I/O.
2442 		 */
2443 		dev->mem_start   = card->phys_mem
2444 				+ BUF_OFFSET(txBuffer[i][0][0]);
2445 		dev->mem_end     = card->phys_mem
2446 				+ BUF_OFFSET(txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2447 		dev->base_addr   = card->pci_conf;
2448 		dev->irq         = card->irq;
2449 
2450 		dev->netdev_ops = &fst_ops;
2451 		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2452 		dev->watchdog_timeo = FST_TX_TIMEOUT;
2453 		hdlc->attach = fst_attach;
2454 		hdlc->xmit   = fst_start_xmit;
2455 	}
2456 
2457 	card->device = pdev;
2458 
2459 	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2460 	    card->nports, card->irq);
2461 	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2462 	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2463 
2464 	/* Reset the card's processor */
2465 	fst_cpureset(card);
2466 	card->state = FST_RESET;
2467 
2468 	/* Initialise DMA (if required) */
2469 	fst_init_dma(card);
2470 
2471 	/* Record driver data for later use */
2472 	pci_set_drvdata(pdev, card);
2473 
2474 	/* Remainder of card setup */
2475 	if (no_of_cards_added >= FST_MAX_CARDS) {
2476 		pr_err("FarSync: too many cards\n");
2477 		err = -ENOMEM;
2478 		goto card_array_fail;
2479 	}
2480 	fst_card_array[no_of_cards_added] = card;
2481 	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2482 	err = fst_init_card(card);
2483 	if (err)
2484 		goto init_card_fail;
2485 	if (card->family == FST_FAMILY_TXU) {
2486 		/* Allocate a dma buffer for transmit and receives
2487 		 */
2488 		card->rx_dma_handle_host =
2489 		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2490 				       &card->rx_dma_handle_card, GFP_KERNEL);
2491 		if (!card->rx_dma_handle_host) {
2492 			pr_err("Could not allocate rx dma buffer\n");
2493 			err = -ENOMEM;
2494 			goto rx_dma_fail;
2495 		}
2496 		card->tx_dma_handle_host =
2497 		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2498 				       &card->tx_dma_handle_card, GFP_KERNEL);
2499 		if (!card->tx_dma_handle_host) {
2500 			pr_err("Could not allocate tx dma buffer\n");
2501 			err = -ENOMEM;
2502 			goto tx_dma_fail;
2503 		}
2504 	}
2505 	return 0;		/* Success */
2506 
2507 tx_dma_fail:
2508 	dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2509 			  card->rx_dma_handle_host, card->rx_dma_handle_card);
2510 rx_dma_fail:
2511 	fst_disable_intr(card);
2512 	for (i = 0 ; i < card->nports ; i++)
2513 		unregister_hdlc_device(card->ports[i].dev);
2514 init_card_fail:
2515 	fst_card_array[card->card_no] = NULL;
2516 card_array_fail:
2517 	for (i = 0 ; i < card->nports ; i++)
2518 		free_netdev(card->ports[i].dev);
2519 hdlcdev_fail:
2520 	free_irq(card->irq, card);
2521 irq_fail:
2522 	iounmap(card->ctlmem);
2523 ioremap_ctlmem_fail:
2524 	iounmap(card->mem);
2525 ioremap_physmem_fail:
2526 	pci_release_regions(pdev);
2527 regions_fail:
2528 	pci_disable_device(pdev);
2529 enable_fail:
2530 	kfree(card);
2531 	return err;
2532 }
2533 
2534 /*      Cleanup and close down a card
2535  */
2536 static void
2537 fst_remove_one(struct pci_dev *pdev)
2538 {
2539 	struct fst_card_info *card;
2540 	int i;
2541 
2542 	card = pci_get_drvdata(pdev);
2543 
2544 	for (i = 0; i < card->nports; i++) {
2545 		struct net_device *dev = port_to_dev(&card->ports[i]);
2546 
2547 		unregister_hdlc_device(dev);
2548 		free_netdev(dev);
2549 	}
2550 
2551 	fst_disable_intr(card);
2552 	free_irq(card->irq, card);
2553 
2554 	iounmap(card->ctlmem);
2555 	iounmap(card->mem);
2556 	pci_release_regions(pdev);
2557 	if (card->family == FST_FAMILY_TXU) {
2558 		/* Free dma buffers
2559 		 */
2560 		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2561 				  card->rx_dma_handle_host,
2562 				  card->rx_dma_handle_card);
2563 		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2564 				  card->tx_dma_handle_host,
2565 				  card->tx_dma_handle_card);
2566 	}
2567 	fst_card_array[card->card_no] = NULL;
2568 	kfree(card);
2569 }
2570 
2571 static struct pci_driver fst_driver = {
2572 	.name		= FST_NAME,
2573 	.id_table	= fst_pci_dev_id,
2574 	.probe		= fst_add_one,
2575 	.remove		= fst_remove_one,
2576 };
2577 
2578 static int __init
2579 fst_init(void)
2580 {
2581 	int i;
2582 
2583 	for (i = 0; i < FST_MAX_CARDS; i++)
2584 		fst_card_array[i] = NULL;
2585 	return pci_register_driver(&fst_driver);
2586 }
2587 
2588 static void __exit
2589 fst_cleanup_module(void)
2590 {
2591 	pr_info("FarSync WAN driver unloading\n");
2592 	pci_unregister_driver(&fst_driver);
2593 }
2594 
2595 module_init(fst_init);
2596 module_exit(fst_cleanup_module);
2597