xref: /linux/drivers/net/wan/farsync.c (revision 1795cf48b322b4d19230a40dbe7181acedd34a94)
1 /*
2  *      FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7  *      www.farsite.co.uk
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/version.h>
21 #include <linux/pci.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/if.h>
25 #include <linux/hdlc.h>
26 #include <asm/io.h>
27 #include <asm/uaccess.h>
28 
29 #include "farsync.h"
30 
31 /*
32  *      Module info
33  */
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
37 
38 /*      Driver configuration and global parameters
39  *      ==========================================
40  */
41 
42 /*      Number of ports (per card) and cards supported
43  */
44 #define FST_MAX_PORTS           4
45 #define FST_MAX_CARDS           32
46 
47 /*      Default parameters for the link
48  */
49 #define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
50 					 * useful, the syncppp module forces
51 					 * this down assuming a slower line I
52 					 * guess.
53 					 */
54 #define FST_TXQ_DEPTH           16	/* This one is for the buffering
55 					 * of frames on the way down to the card
56 					 * so that we can keep the card busy
57 					 * and maximise throughput
58 					 */
59 #define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
60 					 * network layer */
61 #define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
62 					 * control from network layer */
63 #define FST_MAX_MTU             8000	/* Huge but possible */
64 #define FST_DEF_MTU             1500	/* Common sane value */
65 
66 #define FST_TX_TIMEOUT          (2*HZ)
67 
68 #ifdef ARPHRD_RAWHDLC
69 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
70 #else
71 #define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
72 #endif
73 
74 /*
75  * Modules parameters and associated varaibles
76  */
77 static int fst_txq_low = FST_LOW_WATER_MARK;
78 static int fst_txq_high = FST_HIGH_WATER_MARK;
79 static int fst_max_reads = 7;
80 static int fst_excluded_cards = 0;
81 static int fst_excluded_list[FST_MAX_CARDS];
82 
83 module_param(fst_txq_low, int, 0);
84 module_param(fst_txq_high, int, 0);
85 module_param(fst_max_reads, int, 0);
86 module_param(fst_excluded_cards, int, 0);
87 module_param_array(fst_excluded_list, int, NULL, 0);
88 
89 /*      Card shared memory layout
90  *      =========================
91  */
92 #pragma pack(1)
93 
94 /*      This information is derived in part from the FarSite FarSync Smc.h
95  *      file. Unfortunately various name clashes and the non-portability of the
96  *      bit field declarations in that file have meant that I have chosen to
97  *      recreate the information here.
98  *
99  *      The SMC (Shared Memory Configuration) has a version number that is
100  *      incremented every time there is a significant change. This number can
101  *      be used to check that we have not got out of step with the firmware
102  *      contained in the .CDE files.
103  */
104 #define SMC_VERSION 24
105 
106 #define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
107 
108 #define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
109 				 * configuration structure */
110 #define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
111 				 * buffers */
112 
113 #define LEN_TX_BUFFER 8192	/* Size of packet buffers */
114 #define LEN_RX_BUFFER 8192
115 
116 #define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
117 #define LEN_SMALL_RX_BUFFER 256
118 
119 #define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
120 #define NUM_RX_BUFFER 8
121 
122 /* Interrupt retry time in milliseconds */
123 #define INT_RETRY_TIME 2
124 
125 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
126  *      of buffer descriptors. The structure is almost identical to that used
127  *      in the LANCE Ethernet controllers. Details available as PDF from the
128  *      AMD web site: http://www.amd.com/products/epd/processors/\
129  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
130  */
131 struct txdesc {			/* Transmit descriptor */
132 	volatile u16 ladr;	/* Low order address of packet. This is a
133 				 * linear address in the Am186 memory space
134 				 */
135 	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
136 				 * bits must be zero
137 				 */
138 	volatile u8 bits;	/* Status and config */
139 	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
140 				 * Transmit terminal count interrupt enable in
141 				 * top bit.
142 				 */
143 	u16 unused;		/* Not used in Tx */
144 };
145 
146 struct rxdesc {			/* Receive descriptor */
147 	volatile u16 ladr;	/* Low order address of packet */
148 	volatile u8 hadr;	/* High order address */
149 	volatile u8 bits;	/* Status and config */
150 	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
151 				 * Receive terminal count interrupt enable in
152 				 * top bit.
153 				 */
154 	volatile u16 mcnt;	/* Message byte count (15 bits) */
155 };
156 
157 /* Convert a length into the 15 bit 2's complement */
158 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
159 /* Since we need to set the high bit to enable the completion interrupt this
160  * can be made a lot simpler
161  */
162 #define cnv_bcnt(len)   (-(len))
163 
164 /* Status and config bits for the above */
165 #define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
166 #define TX_STP          0x02	/* Tx: start of packet */
167 #define TX_ENP          0x01	/* Tx: end of packet */
168 #define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
169 #define RX_FRAM         0x20	/* Rx: framing error */
170 #define RX_OFLO         0x10	/* Rx: overflow error */
171 #define RX_CRC          0x08	/* Rx: CRC error */
172 #define RX_HBUF         0x04	/* Rx: buffer error */
173 #define RX_STP          0x02	/* Rx: start of packet */
174 #define RX_ENP          0x01	/* Rx: end of packet */
175 
176 /* Interrupts from the card are caused by various events which are presented
177  * in a circular buffer as several events may be processed on one physical int
178  */
179 #define MAX_CIRBUFF     32
180 
181 struct cirbuff {
182 	u8 rdindex;		/* read, then increment and wrap */
183 	u8 wrindex;		/* write, then increment and wrap */
184 	u8 evntbuff[MAX_CIRBUFF];
185 };
186 
187 /* Interrupt event codes.
188  * Where appropriate the two low order bits indicate the port number
189  */
190 #define CTLA_CHG        0x18	/* Control signal changed */
191 #define CTLB_CHG        0x19
192 #define CTLC_CHG        0x1A
193 #define CTLD_CHG        0x1B
194 
195 #define INIT_CPLT       0x20	/* Initialisation complete */
196 #define INIT_FAIL       0x21	/* Initialisation failed */
197 
198 #define ABTA_SENT       0x24	/* Abort sent */
199 #define ABTB_SENT       0x25
200 #define ABTC_SENT       0x26
201 #define ABTD_SENT       0x27
202 
203 #define TXA_UNDF        0x28	/* Transmission underflow */
204 #define TXB_UNDF        0x29
205 #define TXC_UNDF        0x2A
206 #define TXD_UNDF        0x2B
207 
208 #define F56_INT         0x2C
209 #define M32_INT         0x2D
210 
211 #define TE1_ALMA        0x30
212 
213 /* Port physical configuration. See farsync.h for field values */
214 struct port_cfg {
215 	u16 lineInterface;	/* Physical interface type */
216 	u8 x25op;		/* Unused at present */
217 	u8 internalClock;	/* 1 => internal clock, 0 => external */
218 	u8 transparentMode;	/* 1 => on, 0 => off */
219 	u8 invertClock;		/* 0 => normal, 1 => inverted */
220 	u8 padBytes[6];		/* Padding */
221 	u32 lineSpeed;		/* Speed in bps */
222 };
223 
224 /* TE1 port physical configuration */
225 struct su_config {
226 	u32 dataRate;
227 	u8 clocking;
228 	u8 framing;
229 	u8 structure;
230 	u8 interface;
231 	u8 coding;
232 	u8 lineBuildOut;
233 	u8 equalizer;
234 	u8 transparentMode;
235 	u8 loopMode;
236 	u8 range;
237 	u8 txBufferMode;
238 	u8 rxBufferMode;
239 	u8 startingSlot;
240 	u8 losThreshold;
241 	u8 enableIdleCode;
242 	u8 idleCode;
243 	u8 spare[44];
244 };
245 
246 /* TE1 Status */
247 struct su_status {
248 	u32 receiveBufferDelay;
249 	u32 framingErrorCount;
250 	u32 codeViolationCount;
251 	u32 crcErrorCount;
252 	u32 lineAttenuation;
253 	u8 portStarted;
254 	u8 lossOfSignal;
255 	u8 receiveRemoteAlarm;
256 	u8 alarmIndicationSignal;
257 	u8 spare[40];
258 };
259 
260 /* Finally sling all the above together into the shared memory structure.
261  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
262  * evolving under NT for some time so I guess we're stuck with it.
263  * The structure starts at offset SMC_BASE.
264  * See farsync.h for some field values.
265  */
266 struct fst_shared {
267 	/* DMA descriptor rings */
268 	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
269 	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
270 
271 	/* Obsolete small buffers */
272 	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
273 	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
274 
275 	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
276 				 * 0xFF => halted
277 				 */
278 
279 	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
280 				 * set to 0xEE by host to acknowledge interrupt
281 				 */
282 
283 	u16 smcVersion;		/* Must match SMC_VERSION */
284 
285 	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
286 				 * version, RR = revision and BB = build
287 				 */
288 
289 	u16 txa_done;		/* Obsolete completion flags */
290 	u16 rxa_done;
291 	u16 txb_done;
292 	u16 rxb_done;
293 	u16 txc_done;
294 	u16 rxc_done;
295 	u16 txd_done;
296 	u16 rxd_done;
297 
298 	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
299 
300 	struct cirbuff interruptEvent;	/* interrupt causes */
301 
302 	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
303 	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
304 
305 	struct port_cfg portConfig[FST_MAX_PORTS];
306 
307 	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
308 
309 	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
310 
311 	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
312 	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
313 
314 	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
315 	u16 cardMailbox[4];	/* Not used */
316 
317 	/* Number of times the card thinks the host has
318 	 * missed an interrupt by not acknowledging
319 	 * within 2mS (I guess NT has problems)
320 	 */
321 	u32 interruptRetryCount;
322 
323 	/* Driver private data used as an ID. We'll not
324 	 * use this as I'd rather keep such things
325 	 * in main memory rather than on the PCI bus
326 	 */
327 	u32 portHandle[FST_MAX_PORTS];
328 
329 	/* Count of Tx underflows for stats */
330 	u32 transmitBufferUnderflow[FST_MAX_PORTS];
331 
332 	/* Debounced V.24 control input status */
333 	u32 v24DebouncedSts[FST_MAX_PORTS];
334 
335 	/* Adapter debounce timers. Don't touch */
336 	u32 ctsTimer[FST_MAX_PORTS];
337 	u32 ctsTimerRun[FST_MAX_PORTS];
338 	u32 dcdTimer[FST_MAX_PORTS];
339 	u32 dcdTimerRun[FST_MAX_PORTS];
340 
341 	u32 numberOfPorts;	/* Number of ports detected at startup */
342 
343 	u16 _reserved[64];
344 
345 	u16 cardMode;		/* Bit-mask to enable features:
346 				 * Bit 0: 1 enables LED identify mode
347 				 */
348 
349 	u16 portScheduleOffset;
350 
351 	struct su_config suConfig;	/* TE1 Bits */
352 	struct su_status suStatus;
353 
354 	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
355 				 * the structure and marks the end of shared
356 				 * memory. Adapter code initializes it as
357 				 * END_SIG.
358 				 */
359 };
360 
361 /* endOfSmcSignature value */
362 #define END_SIG                 0x12345678
363 
364 /* Mailbox values. (portMailbox) */
365 #define NOP             0	/* No operation */
366 #define ACK             1	/* Positive acknowledgement to PC driver */
367 #define NAK             2	/* Negative acknowledgement to PC driver */
368 #define STARTPORT       3	/* Start an HDLC port */
369 #define STOPPORT        4	/* Stop an HDLC port */
370 #define ABORTTX         5	/* Abort the transmitter for a port */
371 #define SETV24O         6	/* Set V24 outputs */
372 
373 /* PLX Chip Register Offsets */
374 #define CNTRL_9052      0x50	/* Control Register */
375 #define CNTRL_9054      0x6c	/* Control Register */
376 
377 #define INTCSR_9052     0x4c	/* Interrupt control/status register */
378 #define INTCSR_9054     0x68	/* Interrupt control/status register */
379 
380 /* 9054 DMA Registers */
381 /*
382  * Note that we will be using DMA Channel 0 for copying rx data
383  * and Channel 1 for copying tx data
384  */
385 #define DMAMODE0        0x80
386 #define DMAPADR0        0x84
387 #define DMALADR0        0x88
388 #define DMASIZ0         0x8c
389 #define DMADPR0         0x90
390 #define DMAMODE1        0x94
391 #define DMAPADR1        0x98
392 #define DMALADR1        0x9c
393 #define DMASIZ1         0xa0
394 #define DMADPR1         0xa4
395 #define DMACSR0         0xa8
396 #define DMACSR1         0xa9
397 #define DMAARB          0xac
398 #define DMATHR          0xb0
399 #define DMADAC0         0xb4
400 #define DMADAC1         0xb8
401 #define DMAMARBR        0xac
402 
403 #define FST_MIN_DMA_LEN 64
404 #define FST_RX_DMA_INT  0x01
405 #define FST_TX_DMA_INT  0x02
406 #define FST_CARD_INT    0x04
407 
408 /* Larger buffers are positioned in memory at offset BFM_BASE */
409 struct buf_window {
410 	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411 	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
412 };
413 
414 /* Calculate offset of a buffer object within the shared memory window */
415 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
416 
417 #pragma pack()
418 
419 /*      Device driver private information
420  *      =================================
421  */
422 /*      Per port (line or channel) information
423  */
424 struct fst_port_info {
425         struct net_device *dev; /* Device struct - must be first */
426 	struct fst_card_info *card;	/* Card we're associated with */
427 	int index;		/* Port index on the card */
428 	int hwif;		/* Line hardware (lineInterface copy) */
429 	int run;		/* Port is running */
430 	int mode;		/* Normal or FarSync raw */
431 	int rxpos;		/* Next Rx buffer to use */
432 	int txpos;		/* Next Tx buffer to use */
433 	int txipos;		/* Next Tx buffer to check for free */
434 	int start;		/* Indication of start/stop to network */
435 	/*
436 	 * A sixteen entry transmit queue
437 	 */
438 	int txqs;		/* index to get next buffer to tx */
439 	int txqe;		/* index to queue next packet */
440 	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
441 	int rxqdepth;
442 };
443 
444 /*      Per card information
445  */
446 struct fst_card_info {
447 	char __iomem *mem;	/* Card memory mapped to kernel space */
448 	char __iomem *ctlmem;	/* Control memory for PCI cards */
449 	unsigned int phys_mem;	/* Physical memory window address */
450 	unsigned int phys_ctlmem;	/* Physical control memory address */
451 	unsigned int irq;	/* Interrupt request line number */
452 	unsigned int nports;	/* Number of serial ports */
453 	unsigned int type;	/* Type index of card */
454 	unsigned int state;	/* State of card */
455 	spinlock_t card_lock;	/* Lock for SMP access */
456 	unsigned short pci_conf;	/* PCI card config in I/O space */
457 	/* Per port info */
458 	struct fst_port_info ports[FST_MAX_PORTS];
459 	struct pci_dev *device;	/* Information about the pci device */
460 	int card_no;		/* Inst of the card on the system */
461 	int family;		/* TxP or TxU */
462 	int dmarx_in_progress;
463 	int dmatx_in_progress;
464 	unsigned long int_count;
465 	unsigned long int_time_ave;
466 	void *rx_dma_handle_host;
467 	dma_addr_t rx_dma_handle_card;
468 	void *tx_dma_handle_host;
469 	dma_addr_t tx_dma_handle_card;
470 	struct sk_buff *dma_skb_rx;
471 	struct fst_port_info *dma_port_rx;
472 	struct fst_port_info *dma_port_tx;
473 	int dma_len_rx;
474 	int dma_len_tx;
475 	int dma_txpos;
476 	int dma_rxpos;
477 };
478 
479 /* Convert an HDLC device pointer into a port info pointer and similar */
480 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
481 #define port_to_dev(P)  ((P)->dev)
482 
483 
484 /*
485  *      Shared memory window access macros
486  *
487  *      We have a nice memory based structure above, which could be directly
488  *      mapped on i386 but might not work on other architectures unless we use
489  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
490  *      physical offsets so we have to convert. The only saving grace is that
491  *      this should all collapse back to a simple indirection eventually.
492  */
493 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
494 
495 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
497 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
498 
499 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
501 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
502 
503 /*
504  *      Debug support
505  */
506 #if FST_DEBUG
507 
508 static int fst_debug_mask = { FST_DEBUG };
509 
510 /* Most common debug activity is to print something if the corresponding bit
511  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
512  * support variable numbers of macro parameters. The inverted if prevents us
513  * eating someone else's else clause.
514  */
515 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
516                                 ; \
517                         else \
518                                 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
519 
520 #else
521 #define dbg(X...)		/* NOP */
522 #endif
523 
524 /*      Printing short cuts
525  */
526 #define printk_err(fmt,A...)    printk ( KERN_ERR     FST_NAME ": " fmt, ## A )
527 #define printk_warn(fmt,A...)   printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
528 #define printk_info(fmt,A...)   printk ( KERN_INFO    FST_NAME ": " fmt, ## A )
529 
530 /*
531  *      PCI ID lookup table
532  */
533 static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
534 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536 
537 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539 
540 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541 	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542 
543 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545 
546 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548 
549 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551 
552 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554 	{0,}			/* End */
555 };
556 
557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558 
559 /*
560  *      Device Driver Work Queues
561  *
562  *      So that we don't spend too much time processing events in the
563  *      Interrupt Service routine, we will declare a work queue per Card
564  *      and make the ISR schedule a task in the queue for later execution.
565  *      In the 2.4 Kernel we used to use the immediate queue for BH's
566  *      Now that they are gone, tasklets seem to be much better than work
567  *      queues.
568  */
569 
570 static void do_bottom_half_tx(struct fst_card_info *card);
571 static void do_bottom_half_rx(struct fst_card_info *card);
572 static void fst_process_tx_work_q(unsigned long work_q);
573 static void fst_process_int_work_q(unsigned long work_q);
574 
575 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577 
578 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579 static spinlock_t fst_work_q_lock;
580 static u64 fst_work_txq;
581 static u64 fst_work_intq;
582 
583 static void
584 fst_q_work_item(u64 * queue, int card_index)
585 {
586 	unsigned long flags;
587 	u64 mask;
588 
589 	/*
590 	 * Grab the queue exclusively
591 	 */
592 	spin_lock_irqsave(&fst_work_q_lock, flags);
593 
594 	/*
595 	 * Making an entry in the queue is simply a matter of setting
596 	 * a bit for the card indicating that there is work to do in the
597 	 * bottom half for the card.  Note the limitation of 64 cards.
598 	 * That ought to be enough
599 	 */
600 	mask = 1 << card_index;
601 	*queue |= mask;
602 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
603 }
604 
605 static void
606 fst_process_tx_work_q(unsigned long /*void **/work_q)
607 {
608 	unsigned long flags;
609 	u64 work_txq;
610 	int i;
611 
612 	/*
613 	 * Grab the queue exclusively
614 	 */
615 	dbg(DBG_TX, "fst_process_tx_work_q\n");
616 	spin_lock_irqsave(&fst_work_q_lock, flags);
617 	work_txq = fst_work_txq;
618 	fst_work_txq = 0;
619 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
620 
621 	/*
622 	 * Call the bottom half for each card with work waiting
623 	 */
624 	for (i = 0; i < FST_MAX_CARDS; i++) {
625 		if (work_txq & 0x01) {
626 			if (fst_card_array[i] != NULL) {
627 				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628 				do_bottom_half_tx(fst_card_array[i]);
629 			}
630 		}
631 		work_txq = work_txq >> 1;
632 	}
633 }
634 
635 static void
636 fst_process_int_work_q(unsigned long /*void **/work_q)
637 {
638 	unsigned long flags;
639 	u64 work_intq;
640 	int i;
641 
642 	/*
643 	 * Grab the queue exclusively
644 	 */
645 	dbg(DBG_INTR, "fst_process_int_work_q\n");
646 	spin_lock_irqsave(&fst_work_q_lock, flags);
647 	work_intq = fst_work_intq;
648 	fst_work_intq = 0;
649 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
650 
651 	/*
652 	 * Call the bottom half for each card with work waiting
653 	 */
654 	for (i = 0; i < FST_MAX_CARDS; i++) {
655 		if (work_intq & 0x01) {
656 			if (fst_card_array[i] != NULL) {
657 				dbg(DBG_INTR,
658 				    "Calling rx & tx bh for card %d\n", i);
659 				do_bottom_half_rx(fst_card_array[i]);
660 				do_bottom_half_tx(fst_card_array[i]);
661 			}
662 		}
663 		work_intq = work_intq >> 1;
664 	}
665 }
666 
667 /*      Card control functions
668  *      ======================
669  */
670 /*      Place the processor in reset state
671  *
672  * Used to be a simple write to card control space but a glitch in the latest
673  * AMD Am186CH processor means that we now have to do it by asserting and de-
674  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675  * at offset 9052_CNTRL.  Note the updates for the TXU.
676  */
677 static inline void
678 fst_cpureset(struct fst_card_info *card)
679 {
680 	unsigned char interrupt_line_register;
681 	unsigned long j = jiffies + 1;
682 	unsigned int regval;
683 
684 	if (card->family == FST_FAMILY_TXU) {
685 		if (pci_read_config_byte
686 		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 			dbg(DBG_ASS,
688 			    "Error in reading interrupt line register\n");
689 		}
690 		/*
691 		 * Assert PLX software reset and Am186 hardware reset
692 		 * and then deassert the PLX software reset but 186 still in reset
693 		 */
694 		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696 		/*
697 		 * We are delaying here to allow the 9054 to reset itself
698 		 */
699 		j = jiffies + 1;
700 		while (jiffies < j)
701 			/* Do nothing */ ;
702 		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703 		/*
704 		 * We are delaying here to allow the 9054 to reload its eeprom
705 		 */
706 		j = jiffies + 1;
707 		while (jiffies < j)
708 			/* Do nothing */ ;
709 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710 
711 		if (pci_write_config_byte
712 		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713 			dbg(DBG_ASS,
714 			    "Error in writing interrupt line register\n");
715 		}
716 
717 	} else {
718 		regval = inl(card->pci_conf + CNTRL_9052);
719 
720 		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721 		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722 	}
723 }
724 
725 /*      Release the processor from reset
726  */
727 static inline void
728 fst_cpurelease(struct fst_card_info *card)
729 {
730 	if (card->family == FST_FAMILY_TXU) {
731 		/*
732 		 * Force posted writes to complete
733 		 */
734 		(void) readb(card->mem);
735 
736 		/*
737 		 * Release LRESET DO = 1
738 		 * Then release Local Hold, DO = 1
739 		 */
740 		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742 	} else {
743 		(void) readb(card->ctlmem);
744 	}
745 }
746 
747 /*      Clear the cards interrupt flag
748  */
749 static inline void
750 fst_clear_intr(struct fst_card_info *card)
751 {
752 	if (card->family == FST_FAMILY_TXU) {
753 		(void) readb(card->ctlmem);
754 	} else {
755 		/* Poke the appropriate PLX chip register (same as enabling interrupts)
756 		 */
757 		outw(0x0543, card->pci_conf + INTCSR_9052);
758 	}
759 }
760 
761 /*      Enable card interrupts
762  */
763 static inline void
764 fst_enable_intr(struct fst_card_info *card)
765 {
766 	if (card->family == FST_FAMILY_TXU) {
767 		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768 	} else {
769 		outw(0x0543, card->pci_conf + INTCSR_9052);
770 	}
771 }
772 
773 /*      Disable card interrupts
774  */
775 static inline void
776 fst_disable_intr(struct fst_card_info *card)
777 {
778 	if (card->family == FST_FAMILY_TXU) {
779 		outl(0x00000000, card->pci_conf + INTCSR_9054);
780 	} else {
781 		outw(0x0000, card->pci_conf + INTCSR_9052);
782 	}
783 }
784 
785 /*      Process the result of trying to pass a received frame up the stack
786  */
787 static void
788 fst_process_rx_status(int rx_status, char *name)
789 {
790 	switch (rx_status) {
791 	case NET_RX_SUCCESS:
792 		{
793 			/*
794 			 * Nothing to do here
795 			 */
796 			break;
797 		}
798 
799 	case NET_RX_CN_LOW:
800 		{
801 			dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
802 			break;
803 		}
804 
805 	case NET_RX_CN_MOD:
806 		{
807 			dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
808 			break;
809 		}
810 
811 	case NET_RX_CN_HIGH:
812 		{
813 			dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
814 			break;
815 		}
816 
817 	case NET_RX_DROP:
818 		{
819 			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
820 			break;
821 		}
822 	}
823 }
824 
825 /*      Initilaise DMA for PLX 9054
826  */
827 static inline void
828 fst_init_dma(struct fst_card_info *card)
829 {
830 	/*
831 	 * This is only required for the PLX 9054
832 	 */
833 	if (card->family == FST_FAMILY_TXU) {
834 	        pci_set_master(card->device);
835 		outl(0x00020441, card->pci_conf + DMAMODE0);
836 		outl(0x00020441, card->pci_conf + DMAMODE1);
837 		outl(0x0, card->pci_conf + DMATHR);
838 	}
839 }
840 
841 /*      Tx dma complete interrupt
842  */
843 static void
844 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
845 		    int len, int txpos)
846 {
847 	struct net_device *dev = port_to_dev(port);
848 
849 	/*
850 	 * Everything is now set, just tell the card to go
851 	 */
852 	dbg(DBG_TX, "fst_tx_dma_complete\n");
853 	FST_WRB(card, txDescrRing[port->index][txpos].bits,
854 		DMA_OWN | TX_STP | TX_ENP);
855 	dev->stats.tx_packets++;
856 	dev->stats.tx_bytes += len;
857 	dev->trans_start = jiffies;
858 }
859 
860 /*
861  * Mark it for our own raw sockets interface
862  */
863 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
864 {
865 	skb->dev = dev;
866 	skb_reset_mac_header(skb);
867 	skb->pkt_type = PACKET_HOST;
868 	return htons(ETH_P_CUST);
869 }
870 
871 /*      Rx dma complete interrupt
872  */
873 static void
874 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
875 		    int len, struct sk_buff *skb, int rxp)
876 {
877 	struct net_device *dev = port_to_dev(port);
878 	int pi;
879 	int rx_status;
880 
881 	dbg(DBG_TX, "fst_rx_dma_complete\n");
882 	pi = port->index;
883 	memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
884 
885 	/* Reset buffer descriptor */
886 	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
887 
888 	/* Update stats */
889 	dev->stats.rx_packets++;
890 	dev->stats.rx_bytes += len;
891 
892 	/* Push upstream */
893 	dbg(DBG_RX, "Pushing the frame up the stack\n");
894 	if (port->mode == FST_RAW)
895 		skb->protocol = farsync_type_trans(skb, dev);
896 	else
897 		skb->protocol = hdlc_type_trans(skb, dev);
898 	rx_status = netif_rx(skb);
899 	fst_process_rx_status(rx_status, port_to_dev(port)->name);
900 	if (rx_status == NET_RX_DROP)
901 		dev->stats.rx_dropped++;
902 	dev->last_rx = jiffies;
903 }
904 
905 /*
906  *      Receive a frame through the DMA
907  */
908 static inline void
909 fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
910 	   unsigned char *mem, int len)
911 {
912 	/*
913 	 * This routine will setup the DMA and start it
914 	 */
915 
916 	dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
917 	if (card->dmarx_in_progress) {
918 		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
919 	}
920 
921 	outl((unsigned long) skb, card->pci_conf + DMAPADR0);	/* Copy to here */
922 	outl((unsigned long) mem, card->pci_conf + DMALADR0);	/* from here */
923 	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
924 	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
925 
926 	/*
927 	 * We use the dmarx_in_progress flag to flag the channel as busy
928 	 */
929 	card->dmarx_in_progress = 1;
930 	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
931 }
932 
933 /*
934  *      Send a frame through the DMA
935  */
936 static inline void
937 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
938 	   unsigned char *mem, int len)
939 {
940 	/*
941 	 * This routine will setup the DMA and start it.
942 	 */
943 
944 	dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
945 	if (card->dmatx_in_progress) {
946 		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
947 	}
948 
949 	outl((unsigned long) skb, card->pci_conf + DMAPADR1);	/* Copy from here */
950 	outl((unsigned long) mem, card->pci_conf + DMALADR1);	/* to here */
951 	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
952 	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
953 
954 	/*
955 	 * We use the dmatx_in_progress to flag the channel as busy
956 	 */
957 	card->dmatx_in_progress = 1;
958 	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
959 }
960 
961 /*      Issue a Mailbox command for a port.
962  *      Note we issue them on a fire and forget basis, not expecting to see an
963  *      error and not waiting for completion.
964  */
965 static void
966 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
967 {
968 	struct fst_card_info *card;
969 	unsigned short mbval;
970 	unsigned long flags;
971 	int safety;
972 
973 	card = port->card;
974 	spin_lock_irqsave(&card->card_lock, flags);
975 	mbval = FST_RDW(card, portMailbox[port->index][0]);
976 
977 	safety = 0;
978 	/* Wait for any previous command to complete */
979 	while (mbval > NAK) {
980 		spin_unlock_irqrestore(&card->card_lock, flags);
981 		schedule_timeout_uninterruptible(1);
982 		spin_lock_irqsave(&card->card_lock, flags);
983 
984 		if (++safety > 2000) {
985 			printk_err("Mailbox safety timeout\n");
986 			break;
987 		}
988 
989 		mbval = FST_RDW(card, portMailbox[port->index][0]);
990 	}
991 	if (safety > 0) {
992 		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
993 	}
994 	if (mbval == NAK) {
995 		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
996 	}
997 
998 	FST_WRW(card, portMailbox[port->index][0], cmd);
999 
1000 	if (cmd == ABORTTX || cmd == STARTPORT) {
1001 		port->txpos = 0;
1002 		port->txipos = 0;
1003 		port->start = 0;
1004 	}
1005 
1006 	spin_unlock_irqrestore(&card->card_lock, flags);
1007 }
1008 
1009 /*      Port output signals control
1010  */
1011 static inline void
1012 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
1013 {
1014 	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
1015 	FST_WRL(port->card, v24OpSts[port->index], outputs);
1016 
1017 	if (port->run)
1018 		fst_issue_cmd(port, SETV24O);
1019 }
1020 
1021 static inline void
1022 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1023 {
1024 	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1025 	FST_WRL(port->card, v24OpSts[port->index], outputs);
1026 
1027 	if (port->run)
1028 		fst_issue_cmd(port, SETV24O);
1029 }
1030 
1031 /*
1032  *      Setup port Rx buffers
1033  */
1034 static void
1035 fst_rx_config(struct fst_port_info *port)
1036 {
1037 	int i;
1038 	int pi;
1039 	unsigned int offset;
1040 	unsigned long flags;
1041 	struct fst_card_info *card;
1042 
1043 	pi = port->index;
1044 	card = port->card;
1045 	spin_lock_irqsave(&card->card_lock, flags);
1046 	for (i = 0; i < NUM_RX_BUFFER; i++) {
1047 		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1048 
1049 		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1050 		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1051 		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1052 		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1053 		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1054 	}
1055 	port->rxpos = 0;
1056 	spin_unlock_irqrestore(&card->card_lock, flags);
1057 }
1058 
1059 /*
1060  *      Setup port Tx buffers
1061  */
1062 static void
1063 fst_tx_config(struct fst_port_info *port)
1064 {
1065 	int i;
1066 	int pi;
1067 	unsigned int offset;
1068 	unsigned long flags;
1069 	struct fst_card_info *card;
1070 
1071 	pi = port->index;
1072 	card = port->card;
1073 	spin_lock_irqsave(&card->card_lock, flags);
1074 	for (i = 0; i < NUM_TX_BUFFER; i++) {
1075 		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1076 
1077 		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1078 		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1079 		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1080 		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1081 	}
1082 	port->txpos = 0;
1083 	port->txipos = 0;
1084 	port->start = 0;
1085 	spin_unlock_irqrestore(&card->card_lock, flags);
1086 }
1087 
1088 /*      TE1 Alarm change interrupt event
1089  */
1090 static void
1091 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1092 {
1093 	u8 los;
1094 	u8 rra;
1095 	u8 ais;
1096 
1097 	los = FST_RDB(card, suStatus.lossOfSignal);
1098 	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1099 	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1100 
1101 	if (los) {
1102 		/*
1103 		 * Lost the link
1104 		 */
1105 		if (netif_carrier_ok(port_to_dev(port))) {
1106 			dbg(DBG_INTR, "Net carrier off\n");
1107 			netif_carrier_off(port_to_dev(port));
1108 		}
1109 	} else {
1110 		/*
1111 		 * Link available
1112 		 */
1113 		if (!netif_carrier_ok(port_to_dev(port))) {
1114 			dbg(DBG_INTR, "Net carrier on\n");
1115 			netif_carrier_on(port_to_dev(port));
1116 		}
1117 	}
1118 
1119 	if (los)
1120 		dbg(DBG_INTR, "Assert LOS Alarm\n");
1121 	else
1122 		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1123 	if (rra)
1124 		dbg(DBG_INTR, "Assert RRA Alarm\n");
1125 	else
1126 		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1127 
1128 	if (ais)
1129 		dbg(DBG_INTR, "Assert AIS Alarm\n");
1130 	else
1131 		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1132 }
1133 
1134 /*      Control signal change interrupt event
1135  */
1136 static void
1137 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1138 {
1139 	int signals;
1140 
1141 	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1142 
1143 	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1144 		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1145 		if (!netif_carrier_ok(port_to_dev(port))) {
1146 			dbg(DBG_INTR, "DCD active\n");
1147 			netif_carrier_on(port_to_dev(port));
1148 		}
1149 	} else {
1150 		if (netif_carrier_ok(port_to_dev(port))) {
1151 			dbg(DBG_INTR, "DCD lost\n");
1152 			netif_carrier_off(port_to_dev(port));
1153 		}
1154 	}
1155 }
1156 
1157 /*      Log Rx Errors
1158  */
1159 static void
1160 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1161 		 unsigned char dmabits, int rxp, unsigned short len)
1162 {
1163 	struct net_device *dev = port_to_dev(port);
1164 
1165 	/*
1166 	 * Increment the appropriate error counter
1167 	 */
1168 	dev->stats.rx_errors++;
1169 	if (dmabits & RX_OFLO) {
1170 		dev->stats.rx_fifo_errors++;
1171 		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1172 		    card->card_no, port->index, rxp);
1173 	}
1174 	if (dmabits & RX_CRC) {
1175 		dev->stats.rx_crc_errors++;
1176 		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1177 		    card->card_no, port->index);
1178 	}
1179 	if (dmabits & RX_FRAM) {
1180 		dev->stats.rx_frame_errors++;
1181 		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1182 		    card->card_no, port->index);
1183 	}
1184 	if (dmabits == (RX_STP | RX_ENP)) {
1185 		dev->stats.rx_length_errors++;
1186 		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1187 		    len, card->card_no, port->index);
1188 	}
1189 }
1190 
1191 /*      Rx Error Recovery
1192  */
1193 static void
1194 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1195 		     unsigned char dmabits, int rxp, unsigned short len)
1196 {
1197 	int i;
1198 	int pi;
1199 
1200 	pi = port->index;
1201 	/*
1202 	 * Discard buffer descriptors until we see the start of the
1203 	 * next frame.  Note that for long frames this could be in
1204 	 * a subsequent interrupt.
1205 	 */
1206 	i = 0;
1207 	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1208 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1209 		rxp = (rxp+1) % NUM_RX_BUFFER;
1210 		if (++i > NUM_RX_BUFFER) {
1211 			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1212 			    " than we have\n");
1213 			break;
1214 		}
1215 		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1216 		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1217 	}
1218 	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1219 
1220 	/* Discard the terminal buffer */
1221 	if (!(dmabits & DMA_OWN)) {
1222 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1223 		rxp = (rxp+1) % NUM_RX_BUFFER;
1224 	}
1225 	port->rxpos = rxp;
1226 	return;
1227 
1228 }
1229 
1230 /*      Rx complete interrupt
1231  */
1232 static void
1233 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1234 {
1235 	unsigned char dmabits;
1236 	int pi;
1237 	int rxp;
1238 	int rx_status;
1239 	unsigned short len;
1240 	struct sk_buff *skb;
1241 	struct net_device *dev = port_to_dev(port);
1242 
1243 	/* Check we have a buffer to process */
1244 	pi = port->index;
1245 	rxp = port->rxpos;
1246 	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1247 	if (dmabits & DMA_OWN) {
1248 		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1249 		    pi, rxp);
1250 		return;
1251 	}
1252 	if (card->dmarx_in_progress) {
1253 		return;
1254 	}
1255 
1256 	/* Get buffer length */
1257 	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1258 	/* Discard the CRC */
1259 	len -= 2;
1260 	if (len == 0) {
1261 		/*
1262 		 * This seems to happen on the TE1 interface sometimes
1263 		 * so throw the frame away and log the event.
1264 		 */
1265 		printk_err("Frame received with 0 length. Card %d Port %d\n",
1266 			   card->card_no, port->index);
1267 		/* Return descriptor to card */
1268 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1269 
1270 		rxp = (rxp+1) % NUM_RX_BUFFER;
1271 		port->rxpos = rxp;
1272 		return;
1273 	}
1274 
1275 	/* Check buffer length and for other errors. We insist on one packet
1276 	 * in one buffer. This simplifies things greatly and since we've
1277 	 * allocated 8K it shouldn't be a real world limitation
1278 	 */
1279 	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1280 	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1281 		fst_log_rx_error(card, port, dmabits, rxp, len);
1282 		fst_recover_rx_error(card, port, dmabits, rxp, len);
1283 		return;
1284 	}
1285 
1286 	/* Allocate SKB */
1287 	if ((skb = dev_alloc_skb(len)) == NULL) {
1288 		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1289 
1290 		dev->stats.rx_dropped++;
1291 
1292 		/* Return descriptor to card */
1293 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294 
1295 		rxp = (rxp+1) % NUM_RX_BUFFER;
1296 		port->rxpos = rxp;
1297 		return;
1298 	}
1299 
1300 	/*
1301 	 * We know the length we need to receive, len.
1302 	 * It's not worth using the DMA for reads of less than
1303 	 * FST_MIN_DMA_LEN
1304 	 */
1305 
1306 	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1307 		memcpy_fromio(skb_put(skb, len),
1308 			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1309 			      len);
1310 
1311 		/* Reset buffer descriptor */
1312 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1313 
1314 		/* Update stats */
1315 		dev->stats.rx_packets++;
1316 		dev->stats.rx_bytes += len;
1317 
1318 		/* Push upstream */
1319 		dbg(DBG_RX, "Pushing frame up the stack\n");
1320 		if (port->mode == FST_RAW)
1321 			skb->protocol = farsync_type_trans(skb, dev);
1322 		else
1323 			skb->protocol = hdlc_type_trans(skb, dev);
1324 		rx_status = netif_rx(skb);
1325 		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1326 		if (rx_status == NET_RX_DROP)
1327 			dev->stats.rx_dropped++;
1328 		dev->last_rx = jiffies;
1329 	} else {
1330 		card->dma_skb_rx = skb;
1331 		card->dma_port_rx = port;
1332 		card->dma_len_rx = len;
1333 		card->dma_rxpos = rxp;
1334 		fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1335 			   (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1336 	}
1337 	if (rxp != port->rxpos) {
1338 		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1339 		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1340 	}
1341 	rxp = (rxp+1) % NUM_RX_BUFFER;
1342 	port->rxpos = rxp;
1343 }
1344 
1345 /*
1346  *      The bottom halfs to the ISR
1347  *
1348  */
1349 
1350 static void
1351 do_bottom_half_tx(struct fst_card_info *card)
1352 {
1353 	struct fst_port_info *port;
1354 	int pi;
1355 	int txq_length;
1356 	struct sk_buff *skb;
1357 	unsigned long flags;
1358 	struct net_device *dev;
1359 
1360 	/*
1361 	 *  Find a free buffer for the transmit
1362 	 *  Step through each port on this card
1363 	 */
1364 
1365 	dbg(DBG_TX, "do_bottom_half_tx\n");
1366 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1367 		if (!port->run)
1368 			continue;
1369 
1370 		dev = port_to_dev(port);
1371 		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1372 			 DMA_OWN)
1373 		       && !(card->dmatx_in_progress)) {
1374 			/*
1375 			 * There doesn't seem to be a txdone event per-se
1376 			 * We seem to have to deduce it, by checking the DMA_OWN
1377 			 * bit on the next buffer we think we can use
1378 			 */
1379 			spin_lock_irqsave(&card->card_lock, flags);
1380 			if ((txq_length = port->txqe - port->txqs) < 0) {
1381 				/*
1382 				 * This is the case where one has wrapped and the
1383 				 * maths gives us a negative number
1384 				 */
1385 				txq_length = txq_length + FST_TXQ_DEPTH;
1386 			}
1387 			spin_unlock_irqrestore(&card->card_lock, flags);
1388 			if (txq_length > 0) {
1389 				/*
1390 				 * There is something to send
1391 				 */
1392 				spin_lock_irqsave(&card->card_lock, flags);
1393 				skb = port->txq[port->txqs];
1394 				port->txqs++;
1395 				if (port->txqs == FST_TXQ_DEPTH) {
1396 					port->txqs = 0;
1397 				}
1398 				spin_unlock_irqrestore(&card->card_lock, flags);
1399 				/*
1400 				 * copy the data and set the required indicators on the
1401 				 * card.
1402 				 */
1403 				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1404 					cnv_bcnt(skb->len));
1405 				if ((skb->len < FST_MIN_DMA_LEN)
1406 				    || (card->family == FST_FAMILY_TXP)) {
1407 					/* Enqueue the packet with normal io */
1408 					memcpy_toio(card->mem +
1409 						    BUF_OFFSET(txBuffer[pi]
1410 							       [port->
1411 								txpos][0]),
1412 						    skb->data, skb->len);
1413 					FST_WRB(card,
1414 						txDescrRing[pi][port->txpos].
1415 						bits,
1416 						DMA_OWN | TX_STP | TX_ENP);
1417 					dev->stats.tx_packets++;
1418 					dev->stats.tx_bytes += skb->len;
1419 					dev->trans_start = jiffies;
1420 				} else {
1421 					/* Or do it through dma */
1422 					memcpy(card->tx_dma_handle_host,
1423 					       skb->data, skb->len);
1424 					card->dma_port_tx = port;
1425 					card->dma_len_tx = skb->len;
1426 					card->dma_txpos = port->txpos;
1427 					fst_tx_dma(card,
1428 						   (char *) card->
1429 						   tx_dma_handle_card,
1430 						   (char *)
1431 						   BUF_OFFSET(txBuffer[pi]
1432 							      [port->txpos][0]),
1433 						   skb->len);
1434 				}
1435 				if (++port->txpos >= NUM_TX_BUFFER)
1436 					port->txpos = 0;
1437 				/*
1438 				 * If we have flow control on, can we now release it?
1439 				 */
1440 				if (port->start) {
1441 					if (txq_length < fst_txq_low) {
1442 						netif_wake_queue(port_to_dev
1443 								 (port));
1444 						port->start = 0;
1445 					}
1446 				}
1447 				dev_kfree_skb(skb);
1448 			} else {
1449 				/*
1450 				 * Nothing to send so break out of the while loop
1451 				 */
1452 				break;
1453 			}
1454 		}
1455 	}
1456 }
1457 
1458 static void
1459 do_bottom_half_rx(struct fst_card_info *card)
1460 {
1461 	struct fst_port_info *port;
1462 	int pi;
1463 	int rx_count = 0;
1464 
1465 	/* Check for rx completions on all ports on this card */
1466 	dbg(DBG_RX, "do_bottom_half_rx\n");
1467 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1468 		if (!port->run)
1469 			continue;
1470 
1471 		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1472 			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1473 			if (rx_count > fst_max_reads) {
1474 				/*
1475 				 * Don't spend forever in receive processing
1476 				 * Schedule another event
1477 				 */
1478 				fst_q_work_item(&fst_work_intq, card->card_no);
1479 				tasklet_schedule(&fst_int_task);
1480 				break;	/* Leave the loop */
1481 			}
1482 			fst_intr_rx(card, port);
1483 			rx_count++;
1484 		}
1485 	}
1486 }
1487 
1488 /*
1489  *      The interrupt service routine
1490  *      Dev_id is our fst_card_info pointer
1491  */
1492 static irqreturn_t
1493 fst_intr(int dummy, void *dev_id)
1494 {
1495 	struct fst_card_info *card = dev_id;
1496 	struct fst_port_info *port;
1497 	int rdidx;		/* Event buffer indices */
1498 	int wridx;
1499 	int event;		/* Actual event for processing */
1500 	unsigned int dma_intcsr = 0;
1501 	unsigned int do_card_interrupt;
1502 	unsigned int int_retry_count;
1503 
1504 	/*
1505 	 * Check to see if the interrupt was for this card
1506 	 * return if not
1507 	 * Note that the call to clear the interrupt is important
1508 	 */
1509 	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1510 	if (card->state != FST_RUNNING) {
1511 		printk_err
1512 		    ("Interrupt received for card %d in a non running state (%d)\n",
1513 		     card->card_no, card->state);
1514 
1515 		/*
1516 		 * It is possible to really be running, i.e. we have re-loaded
1517 		 * a running card
1518 		 * Clear and reprime the interrupt source
1519 		 */
1520 		fst_clear_intr(card);
1521 		return IRQ_HANDLED;
1522 	}
1523 
1524 	/* Clear and reprime the interrupt source */
1525 	fst_clear_intr(card);
1526 
1527 	/*
1528 	 * Is the interrupt for this card (handshake == 1)
1529 	 */
1530 	do_card_interrupt = 0;
1531 	if (FST_RDB(card, interruptHandshake) == 1) {
1532 		do_card_interrupt += FST_CARD_INT;
1533 		/* Set the software acknowledge */
1534 		FST_WRB(card, interruptHandshake, 0xEE);
1535 	}
1536 	if (card->family == FST_FAMILY_TXU) {
1537 		/*
1538 		 * Is it a DMA Interrupt
1539 		 */
1540 		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1541 		if (dma_intcsr & 0x00200000) {
1542 			/*
1543 			 * DMA Channel 0 (Rx transfer complete)
1544 			 */
1545 			dbg(DBG_RX, "DMA Rx xfer complete\n");
1546 			outb(0x8, card->pci_conf + DMACSR0);
1547 			fst_rx_dma_complete(card, card->dma_port_rx,
1548 					    card->dma_len_rx, card->dma_skb_rx,
1549 					    card->dma_rxpos);
1550 			card->dmarx_in_progress = 0;
1551 			do_card_interrupt += FST_RX_DMA_INT;
1552 		}
1553 		if (dma_intcsr & 0x00400000) {
1554 			/*
1555 			 * DMA Channel 1 (Tx transfer complete)
1556 			 */
1557 			dbg(DBG_TX, "DMA Tx xfer complete\n");
1558 			outb(0x8, card->pci_conf + DMACSR1);
1559 			fst_tx_dma_complete(card, card->dma_port_tx,
1560 					    card->dma_len_tx, card->dma_txpos);
1561 			card->dmatx_in_progress = 0;
1562 			do_card_interrupt += FST_TX_DMA_INT;
1563 		}
1564 	}
1565 
1566 	/*
1567 	 * Have we been missing Interrupts
1568 	 */
1569 	int_retry_count = FST_RDL(card, interruptRetryCount);
1570 	if (int_retry_count) {
1571 		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1572 		    card->card_no, int_retry_count);
1573 		FST_WRL(card, interruptRetryCount, 0);
1574 	}
1575 
1576 	if (!do_card_interrupt) {
1577 		return IRQ_HANDLED;
1578 	}
1579 
1580 	/* Scehdule the bottom half of the ISR */
1581 	fst_q_work_item(&fst_work_intq, card->card_no);
1582 	tasklet_schedule(&fst_int_task);
1583 
1584 	/* Drain the event queue */
1585 	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1586 	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1587 	while (rdidx != wridx) {
1588 		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1589 		port = &card->ports[event & 0x03];
1590 
1591 		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1592 
1593 		switch (event) {
1594 		case TE1_ALMA:
1595 			dbg(DBG_INTR, "TE1 Alarm intr\n");
1596 			if (port->run)
1597 				fst_intr_te1_alarm(card, port);
1598 			break;
1599 
1600 		case CTLA_CHG:
1601 		case CTLB_CHG:
1602 		case CTLC_CHG:
1603 		case CTLD_CHG:
1604 			if (port->run)
1605 				fst_intr_ctlchg(card, port);
1606 			break;
1607 
1608 		case ABTA_SENT:
1609 		case ABTB_SENT:
1610 		case ABTC_SENT:
1611 		case ABTD_SENT:
1612 			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1613 			break;
1614 
1615 		case TXA_UNDF:
1616 		case TXB_UNDF:
1617 		case TXC_UNDF:
1618 		case TXD_UNDF:
1619 			/* Difficult to see how we'd get this given that we
1620 			 * always load up the entire packet for DMA.
1621 			 */
1622 			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1623 			port_to_dev(port)->stats.tx_errors++;
1624 			port_to_dev(port)->stats.tx_fifo_errors++;
1625 			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1626 			    card->card_no, port->index);
1627 			break;
1628 
1629 		case INIT_CPLT:
1630 			dbg(DBG_INIT, "Card init OK intr\n");
1631 			break;
1632 
1633 		case INIT_FAIL:
1634 			dbg(DBG_INIT, "Card init FAILED intr\n");
1635 			card->state = FST_IFAILED;
1636 			break;
1637 
1638 		default:
1639 			printk_err("intr: unknown card event %d. ignored\n",
1640 				   event);
1641 			break;
1642 		}
1643 
1644 		/* Bump and wrap the index */
1645 		if (++rdidx >= MAX_CIRBUFF)
1646 			rdidx = 0;
1647 	}
1648 	FST_WRB(card, interruptEvent.rdindex, rdidx);
1649         return IRQ_HANDLED;
1650 }
1651 
1652 /*      Check that the shared memory configuration is one that we can handle
1653  *      and that some basic parameters are correct
1654  */
1655 static void
1656 check_started_ok(struct fst_card_info *card)
1657 {
1658 	int i;
1659 
1660 	/* Check structure version and end marker */
1661 	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1662 		printk_err("Bad shared memory version %d expected %d\n",
1663 			   FST_RDW(card, smcVersion), SMC_VERSION);
1664 		card->state = FST_BADVERSION;
1665 		return;
1666 	}
1667 	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1668 		printk_err("Missing shared memory signature\n");
1669 		card->state = FST_BADVERSION;
1670 		return;
1671 	}
1672 	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1673 	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1674 		card->state = FST_RUNNING;
1675 	} else if (i == 0xFF) {
1676 		printk_err("Firmware initialisation failed. Card halted\n");
1677 		card->state = FST_HALTED;
1678 		return;
1679 	} else if (i != 0x00) {
1680 		printk_err("Unknown firmware status 0x%x\n", i);
1681 		card->state = FST_HALTED;
1682 		return;
1683 	}
1684 
1685 	/* Finally check the number of ports reported by firmware against the
1686 	 * number we assumed at card detection. Should never happen with
1687 	 * existing firmware etc so we just report it for the moment.
1688 	 */
1689 	if (FST_RDL(card, numberOfPorts) != card->nports) {
1690 		printk_warn("Port count mismatch on card %d."
1691 			    " Firmware thinks %d we say %d\n", card->card_no,
1692 			    FST_RDL(card, numberOfPorts), card->nports);
1693 	}
1694 }
1695 
1696 static int
1697 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1698 		   struct fstioc_info *info)
1699 {
1700 	int err;
1701 	unsigned char my_framing;
1702 
1703 	/* Set things according to the user set valid flags
1704 	 * Several of the old options have been invalidated/replaced by the
1705 	 * generic hdlc package.
1706 	 */
1707 	err = 0;
1708 	if (info->valid & FSTVAL_PROTO) {
1709 		if (info->proto == FST_RAW)
1710 			port->mode = FST_RAW;
1711 		else
1712 			port->mode = FST_GEN_HDLC;
1713 	}
1714 
1715 	if (info->valid & FSTVAL_CABLE)
1716 		err = -EINVAL;
1717 
1718 	if (info->valid & FSTVAL_SPEED)
1719 		err = -EINVAL;
1720 
1721 	if (info->valid & FSTVAL_PHASE)
1722 		FST_WRB(card, portConfig[port->index].invertClock,
1723 			info->invertClock);
1724 	if (info->valid & FSTVAL_MODE)
1725 		FST_WRW(card, cardMode, info->cardMode);
1726 	if (info->valid & FSTVAL_TE1) {
1727 		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1728 		FST_WRB(card, suConfig.clocking, info->clockSource);
1729 		my_framing = FRAMING_E1;
1730 		if (info->framing == E1)
1731 			my_framing = FRAMING_E1;
1732 		if (info->framing == T1)
1733 			my_framing = FRAMING_T1;
1734 		if (info->framing == J1)
1735 			my_framing = FRAMING_J1;
1736 		FST_WRB(card, suConfig.framing, my_framing);
1737 		FST_WRB(card, suConfig.structure, info->structure);
1738 		FST_WRB(card, suConfig.interface, info->interface);
1739 		FST_WRB(card, suConfig.coding, info->coding);
1740 		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1741 		FST_WRB(card, suConfig.equalizer, info->equalizer);
1742 		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1743 		FST_WRB(card, suConfig.loopMode, info->loopMode);
1744 		FST_WRB(card, suConfig.range, info->range);
1745 		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1746 		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1747 		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1748 		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1749 		if (info->idleCode)
1750 			FST_WRB(card, suConfig.enableIdleCode, 1);
1751 		else
1752 			FST_WRB(card, suConfig.enableIdleCode, 0);
1753 		FST_WRB(card, suConfig.idleCode, info->idleCode);
1754 #if FST_DEBUG
1755 		if (info->valid & FSTVAL_TE1) {
1756 			printk("Setting TE1 data\n");
1757 			printk("Line Speed = %d\n", info->lineSpeed);
1758 			printk("Start slot = %d\n", info->startingSlot);
1759 			printk("Clock source = %d\n", info->clockSource);
1760 			printk("Framing = %d\n", my_framing);
1761 			printk("Structure = %d\n", info->structure);
1762 			printk("interface = %d\n", info->interface);
1763 			printk("Coding = %d\n", info->coding);
1764 			printk("Line build out = %d\n", info->lineBuildOut);
1765 			printk("Equaliser = %d\n", info->equalizer);
1766 			printk("Transparent mode = %d\n",
1767 			       info->transparentMode);
1768 			printk("Loop mode = %d\n", info->loopMode);
1769 			printk("Range = %d\n", info->range);
1770 			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1771 			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1772 			printk("LOS Threshold = %d\n", info->losThreshold);
1773 			printk("Idle Code = %d\n", info->idleCode);
1774 		}
1775 #endif
1776 	}
1777 #if FST_DEBUG
1778 	if (info->valid & FSTVAL_DEBUG) {
1779 		fst_debug_mask = info->debug;
1780 	}
1781 #endif
1782 
1783 	return err;
1784 }
1785 
1786 static void
1787 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1788 		 struct fstioc_info *info)
1789 {
1790 	int i;
1791 
1792 	memset(info, 0, sizeof (struct fstioc_info));
1793 
1794 	i = port->index;
1795 	info->kernelVersion = LINUX_VERSION_CODE;
1796 	info->nports = card->nports;
1797 	info->type = card->type;
1798 	info->state = card->state;
1799 	info->proto = FST_GEN_HDLC;
1800 	info->index = i;
1801 #if FST_DEBUG
1802 	info->debug = fst_debug_mask;
1803 #endif
1804 
1805 	/* Only mark information as valid if card is running.
1806 	 * Copy the data anyway in case it is useful for diagnostics
1807 	 */
1808 	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1809 #if FST_DEBUG
1810 	    | FSTVAL_DEBUG
1811 #endif
1812 	    ;
1813 
1814 	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1815 	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1816 	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1817 	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1818 	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1819 	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1820 	info->clockStatus = FST_RDW(card, clockStatus[i]);
1821 	info->cableStatus = FST_RDW(card, cableStatus);
1822 	info->cardMode = FST_RDW(card, cardMode);
1823 	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1824 
1825 	/*
1826 	 * The T2U can report cable presence for both A or B
1827 	 * in bits 0 and 1 of cableStatus.  See which port we are and
1828 	 * do the mapping.
1829 	 */
1830 	if (card->family == FST_FAMILY_TXU) {
1831 		if (port->index == 0) {
1832 			/*
1833 			 * Port A
1834 			 */
1835 			info->cableStatus = info->cableStatus & 1;
1836 		} else {
1837 			/*
1838 			 * Port B
1839 			 */
1840 			info->cableStatus = info->cableStatus >> 1;
1841 			info->cableStatus = info->cableStatus & 1;
1842 		}
1843 	}
1844 	/*
1845 	 * Some additional bits if we are TE1
1846 	 */
1847 	if (card->type == FST_TYPE_TE1) {
1848 		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1849 		info->clockSource = FST_RDB(card, suConfig.clocking);
1850 		info->framing = FST_RDB(card, suConfig.framing);
1851 		info->structure = FST_RDB(card, suConfig.structure);
1852 		info->interface = FST_RDB(card, suConfig.interface);
1853 		info->coding = FST_RDB(card, suConfig.coding);
1854 		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1855 		info->equalizer = FST_RDB(card, suConfig.equalizer);
1856 		info->loopMode = FST_RDB(card, suConfig.loopMode);
1857 		info->range = FST_RDB(card, suConfig.range);
1858 		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1859 		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1860 		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1861 		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1862 		if (FST_RDB(card, suConfig.enableIdleCode))
1863 			info->idleCode = FST_RDB(card, suConfig.idleCode);
1864 		else
1865 			info->idleCode = 0;
1866 		info->receiveBufferDelay =
1867 		    FST_RDL(card, suStatus.receiveBufferDelay);
1868 		info->framingErrorCount =
1869 		    FST_RDL(card, suStatus.framingErrorCount);
1870 		info->codeViolationCount =
1871 		    FST_RDL(card, suStatus.codeViolationCount);
1872 		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1873 		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1874 		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1875 		info->receiveRemoteAlarm =
1876 		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1877 		info->alarmIndicationSignal =
1878 		    FST_RDB(card, suStatus.alarmIndicationSignal);
1879 	}
1880 }
1881 
1882 static int
1883 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1884 	      struct ifreq *ifr)
1885 {
1886 	sync_serial_settings sync;
1887 	int i;
1888 
1889 	if (ifr->ifr_settings.size != sizeof (sync)) {
1890 		return -ENOMEM;
1891 	}
1892 
1893 	if (copy_from_user
1894 	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1895 		return -EFAULT;
1896 	}
1897 
1898 	if (sync.loopback)
1899 		return -EINVAL;
1900 
1901 	i = port->index;
1902 
1903 	switch (ifr->ifr_settings.type) {
1904 	case IF_IFACE_V35:
1905 		FST_WRW(card, portConfig[i].lineInterface, V35);
1906 		port->hwif = V35;
1907 		break;
1908 
1909 	case IF_IFACE_V24:
1910 		FST_WRW(card, portConfig[i].lineInterface, V24);
1911 		port->hwif = V24;
1912 		break;
1913 
1914 	case IF_IFACE_X21:
1915 		FST_WRW(card, portConfig[i].lineInterface, X21);
1916 		port->hwif = X21;
1917 		break;
1918 
1919 	case IF_IFACE_X21D:
1920 		FST_WRW(card, portConfig[i].lineInterface, X21D);
1921 		port->hwif = X21D;
1922 		break;
1923 
1924 	case IF_IFACE_T1:
1925 		FST_WRW(card, portConfig[i].lineInterface, T1);
1926 		port->hwif = T1;
1927 		break;
1928 
1929 	case IF_IFACE_E1:
1930 		FST_WRW(card, portConfig[i].lineInterface, E1);
1931 		port->hwif = E1;
1932 		break;
1933 
1934 	case IF_IFACE_SYNC_SERIAL:
1935 		break;
1936 
1937 	default:
1938 		return -EINVAL;
1939 	}
1940 
1941 	switch (sync.clock_type) {
1942 	case CLOCK_EXT:
1943 		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1944 		break;
1945 
1946 	case CLOCK_INT:
1947 		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1948 		break;
1949 
1950 	default:
1951 		return -EINVAL;
1952 	}
1953 	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1954 	return 0;
1955 }
1956 
1957 static int
1958 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1959 	      struct ifreq *ifr)
1960 {
1961 	sync_serial_settings sync;
1962 	int i;
1963 
1964 	/* First check what line type is set, we'll default to reporting X.21
1965 	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1966 	 * changed
1967 	 */
1968 	switch (port->hwif) {
1969 	case E1:
1970 		ifr->ifr_settings.type = IF_IFACE_E1;
1971 		break;
1972 	case T1:
1973 		ifr->ifr_settings.type = IF_IFACE_T1;
1974 		break;
1975 	case V35:
1976 		ifr->ifr_settings.type = IF_IFACE_V35;
1977 		break;
1978 	case V24:
1979 		ifr->ifr_settings.type = IF_IFACE_V24;
1980 		break;
1981 	case X21D:
1982 		ifr->ifr_settings.type = IF_IFACE_X21D;
1983 		break;
1984 	case X21:
1985 	default:
1986 		ifr->ifr_settings.type = IF_IFACE_X21;
1987 		break;
1988 	}
1989 	if (ifr->ifr_settings.size == 0) {
1990 		return 0;	/* only type requested */
1991 	}
1992 	if (ifr->ifr_settings.size < sizeof (sync)) {
1993 		return -ENOMEM;
1994 	}
1995 
1996 	i = port->index;
1997 	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1998 	/* Lucky card and linux use same encoding here */
1999 	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
2000 	    INTCLK ? CLOCK_INT : CLOCK_EXT;
2001 	sync.loopback = 0;
2002 
2003 	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
2004 		return -EFAULT;
2005 	}
2006 
2007 	ifr->ifr_settings.size = sizeof (sync);
2008 	return 0;
2009 }
2010 
2011 static int
2012 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2013 {
2014 	struct fst_card_info *card;
2015 	struct fst_port_info *port;
2016 	struct fstioc_write wrthdr;
2017 	struct fstioc_info info;
2018 	unsigned long flags;
2019 	void *buf;
2020 
2021 	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2022 
2023 	port = dev_to_port(dev);
2024 	card = port->card;
2025 
2026 	if (!capable(CAP_NET_ADMIN))
2027 		return -EPERM;
2028 
2029 	switch (cmd) {
2030 	case FSTCPURESET:
2031 		fst_cpureset(card);
2032 		card->state = FST_RESET;
2033 		return 0;
2034 
2035 	case FSTCPURELEASE:
2036 		fst_cpurelease(card);
2037 		card->state = FST_STARTING;
2038 		return 0;
2039 
2040 	case FSTWRITE:		/* Code write (download) */
2041 
2042 		/* First copy in the header with the length and offset of data
2043 		 * to write
2044 		 */
2045 		if (ifr->ifr_data == NULL) {
2046 			return -EINVAL;
2047 		}
2048 		if (copy_from_user(&wrthdr, ifr->ifr_data,
2049 				   sizeof (struct fstioc_write))) {
2050 			return -EFAULT;
2051 		}
2052 
2053 		/* Sanity check the parameters. We don't support partial writes
2054 		 * when going over the top
2055 		 */
2056 		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2057 		    || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2058 			return -ENXIO;
2059 		}
2060 
2061 		/* Now copy the data to the card. */
2062 
2063 		buf = kmalloc(wrthdr.size, GFP_KERNEL);
2064 		if (!buf)
2065 			return -ENOMEM;
2066 
2067 		if (copy_from_user(buf,
2068 				   ifr->ifr_data + sizeof (struct fstioc_write),
2069 				   wrthdr.size)) {
2070 			kfree(buf);
2071 			return -EFAULT;
2072 		}
2073 
2074 		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2075 		kfree(buf);
2076 
2077 		/* Writes to the memory of a card in the reset state constitute
2078 		 * a download
2079 		 */
2080 		if (card->state == FST_RESET) {
2081 			card->state = FST_DOWNLOAD;
2082 		}
2083 		return 0;
2084 
2085 	case FSTGETCONF:
2086 
2087 		/* If card has just been started check the shared memory config
2088 		 * version and marker
2089 		 */
2090 		if (card->state == FST_STARTING) {
2091 			check_started_ok(card);
2092 
2093 			/* If everything checked out enable card interrupts */
2094 			if (card->state == FST_RUNNING) {
2095 				spin_lock_irqsave(&card->card_lock, flags);
2096 				fst_enable_intr(card);
2097 				FST_WRB(card, interruptHandshake, 0xEE);
2098 				spin_unlock_irqrestore(&card->card_lock, flags);
2099 			}
2100 		}
2101 
2102 		if (ifr->ifr_data == NULL) {
2103 			return -EINVAL;
2104 		}
2105 
2106 		gather_conf_info(card, port, &info);
2107 
2108 		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2109 			return -EFAULT;
2110 		}
2111 		return 0;
2112 
2113 	case FSTSETCONF:
2114 
2115 		/*
2116 		 * Most of the settings have been moved to the generic ioctls
2117 		 * this just covers debug and board ident now
2118 		 */
2119 
2120 		if (card->state != FST_RUNNING) {
2121 			printk_err
2122 			    ("Attempt to configure card %d in non-running state (%d)\n",
2123 			     card->card_no, card->state);
2124 			return -EIO;
2125 		}
2126 		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2127 			return -EFAULT;
2128 		}
2129 
2130 		return set_conf_from_info(card, port, &info);
2131 
2132 	case SIOCWANDEV:
2133 		switch (ifr->ifr_settings.type) {
2134 		case IF_GET_IFACE:
2135 			return fst_get_iface(card, port, ifr);
2136 
2137 		case IF_IFACE_SYNC_SERIAL:
2138 		case IF_IFACE_V35:
2139 		case IF_IFACE_V24:
2140 		case IF_IFACE_X21:
2141 		case IF_IFACE_X21D:
2142 		case IF_IFACE_T1:
2143 		case IF_IFACE_E1:
2144 			return fst_set_iface(card, port, ifr);
2145 
2146 		case IF_PROTO_RAW:
2147 			port->mode = FST_RAW;
2148 			return 0;
2149 
2150 		case IF_GET_PROTO:
2151 			if (port->mode == FST_RAW) {
2152 				ifr->ifr_settings.type = IF_PROTO_RAW;
2153 				return 0;
2154 			}
2155 			return hdlc_ioctl(dev, ifr, cmd);
2156 
2157 		default:
2158 			port->mode = FST_GEN_HDLC;
2159 			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2160 			    ifr->ifr_settings.type);
2161 			return hdlc_ioctl(dev, ifr, cmd);
2162 		}
2163 
2164 	default:
2165 		/* Not one of ours. Pass through to HDLC package */
2166 		return hdlc_ioctl(dev, ifr, cmd);
2167 	}
2168 }
2169 
2170 static void
2171 fst_openport(struct fst_port_info *port)
2172 {
2173 	int signals;
2174 	int txq_length;
2175 
2176 	/* Only init things if card is actually running. This allows open to
2177 	 * succeed for downloads etc.
2178 	 */
2179 	if (port->card->state == FST_RUNNING) {
2180 		if (port->run) {
2181 			dbg(DBG_OPEN, "open: found port already running\n");
2182 
2183 			fst_issue_cmd(port, STOPPORT);
2184 			port->run = 0;
2185 		}
2186 
2187 		fst_rx_config(port);
2188 		fst_tx_config(port);
2189 		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2190 
2191 		fst_issue_cmd(port, STARTPORT);
2192 		port->run = 1;
2193 
2194 		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2195 		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2196 			       ? IPSTS_INDICATE : IPSTS_DCD))
2197 			netif_carrier_on(port_to_dev(port));
2198 		else
2199 			netif_carrier_off(port_to_dev(port));
2200 
2201 		txq_length = port->txqe - port->txqs;
2202 		port->txqe = 0;
2203 		port->txqs = 0;
2204 	}
2205 
2206 }
2207 
2208 static void
2209 fst_closeport(struct fst_port_info *port)
2210 {
2211 	if (port->card->state == FST_RUNNING) {
2212 		if (port->run) {
2213 			port->run = 0;
2214 			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2215 
2216 			fst_issue_cmd(port, STOPPORT);
2217 		} else {
2218 			dbg(DBG_OPEN, "close: port not running\n");
2219 		}
2220 	}
2221 }
2222 
2223 static int
2224 fst_open(struct net_device *dev)
2225 {
2226 	int err;
2227 	struct fst_port_info *port;
2228 
2229 	port = dev_to_port(dev);
2230 	if (!try_module_get(THIS_MODULE))
2231           return -EBUSY;
2232 
2233 	if (port->mode != FST_RAW) {
2234 		err = hdlc_open(dev);
2235 		if (err)
2236 			return err;
2237 	}
2238 
2239 	fst_openport(port);
2240 	netif_wake_queue(dev);
2241 	return 0;
2242 }
2243 
2244 static int
2245 fst_close(struct net_device *dev)
2246 {
2247 	struct fst_port_info *port;
2248 	struct fst_card_info *card;
2249 	unsigned char tx_dma_done;
2250 	unsigned char rx_dma_done;
2251 
2252 	port = dev_to_port(dev);
2253 	card = port->card;
2254 
2255 	tx_dma_done = inb(card->pci_conf + DMACSR1);
2256 	rx_dma_done = inb(card->pci_conf + DMACSR0);
2257 	dbg(DBG_OPEN,
2258 	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2259 	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2260 	    rx_dma_done);
2261 
2262 	netif_stop_queue(dev);
2263 	fst_closeport(dev_to_port(dev));
2264 	if (port->mode != FST_RAW) {
2265 		hdlc_close(dev);
2266 	}
2267 	module_put(THIS_MODULE);
2268 	return 0;
2269 }
2270 
2271 static int
2272 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2273 {
2274 	/*
2275 	 * Setting currently fixed in FarSync card so we check and forget
2276 	 */
2277 	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2278 		return -EINVAL;
2279 	return 0;
2280 }
2281 
2282 static void
2283 fst_tx_timeout(struct net_device *dev)
2284 {
2285 	struct fst_port_info *port;
2286 	struct fst_card_info *card;
2287 
2288 	port = dev_to_port(dev);
2289 	card = port->card;
2290 	dev->stats.tx_errors++;
2291 	dev->stats.tx_aborted_errors++;
2292 	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2293 	    card->card_no, port->index);
2294 	fst_issue_cmd(port, ABORTTX);
2295 
2296 	dev->trans_start = jiffies;
2297 	netif_wake_queue(dev);
2298 	port->start = 0;
2299 }
2300 
2301 static int
2302 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2303 {
2304 	struct fst_card_info *card;
2305 	struct fst_port_info *port;
2306 	unsigned long flags;
2307 	int txq_length;
2308 
2309 	port = dev_to_port(dev);
2310 	card = port->card;
2311 	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2312 
2313 	/* Drop packet with error if we don't have carrier */
2314 	if (!netif_carrier_ok(dev)) {
2315 		dev_kfree_skb(skb);
2316 		dev->stats.tx_errors++;
2317 		dev->stats.tx_carrier_errors++;
2318 		dbg(DBG_ASS,
2319 		    "Tried to transmit but no carrier on card %d port %d\n",
2320 		    card->card_no, port->index);
2321 		return 0;
2322 	}
2323 
2324 	/* Drop it if it's too big! MTU failure ? */
2325 	if (skb->len > LEN_TX_BUFFER) {
2326 		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2327 		    LEN_TX_BUFFER);
2328 		dev_kfree_skb(skb);
2329 		dev->stats.tx_errors++;
2330 		return 0;
2331 	}
2332 
2333 	/*
2334 	 * We are always going to queue the packet
2335 	 * so that the bottom half is the only place we tx from
2336 	 * Check there is room in the port txq
2337 	 */
2338 	spin_lock_irqsave(&card->card_lock, flags);
2339 	if ((txq_length = port->txqe - port->txqs) < 0) {
2340 		/*
2341 		 * This is the case where the next free has wrapped but the
2342 		 * last used hasn't
2343 		 */
2344 		txq_length = txq_length + FST_TXQ_DEPTH;
2345 	}
2346 	spin_unlock_irqrestore(&card->card_lock, flags);
2347 	if (txq_length > fst_txq_high) {
2348 		/*
2349 		 * We have got enough buffers in the pipeline.  Ask the network
2350 		 * layer to stop sending frames down
2351 		 */
2352 		netif_stop_queue(dev);
2353 		port->start = 1;	/* I'm using this to signal stop sent up */
2354 	}
2355 
2356 	if (txq_length == FST_TXQ_DEPTH - 1) {
2357 		/*
2358 		 * This shouldn't have happened but such is life
2359 		 */
2360 		dev_kfree_skb(skb);
2361 		dev->stats.tx_errors++;
2362 		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2363 		    card->card_no, port->index);
2364 		return 0;
2365 	}
2366 
2367 	/*
2368 	 * queue the buffer
2369 	 */
2370 	spin_lock_irqsave(&card->card_lock, flags);
2371 	port->txq[port->txqe] = skb;
2372 	port->txqe++;
2373 	if (port->txqe == FST_TXQ_DEPTH)
2374 		port->txqe = 0;
2375 	spin_unlock_irqrestore(&card->card_lock, flags);
2376 
2377 	/* Scehdule the bottom half which now does transmit processing */
2378 	fst_q_work_item(&fst_work_txq, card->card_no);
2379 	tasklet_schedule(&fst_tx_task);
2380 
2381 	return 0;
2382 }
2383 
2384 /*
2385  *      Card setup having checked hardware resources.
2386  *      Should be pretty bizarre if we get an error here (kernel memory
2387  *      exhaustion is one possibility). If we do see a problem we report it
2388  *      via a printk and leave the corresponding interface and all that follow
2389  *      disabled.
2390  */
2391 static char *type_strings[] __devinitdata = {
2392 	"no hardware",		/* Should never be seen */
2393 	"FarSync T2P",
2394 	"FarSync T4P",
2395 	"FarSync T1U",
2396 	"FarSync T2U",
2397 	"FarSync T4U",
2398 	"FarSync TE1"
2399 };
2400 
2401 static void __devinit
2402 fst_init_card(struct fst_card_info *card)
2403 {
2404 	int i;
2405 	int err;
2406 
2407 	/* We're working on a number of ports based on the card ID. If the
2408 	 * firmware detects something different later (should never happen)
2409 	 * we'll have to revise it in some way then.
2410 	 */
2411 	for (i = 0; i < card->nports; i++) {
2412                 err = register_hdlc_device(card->ports[i].dev);
2413                 if (err < 0) {
2414 			int j;
2415                         printk_err ("Cannot register HDLC device for port %d"
2416                                     " (errno %d)\n", i, -err );
2417 			for (j = i; j < card->nports; j++) {
2418 				free_netdev(card->ports[j].dev);
2419 				card->ports[j].dev = NULL;
2420 			}
2421                         card->nports = i;
2422                         break;
2423                 }
2424 	}
2425 
2426 	printk_info("%s-%s: %s IRQ%d, %d ports\n",
2427 	       port_to_dev(&card->ports[0])->name,
2428 	       port_to_dev(&card->ports[card->nports - 1])->name,
2429 	       type_strings[card->type], card->irq, card->nports);
2430 }
2431 
2432 /*
2433  *      Initialise card when detected.
2434  *      Returns 0 to indicate success, or errno otherwise.
2435  */
2436 static int __devinit
2437 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2438 {
2439 	static int firsttime_done = 0;
2440 	static int no_of_cards_added = 0;
2441 	struct fst_card_info *card;
2442 	int err = 0;
2443 	int i;
2444 
2445 	if (!firsttime_done) {
2446 		printk_info("FarSync WAN driver " FST_USER_VERSION
2447 		       " (c) 2001-2004 FarSite Communications Ltd.\n");
2448 		firsttime_done = 1;
2449 		dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2450 	}
2451 
2452 	/*
2453 	 * We are going to be clever and allow certain cards not to be
2454 	 * configured.  An exclude list can be provided in /etc/modules.conf
2455 	 */
2456 	if (fst_excluded_cards != 0) {
2457 		/*
2458 		 * There are cards to exclude
2459 		 *
2460 		 */
2461 		for (i = 0; i < fst_excluded_cards; i++) {
2462 			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2463 				printk_info("FarSync PCI device %d not assigned\n",
2464 				       (pdev->devfn) >> 3);
2465 				return -EBUSY;
2466 			}
2467 		}
2468 	}
2469 
2470 	/* Allocate driver private data */
2471 	card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2472 	if (card == NULL) {
2473 		printk_err("FarSync card found but insufficient memory for"
2474 			   " driver storage\n");
2475 		return -ENOMEM;
2476 	}
2477 
2478 	/* Try to enable the device */
2479 	if ((err = pci_enable_device(pdev)) != 0) {
2480 		printk_err("Failed to enable card. Err %d\n", -err);
2481 		kfree(card);
2482 		return err;
2483 	}
2484 
2485 	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2486 	        printk_err("Failed to allocate regions. Err %d\n", -err);
2487 		pci_disable_device(pdev);
2488 		kfree(card);
2489 	        return err;
2490 	}
2491 
2492 	/* Get virtual addresses of memory regions */
2493 	card->pci_conf = pci_resource_start(pdev, 1);
2494 	card->phys_mem = pci_resource_start(pdev, 2);
2495 	card->phys_ctlmem = pci_resource_start(pdev, 3);
2496 	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2497 		printk_err("Physical memory remap failed\n");
2498 		pci_release_regions(pdev);
2499 		pci_disable_device(pdev);
2500 		kfree(card);
2501 		return -ENODEV;
2502 	}
2503 	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2504 		printk_err("Control memory remap failed\n");
2505 		pci_release_regions(pdev);
2506 		pci_disable_device(pdev);
2507 		kfree(card);
2508 		return -ENODEV;
2509 	}
2510 	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2511 
2512 	/* Register the interrupt handler */
2513 	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2514 		printk_err("Unable to register interrupt %d\n", card->irq);
2515 		pci_release_regions(pdev);
2516 		pci_disable_device(pdev);
2517 		iounmap(card->ctlmem);
2518 		iounmap(card->mem);
2519 		kfree(card);
2520 		return -ENODEV;
2521 	}
2522 
2523 	/* Record info we need */
2524 	card->irq = pdev->irq;
2525 	card->type = ent->driver_data;
2526 	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2527 			(ent->driver_data == FST_TYPE_T4P))
2528 	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2529 	if ((ent->driver_data == FST_TYPE_T1U) ||
2530 	    (ent->driver_data == FST_TYPE_TE1))
2531 		card->nports = 1;
2532 	else
2533 		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2534 				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2535 
2536 	card->state = FST_UNINIT;
2537         spin_lock_init ( &card->card_lock );
2538 
2539         for ( i = 0 ; i < card->nports ; i++ ) {
2540 		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2541 		hdlc_device *hdlc;
2542 		if (!dev) {
2543 			while (i--)
2544 				free_netdev(card->ports[i].dev);
2545 			printk_err ("FarSync: out of memory\n");
2546                         free_irq(card->irq, card);
2547                         pci_release_regions(pdev);
2548                         pci_disable_device(pdev);
2549                         iounmap(card->ctlmem);
2550                         iounmap(card->mem);
2551                         kfree(card);
2552                         return -ENODEV;
2553 		}
2554 		card->ports[i].dev    = dev;
2555                 card->ports[i].card   = card;
2556                 card->ports[i].index  = i;
2557                 card->ports[i].run    = 0;
2558 
2559 		hdlc = dev_to_hdlc(dev);
2560 
2561                 /* Fill in the net device info */
2562 		/* Since this is a PCI setup this is purely
2563 		 * informational. Give them the buffer addresses
2564 		 * and basic card I/O.
2565 		 */
2566                 dev->mem_start   = card->phys_mem
2567                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2568                 dev->mem_end     = card->phys_mem
2569                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2570                 dev->base_addr   = card->pci_conf;
2571                 dev->irq         = card->irq;
2572 
2573                 dev->tx_queue_len          = FST_TX_QUEUE_LEN;
2574                 dev->open                  = fst_open;
2575                 dev->stop                  = fst_close;
2576                 dev->do_ioctl              = fst_ioctl;
2577                 dev->watchdog_timeo        = FST_TX_TIMEOUT;
2578                 dev->tx_timeout            = fst_tx_timeout;
2579                 hdlc->attach = fst_attach;
2580                 hdlc->xmit   = fst_start_xmit;
2581 	}
2582 
2583 	card->device = pdev;
2584 
2585 	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2586 	    card->nports, card->irq);
2587 	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2588 	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2589 
2590 	/* Reset the card's processor */
2591 	fst_cpureset(card);
2592 	card->state = FST_RESET;
2593 
2594 	/* Initialise DMA (if required) */
2595 	fst_init_dma(card);
2596 
2597 	/* Record driver data for later use */
2598 	pci_set_drvdata(pdev, card);
2599 
2600 	/* Remainder of card setup */
2601 	fst_card_array[no_of_cards_added] = card;
2602 	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2603 	fst_init_card(card);
2604 	if (card->family == FST_FAMILY_TXU) {
2605 		/*
2606 		 * Allocate a dma buffer for transmit and receives
2607 		 */
2608 		card->rx_dma_handle_host =
2609 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2610 					 &card->rx_dma_handle_card);
2611 		if (card->rx_dma_handle_host == NULL) {
2612 			printk_err("Could not allocate rx dma buffer\n");
2613 			fst_disable_intr(card);
2614 			pci_release_regions(pdev);
2615 			pci_disable_device(pdev);
2616 			iounmap(card->ctlmem);
2617 			iounmap(card->mem);
2618 			kfree(card);
2619 			return -ENOMEM;
2620 		}
2621 		card->tx_dma_handle_host =
2622 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2623 					 &card->tx_dma_handle_card);
2624 		if (card->tx_dma_handle_host == NULL) {
2625 			printk_err("Could not allocate tx dma buffer\n");
2626 			fst_disable_intr(card);
2627 			pci_release_regions(pdev);
2628 			pci_disable_device(pdev);
2629 			iounmap(card->ctlmem);
2630 			iounmap(card->mem);
2631 			kfree(card);
2632 			return -ENOMEM;
2633 		}
2634 	}
2635 	return 0;		/* Success */
2636 }
2637 
2638 /*
2639  *      Cleanup and close down a card
2640  */
2641 static void __devexit
2642 fst_remove_one(struct pci_dev *pdev)
2643 {
2644 	struct fst_card_info *card;
2645 	int i;
2646 
2647 	card = pci_get_drvdata(pdev);
2648 
2649 	for (i = 0; i < card->nports; i++) {
2650 		struct net_device *dev = port_to_dev(&card->ports[i]);
2651 		unregister_hdlc_device(dev);
2652 	}
2653 
2654 	fst_disable_intr(card);
2655 	free_irq(card->irq, card);
2656 
2657 	iounmap(card->ctlmem);
2658 	iounmap(card->mem);
2659 	pci_release_regions(pdev);
2660 	if (card->family == FST_FAMILY_TXU) {
2661 		/*
2662 		 * Free dma buffers
2663 		 */
2664 		pci_free_consistent(card->device, FST_MAX_MTU,
2665 				    card->rx_dma_handle_host,
2666 				    card->rx_dma_handle_card);
2667 		pci_free_consistent(card->device, FST_MAX_MTU,
2668 				    card->tx_dma_handle_host,
2669 				    card->tx_dma_handle_card);
2670 	}
2671 	fst_card_array[card->card_no] = NULL;
2672 }
2673 
2674 static struct pci_driver fst_driver = {
2675         .name		= FST_NAME,
2676         .id_table	= fst_pci_dev_id,
2677         .probe		= fst_add_one,
2678         .remove	= __devexit_p(fst_remove_one),
2679         .suspend	= NULL,
2680         .resume	= NULL,
2681 };
2682 
2683 static int __init
2684 fst_init(void)
2685 {
2686 	int i;
2687 
2688 	for (i = 0; i < FST_MAX_CARDS; i++)
2689 		fst_card_array[i] = NULL;
2690 	spin_lock_init(&fst_work_q_lock);
2691 	return pci_register_driver(&fst_driver);
2692 }
2693 
2694 static void __exit
2695 fst_cleanup_module(void)
2696 {
2697 	printk_info("FarSync WAN driver unloading\n");
2698 	pci_unregister_driver(&fst_driver);
2699 }
2700 
2701 module_init(fst_init);
2702 module_exit(fst_cleanup_module);
2703