xref: /linux/drivers/net/vrf.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/inet_dscp.h>
41 
42 #define DRV_NAME	"vrf"
43 #define DRV_VERSION	"1.1"
44 
45 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
46 
47 #define HT_MAP_BITS	4
48 #define HASH_INITVAL	((u32)0xcafef00d)
49 
50 struct  vrf_map {
51 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
52 	spinlock_t vmap_lock;
53 
54 	/* shared_tables:
55 	 * count how many distinct tables do not comply with the strict mode
56 	 * requirement.
57 	 * shared_tables value must be 0 in order to enable the strict mode.
58 	 *
59 	 * example of the evolution of shared_tables:
60 	 *                                                        | time
61 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
62 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
63 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
64 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
65 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
66 	 *
67 	 * shared_tables is a "step function" (or "staircase function")
68 	 * and it is increased by one when the second vrf is associated to a
69 	 * table.
70 	 *
71 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
72 	 *
73 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
74 	 * value of shared_tables is still 1.
75 	 * This means that no matter how many new vrfs will register on the
76 	 * table 100, the shared_tables will not increase (considering only
77 	 * table 100).
78 	 *
79 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
80 	 *
81 	 * Looking at the value of shared_tables we can immediately know if
82 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
83 	 * can be enforced iff shared_tables = 0.
84 	 *
85 	 * Conversely, shared_tables is decreased when a vrf is de-associated
86 	 * from a table with exactly two associated vrfs.
87 	 */
88 	u32 shared_tables;
89 
90 	bool strict_mode;
91 };
92 
93 struct vrf_map_elem {
94 	struct hlist_node hnode;
95 	struct list_head vrf_list;  /* VRFs registered to this table */
96 
97 	u32 table_id;
98 	int users;
99 	int ifindex;
100 };
101 
102 static unsigned int vrf_net_id;
103 
104 /* per netns vrf data */
105 struct netns_vrf {
106 	/* protected by rtnl lock */
107 	bool add_fib_rules;
108 
109 	struct vrf_map vmap;
110 	struct ctl_table_header	*ctl_hdr;
111 };
112 
113 struct net_vrf {
114 	struct rtable __rcu	*rth;
115 	struct rt6_info	__rcu	*rt6;
116 #if IS_ENABLED(CONFIG_IPV6)
117 	struct fib6_table	*fib6_table;
118 #endif
119 	u32                     tb_id;
120 
121 	struct list_head	me_list;   /* entry in vrf_map_elem */
122 	int			ifindex;
123 };
124 
125 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
126 {
127 	vrf_dev->stats.tx_errors++;
128 	kfree_skb(skb);
129 }
130 
131 static struct vrf_map *netns_vrf_map(struct net *net)
132 {
133 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
134 
135 	return &nn_vrf->vmap;
136 }
137 
138 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
139 {
140 	return netns_vrf_map(dev_net(dev));
141 }
142 
143 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
144 {
145 	struct list_head *me_head = &me->vrf_list;
146 	struct net_vrf *vrf;
147 
148 	if (list_empty(me_head))
149 		return -ENODEV;
150 
151 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
152 
153 	return vrf->ifindex;
154 }
155 
156 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
157 {
158 	struct vrf_map_elem *me;
159 
160 	me = kmalloc(sizeof(*me), flags);
161 	if (!me)
162 		return NULL;
163 
164 	return me;
165 }
166 
167 static void vrf_map_elem_free(struct vrf_map_elem *me)
168 {
169 	kfree(me);
170 }
171 
172 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
173 			      int ifindex, int users)
174 {
175 	me->table_id = table_id;
176 	me->ifindex = ifindex;
177 	me->users = users;
178 	INIT_LIST_HEAD(&me->vrf_list);
179 }
180 
181 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
182 						u32 table_id)
183 {
184 	struct vrf_map_elem *me;
185 	u32 key;
186 
187 	key = jhash_1word(table_id, HASH_INITVAL);
188 	hash_for_each_possible(vmap->ht, me, hnode, key) {
189 		if (me->table_id == table_id)
190 			return me;
191 	}
192 
193 	return NULL;
194 }
195 
196 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
197 {
198 	u32 table_id = me->table_id;
199 	u32 key;
200 
201 	key = jhash_1word(table_id, HASH_INITVAL);
202 	hash_add(vmap->ht, &me->hnode, key);
203 }
204 
205 static void vrf_map_del_elem(struct vrf_map_elem *me)
206 {
207 	hash_del(&me->hnode);
208 }
209 
210 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
211 {
212 	spin_lock(&vmap->vmap_lock);
213 }
214 
215 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
216 {
217 	spin_unlock(&vmap->vmap_lock);
218 }
219 
220 /* called with rtnl lock held */
221 static int
222 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
223 {
224 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
225 	struct net_vrf *vrf = netdev_priv(dev);
226 	struct vrf_map_elem *new_me, *me;
227 	u32 table_id = vrf->tb_id;
228 	bool free_new_me = false;
229 	int users;
230 	int res;
231 
232 	/* we pre-allocate elements used in the spin-locked section (so that we
233 	 * keep the spinlock as short as possible).
234 	 */
235 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
236 	if (!new_me)
237 		return -ENOMEM;
238 
239 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
240 
241 	vrf_map_lock(vmap);
242 
243 	me = vrf_map_lookup_elem(vmap, table_id);
244 	if (!me) {
245 		me = new_me;
246 		vrf_map_add_elem(vmap, me);
247 		goto link_vrf;
248 	}
249 
250 	/* we already have an entry in the vrf_map, so it means there is (at
251 	 * least) a vrf registered on the specific table.
252 	 */
253 	free_new_me = true;
254 	if (vmap->strict_mode) {
255 		/* vrfs cannot share the same table */
256 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
257 		res = -EBUSY;
258 		goto unlock;
259 	}
260 
261 link_vrf:
262 	users = ++me->users;
263 	if (users == 2)
264 		++vmap->shared_tables;
265 
266 	list_add(&vrf->me_list, &me->vrf_list);
267 
268 	res = 0;
269 
270 unlock:
271 	vrf_map_unlock(vmap);
272 
273 	/* clean-up, if needed */
274 	if (free_new_me)
275 		vrf_map_elem_free(new_me);
276 
277 	return res;
278 }
279 
280 /* called with rtnl lock held */
281 static void vrf_map_unregister_dev(struct net_device *dev)
282 {
283 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
284 	struct net_vrf *vrf = netdev_priv(dev);
285 	u32 table_id = vrf->tb_id;
286 	struct vrf_map_elem *me;
287 	int users;
288 
289 	vrf_map_lock(vmap);
290 
291 	me = vrf_map_lookup_elem(vmap, table_id);
292 	if (!me)
293 		goto unlock;
294 
295 	list_del(&vrf->me_list);
296 
297 	users = --me->users;
298 	if (users == 1) {
299 		--vmap->shared_tables;
300 	} else if (users == 0) {
301 		vrf_map_del_elem(me);
302 
303 		/* no one will refer to this element anymore */
304 		vrf_map_elem_free(me);
305 	}
306 
307 unlock:
308 	vrf_map_unlock(vmap);
309 }
310 
311 /* return the vrf device index associated with the table_id */
312 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
313 {
314 	struct vrf_map *vmap = netns_vrf_map(net);
315 	struct vrf_map_elem *me;
316 	int ifindex;
317 
318 	vrf_map_lock(vmap);
319 
320 	if (!vmap->strict_mode) {
321 		ifindex = -EPERM;
322 		goto unlock;
323 	}
324 
325 	me = vrf_map_lookup_elem(vmap, table_id);
326 	if (!me) {
327 		ifindex = -ENODEV;
328 		goto unlock;
329 	}
330 
331 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
332 
333 unlock:
334 	vrf_map_unlock(vmap);
335 
336 	return ifindex;
337 }
338 
339 /* by default VRF devices do not have a qdisc and are expected
340  * to be created with only a single queue.
341  */
342 static bool qdisc_tx_is_default(const struct net_device *dev)
343 {
344 	struct netdev_queue *txq;
345 	struct Qdisc *qdisc;
346 
347 	if (dev->num_tx_queues > 1)
348 		return false;
349 
350 	txq = netdev_get_tx_queue(dev, 0);
351 	qdisc = rcu_access_pointer(txq->qdisc);
352 
353 	return !qdisc->enqueue;
354 }
355 
356 /* Local traffic destined to local address. Reinsert the packet to rx
357  * path, similar to loopback handling.
358  */
359 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
360 			  struct dst_entry *dst)
361 {
362 	unsigned int len = skb->len;
363 
364 	skb_orphan(skb);
365 
366 	skb_dst_set(skb, dst);
367 
368 	/* set pkt_type to avoid skb hitting packet taps twice -
369 	 * once on Tx and again in Rx processing
370 	 */
371 	skb->pkt_type = PACKET_LOOPBACK;
372 
373 	skb->protocol = eth_type_trans(skb, dev);
374 
375 	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
376 		dev_dstats_rx_add(dev, len);
377 	else
378 		dev_dstats_rx_dropped(dev);
379 
380 	return NETDEV_TX_OK;
381 }
382 
383 static void vrf_nf_set_untracked(struct sk_buff *skb)
384 {
385 	if (skb_get_nfct(skb) == 0)
386 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
387 }
388 
389 static void vrf_nf_reset_ct(struct sk_buff *skb)
390 {
391 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
392 		nf_reset_ct(skb);
393 }
394 
395 #if IS_ENABLED(CONFIG_IPV6)
396 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
397 			     struct sk_buff *skb)
398 {
399 	int err;
400 
401 	vrf_nf_reset_ct(skb);
402 
403 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
404 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
405 
406 	if (likely(err == 1))
407 		err = dst_output(net, sk, skb);
408 
409 	return err;
410 }
411 
412 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
413 					   struct net_device *dev)
414 {
415 	const struct ipv6hdr *iph;
416 	struct net *net = dev_net(skb->dev);
417 	struct flowi6 fl6;
418 	int ret = NET_XMIT_DROP;
419 	struct dst_entry *dst;
420 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
421 
422 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
423 		goto err;
424 
425 	iph = ipv6_hdr(skb);
426 
427 	memset(&fl6, 0, sizeof(fl6));
428 	/* needed to match OIF rule */
429 	fl6.flowi6_l3mdev = dev->ifindex;
430 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
431 	fl6.daddr = iph->daddr;
432 	fl6.saddr = iph->saddr;
433 	fl6.flowlabel = ip6_flowinfo(iph);
434 	fl6.flowi6_mark = skb->mark;
435 	fl6.flowi6_proto = iph->nexthdr;
436 
437 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
438 	if (IS_ERR(dst) || dst == dst_null)
439 		goto err;
440 
441 	skb_dst_drop(skb);
442 
443 	/* if dst.dev is the VRF device again this is locally originated traffic
444 	 * destined to a local address. Short circuit to Rx path.
445 	 */
446 	if (dst->dev == dev)
447 		return vrf_local_xmit(skb, dev, dst);
448 
449 	skb_dst_set(skb, dst);
450 
451 	/* strip the ethernet header added for pass through VRF device */
452 	__skb_pull(skb, skb_network_offset(skb));
453 
454 	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
455 	ret = vrf_ip6_local_out(net, skb->sk, skb);
456 	if (unlikely(net_xmit_eval(ret)))
457 		dev->stats.tx_errors++;
458 	else
459 		ret = NET_XMIT_SUCCESS;
460 
461 	return ret;
462 err:
463 	vrf_tx_error(dev, skb);
464 	return NET_XMIT_DROP;
465 }
466 #else
467 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
468 					   struct net_device *dev)
469 {
470 	vrf_tx_error(dev, skb);
471 	return NET_XMIT_DROP;
472 }
473 #endif
474 
475 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
476 static int vrf_ip_local_out(struct net *net, struct sock *sk,
477 			    struct sk_buff *skb)
478 {
479 	int err;
480 
481 	vrf_nf_reset_ct(skb);
482 
483 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
484 		      skb, NULL, skb_dst(skb)->dev, dst_output);
485 	if (likely(err == 1))
486 		err = dst_output(net, sk, skb);
487 
488 	return err;
489 }
490 
491 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
492 					   struct net_device *vrf_dev)
493 {
494 	struct iphdr *ip4h;
495 	int ret = NET_XMIT_DROP;
496 	struct flowi4 fl4;
497 	struct net *net = dev_net(vrf_dev);
498 	struct rtable *rt;
499 
500 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
501 		goto err;
502 
503 	ip4h = ip_hdr(skb);
504 
505 	memset(&fl4, 0, sizeof(fl4));
506 	/* needed to match OIF rule */
507 	fl4.flowi4_l3mdev = vrf_dev->ifindex;
508 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
509 	fl4.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h));
510 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
511 	fl4.flowi4_proto = ip4h->protocol;
512 	fl4.daddr = ip4h->daddr;
513 	fl4.saddr = ip4h->saddr;
514 
515 	rt = ip_route_output_flow(net, &fl4, NULL);
516 	if (IS_ERR(rt))
517 		goto err;
518 
519 	skb_dst_drop(skb);
520 
521 	/* if dst.dev is the VRF device again this is locally originated traffic
522 	 * destined to a local address. Short circuit to Rx path.
523 	 */
524 	if (rt->dst.dev == vrf_dev)
525 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
526 
527 	skb_dst_set(skb, &rt->dst);
528 
529 	/* strip the ethernet header added for pass through VRF device */
530 	__skb_pull(skb, skb_network_offset(skb));
531 
532 	if (!ip4h->saddr) {
533 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
534 					       RT_SCOPE_LINK);
535 	}
536 
537 	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
538 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
539 	if (unlikely(net_xmit_eval(ret)))
540 		vrf_dev->stats.tx_errors++;
541 	else
542 		ret = NET_XMIT_SUCCESS;
543 
544 out:
545 	return ret;
546 err:
547 	vrf_tx_error(vrf_dev, skb);
548 	goto out;
549 }
550 
551 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
552 {
553 	switch (skb->protocol) {
554 	case htons(ETH_P_IP):
555 		return vrf_process_v4_outbound(skb, dev);
556 	case htons(ETH_P_IPV6):
557 		return vrf_process_v6_outbound(skb, dev);
558 	default:
559 		vrf_tx_error(dev, skb);
560 		return NET_XMIT_DROP;
561 	}
562 }
563 
564 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
565 {
566 	unsigned int len = skb->len;
567 	netdev_tx_t ret;
568 
569 	ret = is_ip_tx_frame(skb, dev);
570 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN))
571 		dev_dstats_tx_add(dev, len);
572 	else
573 		dev_dstats_tx_dropped(dev);
574 
575 	return ret;
576 }
577 
578 static void vrf_finish_direct(struct sk_buff *skb)
579 {
580 	struct net_device *vrf_dev = skb->dev;
581 
582 	if (!list_empty(&vrf_dev->ptype_all) &&
583 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
584 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
585 
586 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
587 		eth_zero_addr(eth->h_dest);
588 		eth->h_proto = skb->protocol;
589 
590 		rcu_read_lock_bh();
591 		dev_queue_xmit_nit(skb, vrf_dev);
592 		rcu_read_unlock_bh();
593 
594 		skb_pull(skb, ETH_HLEN);
595 	}
596 
597 	vrf_nf_reset_ct(skb);
598 }
599 
600 #if IS_ENABLED(CONFIG_IPV6)
601 /* modelled after ip6_finish_output2 */
602 static int vrf_finish_output6(struct net *net, struct sock *sk,
603 			      struct sk_buff *skb)
604 {
605 	struct dst_entry *dst = skb_dst(skb);
606 	struct net_device *dev = dst->dev;
607 	const struct in6_addr *nexthop;
608 	struct neighbour *neigh;
609 	int ret;
610 
611 	vrf_nf_reset_ct(skb);
612 
613 	skb->protocol = htons(ETH_P_IPV6);
614 	skb->dev = dev;
615 
616 	rcu_read_lock();
617 	nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
618 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
619 	if (unlikely(!neigh))
620 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
621 	if (!IS_ERR(neigh)) {
622 		sock_confirm_neigh(skb, neigh);
623 		ret = neigh_output(neigh, skb, false);
624 		rcu_read_unlock();
625 		return ret;
626 	}
627 	rcu_read_unlock();
628 
629 	IP6_INC_STATS(dev_net(dst->dev),
630 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
631 	kfree_skb(skb);
632 	return -EINVAL;
633 }
634 
635 /* modelled after ip6_output */
636 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
637 {
638 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
639 			    net, sk, skb, NULL, skb_dst(skb)->dev,
640 			    vrf_finish_output6,
641 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
642 }
643 
644 /* set dst on skb to send packet to us via dev_xmit path. Allows
645  * packet to go through device based features such as qdisc, netfilter
646  * hooks and packet sockets with skb->dev set to vrf device.
647  */
648 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
649 					    struct sk_buff *skb)
650 {
651 	struct net_vrf *vrf = netdev_priv(vrf_dev);
652 	struct dst_entry *dst = NULL;
653 	struct rt6_info *rt6;
654 
655 	rcu_read_lock();
656 
657 	rt6 = rcu_dereference(vrf->rt6);
658 	if (likely(rt6)) {
659 		dst = &rt6->dst;
660 		dst_hold(dst);
661 	}
662 
663 	rcu_read_unlock();
664 
665 	if (unlikely(!dst)) {
666 		vrf_tx_error(vrf_dev, skb);
667 		return NULL;
668 	}
669 
670 	skb_dst_drop(skb);
671 	skb_dst_set(skb, dst);
672 
673 	return skb;
674 }
675 
676 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
677 				     struct sk_buff *skb)
678 {
679 	vrf_finish_direct(skb);
680 
681 	return vrf_ip6_local_out(net, sk, skb);
682 }
683 
684 static int vrf_output6_direct(struct net *net, struct sock *sk,
685 			      struct sk_buff *skb)
686 {
687 	int err = 1;
688 
689 	skb->protocol = htons(ETH_P_IPV6);
690 
691 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
692 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
693 			      NULL, skb->dev, vrf_output6_direct_finish);
694 
695 	if (likely(err == 1))
696 		vrf_finish_direct(skb);
697 
698 	return err;
699 }
700 
701 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
702 				     struct sk_buff *skb)
703 {
704 	int err;
705 
706 	err = vrf_output6_direct(net, sk, skb);
707 	if (likely(err == 1))
708 		err = vrf_ip6_local_out(net, sk, skb);
709 
710 	return err;
711 }
712 
713 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
714 					  struct sock *sk,
715 					  struct sk_buff *skb)
716 {
717 	struct net *net = dev_net(vrf_dev);
718 	int err;
719 
720 	skb->dev = vrf_dev;
721 
722 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
723 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
724 
725 	if (likely(err == 1))
726 		err = vrf_output6_direct(net, sk, skb);
727 
728 	if (likely(err == 1))
729 		return skb;
730 
731 	return NULL;
732 }
733 
734 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
735 				   struct sock *sk,
736 				   struct sk_buff *skb)
737 {
738 	/* don't divert link scope packets */
739 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
740 		return skb;
741 
742 	vrf_nf_set_untracked(skb);
743 
744 	if (qdisc_tx_is_default(vrf_dev) ||
745 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
746 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
747 
748 	return vrf_ip6_out_redirect(vrf_dev, skb);
749 }
750 
751 /* holding rtnl */
752 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
753 {
754 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
755 	struct net *net = dev_net(dev);
756 	struct dst_entry *dst;
757 
758 	RCU_INIT_POINTER(vrf->rt6, NULL);
759 	synchronize_rcu();
760 
761 	/* move dev in dst's to loopback so this VRF device can be deleted
762 	 * - based on dst_ifdown
763 	 */
764 	if (rt6) {
765 		dst = &rt6->dst;
766 		netdev_ref_replace(dst->dev, net->loopback_dev,
767 				   &dst->dev_tracker, GFP_KERNEL);
768 		dst->dev = net->loopback_dev;
769 		dst_release(dst);
770 	}
771 }
772 
773 static int vrf_rt6_create(struct net_device *dev)
774 {
775 	int flags = DST_NOPOLICY | DST_NOXFRM;
776 	struct net_vrf *vrf = netdev_priv(dev);
777 	struct net *net = dev_net(dev);
778 	struct rt6_info *rt6;
779 	int rc = -ENOMEM;
780 
781 	/* IPv6 can be CONFIG enabled and then disabled runtime */
782 	if (!ipv6_mod_enabled())
783 		return 0;
784 
785 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
786 	if (!vrf->fib6_table)
787 		goto out;
788 
789 	/* create a dst for routing packets out a VRF device */
790 	rt6 = ip6_dst_alloc(net, dev, flags);
791 	if (!rt6)
792 		goto out;
793 
794 	rt6->dst.output	= vrf_output6;
795 
796 	rcu_assign_pointer(vrf->rt6, rt6);
797 
798 	rc = 0;
799 out:
800 	return rc;
801 }
802 #else
803 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
804 				   struct sock *sk,
805 				   struct sk_buff *skb)
806 {
807 	return skb;
808 }
809 
810 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
811 {
812 }
813 
814 static int vrf_rt6_create(struct net_device *dev)
815 {
816 	return 0;
817 }
818 #endif
819 
820 /* modelled after ip_finish_output2 */
821 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
822 {
823 	struct dst_entry *dst = skb_dst(skb);
824 	struct rtable *rt = dst_rtable(dst);
825 	struct net_device *dev = dst->dev;
826 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
827 	struct neighbour *neigh;
828 	bool is_v6gw = false;
829 
830 	vrf_nf_reset_ct(skb);
831 
832 	/* Be paranoid, rather than too clever. */
833 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
834 		skb = skb_expand_head(skb, hh_len);
835 		if (!skb) {
836 			dev->stats.tx_errors++;
837 			return -ENOMEM;
838 		}
839 	}
840 
841 	rcu_read_lock();
842 
843 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
844 	if (!IS_ERR(neigh)) {
845 		int ret;
846 
847 		sock_confirm_neigh(skb, neigh);
848 		/* if crossing protocols, can not use the cached header */
849 		ret = neigh_output(neigh, skb, is_v6gw);
850 		rcu_read_unlock();
851 		return ret;
852 	}
853 
854 	rcu_read_unlock();
855 	vrf_tx_error(skb->dev, skb);
856 	return -EINVAL;
857 }
858 
859 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
860 {
861 	struct net_device *dev = skb_dst(skb)->dev;
862 
863 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
864 
865 	skb->dev = dev;
866 	skb->protocol = htons(ETH_P_IP);
867 
868 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
869 			    net, sk, skb, NULL, dev,
870 			    vrf_finish_output,
871 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
872 }
873 
874 /* set dst on skb to send packet to us via dev_xmit path. Allows
875  * packet to go through device based features such as qdisc, netfilter
876  * hooks and packet sockets with skb->dev set to vrf device.
877  */
878 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
879 					   struct sk_buff *skb)
880 {
881 	struct net_vrf *vrf = netdev_priv(vrf_dev);
882 	struct dst_entry *dst = NULL;
883 	struct rtable *rth;
884 
885 	rcu_read_lock();
886 
887 	rth = rcu_dereference(vrf->rth);
888 	if (likely(rth)) {
889 		dst = &rth->dst;
890 		dst_hold(dst);
891 	}
892 
893 	rcu_read_unlock();
894 
895 	if (unlikely(!dst)) {
896 		vrf_tx_error(vrf_dev, skb);
897 		return NULL;
898 	}
899 
900 	skb_dst_drop(skb);
901 	skb_dst_set(skb, dst);
902 
903 	return skb;
904 }
905 
906 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
907 				    struct sk_buff *skb)
908 {
909 	vrf_finish_direct(skb);
910 
911 	return vrf_ip_local_out(net, sk, skb);
912 }
913 
914 static int vrf_output_direct(struct net *net, struct sock *sk,
915 			     struct sk_buff *skb)
916 {
917 	int err = 1;
918 
919 	skb->protocol = htons(ETH_P_IP);
920 
921 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
922 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
923 			      NULL, skb->dev, vrf_output_direct_finish);
924 
925 	if (likely(err == 1))
926 		vrf_finish_direct(skb);
927 
928 	return err;
929 }
930 
931 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
932 				    struct sk_buff *skb)
933 {
934 	int err;
935 
936 	err = vrf_output_direct(net, sk, skb);
937 	if (likely(err == 1))
938 		err = vrf_ip_local_out(net, sk, skb);
939 
940 	return err;
941 }
942 
943 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
944 					 struct sock *sk,
945 					 struct sk_buff *skb)
946 {
947 	struct net *net = dev_net(vrf_dev);
948 	int err;
949 
950 	skb->dev = vrf_dev;
951 
952 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
953 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
954 
955 	if (likely(err == 1))
956 		err = vrf_output_direct(net, sk, skb);
957 
958 	if (likely(err == 1))
959 		return skb;
960 
961 	return NULL;
962 }
963 
964 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
965 				  struct sock *sk,
966 				  struct sk_buff *skb)
967 {
968 	/* don't divert multicast or local broadcast */
969 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
970 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
971 		return skb;
972 
973 	vrf_nf_set_untracked(skb);
974 
975 	if (qdisc_tx_is_default(vrf_dev) ||
976 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
977 		return vrf_ip_out_direct(vrf_dev, sk, skb);
978 
979 	return vrf_ip_out_redirect(vrf_dev, skb);
980 }
981 
982 /* called with rcu lock held */
983 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
984 				  struct sock *sk,
985 				  struct sk_buff *skb,
986 				  u16 proto)
987 {
988 	switch (proto) {
989 	case AF_INET:
990 		return vrf_ip_out(vrf_dev, sk, skb);
991 	case AF_INET6:
992 		return vrf_ip6_out(vrf_dev, sk, skb);
993 	}
994 
995 	return skb;
996 }
997 
998 /* holding rtnl */
999 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1000 {
1001 	struct rtable *rth = rtnl_dereference(vrf->rth);
1002 	struct net *net = dev_net(dev);
1003 	struct dst_entry *dst;
1004 
1005 	RCU_INIT_POINTER(vrf->rth, NULL);
1006 	synchronize_rcu();
1007 
1008 	/* move dev in dst's to loopback so this VRF device can be deleted
1009 	 * - based on dst_ifdown
1010 	 */
1011 	if (rth) {
1012 		dst = &rth->dst;
1013 		netdev_ref_replace(dst->dev, net->loopback_dev,
1014 				   &dst->dev_tracker, GFP_KERNEL);
1015 		dst->dev = net->loopback_dev;
1016 		dst_release(dst);
1017 	}
1018 }
1019 
1020 static int vrf_rtable_create(struct net_device *dev)
1021 {
1022 	struct net_vrf *vrf = netdev_priv(dev);
1023 	struct rtable *rth;
1024 
1025 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1026 		return -ENOMEM;
1027 
1028 	/* create a dst for routing packets out through a VRF device */
1029 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1030 	if (!rth)
1031 		return -ENOMEM;
1032 
1033 	rth->dst.output	= vrf_output;
1034 
1035 	rcu_assign_pointer(vrf->rth, rth);
1036 
1037 	return 0;
1038 }
1039 
1040 /**************************** device handling ********************/
1041 
1042 /* cycle interface to flush neighbor cache and move routes across tables */
1043 static void cycle_netdev(struct net_device *dev,
1044 			 struct netlink_ext_ack *extack)
1045 {
1046 	unsigned int flags = dev->flags;
1047 	int ret;
1048 
1049 	if (!netif_running(dev))
1050 		return;
1051 
1052 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1053 	if (ret >= 0)
1054 		ret = dev_change_flags(dev, flags, extack);
1055 
1056 	if (ret < 0) {
1057 		netdev_err(dev,
1058 			   "Failed to cycle device %s; route tables might be wrong!\n",
1059 			   dev->name);
1060 	}
1061 }
1062 
1063 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1064 			    struct netlink_ext_ack *extack)
1065 {
1066 	int ret;
1067 
1068 	/* do not allow loopback device to be enslaved to a VRF.
1069 	 * The vrf device acts as the loopback for the vrf.
1070 	 */
1071 	if (port_dev == dev_net(dev)->loopback_dev) {
1072 		NL_SET_ERR_MSG(extack,
1073 			       "Can not enslave loopback device to a VRF");
1074 		return -EOPNOTSUPP;
1075 	}
1076 
1077 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1078 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1079 	if (ret < 0)
1080 		goto err;
1081 
1082 	cycle_netdev(port_dev, extack);
1083 
1084 	return 0;
1085 
1086 err:
1087 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1088 	return ret;
1089 }
1090 
1091 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1092 			 struct netlink_ext_ack *extack)
1093 {
1094 	if (netif_is_l3_master(port_dev)) {
1095 		NL_SET_ERR_MSG(extack,
1096 			       "Can not enslave an L3 master device to a VRF");
1097 		return -EINVAL;
1098 	}
1099 
1100 	if (netif_is_l3_slave(port_dev))
1101 		return -EINVAL;
1102 
1103 	return do_vrf_add_slave(dev, port_dev, extack);
1104 }
1105 
1106 /* inverse of do_vrf_add_slave */
1107 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1108 {
1109 	netdev_upper_dev_unlink(port_dev, dev);
1110 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1111 
1112 	cycle_netdev(port_dev, NULL);
1113 
1114 	return 0;
1115 }
1116 
1117 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1118 {
1119 	return do_vrf_del_slave(dev, port_dev);
1120 }
1121 
1122 static void vrf_dev_uninit(struct net_device *dev)
1123 {
1124 	struct net_vrf *vrf = netdev_priv(dev);
1125 
1126 	vrf_rtable_release(dev, vrf);
1127 	vrf_rt6_release(dev, vrf);
1128 }
1129 
1130 static int vrf_dev_init(struct net_device *dev)
1131 {
1132 	struct net_vrf *vrf = netdev_priv(dev);
1133 
1134 	/* create the default dst which points back to us */
1135 	if (vrf_rtable_create(dev) != 0)
1136 		goto out_nomem;
1137 
1138 	if (vrf_rt6_create(dev) != 0)
1139 		goto out_rth;
1140 
1141 	dev->flags = IFF_MASTER | IFF_NOARP;
1142 
1143 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1144 	dev->operstate = IF_OPER_UP;
1145 	netdev_lockdep_set_classes(dev);
1146 	return 0;
1147 
1148 out_rth:
1149 	vrf_rtable_release(dev, vrf);
1150 out_nomem:
1151 	return -ENOMEM;
1152 }
1153 
1154 static const struct net_device_ops vrf_netdev_ops = {
1155 	.ndo_init		= vrf_dev_init,
1156 	.ndo_uninit		= vrf_dev_uninit,
1157 	.ndo_start_xmit		= vrf_xmit,
1158 	.ndo_set_mac_address	= eth_mac_addr,
1159 	.ndo_add_slave		= vrf_add_slave,
1160 	.ndo_del_slave		= vrf_del_slave,
1161 };
1162 
1163 static u32 vrf_fib_table(const struct net_device *dev)
1164 {
1165 	struct net_vrf *vrf = netdev_priv(dev);
1166 
1167 	return vrf->tb_id;
1168 }
1169 
1170 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1171 {
1172 	kfree_skb(skb);
1173 	return 0;
1174 }
1175 
1176 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1177 				      struct sk_buff *skb,
1178 				      struct net_device *dev)
1179 {
1180 	struct net *net = dev_net(dev);
1181 
1182 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1183 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1184 
1185 	return skb;
1186 }
1187 
1188 static int vrf_prepare_mac_header(struct sk_buff *skb,
1189 				  struct net_device *vrf_dev, u16 proto)
1190 {
1191 	struct ethhdr *eth;
1192 	int err;
1193 
1194 	/* in general, we do not know if there is enough space in the head of
1195 	 * the packet for hosting the mac header.
1196 	 */
1197 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1198 	if (unlikely(err))
1199 		/* no space in the skb head */
1200 		return -ENOBUFS;
1201 
1202 	__skb_push(skb, ETH_HLEN);
1203 	eth = (struct ethhdr *)skb->data;
1204 
1205 	skb_reset_mac_header(skb);
1206 	skb_reset_mac_len(skb);
1207 
1208 	/* we set the ethernet destination and the source addresses to the
1209 	 * address of the VRF device.
1210 	 */
1211 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1212 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1213 	eth->h_proto = htons(proto);
1214 
1215 	/* the destination address of the Ethernet frame corresponds to the
1216 	 * address set on the VRF interface; therefore, the packet is intended
1217 	 * to be processed locally.
1218 	 */
1219 	skb->protocol = eth->h_proto;
1220 	skb->pkt_type = PACKET_HOST;
1221 
1222 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1223 
1224 	skb_pull_inline(skb, ETH_HLEN);
1225 
1226 	return 0;
1227 }
1228 
1229 /* prepare and add the mac header to the packet if it was not set previously.
1230  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1231  * If the mac header was already set, the original mac header is left
1232  * untouched and the function returns immediately.
1233  */
1234 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1235 				       struct net_device *vrf_dev,
1236 				       u16 proto, struct net_device *orig_dev)
1237 {
1238 	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1239 		return 0;
1240 
1241 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1242 }
1243 
1244 #if IS_ENABLED(CONFIG_IPV6)
1245 /* neighbor handling is done with actual device; do not want
1246  * to flip skb->dev for those ndisc packets. This really fails
1247  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1248  * a start.
1249  */
1250 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1251 {
1252 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1253 	bool rc = false;
1254 
1255 	if (iph->nexthdr == NEXTHDR_ICMP) {
1256 		const struct icmp6hdr *icmph;
1257 		struct icmp6hdr _icmph;
1258 
1259 		icmph = skb_header_pointer(skb, sizeof(*iph),
1260 					   sizeof(_icmph), &_icmph);
1261 		if (!icmph)
1262 			goto out;
1263 
1264 		switch (icmph->icmp6_type) {
1265 		case NDISC_ROUTER_SOLICITATION:
1266 		case NDISC_ROUTER_ADVERTISEMENT:
1267 		case NDISC_NEIGHBOUR_SOLICITATION:
1268 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1269 		case NDISC_REDIRECT:
1270 			rc = true;
1271 			break;
1272 		}
1273 	}
1274 
1275 out:
1276 	return rc;
1277 }
1278 
1279 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1280 					     const struct net_device *dev,
1281 					     struct flowi6 *fl6,
1282 					     int ifindex,
1283 					     const struct sk_buff *skb,
1284 					     int flags)
1285 {
1286 	struct net_vrf *vrf = netdev_priv(dev);
1287 
1288 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1289 }
1290 
1291 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1292 			      int ifindex)
1293 {
1294 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1295 	struct flowi6 fl6 = {
1296 		.flowi6_iif     = ifindex,
1297 		.flowi6_mark    = skb->mark,
1298 		.flowi6_proto   = iph->nexthdr,
1299 		.daddr          = iph->daddr,
1300 		.saddr          = iph->saddr,
1301 		.flowlabel      = ip6_flowinfo(iph),
1302 	};
1303 	struct net *net = dev_net(vrf_dev);
1304 	struct rt6_info *rt6;
1305 
1306 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1307 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1308 	if (unlikely(!rt6))
1309 		return;
1310 
1311 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1312 		return;
1313 
1314 	skb_dst_set(skb, &rt6->dst);
1315 }
1316 
1317 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1318 				   struct sk_buff *skb)
1319 {
1320 	int orig_iif = skb->skb_iif;
1321 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1322 	bool is_ndisc = ipv6_ndisc_frame(skb);
1323 
1324 	/* loopback, multicast & non-ND link-local traffic; do not push through
1325 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1326 	 * For non-loopback strict packets, determine the dst using the original
1327 	 * ifindex.
1328 	 */
1329 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1330 		skb->dev = vrf_dev;
1331 		skb->skb_iif = vrf_dev->ifindex;
1332 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1333 
1334 		if (skb->pkt_type == PACKET_LOOPBACK)
1335 			skb->pkt_type = PACKET_HOST;
1336 		else
1337 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1338 
1339 		goto out;
1340 	}
1341 
1342 	/* if packet is NDISC then keep the ingress interface */
1343 	if (!is_ndisc) {
1344 		struct net_device *orig_dev = skb->dev;
1345 
1346 		dev_dstats_rx_add(vrf_dev, skb->len);
1347 		skb->dev = vrf_dev;
1348 		skb->skb_iif = vrf_dev->ifindex;
1349 
1350 		if (!list_empty(&vrf_dev->ptype_all)) {
1351 			int err;
1352 
1353 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1354 							  ETH_P_IPV6,
1355 							  orig_dev);
1356 			if (likely(!err)) {
1357 				skb_push(skb, skb->mac_len);
1358 				dev_queue_xmit_nit(skb, vrf_dev);
1359 				skb_pull(skb, skb->mac_len);
1360 			}
1361 		}
1362 
1363 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1364 	}
1365 
1366 	if (need_strict)
1367 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1368 
1369 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1370 out:
1371 	return skb;
1372 }
1373 
1374 #else
1375 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1376 				   struct sk_buff *skb)
1377 {
1378 	return skb;
1379 }
1380 #endif
1381 
1382 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1383 				  struct sk_buff *skb)
1384 {
1385 	struct net_device *orig_dev = skb->dev;
1386 
1387 	skb->dev = vrf_dev;
1388 	skb->skb_iif = vrf_dev->ifindex;
1389 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1390 
1391 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1392 		goto out;
1393 
1394 	/* loopback traffic; do not push through packet taps again.
1395 	 * Reset pkt_type for upper layers to process skb
1396 	 */
1397 	if (skb->pkt_type == PACKET_LOOPBACK) {
1398 		skb->pkt_type = PACKET_HOST;
1399 		goto out;
1400 	}
1401 
1402 	dev_dstats_rx_add(vrf_dev, skb->len);
1403 
1404 	if (!list_empty(&vrf_dev->ptype_all)) {
1405 		int err;
1406 
1407 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1408 						  orig_dev);
1409 		if (likely(!err)) {
1410 			skb_push(skb, skb->mac_len);
1411 			dev_queue_xmit_nit(skb, vrf_dev);
1412 			skb_pull(skb, skb->mac_len);
1413 		}
1414 	}
1415 
1416 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1417 out:
1418 	return skb;
1419 }
1420 
1421 /* called with rcu lock held */
1422 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1423 				  struct sk_buff *skb,
1424 				  u16 proto)
1425 {
1426 	switch (proto) {
1427 	case AF_INET:
1428 		return vrf_ip_rcv(vrf_dev, skb);
1429 	case AF_INET6:
1430 		return vrf_ip6_rcv(vrf_dev, skb);
1431 	}
1432 
1433 	return skb;
1434 }
1435 
1436 #if IS_ENABLED(CONFIG_IPV6)
1437 /* send to link-local or multicast address via interface enslaved to
1438  * VRF device. Force lookup to VRF table without changing flow struct
1439  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1440  * is taken on the dst by this function.
1441  */
1442 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1443 					      struct flowi6 *fl6)
1444 {
1445 	struct net *net = dev_net(dev);
1446 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1447 	struct dst_entry *dst = NULL;
1448 	struct rt6_info *rt;
1449 
1450 	/* VRF device does not have a link-local address and
1451 	 * sending packets to link-local or mcast addresses over
1452 	 * a VRF device does not make sense
1453 	 */
1454 	if (fl6->flowi6_oif == dev->ifindex) {
1455 		dst = &net->ipv6.ip6_null_entry->dst;
1456 		return dst;
1457 	}
1458 
1459 	if (!ipv6_addr_any(&fl6->saddr))
1460 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1461 
1462 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1463 	if (rt)
1464 		dst = &rt->dst;
1465 
1466 	return dst;
1467 }
1468 #endif
1469 
1470 static const struct l3mdev_ops vrf_l3mdev_ops = {
1471 	.l3mdev_fib_table	= vrf_fib_table,
1472 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1473 	.l3mdev_l3_out		= vrf_l3_out,
1474 #if IS_ENABLED(CONFIG_IPV6)
1475 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1476 #endif
1477 };
1478 
1479 static void vrf_get_drvinfo(struct net_device *dev,
1480 			    struct ethtool_drvinfo *info)
1481 {
1482 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1483 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1484 }
1485 
1486 static const struct ethtool_ops vrf_ethtool_ops = {
1487 	.get_drvinfo	= vrf_get_drvinfo,
1488 };
1489 
1490 static inline size_t vrf_fib_rule_nl_size(void)
1491 {
1492 	size_t sz;
1493 
1494 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1495 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1496 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1497 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1498 
1499 	return sz;
1500 }
1501 
1502 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1503 {
1504 	struct fib_rule_hdr *frh;
1505 	struct nlmsghdr *nlh;
1506 	struct sk_buff *skb;
1507 	int err;
1508 
1509 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1510 	    !ipv6_mod_enabled())
1511 		return 0;
1512 
1513 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1514 	if (!skb)
1515 		return -ENOMEM;
1516 
1517 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1518 	if (!nlh)
1519 		goto nla_put_failure;
1520 
1521 	/* rule only needs to appear once */
1522 	nlh->nlmsg_flags |= NLM_F_EXCL;
1523 
1524 	frh = nlmsg_data(nlh);
1525 	memset(frh, 0, sizeof(*frh));
1526 	frh->family = family;
1527 	frh->action = FR_ACT_TO_TBL;
1528 
1529 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1530 		goto nla_put_failure;
1531 
1532 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1533 		goto nla_put_failure;
1534 
1535 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1536 		goto nla_put_failure;
1537 
1538 	nlmsg_end(skb, nlh);
1539 
1540 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1541 	skb->sk = dev_net(dev)->rtnl;
1542 	if (add_it) {
1543 		err = fib_nl_newrule(skb, nlh, NULL);
1544 		if (err == -EEXIST)
1545 			err = 0;
1546 	} else {
1547 		err = fib_nl_delrule(skb, nlh, NULL);
1548 		if (err == -ENOENT)
1549 			err = 0;
1550 	}
1551 	nlmsg_free(skb);
1552 
1553 	return err;
1554 
1555 nla_put_failure:
1556 	nlmsg_free(skb);
1557 
1558 	return -EMSGSIZE;
1559 }
1560 
1561 static int vrf_add_fib_rules(const struct net_device *dev)
1562 {
1563 	int err;
1564 
1565 	err = vrf_fib_rule(dev, AF_INET,  true);
1566 	if (err < 0)
1567 		goto out_err;
1568 
1569 	err = vrf_fib_rule(dev, AF_INET6, true);
1570 	if (err < 0)
1571 		goto ipv6_err;
1572 
1573 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1574 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1575 	if (err < 0)
1576 		goto ipmr_err;
1577 #endif
1578 
1579 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1580 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1581 	if (err < 0)
1582 		goto ip6mr_err;
1583 #endif
1584 
1585 	return 0;
1586 
1587 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1588 ip6mr_err:
1589 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1590 #endif
1591 
1592 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1593 ipmr_err:
1594 	vrf_fib_rule(dev, AF_INET6,  false);
1595 #endif
1596 
1597 ipv6_err:
1598 	vrf_fib_rule(dev, AF_INET,  false);
1599 
1600 out_err:
1601 	netdev_err(dev, "Failed to add FIB rules.\n");
1602 	return err;
1603 }
1604 
1605 static void vrf_setup(struct net_device *dev)
1606 {
1607 	ether_setup(dev);
1608 
1609 	/* Initialize the device structure. */
1610 	dev->netdev_ops = &vrf_netdev_ops;
1611 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1612 	dev->ethtool_ops = &vrf_ethtool_ops;
1613 	dev->needs_free_netdev = true;
1614 
1615 	/* Fill in device structure with ethernet-generic values. */
1616 	eth_hw_addr_random(dev);
1617 
1618 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1619 	dev->lltx = true;
1620 
1621 	/* don't allow vrf devices to change network namespaces. */
1622 	dev->netns_local = true;
1623 
1624 	/* does not make sense for a VLAN to be added to a vrf device */
1625 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1626 
1627 	/* enable offload features */
1628 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1629 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1630 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1631 
1632 	dev->hw_features = dev->features;
1633 	dev->hw_enc_features = dev->features;
1634 
1635 	/* default to no qdisc; user can add if desired */
1636 	dev->priv_flags |= IFF_NO_QUEUE;
1637 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1638 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1639 
1640 	/* VRF devices do not care about MTU, but if the MTU is set
1641 	 * too low then the ipv4 and ipv6 protocols are disabled
1642 	 * which breaks networking.
1643 	 */
1644 	dev->min_mtu = IPV6_MIN_MTU;
1645 	dev->max_mtu = IP6_MAX_MTU;
1646 	dev->mtu = dev->max_mtu;
1647 
1648 	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1649 }
1650 
1651 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1652 			struct netlink_ext_ack *extack)
1653 {
1654 	if (tb[IFLA_ADDRESS]) {
1655 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1656 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1657 			return -EINVAL;
1658 		}
1659 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1660 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1661 			return -EADDRNOTAVAIL;
1662 		}
1663 	}
1664 	return 0;
1665 }
1666 
1667 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1668 {
1669 	struct net_device *port_dev;
1670 	struct list_head *iter;
1671 
1672 	netdev_for_each_lower_dev(dev, port_dev, iter)
1673 		vrf_del_slave(dev, port_dev);
1674 
1675 	vrf_map_unregister_dev(dev);
1676 
1677 	unregister_netdevice_queue(dev, head);
1678 }
1679 
1680 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1681 		       struct nlattr *tb[], struct nlattr *data[],
1682 		       struct netlink_ext_ack *extack)
1683 {
1684 	struct net_vrf *vrf = netdev_priv(dev);
1685 	struct netns_vrf *nn_vrf;
1686 	bool *add_fib_rules;
1687 	struct net *net;
1688 	int err;
1689 
1690 	if (!data || !data[IFLA_VRF_TABLE]) {
1691 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1692 		return -EINVAL;
1693 	}
1694 
1695 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1696 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1697 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1698 				    "Invalid VRF table id");
1699 		return -EINVAL;
1700 	}
1701 
1702 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1703 
1704 	err = register_netdevice(dev);
1705 	if (err)
1706 		goto out;
1707 
1708 	/* mapping between table_id and vrf;
1709 	 * note: such binding could not be done in the dev init function
1710 	 * because dev->ifindex id is not available yet.
1711 	 */
1712 	vrf->ifindex = dev->ifindex;
1713 
1714 	err = vrf_map_register_dev(dev, extack);
1715 	if (err) {
1716 		unregister_netdevice(dev);
1717 		goto out;
1718 	}
1719 
1720 	net = dev_net(dev);
1721 	nn_vrf = net_generic(net, vrf_net_id);
1722 
1723 	add_fib_rules = &nn_vrf->add_fib_rules;
1724 	if (*add_fib_rules) {
1725 		err = vrf_add_fib_rules(dev);
1726 		if (err) {
1727 			vrf_map_unregister_dev(dev);
1728 			unregister_netdevice(dev);
1729 			goto out;
1730 		}
1731 		*add_fib_rules = false;
1732 	}
1733 
1734 out:
1735 	return err;
1736 }
1737 
1738 static size_t vrf_nl_getsize(const struct net_device *dev)
1739 {
1740 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1741 }
1742 
1743 static int vrf_fillinfo(struct sk_buff *skb,
1744 			const struct net_device *dev)
1745 {
1746 	struct net_vrf *vrf = netdev_priv(dev);
1747 
1748 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1749 }
1750 
1751 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1752 				 const struct net_device *slave_dev)
1753 {
1754 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1755 }
1756 
1757 static int vrf_fill_slave_info(struct sk_buff *skb,
1758 			       const struct net_device *vrf_dev,
1759 			       const struct net_device *slave_dev)
1760 {
1761 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1762 
1763 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1764 		return -EMSGSIZE;
1765 
1766 	return 0;
1767 }
1768 
1769 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1770 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1771 };
1772 
1773 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1774 	.kind		= DRV_NAME,
1775 	.priv_size	= sizeof(struct net_vrf),
1776 
1777 	.get_size	= vrf_nl_getsize,
1778 	.policy		= vrf_nl_policy,
1779 	.validate	= vrf_validate,
1780 	.fill_info	= vrf_fillinfo,
1781 
1782 	.get_slave_size  = vrf_get_slave_size,
1783 	.fill_slave_info = vrf_fill_slave_info,
1784 
1785 	.newlink	= vrf_newlink,
1786 	.dellink	= vrf_dellink,
1787 	.setup		= vrf_setup,
1788 	.maxtype	= IFLA_VRF_MAX,
1789 };
1790 
1791 static int vrf_device_event(struct notifier_block *unused,
1792 			    unsigned long event, void *ptr)
1793 {
1794 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1795 
1796 	/* only care about unregister events to drop slave references */
1797 	if (event == NETDEV_UNREGISTER) {
1798 		struct net_device *vrf_dev;
1799 
1800 		if (!netif_is_l3_slave(dev))
1801 			goto out;
1802 
1803 		vrf_dev = netdev_master_upper_dev_get(dev);
1804 		vrf_del_slave(vrf_dev, dev);
1805 	}
1806 out:
1807 	return NOTIFY_DONE;
1808 }
1809 
1810 static struct notifier_block vrf_notifier_block __read_mostly = {
1811 	.notifier_call = vrf_device_event,
1812 };
1813 
1814 static int vrf_map_init(struct vrf_map *vmap)
1815 {
1816 	spin_lock_init(&vmap->vmap_lock);
1817 	hash_init(vmap->ht);
1818 
1819 	vmap->strict_mode = false;
1820 
1821 	return 0;
1822 }
1823 
1824 #ifdef CONFIG_SYSCTL
1825 static bool vrf_strict_mode(struct vrf_map *vmap)
1826 {
1827 	bool strict_mode;
1828 
1829 	vrf_map_lock(vmap);
1830 	strict_mode = vmap->strict_mode;
1831 	vrf_map_unlock(vmap);
1832 
1833 	return strict_mode;
1834 }
1835 
1836 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1837 {
1838 	bool *cur_mode;
1839 	int res = 0;
1840 
1841 	vrf_map_lock(vmap);
1842 
1843 	cur_mode = &vmap->strict_mode;
1844 	if (*cur_mode == new_mode)
1845 		goto unlock;
1846 
1847 	if (*cur_mode) {
1848 		/* disable strict mode */
1849 		*cur_mode = false;
1850 	} else {
1851 		if (vmap->shared_tables) {
1852 			/* we cannot allow strict_mode because there are some
1853 			 * vrfs that share one or more tables.
1854 			 */
1855 			res = -EBUSY;
1856 			goto unlock;
1857 		}
1858 
1859 		/* no tables are shared among vrfs, so we can go back
1860 		 * to 1:1 association between a vrf with its table.
1861 		 */
1862 		*cur_mode = true;
1863 	}
1864 
1865 unlock:
1866 	vrf_map_unlock(vmap);
1867 
1868 	return res;
1869 }
1870 
1871 static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1872 				    void *buffer, size_t *lenp, loff_t *ppos)
1873 {
1874 	struct net *net = (struct net *)table->extra1;
1875 	struct vrf_map *vmap = netns_vrf_map(net);
1876 	int proc_strict_mode = 0;
1877 	struct ctl_table tmp = {
1878 		.procname	= table->procname,
1879 		.data		= &proc_strict_mode,
1880 		.maxlen		= sizeof(int),
1881 		.mode		= table->mode,
1882 		.extra1		= SYSCTL_ZERO,
1883 		.extra2		= SYSCTL_ONE,
1884 	};
1885 	int ret;
1886 
1887 	if (!write)
1888 		proc_strict_mode = vrf_strict_mode(vmap);
1889 
1890 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1891 
1892 	if (write && ret == 0)
1893 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1894 
1895 	return ret;
1896 }
1897 
1898 static const struct ctl_table vrf_table[] = {
1899 	{
1900 		.procname	= "strict_mode",
1901 		.data		= NULL,
1902 		.maxlen		= sizeof(int),
1903 		.mode		= 0644,
1904 		.proc_handler	= vrf_shared_table_handler,
1905 		/* set by the vrf_netns_init */
1906 		.extra1		= NULL,
1907 	},
1908 };
1909 
1910 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1911 {
1912 	struct ctl_table *table;
1913 
1914 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1915 	if (!table)
1916 		return -ENOMEM;
1917 
1918 	/* init the extra1 parameter with the reference to current netns */
1919 	table[0].extra1 = net;
1920 
1921 	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1922 						 ARRAY_SIZE(vrf_table));
1923 	if (!nn_vrf->ctl_hdr) {
1924 		kfree(table);
1925 		return -ENOMEM;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static void vrf_netns_exit_sysctl(struct net *net)
1932 {
1933 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1934 	const struct ctl_table *table;
1935 
1936 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1937 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1938 	kfree(table);
1939 }
1940 #else
1941 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1942 {
1943 	return 0;
1944 }
1945 
1946 static void vrf_netns_exit_sysctl(struct net *net)
1947 {
1948 }
1949 #endif
1950 
1951 /* Initialize per network namespace state */
1952 static int __net_init vrf_netns_init(struct net *net)
1953 {
1954 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1955 
1956 	nn_vrf->add_fib_rules = true;
1957 	vrf_map_init(&nn_vrf->vmap);
1958 
1959 	return vrf_netns_init_sysctl(net, nn_vrf);
1960 }
1961 
1962 static void __net_exit vrf_netns_exit(struct net *net)
1963 {
1964 	vrf_netns_exit_sysctl(net);
1965 }
1966 
1967 static struct pernet_operations vrf_net_ops __net_initdata = {
1968 	.init = vrf_netns_init,
1969 	.exit = vrf_netns_exit,
1970 	.id   = &vrf_net_id,
1971 	.size = sizeof(struct netns_vrf),
1972 };
1973 
1974 static int __init vrf_init_module(void)
1975 {
1976 	int rc;
1977 
1978 	register_netdevice_notifier(&vrf_notifier_block);
1979 
1980 	rc = register_pernet_subsys(&vrf_net_ops);
1981 	if (rc < 0)
1982 		goto error;
1983 
1984 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1985 					  vrf_ifindex_lookup_by_table_id);
1986 	if (rc < 0)
1987 		goto unreg_pernet;
1988 
1989 	rc = rtnl_link_register(&vrf_link_ops);
1990 	if (rc < 0)
1991 		goto table_lookup_unreg;
1992 
1993 	return 0;
1994 
1995 table_lookup_unreg:
1996 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1997 				       vrf_ifindex_lookup_by_table_id);
1998 
1999 unreg_pernet:
2000 	unregister_pernet_subsys(&vrf_net_ops);
2001 
2002 error:
2003 	unregister_netdevice_notifier(&vrf_notifier_block);
2004 	return rc;
2005 }
2006 
2007 module_init(vrf_init_module);
2008 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2009 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2010 MODULE_LICENSE("GPL");
2011 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2012 MODULE_VERSION(DRV_VERSION);
2013