xref: /linux/drivers/net/vrf.c (revision b48543c451c30387b53ee6e202dda8d5303f6268)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 
41 #define DRV_NAME	"vrf"
42 #define DRV_VERSION	"1.1"
43 
44 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
45 
46 #define HT_MAP_BITS	4
47 #define HASH_INITVAL	((u32)0xcafef00d)
48 
49 struct  vrf_map {
50 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 	spinlock_t vmap_lock;
52 
53 	/* shared_tables:
54 	 * count how many distinct tables do not comply with the strict mode
55 	 * requirement.
56 	 * shared_tables value must be 0 in order to enable the strict mode.
57 	 *
58 	 * example of the evolution of shared_tables:
59 	 *                                                        | time
60 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
61 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
62 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
63 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
64 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
65 	 *
66 	 * shared_tables is a "step function" (or "staircase function")
67 	 * and it is increased by one when the second vrf is associated to a
68 	 * table.
69 	 *
70 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
71 	 *
72 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 	 * value of shared_tables is still 1.
74 	 * This means that no matter how many new vrfs will register on the
75 	 * table 100, the shared_tables will not increase (considering only
76 	 * table 100).
77 	 *
78 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
79 	 *
80 	 * Looking at the value of shared_tables we can immediately know if
81 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 	 * can be enforced iff shared_tables = 0.
83 	 *
84 	 * Conversely, shared_tables is decreased when a vrf is de-associated
85 	 * from a table with exactly two associated vrfs.
86 	 */
87 	u32 shared_tables;
88 
89 	bool strict_mode;
90 };
91 
92 struct vrf_map_elem {
93 	struct hlist_node hnode;
94 	struct list_head vrf_list;  /* VRFs registered to this table */
95 
96 	u32 table_id;
97 	int users;
98 	int ifindex;
99 };
100 
101 static unsigned int vrf_net_id;
102 
103 /* per netns vrf data */
104 struct netns_vrf {
105 	/* protected by rtnl lock */
106 	bool add_fib_rules;
107 
108 	struct vrf_map vmap;
109 	struct ctl_table_header	*ctl_hdr;
110 };
111 
112 struct net_vrf {
113 	struct rtable __rcu	*rth;
114 	struct rt6_info	__rcu	*rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 	struct fib6_table	*fib6_table;
117 #endif
118 	u32                     tb_id;
119 
120 	struct list_head	me_list;   /* entry in vrf_map_elem */
121 	int			ifindex;
122 };
123 
124 static void vrf_rx_stats(struct net_device *dev, int len)
125 {
126 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
127 
128 	u64_stats_update_begin(&dstats->syncp);
129 	u64_stats_inc(&dstats->rx_packets);
130 	u64_stats_add(&dstats->rx_bytes, len);
131 	u64_stats_update_end(&dstats->syncp);
132 }
133 
134 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
135 {
136 	vrf_dev->stats.tx_errors++;
137 	kfree_skb(skb);
138 }
139 
140 static struct vrf_map *netns_vrf_map(struct net *net)
141 {
142 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
143 
144 	return &nn_vrf->vmap;
145 }
146 
147 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
148 {
149 	return netns_vrf_map(dev_net(dev));
150 }
151 
152 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
153 {
154 	struct list_head *me_head = &me->vrf_list;
155 	struct net_vrf *vrf;
156 
157 	if (list_empty(me_head))
158 		return -ENODEV;
159 
160 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
161 
162 	return vrf->ifindex;
163 }
164 
165 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
166 {
167 	struct vrf_map_elem *me;
168 
169 	me = kmalloc(sizeof(*me), flags);
170 	if (!me)
171 		return NULL;
172 
173 	return me;
174 }
175 
176 static void vrf_map_elem_free(struct vrf_map_elem *me)
177 {
178 	kfree(me);
179 }
180 
181 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
182 			      int ifindex, int users)
183 {
184 	me->table_id = table_id;
185 	me->ifindex = ifindex;
186 	me->users = users;
187 	INIT_LIST_HEAD(&me->vrf_list);
188 }
189 
190 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
191 						u32 table_id)
192 {
193 	struct vrf_map_elem *me;
194 	u32 key;
195 
196 	key = jhash_1word(table_id, HASH_INITVAL);
197 	hash_for_each_possible(vmap->ht, me, hnode, key) {
198 		if (me->table_id == table_id)
199 			return me;
200 	}
201 
202 	return NULL;
203 }
204 
205 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
206 {
207 	u32 table_id = me->table_id;
208 	u32 key;
209 
210 	key = jhash_1word(table_id, HASH_INITVAL);
211 	hash_add(vmap->ht, &me->hnode, key);
212 }
213 
214 static void vrf_map_del_elem(struct vrf_map_elem *me)
215 {
216 	hash_del(&me->hnode);
217 }
218 
219 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
220 {
221 	spin_lock(&vmap->vmap_lock);
222 }
223 
224 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
225 {
226 	spin_unlock(&vmap->vmap_lock);
227 }
228 
229 /* called with rtnl lock held */
230 static int
231 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
232 {
233 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
234 	struct net_vrf *vrf = netdev_priv(dev);
235 	struct vrf_map_elem *new_me, *me;
236 	u32 table_id = vrf->tb_id;
237 	bool free_new_me = false;
238 	int users;
239 	int res;
240 
241 	/* we pre-allocate elements used in the spin-locked section (so that we
242 	 * keep the spinlock as short as possible).
243 	 */
244 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
245 	if (!new_me)
246 		return -ENOMEM;
247 
248 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
249 
250 	vrf_map_lock(vmap);
251 
252 	me = vrf_map_lookup_elem(vmap, table_id);
253 	if (!me) {
254 		me = new_me;
255 		vrf_map_add_elem(vmap, me);
256 		goto link_vrf;
257 	}
258 
259 	/* we already have an entry in the vrf_map, so it means there is (at
260 	 * least) a vrf registered on the specific table.
261 	 */
262 	free_new_me = true;
263 	if (vmap->strict_mode) {
264 		/* vrfs cannot share the same table */
265 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
266 		res = -EBUSY;
267 		goto unlock;
268 	}
269 
270 link_vrf:
271 	users = ++me->users;
272 	if (users == 2)
273 		++vmap->shared_tables;
274 
275 	list_add(&vrf->me_list, &me->vrf_list);
276 
277 	res = 0;
278 
279 unlock:
280 	vrf_map_unlock(vmap);
281 
282 	/* clean-up, if needed */
283 	if (free_new_me)
284 		vrf_map_elem_free(new_me);
285 
286 	return res;
287 }
288 
289 /* called with rtnl lock held */
290 static void vrf_map_unregister_dev(struct net_device *dev)
291 {
292 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
293 	struct net_vrf *vrf = netdev_priv(dev);
294 	u32 table_id = vrf->tb_id;
295 	struct vrf_map_elem *me;
296 	int users;
297 
298 	vrf_map_lock(vmap);
299 
300 	me = vrf_map_lookup_elem(vmap, table_id);
301 	if (!me)
302 		goto unlock;
303 
304 	list_del(&vrf->me_list);
305 
306 	users = --me->users;
307 	if (users == 1) {
308 		--vmap->shared_tables;
309 	} else if (users == 0) {
310 		vrf_map_del_elem(me);
311 
312 		/* no one will refer to this element anymore */
313 		vrf_map_elem_free(me);
314 	}
315 
316 unlock:
317 	vrf_map_unlock(vmap);
318 }
319 
320 /* return the vrf device index associated with the table_id */
321 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
322 {
323 	struct vrf_map *vmap = netns_vrf_map(net);
324 	struct vrf_map_elem *me;
325 	int ifindex;
326 
327 	vrf_map_lock(vmap);
328 
329 	if (!vmap->strict_mode) {
330 		ifindex = -EPERM;
331 		goto unlock;
332 	}
333 
334 	me = vrf_map_lookup_elem(vmap, table_id);
335 	if (!me) {
336 		ifindex = -ENODEV;
337 		goto unlock;
338 	}
339 
340 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
341 
342 unlock:
343 	vrf_map_unlock(vmap);
344 
345 	return ifindex;
346 }
347 
348 /* by default VRF devices do not have a qdisc and are expected
349  * to be created with only a single queue.
350  */
351 static bool qdisc_tx_is_default(const struct net_device *dev)
352 {
353 	struct netdev_queue *txq;
354 	struct Qdisc *qdisc;
355 
356 	if (dev->num_tx_queues > 1)
357 		return false;
358 
359 	txq = netdev_get_tx_queue(dev, 0);
360 	qdisc = rcu_access_pointer(txq->qdisc);
361 
362 	return !qdisc->enqueue;
363 }
364 
365 /* Local traffic destined to local address. Reinsert the packet to rx
366  * path, similar to loopback handling.
367  */
368 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
369 			  struct dst_entry *dst)
370 {
371 	int len = skb->len;
372 
373 	skb_orphan(skb);
374 
375 	skb_dst_set(skb, dst);
376 
377 	/* set pkt_type to avoid skb hitting packet taps twice -
378 	 * once on Tx and again in Rx processing
379 	 */
380 	skb->pkt_type = PACKET_LOOPBACK;
381 
382 	skb->protocol = eth_type_trans(skb, dev);
383 
384 	if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) {
385 		vrf_rx_stats(dev, len);
386 	} else {
387 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
388 
389 		u64_stats_update_begin(&dstats->syncp);
390 		u64_stats_inc(&dstats->rx_drops);
391 		u64_stats_update_end(&dstats->syncp);
392 	}
393 
394 	return NETDEV_TX_OK;
395 }
396 
397 static void vrf_nf_set_untracked(struct sk_buff *skb)
398 {
399 	if (skb_get_nfct(skb) == 0)
400 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
401 }
402 
403 static void vrf_nf_reset_ct(struct sk_buff *skb)
404 {
405 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
406 		nf_reset_ct(skb);
407 }
408 
409 #if IS_ENABLED(CONFIG_IPV6)
410 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
411 			     struct sk_buff *skb)
412 {
413 	int err;
414 
415 	vrf_nf_reset_ct(skb);
416 
417 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
418 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
419 
420 	if (likely(err == 1))
421 		err = dst_output(net, sk, skb);
422 
423 	return err;
424 }
425 
426 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
427 					   struct net_device *dev)
428 {
429 	const struct ipv6hdr *iph;
430 	struct net *net = dev_net(skb->dev);
431 	struct flowi6 fl6;
432 	int ret = NET_XMIT_DROP;
433 	struct dst_entry *dst;
434 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
435 
436 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
437 		goto err;
438 
439 	iph = ipv6_hdr(skb);
440 
441 	memset(&fl6, 0, sizeof(fl6));
442 	/* needed to match OIF rule */
443 	fl6.flowi6_l3mdev = dev->ifindex;
444 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
445 	fl6.daddr = iph->daddr;
446 	fl6.saddr = iph->saddr;
447 	fl6.flowlabel = ip6_flowinfo(iph);
448 	fl6.flowi6_mark = skb->mark;
449 	fl6.flowi6_proto = iph->nexthdr;
450 
451 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
452 	if (IS_ERR(dst) || dst == dst_null)
453 		goto err;
454 
455 	skb_dst_drop(skb);
456 
457 	/* if dst.dev is the VRF device again this is locally originated traffic
458 	 * destined to a local address. Short circuit to Rx path.
459 	 */
460 	if (dst->dev == dev)
461 		return vrf_local_xmit(skb, dev, dst);
462 
463 	skb_dst_set(skb, dst);
464 
465 	/* strip the ethernet header added for pass through VRF device */
466 	__skb_pull(skb, skb_network_offset(skb));
467 
468 	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
469 	ret = vrf_ip6_local_out(net, skb->sk, skb);
470 	if (unlikely(net_xmit_eval(ret)))
471 		dev->stats.tx_errors++;
472 	else
473 		ret = NET_XMIT_SUCCESS;
474 
475 	return ret;
476 err:
477 	vrf_tx_error(dev, skb);
478 	return NET_XMIT_DROP;
479 }
480 #else
481 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
482 					   struct net_device *dev)
483 {
484 	vrf_tx_error(dev, skb);
485 	return NET_XMIT_DROP;
486 }
487 #endif
488 
489 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
490 static int vrf_ip_local_out(struct net *net, struct sock *sk,
491 			    struct sk_buff *skb)
492 {
493 	int err;
494 
495 	vrf_nf_reset_ct(skb);
496 
497 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
498 		      skb, NULL, skb_dst(skb)->dev, dst_output);
499 	if (likely(err == 1))
500 		err = dst_output(net, sk, skb);
501 
502 	return err;
503 }
504 
505 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
506 					   struct net_device *vrf_dev)
507 {
508 	struct iphdr *ip4h;
509 	int ret = NET_XMIT_DROP;
510 	struct flowi4 fl4;
511 	struct net *net = dev_net(vrf_dev);
512 	struct rtable *rt;
513 
514 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
515 		goto err;
516 
517 	ip4h = ip_hdr(skb);
518 
519 	memset(&fl4, 0, sizeof(fl4));
520 	/* needed to match OIF rule */
521 	fl4.flowi4_l3mdev = vrf_dev->ifindex;
522 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
523 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
524 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
525 	fl4.flowi4_proto = ip4h->protocol;
526 	fl4.daddr = ip4h->daddr;
527 	fl4.saddr = ip4h->saddr;
528 
529 	rt = ip_route_output_flow(net, &fl4, NULL);
530 	if (IS_ERR(rt))
531 		goto err;
532 
533 	skb_dst_drop(skb);
534 
535 	/* if dst.dev is the VRF device again this is locally originated traffic
536 	 * destined to a local address. Short circuit to Rx path.
537 	 */
538 	if (rt->dst.dev == vrf_dev)
539 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
540 
541 	skb_dst_set(skb, &rt->dst);
542 
543 	/* strip the ethernet header added for pass through VRF device */
544 	__skb_pull(skb, skb_network_offset(skb));
545 
546 	if (!ip4h->saddr) {
547 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
548 					       RT_SCOPE_LINK);
549 	}
550 
551 	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
552 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
553 	if (unlikely(net_xmit_eval(ret)))
554 		vrf_dev->stats.tx_errors++;
555 	else
556 		ret = NET_XMIT_SUCCESS;
557 
558 out:
559 	return ret;
560 err:
561 	vrf_tx_error(vrf_dev, skb);
562 	goto out;
563 }
564 
565 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
566 {
567 	switch (skb->protocol) {
568 	case htons(ETH_P_IP):
569 		return vrf_process_v4_outbound(skb, dev);
570 	case htons(ETH_P_IPV6):
571 		return vrf_process_v6_outbound(skb, dev);
572 	default:
573 		vrf_tx_error(dev, skb);
574 		return NET_XMIT_DROP;
575 	}
576 }
577 
578 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
579 {
580 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
581 
582 	int len = skb->len;
583 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
584 
585 	u64_stats_update_begin(&dstats->syncp);
586 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
587 
588 		u64_stats_inc(&dstats->tx_packets);
589 		u64_stats_add(&dstats->tx_bytes, len);
590 	} else {
591 		u64_stats_inc(&dstats->tx_drops);
592 	}
593 	u64_stats_update_end(&dstats->syncp);
594 
595 	return ret;
596 }
597 
598 static void vrf_finish_direct(struct sk_buff *skb)
599 {
600 	struct net_device *vrf_dev = skb->dev;
601 
602 	if (!list_empty(&vrf_dev->ptype_all) &&
603 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
604 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
605 
606 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
607 		eth_zero_addr(eth->h_dest);
608 		eth->h_proto = skb->protocol;
609 
610 		dev_queue_xmit_nit(skb, vrf_dev);
611 
612 		skb_pull(skb, ETH_HLEN);
613 	}
614 
615 	vrf_nf_reset_ct(skb);
616 }
617 
618 #if IS_ENABLED(CONFIG_IPV6)
619 /* modelled after ip6_finish_output2 */
620 static int vrf_finish_output6(struct net *net, struct sock *sk,
621 			      struct sk_buff *skb)
622 {
623 	struct dst_entry *dst = skb_dst(skb);
624 	struct net_device *dev = dst->dev;
625 	const struct in6_addr *nexthop;
626 	struct neighbour *neigh;
627 	int ret;
628 
629 	vrf_nf_reset_ct(skb);
630 
631 	skb->protocol = htons(ETH_P_IPV6);
632 	skb->dev = dev;
633 
634 	rcu_read_lock();
635 	nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
636 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
637 	if (unlikely(!neigh))
638 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
639 	if (!IS_ERR(neigh)) {
640 		sock_confirm_neigh(skb, neigh);
641 		ret = neigh_output(neigh, skb, false);
642 		rcu_read_unlock();
643 		return ret;
644 	}
645 	rcu_read_unlock();
646 
647 	IP6_INC_STATS(dev_net(dst->dev),
648 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
649 	kfree_skb(skb);
650 	return -EINVAL;
651 }
652 
653 /* modelled after ip6_output */
654 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
655 {
656 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
657 			    net, sk, skb, NULL, skb_dst(skb)->dev,
658 			    vrf_finish_output6,
659 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
660 }
661 
662 /* set dst on skb to send packet to us via dev_xmit path. Allows
663  * packet to go through device based features such as qdisc, netfilter
664  * hooks and packet sockets with skb->dev set to vrf device.
665  */
666 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
667 					    struct sk_buff *skb)
668 {
669 	struct net_vrf *vrf = netdev_priv(vrf_dev);
670 	struct dst_entry *dst = NULL;
671 	struct rt6_info *rt6;
672 
673 	rcu_read_lock();
674 
675 	rt6 = rcu_dereference(vrf->rt6);
676 	if (likely(rt6)) {
677 		dst = &rt6->dst;
678 		dst_hold(dst);
679 	}
680 
681 	rcu_read_unlock();
682 
683 	if (unlikely(!dst)) {
684 		vrf_tx_error(vrf_dev, skb);
685 		return NULL;
686 	}
687 
688 	skb_dst_drop(skb);
689 	skb_dst_set(skb, dst);
690 
691 	return skb;
692 }
693 
694 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
695 				     struct sk_buff *skb)
696 {
697 	vrf_finish_direct(skb);
698 
699 	return vrf_ip6_local_out(net, sk, skb);
700 }
701 
702 static int vrf_output6_direct(struct net *net, struct sock *sk,
703 			      struct sk_buff *skb)
704 {
705 	int err = 1;
706 
707 	skb->protocol = htons(ETH_P_IPV6);
708 
709 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
710 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
711 			      NULL, skb->dev, vrf_output6_direct_finish);
712 
713 	if (likely(err == 1))
714 		vrf_finish_direct(skb);
715 
716 	return err;
717 }
718 
719 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
720 				     struct sk_buff *skb)
721 {
722 	int err;
723 
724 	err = vrf_output6_direct(net, sk, skb);
725 	if (likely(err == 1))
726 		err = vrf_ip6_local_out(net, sk, skb);
727 
728 	return err;
729 }
730 
731 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
732 					  struct sock *sk,
733 					  struct sk_buff *skb)
734 {
735 	struct net *net = dev_net(vrf_dev);
736 	int err;
737 
738 	skb->dev = vrf_dev;
739 
740 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
741 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
742 
743 	if (likely(err == 1))
744 		err = vrf_output6_direct(net, sk, skb);
745 
746 	if (likely(err == 1))
747 		return skb;
748 
749 	return NULL;
750 }
751 
752 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
753 				   struct sock *sk,
754 				   struct sk_buff *skb)
755 {
756 	/* don't divert link scope packets */
757 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
758 		return skb;
759 
760 	vrf_nf_set_untracked(skb);
761 
762 	if (qdisc_tx_is_default(vrf_dev) ||
763 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
764 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
765 
766 	return vrf_ip6_out_redirect(vrf_dev, skb);
767 }
768 
769 /* holding rtnl */
770 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
771 {
772 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
773 	struct net *net = dev_net(dev);
774 	struct dst_entry *dst;
775 
776 	RCU_INIT_POINTER(vrf->rt6, NULL);
777 	synchronize_rcu();
778 
779 	/* move dev in dst's to loopback so this VRF device can be deleted
780 	 * - based on dst_ifdown
781 	 */
782 	if (rt6) {
783 		dst = &rt6->dst;
784 		netdev_ref_replace(dst->dev, net->loopback_dev,
785 				   &dst->dev_tracker, GFP_KERNEL);
786 		dst->dev = net->loopback_dev;
787 		dst_release(dst);
788 	}
789 }
790 
791 static int vrf_rt6_create(struct net_device *dev)
792 {
793 	int flags = DST_NOPOLICY | DST_NOXFRM;
794 	struct net_vrf *vrf = netdev_priv(dev);
795 	struct net *net = dev_net(dev);
796 	struct rt6_info *rt6;
797 	int rc = -ENOMEM;
798 
799 	/* IPv6 can be CONFIG enabled and then disabled runtime */
800 	if (!ipv6_mod_enabled())
801 		return 0;
802 
803 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
804 	if (!vrf->fib6_table)
805 		goto out;
806 
807 	/* create a dst for routing packets out a VRF device */
808 	rt6 = ip6_dst_alloc(net, dev, flags);
809 	if (!rt6)
810 		goto out;
811 
812 	rt6->dst.output	= vrf_output6;
813 
814 	rcu_assign_pointer(vrf->rt6, rt6);
815 
816 	rc = 0;
817 out:
818 	return rc;
819 }
820 #else
821 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
822 				   struct sock *sk,
823 				   struct sk_buff *skb)
824 {
825 	return skb;
826 }
827 
828 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
829 {
830 }
831 
832 static int vrf_rt6_create(struct net_device *dev)
833 {
834 	return 0;
835 }
836 #endif
837 
838 /* modelled after ip_finish_output2 */
839 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
840 {
841 	struct dst_entry *dst = skb_dst(skb);
842 	struct rtable *rt = dst_rtable(dst);
843 	struct net_device *dev = dst->dev;
844 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
845 	struct neighbour *neigh;
846 	bool is_v6gw = false;
847 
848 	vrf_nf_reset_ct(skb);
849 
850 	/* Be paranoid, rather than too clever. */
851 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
852 		skb = skb_expand_head(skb, hh_len);
853 		if (!skb) {
854 			dev->stats.tx_errors++;
855 			return -ENOMEM;
856 		}
857 	}
858 
859 	rcu_read_lock();
860 
861 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
862 	if (!IS_ERR(neigh)) {
863 		int ret;
864 
865 		sock_confirm_neigh(skb, neigh);
866 		/* if crossing protocols, can not use the cached header */
867 		ret = neigh_output(neigh, skb, is_v6gw);
868 		rcu_read_unlock();
869 		return ret;
870 	}
871 
872 	rcu_read_unlock();
873 	vrf_tx_error(skb->dev, skb);
874 	return -EINVAL;
875 }
876 
877 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
878 {
879 	struct net_device *dev = skb_dst(skb)->dev;
880 
881 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
882 
883 	skb->dev = dev;
884 	skb->protocol = htons(ETH_P_IP);
885 
886 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
887 			    net, sk, skb, NULL, dev,
888 			    vrf_finish_output,
889 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
890 }
891 
892 /* set dst on skb to send packet to us via dev_xmit path. Allows
893  * packet to go through device based features such as qdisc, netfilter
894  * hooks and packet sockets with skb->dev set to vrf device.
895  */
896 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
897 					   struct sk_buff *skb)
898 {
899 	struct net_vrf *vrf = netdev_priv(vrf_dev);
900 	struct dst_entry *dst = NULL;
901 	struct rtable *rth;
902 
903 	rcu_read_lock();
904 
905 	rth = rcu_dereference(vrf->rth);
906 	if (likely(rth)) {
907 		dst = &rth->dst;
908 		dst_hold(dst);
909 	}
910 
911 	rcu_read_unlock();
912 
913 	if (unlikely(!dst)) {
914 		vrf_tx_error(vrf_dev, skb);
915 		return NULL;
916 	}
917 
918 	skb_dst_drop(skb);
919 	skb_dst_set(skb, dst);
920 
921 	return skb;
922 }
923 
924 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
925 				    struct sk_buff *skb)
926 {
927 	vrf_finish_direct(skb);
928 
929 	return vrf_ip_local_out(net, sk, skb);
930 }
931 
932 static int vrf_output_direct(struct net *net, struct sock *sk,
933 			     struct sk_buff *skb)
934 {
935 	int err = 1;
936 
937 	skb->protocol = htons(ETH_P_IP);
938 
939 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
940 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
941 			      NULL, skb->dev, vrf_output_direct_finish);
942 
943 	if (likely(err == 1))
944 		vrf_finish_direct(skb);
945 
946 	return err;
947 }
948 
949 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
950 				    struct sk_buff *skb)
951 {
952 	int err;
953 
954 	err = vrf_output_direct(net, sk, skb);
955 	if (likely(err == 1))
956 		err = vrf_ip_local_out(net, sk, skb);
957 
958 	return err;
959 }
960 
961 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
962 					 struct sock *sk,
963 					 struct sk_buff *skb)
964 {
965 	struct net *net = dev_net(vrf_dev);
966 	int err;
967 
968 	skb->dev = vrf_dev;
969 
970 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
971 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
972 
973 	if (likely(err == 1))
974 		err = vrf_output_direct(net, sk, skb);
975 
976 	if (likely(err == 1))
977 		return skb;
978 
979 	return NULL;
980 }
981 
982 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
983 				  struct sock *sk,
984 				  struct sk_buff *skb)
985 {
986 	/* don't divert multicast or local broadcast */
987 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
988 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
989 		return skb;
990 
991 	vrf_nf_set_untracked(skb);
992 
993 	if (qdisc_tx_is_default(vrf_dev) ||
994 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
995 		return vrf_ip_out_direct(vrf_dev, sk, skb);
996 
997 	return vrf_ip_out_redirect(vrf_dev, skb);
998 }
999 
1000 /* called with rcu lock held */
1001 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1002 				  struct sock *sk,
1003 				  struct sk_buff *skb,
1004 				  u16 proto)
1005 {
1006 	switch (proto) {
1007 	case AF_INET:
1008 		return vrf_ip_out(vrf_dev, sk, skb);
1009 	case AF_INET6:
1010 		return vrf_ip6_out(vrf_dev, sk, skb);
1011 	}
1012 
1013 	return skb;
1014 }
1015 
1016 /* holding rtnl */
1017 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1018 {
1019 	struct rtable *rth = rtnl_dereference(vrf->rth);
1020 	struct net *net = dev_net(dev);
1021 	struct dst_entry *dst;
1022 
1023 	RCU_INIT_POINTER(vrf->rth, NULL);
1024 	synchronize_rcu();
1025 
1026 	/* move dev in dst's to loopback so this VRF device can be deleted
1027 	 * - based on dst_ifdown
1028 	 */
1029 	if (rth) {
1030 		dst = &rth->dst;
1031 		netdev_ref_replace(dst->dev, net->loopback_dev,
1032 				   &dst->dev_tracker, GFP_KERNEL);
1033 		dst->dev = net->loopback_dev;
1034 		dst_release(dst);
1035 	}
1036 }
1037 
1038 static int vrf_rtable_create(struct net_device *dev)
1039 {
1040 	struct net_vrf *vrf = netdev_priv(dev);
1041 	struct rtable *rth;
1042 
1043 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1044 		return -ENOMEM;
1045 
1046 	/* create a dst for routing packets out through a VRF device */
1047 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1048 	if (!rth)
1049 		return -ENOMEM;
1050 
1051 	rth->dst.output	= vrf_output;
1052 
1053 	rcu_assign_pointer(vrf->rth, rth);
1054 
1055 	return 0;
1056 }
1057 
1058 /**************************** device handling ********************/
1059 
1060 /* cycle interface to flush neighbor cache and move routes across tables */
1061 static void cycle_netdev(struct net_device *dev,
1062 			 struct netlink_ext_ack *extack)
1063 {
1064 	unsigned int flags = dev->flags;
1065 	int ret;
1066 
1067 	if (!netif_running(dev))
1068 		return;
1069 
1070 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1071 	if (ret >= 0)
1072 		ret = dev_change_flags(dev, flags, extack);
1073 
1074 	if (ret < 0) {
1075 		netdev_err(dev,
1076 			   "Failed to cycle device %s; route tables might be wrong!\n",
1077 			   dev->name);
1078 	}
1079 }
1080 
1081 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1082 			    struct netlink_ext_ack *extack)
1083 {
1084 	int ret;
1085 
1086 	/* do not allow loopback device to be enslaved to a VRF.
1087 	 * The vrf device acts as the loopback for the vrf.
1088 	 */
1089 	if (port_dev == dev_net(dev)->loopback_dev) {
1090 		NL_SET_ERR_MSG(extack,
1091 			       "Can not enslave loopback device to a VRF");
1092 		return -EOPNOTSUPP;
1093 	}
1094 
1095 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1096 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1097 	if (ret < 0)
1098 		goto err;
1099 
1100 	cycle_netdev(port_dev, extack);
1101 
1102 	return 0;
1103 
1104 err:
1105 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1106 	return ret;
1107 }
1108 
1109 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1110 			 struct netlink_ext_ack *extack)
1111 {
1112 	if (netif_is_l3_master(port_dev)) {
1113 		NL_SET_ERR_MSG(extack,
1114 			       "Can not enslave an L3 master device to a VRF");
1115 		return -EINVAL;
1116 	}
1117 
1118 	if (netif_is_l3_slave(port_dev))
1119 		return -EINVAL;
1120 
1121 	return do_vrf_add_slave(dev, port_dev, extack);
1122 }
1123 
1124 /* inverse of do_vrf_add_slave */
1125 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1126 {
1127 	netdev_upper_dev_unlink(port_dev, dev);
1128 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1129 
1130 	cycle_netdev(port_dev, NULL);
1131 
1132 	return 0;
1133 }
1134 
1135 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1136 {
1137 	return do_vrf_del_slave(dev, port_dev);
1138 }
1139 
1140 static void vrf_dev_uninit(struct net_device *dev)
1141 {
1142 	struct net_vrf *vrf = netdev_priv(dev);
1143 
1144 	vrf_rtable_release(dev, vrf);
1145 	vrf_rt6_release(dev, vrf);
1146 }
1147 
1148 static int vrf_dev_init(struct net_device *dev)
1149 {
1150 	struct net_vrf *vrf = netdev_priv(dev);
1151 
1152 	/* create the default dst which points back to us */
1153 	if (vrf_rtable_create(dev) != 0)
1154 		goto out_nomem;
1155 
1156 	if (vrf_rt6_create(dev) != 0)
1157 		goto out_rth;
1158 
1159 	dev->flags = IFF_MASTER | IFF_NOARP;
1160 
1161 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1162 	dev->operstate = IF_OPER_UP;
1163 	netdev_lockdep_set_classes(dev);
1164 	return 0;
1165 
1166 out_rth:
1167 	vrf_rtable_release(dev, vrf);
1168 out_nomem:
1169 	return -ENOMEM;
1170 }
1171 
1172 static const struct net_device_ops vrf_netdev_ops = {
1173 	.ndo_init		= vrf_dev_init,
1174 	.ndo_uninit		= vrf_dev_uninit,
1175 	.ndo_start_xmit		= vrf_xmit,
1176 	.ndo_set_mac_address	= eth_mac_addr,
1177 	.ndo_add_slave		= vrf_add_slave,
1178 	.ndo_del_slave		= vrf_del_slave,
1179 };
1180 
1181 static u32 vrf_fib_table(const struct net_device *dev)
1182 {
1183 	struct net_vrf *vrf = netdev_priv(dev);
1184 
1185 	return vrf->tb_id;
1186 }
1187 
1188 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1189 {
1190 	kfree_skb(skb);
1191 	return 0;
1192 }
1193 
1194 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1195 				      struct sk_buff *skb,
1196 				      struct net_device *dev)
1197 {
1198 	struct net *net = dev_net(dev);
1199 
1200 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1201 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1202 
1203 	return skb;
1204 }
1205 
1206 static int vrf_prepare_mac_header(struct sk_buff *skb,
1207 				  struct net_device *vrf_dev, u16 proto)
1208 {
1209 	struct ethhdr *eth;
1210 	int err;
1211 
1212 	/* in general, we do not know if there is enough space in the head of
1213 	 * the packet for hosting the mac header.
1214 	 */
1215 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1216 	if (unlikely(err))
1217 		/* no space in the skb head */
1218 		return -ENOBUFS;
1219 
1220 	__skb_push(skb, ETH_HLEN);
1221 	eth = (struct ethhdr *)skb->data;
1222 
1223 	skb_reset_mac_header(skb);
1224 	skb_reset_mac_len(skb);
1225 
1226 	/* we set the ethernet destination and the source addresses to the
1227 	 * address of the VRF device.
1228 	 */
1229 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1230 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1231 	eth->h_proto = htons(proto);
1232 
1233 	/* the destination address of the Ethernet frame corresponds to the
1234 	 * address set on the VRF interface; therefore, the packet is intended
1235 	 * to be processed locally.
1236 	 */
1237 	skb->protocol = eth->h_proto;
1238 	skb->pkt_type = PACKET_HOST;
1239 
1240 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1241 
1242 	skb_pull_inline(skb, ETH_HLEN);
1243 
1244 	return 0;
1245 }
1246 
1247 /* prepare and add the mac header to the packet if it was not set previously.
1248  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1249  * If the mac header was already set, the original mac header is left
1250  * untouched and the function returns immediately.
1251  */
1252 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1253 				       struct net_device *vrf_dev,
1254 				       u16 proto, struct net_device *orig_dev)
1255 {
1256 	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1257 		return 0;
1258 
1259 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1260 }
1261 
1262 #if IS_ENABLED(CONFIG_IPV6)
1263 /* neighbor handling is done with actual device; do not want
1264  * to flip skb->dev for those ndisc packets. This really fails
1265  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1266  * a start.
1267  */
1268 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1269 {
1270 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1271 	bool rc = false;
1272 
1273 	if (iph->nexthdr == NEXTHDR_ICMP) {
1274 		const struct icmp6hdr *icmph;
1275 		struct icmp6hdr _icmph;
1276 
1277 		icmph = skb_header_pointer(skb, sizeof(*iph),
1278 					   sizeof(_icmph), &_icmph);
1279 		if (!icmph)
1280 			goto out;
1281 
1282 		switch (icmph->icmp6_type) {
1283 		case NDISC_ROUTER_SOLICITATION:
1284 		case NDISC_ROUTER_ADVERTISEMENT:
1285 		case NDISC_NEIGHBOUR_SOLICITATION:
1286 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1287 		case NDISC_REDIRECT:
1288 			rc = true;
1289 			break;
1290 		}
1291 	}
1292 
1293 out:
1294 	return rc;
1295 }
1296 
1297 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1298 					     const struct net_device *dev,
1299 					     struct flowi6 *fl6,
1300 					     int ifindex,
1301 					     const struct sk_buff *skb,
1302 					     int flags)
1303 {
1304 	struct net_vrf *vrf = netdev_priv(dev);
1305 
1306 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1307 }
1308 
1309 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1310 			      int ifindex)
1311 {
1312 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1313 	struct flowi6 fl6 = {
1314 		.flowi6_iif     = ifindex,
1315 		.flowi6_mark    = skb->mark,
1316 		.flowi6_proto   = iph->nexthdr,
1317 		.daddr          = iph->daddr,
1318 		.saddr          = iph->saddr,
1319 		.flowlabel      = ip6_flowinfo(iph),
1320 	};
1321 	struct net *net = dev_net(vrf_dev);
1322 	struct rt6_info *rt6;
1323 
1324 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1325 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1326 	if (unlikely(!rt6))
1327 		return;
1328 
1329 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1330 		return;
1331 
1332 	skb_dst_set(skb, &rt6->dst);
1333 }
1334 
1335 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1336 				   struct sk_buff *skb)
1337 {
1338 	int orig_iif = skb->skb_iif;
1339 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1340 	bool is_ndisc = ipv6_ndisc_frame(skb);
1341 
1342 	/* loopback, multicast & non-ND link-local traffic; do not push through
1343 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1344 	 * For non-loopback strict packets, determine the dst using the original
1345 	 * ifindex.
1346 	 */
1347 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1348 		skb->dev = vrf_dev;
1349 		skb->skb_iif = vrf_dev->ifindex;
1350 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1351 
1352 		if (skb->pkt_type == PACKET_LOOPBACK)
1353 			skb->pkt_type = PACKET_HOST;
1354 		else
1355 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1356 
1357 		goto out;
1358 	}
1359 
1360 	/* if packet is NDISC then keep the ingress interface */
1361 	if (!is_ndisc) {
1362 		struct net_device *orig_dev = skb->dev;
1363 
1364 		vrf_rx_stats(vrf_dev, skb->len);
1365 		skb->dev = vrf_dev;
1366 		skb->skb_iif = vrf_dev->ifindex;
1367 
1368 		if (!list_empty(&vrf_dev->ptype_all)) {
1369 			int err;
1370 
1371 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1372 							  ETH_P_IPV6,
1373 							  orig_dev);
1374 			if (likely(!err)) {
1375 				skb_push(skb, skb->mac_len);
1376 				dev_queue_xmit_nit(skb, vrf_dev);
1377 				skb_pull(skb, skb->mac_len);
1378 			}
1379 		}
1380 
1381 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1382 	}
1383 
1384 	if (need_strict)
1385 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1386 
1387 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1388 out:
1389 	return skb;
1390 }
1391 
1392 #else
1393 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1394 				   struct sk_buff *skb)
1395 {
1396 	return skb;
1397 }
1398 #endif
1399 
1400 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1401 				  struct sk_buff *skb)
1402 {
1403 	struct net_device *orig_dev = skb->dev;
1404 
1405 	skb->dev = vrf_dev;
1406 	skb->skb_iif = vrf_dev->ifindex;
1407 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1408 
1409 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1410 		goto out;
1411 
1412 	/* loopback traffic; do not push through packet taps again.
1413 	 * Reset pkt_type for upper layers to process skb
1414 	 */
1415 	if (skb->pkt_type == PACKET_LOOPBACK) {
1416 		skb->pkt_type = PACKET_HOST;
1417 		goto out;
1418 	}
1419 
1420 	vrf_rx_stats(vrf_dev, skb->len);
1421 
1422 	if (!list_empty(&vrf_dev->ptype_all)) {
1423 		int err;
1424 
1425 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1426 						  orig_dev);
1427 		if (likely(!err)) {
1428 			skb_push(skb, skb->mac_len);
1429 			dev_queue_xmit_nit(skb, vrf_dev);
1430 			skb_pull(skb, skb->mac_len);
1431 		}
1432 	}
1433 
1434 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1435 out:
1436 	return skb;
1437 }
1438 
1439 /* called with rcu lock held */
1440 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1441 				  struct sk_buff *skb,
1442 				  u16 proto)
1443 {
1444 	switch (proto) {
1445 	case AF_INET:
1446 		return vrf_ip_rcv(vrf_dev, skb);
1447 	case AF_INET6:
1448 		return vrf_ip6_rcv(vrf_dev, skb);
1449 	}
1450 
1451 	return skb;
1452 }
1453 
1454 #if IS_ENABLED(CONFIG_IPV6)
1455 /* send to link-local or multicast address via interface enslaved to
1456  * VRF device. Force lookup to VRF table without changing flow struct
1457  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1458  * is taken on the dst by this function.
1459  */
1460 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1461 					      struct flowi6 *fl6)
1462 {
1463 	struct net *net = dev_net(dev);
1464 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1465 	struct dst_entry *dst = NULL;
1466 	struct rt6_info *rt;
1467 
1468 	/* VRF device does not have a link-local address and
1469 	 * sending packets to link-local or mcast addresses over
1470 	 * a VRF device does not make sense
1471 	 */
1472 	if (fl6->flowi6_oif == dev->ifindex) {
1473 		dst = &net->ipv6.ip6_null_entry->dst;
1474 		return dst;
1475 	}
1476 
1477 	if (!ipv6_addr_any(&fl6->saddr))
1478 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1479 
1480 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1481 	if (rt)
1482 		dst = &rt->dst;
1483 
1484 	return dst;
1485 }
1486 #endif
1487 
1488 static const struct l3mdev_ops vrf_l3mdev_ops = {
1489 	.l3mdev_fib_table	= vrf_fib_table,
1490 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1491 	.l3mdev_l3_out		= vrf_l3_out,
1492 #if IS_ENABLED(CONFIG_IPV6)
1493 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1494 #endif
1495 };
1496 
1497 static void vrf_get_drvinfo(struct net_device *dev,
1498 			    struct ethtool_drvinfo *info)
1499 {
1500 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1501 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1502 }
1503 
1504 static const struct ethtool_ops vrf_ethtool_ops = {
1505 	.get_drvinfo	= vrf_get_drvinfo,
1506 };
1507 
1508 static inline size_t vrf_fib_rule_nl_size(void)
1509 {
1510 	size_t sz;
1511 
1512 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1513 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1514 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1515 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1516 
1517 	return sz;
1518 }
1519 
1520 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1521 {
1522 	struct fib_rule_hdr *frh;
1523 	struct nlmsghdr *nlh;
1524 	struct sk_buff *skb;
1525 	int err;
1526 
1527 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1528 	    !ipv6_mod_enabled())
1529 		return 0;
1530 
1531 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1532 	if (!skb)
1533 		return -ENOMEM;
1534 
1535 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1536 	if (!nlh)
1537 		goto nla_put_failure;
1538 
1539 	/* rule only needs to appear once */
1540 	nlh->nlmsg_flags |= NLM_F_EXCL;
1541 
1542 	frh = nlmsg_data(nlh);
1543 	memset(frh, 0, sizeof(*frh));
1544 	frh->family = family;
1545 	frh->action = FR_ACT_TO_TBL;
1546 
1547 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1548 		goto nla_put_failure;
1549 
1550 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1551 		goto nla_put_failure;
1552 
1553 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1554 		goto nla_put_failure;
1555 
1556 	nlmsg_end(skb, nlh);
1557 
1558 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1559 	skb->sk = dev_net(dev)->rtnl;
1560 	if (add_it) {
1561 		err = fib_nl_newrule(skb, nlh, NULL);
1562 		if (err == -EEXIST)
1563 			err = 0;
1564 	} else {
1565 		err = fib_nl_delrule(skb, nlh, NULL);
1566 		if (err == -ENOENT)
1567 			err = 0;
1568 	}
1569 	nlmsg_free(skb);
1570 
1571 	return err;
1572 
1573 nla_put_failure:
1574 	nlmsg_free(skb);
1575 
1576 	return -EMSGSIZE;
1577 }
1578 
1579 static int vrf_add_fib_rules(const struct net_device *dev)
1580 {
1581 	int err;
1582 
1583 	err = vrf_fib_rule(dev, AF_INET,  true);
1584 	if (err < 0)
1585 		goto out_err;
1586 
1587 	err = vrf_fib_rule(dev, AF_INET6, true);
1588 	if (err < 0)
1589 		goto ipv6_err;
1590 
1591 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1592 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1593 	if (err < 0)
1594 		goto ipmr_err;
1595 #endif
1596 
1597 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1598 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1599 	if (err < 0)
1600 		goto ip6mr_err;
1601 #endif
1602 
1603 	return 0;
1604 
1605 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1606 ip6mr_err:
1607 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1608 #endif
1609 
1610 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1611 ipmr_err:
1612 	vrf_fib_rule(dev, AF_INET6,  false);
1613 #endif
1614 
1615 ipv6_err:
1616 	vrf_fib_rule(dev, AF_INET,  false);
1617 
1618 out_err:
1619 	netdev_err(dev, "Failed to add FIB rules.\n");
1620 	return err;
1621 }
1622 
1623 static void vrf_setup(struct net_device *dev)
1624 {
1625 	ether_setup(dev);
1626 
1627 	/* Initialize the device structure. */
1628 	dev->netdev_ops = &vrf_netdev_ops;
1629 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1630 	dev->ethtool_ops = &vrf_ethtool_ops;
1631 	dev->needs_free_netdev = true;
1632 
1633 	/* Fill in device structure with ethernet-generic values. */
1634 	eth_hw_addr_random(dev);
1635 
1636 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1637 	dev->features |= NETIF_F_LLTX;
1638 
1639 	/* don't allow vrf devices to change network namespaces. */
1640 	dev->features |= NETIF_F_NETNS_LOCAL;
1641 
1642 	/* does not make sense for a VLAN to be added to a vrf device */
1643 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1644 
1645 	/* enable offload features */
1646 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1647 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1648 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1649 
1650 	dev->hw_features = dev->features;
1651 	dev->hw_enc_features = dev->features;
1652 
1653 	/* default to no qdisc; user can add if desired */
1654 	dev->priv_flags |= IFF_NO_QUEUE;
1655 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1656 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1657 
1658 	/* VRF devices do not care about MTU, but if the MTU is set
1659 	 * too low then the ipv4 and ipv6 protocols are disabled
1660 	 * which breaks networking.
1661 	 */
1662 	dev->min_mtu = IPV6_MIN_MTU;
1663 	dev->max_mtu = IP6_MAX_MTU;
1664 	dev->mtu = dev->max_mtu;
1665 
1666 	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1667 }
1668 
1669 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1670 			struct netlink_ext_ack *extack)
1671 {
1672 	if (tb[IFLA_ADDRESS]) {
1673 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1674 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1675 			return -EINVAL;
1676 		}
1677 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1678 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1679 			return -EADDRNOTAVAIL;
1680 		}
1681 	}
1682 	return 0;
1683 }
1684 
1685 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1686 {
1687 	struct net_device *port_dev;
1688 	struct list_head *iter;
1689 
1690 	netdev_for_each_lower_dev(dev, port_dev, iter)
1691 		vrf_del_slave(dev, port_dev);
1692 
1693 	vrf_map_unregister_dev(dev);
1694 
1695 	unregister_netdevice_queue(dev, head);
1696 }
1697 
1698 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1699 		       struct nlattr *tb[], struct nlattr *data[],
1700 		       struct netlink_ext_ack *extack)
1701 {
1702 	struct net_vrf *vrf = netdev_priv(dev);
1703 	struct netns_vrf *nn_vrf;
1704 	bool *add_fib_rules;
1705 	struct net *net;
1706 	int err;
1707 
1708 	if (!data || !data[IFLA_VRF_TABLE]) {
1709 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1710 		return -EINVAL;
1711 	}
1712 
1713 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1714 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1715 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1716 				    "Invalid VRF table id");
1717 		return -EINVAL;
1718 	}
1719 
1720 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1721 
1722 	err = register_netdevice(dev);
1723 	if (err)
1724 		goto out;
1725 
1726 	/* mapping between table_id and vrf;
1727 	 * note: such binding could not be done in the dev init function
1728 	 * because dev->ifindex id is not available yet.
1729 	 */
1730 	vrf->ifindex = dev->ifindex;
1731 
1732 	err = vrf_map_register_dev(dev, extack);
1733 	if (err) {
1734 		unregister_netdevice(dev);
1735 		goto out;
1736 	}
1737 
1738 	net = dev_net(dev);
1739 	nn_vrf = net_generic(net, vrf_net_id);
1740 
1741 	add_fib_rules = &nn_vrf->add_fib_rules;
1742 	if (*add_fib_rules) {
1743 		err = vrf_add_fib_rules(dev);
1744 		if (err) {
1745 			vrf_map_unregister_dev(dev);
1746 			unregister_netdevice(dev);
1747 			goto out;
1748 		}
1749 		*add_fib_rules = false;
1750 	}
1751 
1752 out:
1753 	return err;
1754 }
1755 
1756 static size_t vrf_nl_getsize(const struct net_device *dev)
1757 {
1758 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1759 }
1760 
1761 static int vrf_fillinfo(struct sk_buff *skb,
1762 			const struct net_device *dev)
1763 {
1764 	struct net_vrf *vrf = netdev_priv(dev);
1765 
1766 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1767 }
1768 
1769 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1770 				 const struct net_device *slave_dev)
1771 {
1772 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1773 }
1774 
1775 static int vrf_fill_slave_info(struct sk_buff *skb,
1776 			       const struct net_device *vrf_dev,
1777 			       const struct net_device *slave_dev)
1778 {
1779 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1780 
1781 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1782 		return -EMSGSIZE;
1783 
1784 	return 0;
1785 }
1786 
1787 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1788 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1789 };
1790 
1791 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1792 	.kind		= DRV_NAME,
1793 	.priv_size	= sizeof(struct net_vrf),
1794 
1795 	.get_size	= vrf_nl_getsize,
1796 	.policy		= vrf_nl_policy,
1797 	.validate	= vrf_validate,
1798 	.fill_info	= vrf_fillinfo,
1799 
1800 	.get_slave_size  = vrf_get_slave_size,
1801 	.fill_slave_info = vrf_fill_slave_info,
1802 
1803 	.newlink	= vrf_newlink,
1804 	.dellink	= vrf_dellink,
1805 	.setup		= vrf_setup,
1806 	.maxtype	= IFLA_VRF_MAX,
1807 };
1808 
1809 static int vrf_device_event(struct notifier_block *unused,
1810 			    unsigned long event, void *ptr)
1811 {
1812 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1813 
1814 	/* only care about unregister events to drop slave references */
1815 	if (event == NETDEV_UNREGISTER) {
1816 		struct net_device *vrf_dev;
1817 
1818 		if (!netif_is_l3_slave(dev))
1819 			goto out;
1820 
1821 		vrf_dev = netdev_master_upper_dev_get(dev);
1822 		vrf_del_slave(vrf_dev, dev);
1823 	}
1824 out:
1825 	return NOTIFY_DONE;
1826 }
1827 
1828 static struct notifier_block vrf_notifier_block __read_mostly = {
1829 	.notifier_call = vrf_device_event,
1830 };
1831 
1832 static int vrf_map_init(struct vrf_map *vmap)
1833 {
1834 	spin_lock_init(&vmap->vmap_lock);
1835 	hash_init(vmap->ht);
1836 
1837 	vmap->strict_mode = false;
1838 
1839 	return 0;
1840 }
1841 
1842 #ifdef CONFIG_SYSCTL
1843 static bool vrf_strict_mode(struct vrf_map *vmap)
1844 {
1845 	bool strict_mode;
1846 
1847 	vrf_map_lock(vmap);
1848 	strict_mode = vmap->strict_mode;
1849 	vrf_map_unlock(vmap);
1850 
1851 	return strict_mode;
1852 }
1853 
1854 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1855 {
1856 	bool *cur_mode;
1857 	int res = 0;
1858 
1859 	vrf_map_lock(vmap);
1860 
1861 	cur_mode = &vmap->strict_mode;
1862 	if (*cur_mode == new_mode)
1863 		goto unlock;
1864 
1865 	if (*cur_mode) {
1866 		/* disable strict mode */
1867 		*cur_mode = false;
1868 	} else {
1869 		if (vmap->shared_tables) {
1870 			/* we cannot allow strict_mode because there are some
1871 			 * vrfs that share one or more tables.
1872 			 */
1873 			res = -EBUSY;
1874 			goto unlock;
1875 		}
1876 
1877 		/* no tables are shared among vrfs, so we can go back
1878 		 * to 1:1 association between a vrf with its table.
1879 		 */
1880 		*cur_mode = true;
1881 	}
1882 
1883 unlock:
1884 	vrf_map_unlock(vmap);
1885 
1886 	return res;
1887 }
1888 
1889 static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1890 				    void *buffer, size_t *lenp, loff_t *ppos)
1891 {
1892 	struct net *net = (struct net *)table->extra1;
1893 	struct vrf_map *vmap = netns_vrf_map(net);
1894 	int proc_strict_mode = 0;
1895 	struct ctl_table tmp = {
1896 		.procname	= table->procname,
1897 		.data		= &proc_strict_mode,
1898 		.maxlen		= sizeof(int),
1899 		.mode		= table->mode,
1900 		.extra1		= SYSCTL_ZERO,
1901 		.extra2		= SYSCTL_ONE,
1902 	};
1903 	int ret;
1904 
1905 	if (!write)
1906 		proc_strict_mode = vrf_strict_mode(vmap);
1907 
1908 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1909 
1910 	if (write && ret == 0)
1911 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1912 
1913 	return ret;
1914 }
1915 
1916 static const struct ctl_table vrf_table[] = {
1917 	{
1918 		.procname	= "strict_mode",
1919 		.data		= NULL,
1920 		.maxlen		= sizeof(int),
1921 		.mode		= 0644,
1922 		.proc_handler	= vrf_shared_table_handler,
1923 		/* set by the vrf_netns_init */
1924 		.extra1		= NULL,
1925 	},
1926 };
1927 
1928 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1929 {
1930 	struct ctl_table *table;
1931 
1932 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1933 	if (!table)
1934 		return -ENOMEM;
1935 
1936 	/* init the extra1 parameter with the reference to current netns */
1937 	table[0].extra1 = net;
1938 
1939 	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1940 						 ARRAY_SIZE(vrf_table));
1941 	if (!nn_vrf->ctl_hdr) {
1942 		kfree(table);
1943 		return -ENOMEM;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static void vrf_netns_exit_sysctl(struct net *net)
1950 {
1951 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1952 	const struct ctl_table *table;
1953 
1954 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1955 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1956 	kfree(table);
1957 }
1958 #else
1959 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1960 {
1961 	return 0;
1962 }
1963 
1964 static void vrf_netns_exit_sysctl(struct net *net)
1965 {
1966 }
1967 #endif
1968 
1969 /* Initialize per network namespace state */
1970 static int __net_init vrf_netns_init(struct net *net)
1971 {
1972 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1973 
1974 	nn_vrf->add_fib_rules = true;
1975 	vrf_map_init(&nn_vrf->vmap);
1976 
1977 	return vrf_netns_init_sysctl(net, nn_vrf);
1978 }
1979 
1980 static void __net_exit vrf_netns_exit(struct net *net)
1981 {
1982 	vrf_netns_exit_sysctl(net);
1983 }
1984 
1985 static struct pernet_operations vrf_net_ops __net_initdata = {
1986 	.init = vrf_netns_init,
1987 	.exit = vrf_netns_exit,
1988 	.id   = &vrf_net_id,
1989 	.size = sizeof(struct netns_vrf),
1990 };
1991 
1992 static int __init vrf_init_module(void)
1993 {
1994 	int rc;
1995 
1996 	register_netdevice_notifier(&vrf_notifier_block);
1997 
1998 	rc = register_pernet_subsys(&vrf_net_ops);
1999 	if (rc < 0)
2000 		goto error;
2001 
2002 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2003 					  vrf_ifindex_lookup_by_table_id);
2004 	if (rc < 0)
2005 		goto unreg_pernet;
2006 
2007 	rc = rtnl_link_register(&vrf_link_ops);
2008 	if (rc < 0)
2009 		goto table_lookup_unreg;
2010 
2011 	return 0;
2012 
2013 table_lookup_unreg:
2014 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2015 				       vrf_ifindex_lookup_by_table_id);
2016 
2017 unreg_pernet:
2018 	unregister_pernet_subsys(&vrf_net_ops);
2019 
2020 error:
2021 	unregister_netdevice_notifier(&vrf_notifier_block);
2022 	return rc;
2023 }
2024 
2025 module_init(vrf_init_module);
2026 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2027 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2028 MODULE_LICENSE("GPL");
2029 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2030 MODULE_VERSION(DRV_VERSION);
2031