1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_fib.h> 34 #include <net/ip6_route.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/l3mdev.h> 38 #include <net/fib_rules.h> 39 #include <net/netns/generic.h> 40 41 #define DRV_NAME "vrf" 42 #define DRV_VERSION "1.0" 43 44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 45 46 static unsigned int vrf_net_id; 47 48 struct net_vrf { 49 struct rtable __rcu *rth; 50 struct rt6_info __rcu *rt6; 51 u32 tb_id; 52 }; 53 54 struct pcpu_dstats { 55 u64 tx_pkts; 56 u64 tx_bytes; 57 u64 tx_drps; 58 u64 rx_pkts; 59 u64 rx_bytes; 60 u64 rx_drps; 61 struct u64_stats_sync syncp; 62 }; 63 64 static void vrf_rx_stats(struct net_device *dev, int len) 65 { 66 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 67 68 u64_stats_update_begin(&dstats->syncp); 69 dstats->rx_pkts++; 70 dstats->rx_bytes += len; 71 u64_stats_update_end(&dstats->syncp); 72 } 73 74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 75 { 76 vrf_dev->stats.tx_errors++; 77 kfree_skb(skb); 78 } 79 80 static void vrf_get_stats64(struct net_device *dev, 81 struct rtnl_link_stats64 *stats) 82 { 83 int i; 84 85 for_each_possible_cpu(i) { 86 const struct pcpu_dstats *dstats; 87 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 88 unsigned int start; 89 90 dstats = per_cpu_ptr(dev->dstats, i); 91 do { 92 start = u64_stats_fetch_begin_irq(&dstats->syncp); 93 tbytes = dstats->tx_bytes; 94 tpkts = dstats->tx_pkts; 95 tdrops = dstats->tx_drps; 96 rbytes = dstats->rx_bytes; 97 rpkts = dstats->rx_pkts; 98 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 99 stats->tx_bytes += tbytes; 100 stats->tx_packets += tpkts; 101 stats->tx_dropped += tdrops; 102 stats->rx_bytes += rbytes; 103 stats->rx_packets += rpkts; 104 } 105 } 106 107 /* by default VRF devices do not have a qdisc and are expected 108 * to be created with only a single queue. 109 */ 110 static bool qdisc_tx_is_default(const struct net_device *dev) 111 { 112 struct netdev_queue *txq; 113 struct Qdisc *qdisc; 114 115 if (dev->num_tx_queues > 1) 116 return false; 117 118 txq = netdev_get_tx_queue(dev, 0); 119 qdisc = rcu_access_pointer(txq->qdisc); 120 121 return !qdisc->enqueue; 122 } 123 124 /* Local traffic destined to local address. Reinsert the packet to rx 125 * path, similar to loopback handling. 126 */ 127 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 128 struct dst_entry *dst) 129 { 130 int len = skb->len; 131 132 skb_orphan(skb); 133 134 skb_dst_set(skb, dst); 135 skb_dst_force(skb); 136 137 /* set pkt_type to avoid skb hitting packet taps twice - 138 * once on Tx and again in Rx processing 139 */ 140 skb->pkt_type = PACKET_LOOPBACK; 141 142 skb->protocol = eth_type_trans(skb, dev); 143 144 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 145 vrf_rx_stats(dev, len); 146 else 147 this_cpu_inc(dev->dstats->rx_drps); 148 149 return NETDEV_TX_OK; 150 } 151 152 #if IS_ENABLED(CONFIG_IPV6) 153 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 154 struct sk_buff *skb) 155 { 156 int err; 157 158 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 159 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 160 161 if (likely(err == 1)) 162 err = dst_output(net, sk, skb); 163 164 return err; 165 } 166 167 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 168 struct net_device *dev) 169 { 170 const struct ipv6hdr *iph = ipv6_hdr(skb); 171 struct net *net = dev_net(skb->dev); 172 struct flowi6 fl6 = { 173 /* needed to match OIF rule */ 174 .flowi6_oif = dev->ifindex, 175 .flowi6_iif = LOOPBACK_IFINDEX, 176 .daddr = iph->daddr, 177 .saddr = iph->saddr, 178 .flowlabel = ip6_flowinfo(iph), 179 .flowi6_mark = skb->mark, 180 .flowi6_proto = iph->nexthdr, 181 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF, 182 }; 183 int ret = NET_XMIT_DROP; 184 struct dst_entry *dst; 185 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 186 187 dst = ip6_route_output(net, NULL, &fl6); 188 if (dst == dst_null) 189 goto err; 190 191 skb_dst_drop(skb); 192 193 /* if dst.dev is loopback or the VRF device again this is locally 194 * originated traffic destined to a local address. Short circuit 195 * to Rx path 196 */ 197 if (dst->dev == dev) 198 return vrf_local_xmit(skb, dev, dst); 199 200 skb_dst_set(skb, dst); 201 202 /* strip the ethernet header added for pass through VRF device */ 203 __skb_pull(skb, skb_network_offset(skb)); 204 205 ret = vrf_ip6_local_out(net, skb->sk, skb); 206 if (unlikely(net_xmit_eval(ret))) 207 dev->stats.tx_errors++; 208 else 209 ret = NET_XMIT_SUCCESS; 210 211 return ret; 212 err: 213 vrf_tx_error(dev, skb); 214 return NET_XMIT_DROP; 215 } 216 #else 217 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 218 struct net_device *dev) 219 { 220 vrf_tx_error(dev, skb); 221 return NET_XMIT_DROP; 222 } 223 #endif 224 225 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 226 static int vrf_ip_local_out(struct net *net, struct sock *sk, 227 struct sk_buff *skb) 228 { 229 int err; 230 231 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 232 skb, NULL, skb_dst(skb)->dev, dst_output); 233 if (likely(err == 1)) 234 err = dst_output(net, sk, skb); 235 236 return err; 237 } 238 239 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 240 struct net_device *vrf_dev) 241 { 242 struct iphdr *ip4h = ip_hdr(skb); 243 int ret = NET_XMIT_DROP; 244 struct flowi4 fl4 = { 245 /* needed to match OIF rule */ 246 .flowi4_oif = vrf_dev->ifindex, 247 .flowi4_iif = LOOPBACK_IFINDEX, 248 .flowi4_tos = RT_TOS(ip4h->tos), 249 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF, 250 .flowi4_proto = ip4h->protocol, 251 .daddr = ip4h->daddr, 252 .saddr = ip4h->saddr, 253 }; 254 struct net *net = dev_net(vrf_dev); 255 struct rtable *rt; 256 257 rt = ip_route_output_flow(net, &fl4, NULL); 258 if (IS_ERR(rt)) 259 goto err; 260 261 skb_dst_drop(skb); 262 263 /* if dst.dev is loopback or the VRF device again this is locally 264 * originated traffic destined to a local address. Short circuit 265 * to Rx path 266 */ 267 if (rt->dst.dev == vrf_dev) 268 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 269 270 skb_dst_set(skb, &rt->dst); 271 272 /* strip the ethernet header added for pass through VRF device */ 273 __skb_pull(skb, skb_network_offset(skb)); 274 275 if (!ip4h->saddr) { 276 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 277 RT_SCOPE_LINK); 278 } 279 280 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 281 if (unlikely(net_xmit_eval(ret))) 282 vrf_dev->stats.tx_errors++; 283 else 284 ret = NET_XMIT_SUCCESS; 285 286 out: 287 return ret; 288 err: 289 vrf_tx_error(vrf_dev, skb); 290 goto out; 291 } 292 293 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 294 { 295 switch (skb->protocol) { 296 case htons(ETH_P_IP): 297 return vrf_process_v4_outbound(skb, dev); 298 case htons(ETH_P_IPV6): 299 return vrf_process_v6_outbound(skb, dev); 300 default: 301 vrf_tx_error(dev, skb); 302 return NET_XMIT_DROP; 303 } 304 } 305 306 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 307 { 308 int len = skb->len; 309 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 310 311 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 312 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 313 314 u64_stats_update_begin(&dstats->syncp); 315 dstats->tx_pkts++; 316 dstats->tx_bytes += len; 317 u64_stats_update_end(&dstats->syncp); 318 } else { 319 this_cpu_inc(dev->dstats->tx_drps); 320 } 321 322 return ret; 323 } 324 325 static int vrf_finish_direct(struct net *net, struct sock *sk, 326 struct sk_buff *skb) 327 { 328 struct net_device *vrf_dev = skb->dev; 329 330 if (!list_empty(&vrf_dev->ptype_all) && 331 likely(skb_headroom(skb) >= ETH_HLEN)) { 332 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 333 334 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 335 eth_zero_addr(eth->h_dest); 336 eth->h_proto = skb->protocol; 337 338 rcu_read_lock_bh(); 339 dev_queue_xmit_nit(skb, vrf_dev); 340 rcu_read_unlock_bh(); 341 342 skb_pull(skb, ETH_HLEN); 343 } 344 345 return 1; 346 } 347 348 #if IS_ENABLED(CONFIG_IPV6) 349 /* modelled after ip6_finish_output2 */ 350 static int vrf_finish_output6(struct net *net, struct sock *sk, 351 struct sk_buff *skb) 352 { 353 struct dst_entry *dst = skb_dst(skb); 354 struct net_device *dev = dst->dev; 355 struct neighbour *neigh; 356 struct in6_addr *nexthop; 357 int ret; 358 359 nf_reset(skb); 360 361 skb->protocol = htons(ETH_P_IPV6); 362 skb->dev = dev; 363 364 rcu_read_lock_bh(); 365 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 366 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 367 if (unlikely(!neigh)) 368 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 369 if (!IS_ERR(neigh)) { 370 sock_confirm_neigh(skb, neigh); 371 ret = neigh_output(neigh, skb); 372 rcu_read_unlock_bh(); 373 return ret; 374 } 375 rcu_read_unlock_bh(); 376 377 IP6_INC_STATS(dev_net(dst->dev), 378 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 379 kfree_skb(skb); 380 return -EINVAL; 381 } 382 383 /* modelled after ip6_output */ 384 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 385 { 386 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 387 net, sk, skb, NULL, skb_dst(skb)->dev, 388 vrf_finish_output6, 389 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 390 } 391 392 /* set dst on skb to send packet to us via dev_xmit path. Allows 393 * packet to go through device based features such as qdisc, netfilter 394 * hooks and packet sockets with skb->dev set to vrf device. 395 */ 396 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 397 struct sk_buff *skb) 398 { 399 struct net_vrf *vrf = netdev_priv(vrf_dev); 400 struct dst_entry *dst = NULL; 401 struct rt6_info *rt6; 402 403 rcu_read_lock(); 404 405 rt6 = rcu_dereference(vrf->rt6); 406 if (likely(rt6)) { 407 dst = &rt6->dst; 408 dst_hold(dst); 409 } 410 411 rcu_read_unlock(); 412 413 if (unlikely(!dst)) { 414 vrf_tx_error(vrf_dev, skb); 415 return NULL; 416 } 417 418 skb_dst_drop(skb); 419 skb_dst_set(skb, dst); 420 421 return skb; 422 } 423 424 static int vrf_output6_direct(struct net *net, struct sock *sk, 425 struct sk_buff *skb) 426 { 427 skb->protocol = htons(ETH_P_IPV6); 428 429 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 430 net, sk, skb, NULL, skb->dev, 431 vrf_finish_direct, 432 !(IPCB(skb)->flags & IPSKB_REROUTED)); 433 } 434 435 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 436 struct sock *sk, 437 struct sk_buff *skb) 438 { 439 struct net *net = dev_net(vrf_dev); 440 int err; 441 442 skb->dev = vrf_dev; 443 444 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 445 skb, NULL, vrf_dev, vrf_output6_direct); 446 447 if (likely(err == 1)) 448 err = vrf_output6_direct(net, sk, skb); 449 450 /* reset skb device */ 451 if (likely(err == 1)) 452 nf_reset(skb); 453 else 454 skb = NULL; 455 456 return skb; 457 } 458 459 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 460 struct sock *sk, 461 struct sk_buff *skb) 462 { 463 /* don't divert link scope packets */ 464 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 465 return skb; 466 467 if (qdisc_tx_is_default(vrf_dev)) 468 return vrf_ip6_out_direct(vrf_dev, sk, skb); 469 470 return vrf_ip6_out_redirect(vrf_dev, skb); 471 } 472 473 /* holding rtnl */ 474 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 475 { 476 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 477 struct net *net = dev_net(dev); 478 struct dst_entry *dst; 479 480 RCU_INIT_POINTER(vrf->rt6, NULL); 481 synchronize_rcu(); 482 483 /* move dev in dst's to loopback so this VRF device can be deleted 484 * - based on dst_ifdown 485 */ 486 if (rt6) { 487 dst = &rt6->dst; 488 dev_put(dst->dev); 489 dst->dev = net->loopback_dev; 490 dev_hold(dst->dev); 491 dst_release(dst); 492 } 493 } 494 495 static int vrf_rt6_create(struct net_device *dev) 496 { 497 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM; 498 struct net_vrf *vrf = netdev_priv(dev); 499 struct net *net = dev_net(dev); 500 struct fib6_table *rt6i_table; 501 struct rt6_info *rt6; 502 int rc = -ENOMEM; 503 504 /* IPv6 can be CONFIG enabled and then disabled runtime */ 505 if (!ipv6_mod_enabled()) 506 return 0; 507 508 rt6i_table = fib6_new_table(net, vrf->tb_id); 509 if (!rt6i_table) 510 goto out; 511 512 /* create a dst for routing packets out a VRF device */ 513 rt6 = ip6_dst_alloc(net, dev, flags); 514 if (!rt6) 515 goto out; 516 517 rt6->rt6i_table = rt6i_table; 518 rt6->dst.output = vrf_output6; 519 520 rcu_assign_pointer(vrf->rt6, rt6); 521 522 rc = 0; 523 out: 524 return rc; 525 } 526 #else 527 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 528 struct sock *sk, 529 struct sk_buff *skb) 530 { 531 return skb; 532 } 533 534 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 535 { 536 } 537 538 static int vrf_rt6_create(struct net_device *dev) 539 { 540 return 0; 541 } 542 #endif 543 544 /* modelled after ip_finish_output2 */ 545 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 546 { 547 struct dst_entry *dst = skb_dst(skb); 548 struct rtable *rt = (struct rtable *)dst; 549 struct net_device *dev = dst->dev; 550 unsigned int hh_len = LL_RESERVED_SPACE(dev); 551 struct neighbour *neigh; 552 u32 nexthop; 553 int ret = -EINVAL; 554 555 nf_reset(skb); 556 557 /* Be paranoid, rather than too clever. */ 558 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 559 struct sk_buff *skb2; 560 561 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 562 if (!skb2) { 563 ret = -ENOMEM; 564 goto err; 565 } 566 if (skb->sk) 567 skb_set_owner_w(skb2, skb->sk); 568 569 consume_skb(skb); 570 skb = skb2; 571 } 572 573 rcu_read_lock_bh(); 574 575 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 576 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 577 if (unlikely(!neigh)) 578 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 579 if (!IS_ERR(neigh)) { 580 sock_confirm_neigh(skb, neigh); 581 ret = neigh_output(neigh, skb); 582 } 583 584 rcu_read_unlock_bh(); 585 err: 586 if (unlikely(ret < 0)) 587 vrf_tx_error(skb->dev, skb); 588 return ret; 589 } 590 591 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 592 { 593 struct net_device *dev = skb_dst(skb)->dev; 594 595 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 596 597 skb->dev = dev; 598 skb->protocol = htons(ETH_P_IP); 599 600 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 601 net, sk, skb, NULL, dev, 602 vrf_finish_output, 603 !(IPCB(skb)->flags & IPSKB_REROUTED)); 604 } 605 606 /* set dst on skb to send packet to us via dev_xmit path. Allows 607 * packet to go through device based features such as qdisc, netfilter 608 * hooks and packet sockets with skb->dev set to vrf device. 609 */ 610 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 611 struct sk_buff *skb) 612 { 613 struct net_vrf *vrf = netdev_priv(vrf_dev); 614 struct dst_entry *dst = NULL; 615 struct rtable *rth; 616 617 rcu_read_lock(); 618 619 rth = rcu_dereference(vrf->rth); 620 if (likely(rth)) { 621 dst = &rth->dst; 622 dst_hold(dst); 623 } 624 625 rcu_read_unlock(); 626 627 if (unlikely(!dst)) { 628 vrf_tx_error(vrf_dev, skb); 629 return NULL; 630 } 631 632 skb_dst_drop(skb); 633 skb_dst_set(skb, dst); 634 635 return skb; 636 } 637 638 static int vrf_output_direct(struct net *net, struct sock *sk, 639 struct sk_buff *skb) 640 { 641 skb->protocol = htons(ETH_P_IP); 642 643 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 644 net, sk, skb, NULL, skb->dev, 645 vrf_finish_direct, 646 !(IPCB(skb)->flags & IPSKB_REROUTED)); 647 } 648 649 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 650 struct sock *sk, 651 struct sk_buff *skb) 652 { 653 struct net *net = dev_net(vrf_dev); 654 int err; 655 656 skb->dev = vrf_dev; 657 658 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 659 skb, NULL, vrf_dev, vrf_output_direct); 660 661 if (likely(err == 1)) 662 err = vrf_output_direct(net, sk, skb); 663 664 /* reset skb device */ 665 if (likely(err == 1)) 666 nf_reset(skb); 667 else 668 skb = NULL; 669 670 return skb; 671 } 672 673 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 674 struct sock *sk, 675 struct sk_buff *skb) 676 { 677 /* don't divert multicast */ 678 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 679 return skb; 680 681 if (qdisc_tx_is_default(vrf_dev)) 682 return vrf_ip_out_direct(vrf_dev, sk, skb); 683 684 return vrf_ip_out_redirect(vrf_dev, skb); 685 } 686 687 /* called with rcu lock held */ 688 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 689 struct sock *sk, 690 struct sk_buff *skb, 691 u16 proto) 692 { 693 switch (proto) { 694 case AF_INET: 695 return vrf_ip_out(vrf_dev, sk, skb); 696 case AF_INET6: 697 return vrf_ip6_out(vrf_dev, sk, skb); 698 } 699 700 return skb; 701 } 702 703 /* holding rtnl */ 704 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 705 { 706 struct rtable *rth = rtnl_dereference(vrf->rth); 707 struct net *net = dev_net(dev); 708 struct dst_entry *dst; 709 710 RCU_INIT_POINTER(vrf->rth, NULL); 711 synchronize_rcu(); 712 713 /* move dev in dst's to loopback so this VRF device can be deleted 714 * - based on dst_ifdown 715 */ 716 if (rth) { 717 dst = &rth->dst; 718 dev_put(dst->dev); 719 dst->dev = net->loopback_dev; 720 dev_hold(dst->dev); 721 dst_release(dst); 722 } 723 } 724 725 static int vrf_rtable_create(struct net_device *dev) 726 { 727 struct net_vrf *vrf = netdev_priv(dev); 728 struct rtable *rth; 729 730 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 731 return -ENOMEM; 732 733 /* create a dst for routing packets out through a VRF device */ 734 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 735 if (!rth) 736 return -ENOMEM; 737 738 rth->dst.output = vrf_output; 739 rth->rt_table_id = vrf->tb_id; 740 741 rcu_assign_pointer(vrf->rth, rth); 742 743 return 0; 744 } 745 746 /**************************** device handling ********************/ 747 748 /* cycle interface to flush neighbor cache and move routes across tables */ 749 static void cycle_netdev(struct net_device *dev) 750 { 751 unsigned int flags = dev->flags; 752 int ret; 753 754 if (!netif_running(dev)) 755 return; 756 757 ret = dev_change_flags(dev, flags & ~IFF_UP); 758 if (ret >= 0) 759 ret = dev_change_flags(dev, flags); 760 761 if (ret < 0) { 762 netdev_err(dev, 763 "Failed to cycle device %s; route tables might be wrong!\n", 764 dev->name); 765 } 766 } 767 768 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 769 { 770 int ret; 771 772 /* do not allow loopback device to be enslaved to a VRF. 773 * The vrf device acts as the loopback for the vrf. 774 */ 775 if (port_dev == dev_net(dev)->loopback_dev) 776 return -EOPNOTSUPP; 777 778 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 779 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL); 780 if (ret < 0) 781 goto err; 782 783 cycle_netdev(port_dev); 784 785 return 0; 786 787 err: 788 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 789 return ret; 790 } 791 792 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 793 { 794 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev)) 795 return -EINVAL; 796 797 return do_vrf_add_slave(dev, port_dev); 798 } 799 800 /* inverse of do_vrf_add_slave */ 801 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 802 { 803 netdev_upper_dev_unlink(port_dev, dev); 804 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 805 806 cycle_netdev(port_dev); 807 808 return 0; 809 } 810 811 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 812 { 813 return do_vrf_del_slave(dev, port_dev); 814 } 815 816 static void vrf_dev_uninit(struct net_device *dev) 817 { 818 struct net_vrf *vrf = netdev_priv(dev); 819 820 vrf_rtable_release(dev, vrf); 821 vrf_rt6_release(dev, vrf); 822 823 free_percpu(dev->dstats); 824 dev->dstats = NULL; 825 } 826 827 static int vrf_dev_init(struct net_device *dev) 828 { 829 struct net_vrf *vrf = netdev_priv(dev); 830 831 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 832 if (!dev->dstats) 833 goto out_nomem; 834 835 /* create the default dst which points back to us */ 836 if (vrf_rtable_create(dev) != 0) 837 goto out_stats; 838 839 if (vrf_rt6_create(dev) != 0) 840 goto out_rth; 841 842 dev->flags = IFF_MASTER | IFF_NOARP; 843 844 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 845 dev->mtu = 64 * 1024; 846 847 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 848 dev->operstate = IF_OPER_UP; 849 netdev_lockdep_set_classes(dev); 850 return 0; 851 852 out_rth: 853 vrf_rtable_release(dev, vrf); 854 out_stats: 855 free_percpu(dev->dstats); 856 dev->dstats = NULL; 857 out_nomem: 858 return -ENOMEM; 859 } 860 861 static const struct net_device_ops vrf_netdev_ops = { 862 .ndo_init = vrf_dev_init, 863 .ndo_uninit = vrf_dev_uninit, 864 .ndo_start_xmit = vrf_xmit, 865 .ndo_get_stats64 = vrf_get_stats64, 866 .ndo_add_slave = vrf_add_slave, 867 .ndo_del_slave = vrf_del_slave, 868 }; 869 870 static u32 vrf_fib_table(const struct net_device *dev) 871 { 872 struct net_vrf *vrf = netdev_priv(dev); 873 874 return vrf->tb_id; 875 } 876 877 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 878 { 879 kfree_skb(skb); 880 return 0; 881 } 882 883 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 884 struct sk_buff *skb, 885 struct net_device *dev) 886 { 887 struct net *net = dev_net(dev); 888 889 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 890 skb = NULL; /* kfree_skb(skb) handled by nf code */ 891 892 return skb; 893 } 894 895 #if IS_ENABLED(CONFIG_IPV6) 896 /* neighbor handling is done with actual device; do not want 897 * to flip skb->dev for those ndisc packets. This really fails 898 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 899 * a start. 900 */ 901 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 902 { 903 const struct ipv6hdr *iph = ipv6_hdr(skb); 904 bool rc = false; 905 906 if (iph->nexthdr == NEXTHDR_ICMP) { 907 const struct icmp6hdr *icmph; 908 struct icmp6hdr _icmph; 909 910 icmph = skb_header_pointer(skb, sizeof(*iph), 911 sizeof(_icmph), &_icmph); 912 if (!icmph) 913 goto out; 914 915 switch (icmph->icmp6_type) { 916 case NDISC_ROUTER_SOLICITATION: 917 case NDISC_ROUTER_ADVERTISEMENT: 918 case NDISC_NEIGHBOUR_SOLICITATION: 919 case NDISC_NEIGHBOUR_ADVERTISEMENT: 920 case NDISC_REDIRECT: 921 rc = true; 922 break; 923 } 924 } 925 926 out: 927 return rc; 928 } 929 930 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 931 const struct net_device *dev, 932 struct flowi6 *fl6, 933 int ifindex, 934 int flags) 935 { 936 struct net_vrf *vrf = netdev_priv(dev); 937 struct fib6_table *table = NULL; 938 struct rt6_info *rt6; 939 940 rcu_read_lock(); 941 942 /* fib6_table does not have a refcnt and can not be freed */ 943 rt6 = rcu_dereference(vrf->rt6); 944 if (likely(rt6)) 945 table = rt6->rt6i_table; 946 947 rcu_read_unlock(); 948 949 if (!table) 950 return NULL; 951 952 return ip6_pol_route(net, table, ifindex, fl6, flags); 953 } 954 955 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 956 int ifindex) 957 { 958 const struct ipv6hdr *iph = ipv6_hdr(skb); 959 struct flowi6 fl6 = { 960 .flowi6_iif = ifindex, 961 .flowi6_mark = skb->mark, 962 .flowi6_proto = iph->nexthdr, 963 .daddr = iph->daddr, 964 .saddr = iph->saddr, 965 .flowlabel = ip6_flowinfo(iph), 966 }; 967 struct net *net = dev_net(vrf_dev); 968 struct rt6_info *rt6; 969 970 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, 971 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 972 if (unlikely(!rt6)) 973 return; 974 975 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 976 return; 977 978 skb_dst_set(skb, &rt6->dst); 979 } 980 981 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 982 struct sk_buff *skb) 983 { 984 int orig_iif = skb->skb_iif; 985 bool need_strict; 986 987 /* loopback traffic; do not push through packet taps again. 988 * Reset pkt_type for upper layers to process skb 989 */ 990 if (skb->pkt_type == PACKET_LOOPBACK) { 991 skb->dev = vrf_dev; 992 skb->skb_iif = vrf_dev->ifindex; 993 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 994 skb->pkt_type = PACKET_HOST; 995 goto out; 996 } 997 998 /* if packet is NDISC or addressed to multicast or link-local 999 * then keep the ingress interface 1000 */ 1001 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 1002 if (!ipv6_ndisc_frame(skb) && !need_strict) { 1003 vrf_rx_stats(vrf_dev, skb->len); 1004 skb->dev = vrf_dev; 1005 skb->skb_iif = vrf_dev->ifindex; 1006 1007 if (!list_empty(&vrf_dev->ptype_all)) { 1008 skb_push(skb, skb->mac_len); 1009 dev_queue_xmit_nit(skb, vrf_dev); 1010 skb_pull(skb, skb->mac_len); 1011 } 1012 1013 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1014 } 1015 1016 if (need_strict) 1017 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1018 1019 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1020 out: 1021 return skb; 1022 } 1023 1024 #else 1025 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1026 struct sk_buff *skb) 1027 { 1028 return skb; 1029 } 1030 #endif 1031 1032 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1033 struct sk_buff *skb) 1034 { 1035 skb->dev = vrf_dev; 1036 skb->skb_iif = vrf_dev->ifindex; 1037 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1038 1039 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1040 goto out; 1041 1042 /* loopback traffic; do not push through packet taps again. 1043 * Reset pkt_type for upper layers to process skb 1044 */ 1045 if (skb->pkt_type == PACKET_LOOPBACK) { 1046 skb->pkt_type = PACKET_HOST; 1047 goto out; 1048 } 1049 1050 vrf_rx_stats(vrf_dev, skb->len); 1051 1052 if (!list_empty(&vrf_dev->ptype_all)) { 1053 skb_push(skb, skb->mac_len); 1054 dev_queue_xmit_nit(skb, vrf_dev); 1055 skb_pull(skb, skb->mac_len); 1056 } 1057 1058 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1059 out: 1060 return skb; 1061 } 1062 1063 /* called with rcu lock held */ 1064 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1065 struct sk_buff *skb, 1066 u16 proto) 1067 { 1068 switch (proto) { 1069 case AF_INET: 1070 return vrf_ip_rcv(vrf_dev, skb); 1071 case AF_INET6: 1072 return vrf_ip6_rcv(vrf_dev, skb); 1073 } 1074 1075 return skb; 1076 } 1077 1078 #if IS_ENABLED(CONFIG_IPV6) 1079 /* send to link-local or multicast address via interface enslaved to 1080 * VRF device. Force lookup to VRF table without changing flow struct 1081 */ 1082 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1083 struct flowi6 *fl6) 1084 { 1085 struct net *net = dev_net(dev); 1086 int flags = RT6_LOOKUP_F_IFACE; 1087 struct dst_entry *dst = NULL; 1088 struct rt6_info *rt; 1089 1090 /* VRF device does not have a link-local address and 1091 * sending packets to link-local or mcast addresses over 1092 * a VRF device does not make sense 1093 */ 1094 if (fl6->flowi6_oif == dev->ifindex) { 1095 dst = &net->ipv6.ip6_null_entry->dst; 1096 dst_hold(dst); 1097 return dst; 1098 } 1099 1100 if (!ipv6_addr_any(&fl6->saddr)) 1101 flags |= RT6_LOOKUP_F_HAS_SADDR; 1102 1103 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags); 1104 if (rt) 1105 dst = &rt->dst; 1106 1107 return dst; 1108 } 1109 #endif 1110 1111 static const struct l3mdev_ops vrf_l3mdev_ops = { 1112 .l3mdev_fib_table = vrf_fib_table, 1113 .l3mdev_l3_rcv = vrf_l3_rcv, 1114 .l3mdev_l3_out = vrf_l3_out, 1115 #if IS_ENABLED(CONFIG_IPV6) 1116 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1117 #endif 1118 }; 1119 1120 static void vrf_get_drvinfo(struct net_device *dev, 1121 struct ethtool_drvinfo *info) 1122 { 1123 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1124 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1125 } 1126 1127 static const struct ethtool_ops vrf_ethtool_ops = { 1128 .get_drvinfo = vrf_get_drvinfo, 1129 }; 1130 1131 static inline size_t vrf_fib_rule_nl_size(void) 1132 { 1133 size_t sz; 1134 1135 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1136 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1137 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1138 1139 return sz; 1140 } 1141 1142 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1143 { 1144 struct fib_rule_hdr *frh; 1145 struct nlmsghdr *nlh; 1146 struct sk_buff *skb; 1147 int err; 1148 1149 if (family == AF_INET6 && !ipv6_mod_enabled()) 1150 return 0; 1151 1152 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1153 if (!skb) 1154 return -ENOMEM; 1155 1156 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1157 if (!nlh) 1158 goto nla_put_failure; 1159 1160 /* rule only needs to appear once */ 1161 nlh->nlmsg_flags |= NLM_F_EXCL; 1162 1163 frh = nlmsg_data(nlh); 1164 memset(frh, 0, sizeof(*frh)); 1165 frh->family = family; 1166 frh->action = FR_ACT_TO_TBL; 1167 1168 if (nla_put_u32(skb, FRA_L3MDEV, 1)) 1169 goto nla_put_failure; 1170 1171 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1172 goto nla_put_failure; 1173 1174 nlmsg_end(skb, nlh); 1175 1176 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1177 skb->sk = dev_net(dev)->rtnl; 1178 if (add_it) { 1179 err = fib_nl_newrule(skb, nlh, NULL); 1180 if (err == -EEXIST) 1181 err = 0; 1182 } else { 1183 err = fib_nl_delrule(skb, nlh, NULL); 1184 if (err == -ENOENT) 1185 err = 0; 1186 } 1187 nlmsg_free(skb); 1188 1189 return err; 1190 1191 nla_put_failure: 1192 nlmsg_free(skb); 1193 1194 return -EMSGSIZE; 1195 } 1196 1197 static int vrf_add_fib_rules(const struct net_device *dev) 1198 { 1199 int err; 1200 1201 err = vrf_fib_rule(dev, AF_INET, true); 1202 if (err < 0) 1203 goto out_err; 1204 1205 err = vrf_fib_rule(dev, AF_INET6, true); 1206 if (err < 0) 1207 goto ipv6_err; 1208 1209 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1210 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1211 if (err < 0) 1212 goto ipmr_err; 1213 #endif 1214 1215 return 0; 1216 1217 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1218 ipmr_err: 1219 vrf_fib_rule(dev, AF_INET6, false); 1220 #endif 1221 1222 ipv6_err: 1223 vrf_fib_rule(dev, AF_INET, false); 1224 1225 out_err: 1226 netdev_err(dev, "Failed to add FIB rules.\n"); 1227 return err; 1228 } 1229 1230 static void vrf_setup(struct net_device *dev) 1231 { 1232 ether_setup(dev); 1233 1234 /* Initialize the device structure. */ 1235 dev->netdev_ops = &vrf_netdev_ops; 1236 dev->l3mdev_ops = &vrf_l3mdev_ops; 1237 dev->ethtool_ops = &vrf_ethtool_ops; 1238 dev->needs_free_netdev = true; 1239 1240 /* Fill in device structure with ethernet-generic values. */ 1241 eth_hw_addr_random(dev); 1242 1243 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1244 dev->features |= NETIF_F_LLTX; 1245 1246 /* don't allow vrf devices to change network namespaces. */ 1247 dev->features |= NETIF_F_NETNS_LOCAL; 1248 1249 /* does not make sense for a VLAN to be added to a vrf device */ 1250 dev->features |= NETIF_F_VLAN_CHALLENGED; 1251 1252 /* enable offload features */ 1253 dev->features |= NETIF_F_GSO_SOFTWARE; 1254 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM; 1255 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1256 1257 dev->hw_features = dev->features; 1258 dev->hw_enc_features = dev->features; 1259 1260 /* default to no qdisc; user can add if desired */ 1261 dev->priv_flags |= IFF_NO_QUEUE; 1262 } 1263 1264 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1265 struct netlink_ext_ack *extack) 1266 { 1267 if (tb[IFLA_ADDRESS]) { 1268 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1269 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1270 return -EINVAL; 1271 } 1272 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1273 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1274 return -EADDRNOTAVAIL; 1275 } 1276 } 1277 return 0; 1278 } 1279 1280 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1281 { 1282 struct net_device *port_dev; 1283 struct list_head *iter; 1284 1285 netdev_for_each_lower_dev(dev, port_dev, iter) 1286 vrf_del_slave(dev, port_dev); 1287 1288 unregister_netdevice_queue(dev, head); 1289 } 1290 1291 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1292 struct nlattr *tb[], struct nlattr *data[], 1293 struct netlink_ext_ack *extack) 1294 { 1295 struct net_vrf *vrf = netdev_priv(dev); 1296 bool *add_fib_rules; 1297 struct net *net; 1298 int err; 1299 1300 if (!data || !data[IFLA_VRF_TABLE]) { 1301 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1302 return -EINVAL; 1303 } 1304 1305 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1306 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1307 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1308 "Invalid VRF table id"); 1309 return -EINVAL; 1310 } 1311 1312 dev->priv_flags |= IFF_L3MDEV_MASTER; 1313 1314 err = register_netdevice(dev); 1315 if (err) 1316 goto out; 1317 1318 net = dev_net(dev); 1319 add_fib_rules = net_generic(net, vrf_net_id); 1320 if (*add_fib_rules) { 1321 err = vrf_add_fib_rules(dev); 1322 if (err) { 1323 unregister_netdevice(dev); 1324 goto out; 1325 } 1326 *add_fib_rules = false; 1327 } 1328 1329 out: 1330 return err; 1331 } 1332 1333 static size_t vrf_nl_getsize(const struct net_device *dev) 1334 { 1335 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1336 } 1337 1338 static int vrf_fillinfo(struct sk_buff *skb, 1339 const struct net_device *dev) 1340 { 1341 struct net_vrf *vrf = netdev_priv(dev); 1342 1343 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1344 } 1345 1346 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1347 const struct net_device *slave_dev) 1348 { 1349 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1350 } 1351 1352 static int vrf_fill_slave_info(struct sk_buff *skb, 1353 const struct net_device *vrf_dev, 1354 const struct net_device *slave_dev) 1355 { 1356 struct net_vrf *vrf = netdev_priv(vrf_dev); 1357 1358 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1359 return -EMSGSIZE; 1360 1361 return 0; 1362 } 1363 1364 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1365 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1366 }; 1367 1368 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1369 .kind = DRV_NAME, 1370 .priv_size = sizeof(struct net_vrf), 1371 1372 .get_size = vrf_nl_getsize, 1373 .policy = vrf_nl_policy, 1374 .validate = vrf_validate, 1375 .fill_info = vrf_fillinfo, 1376 1377 .get_slave_size = vrf_get_slave_size, 1378 .fill_slave_info = vrf_fill_slave_info, 1379 1380 .newlink = vrf_newlink, 1381 .dellink = vrf_dellink, 1382 .setup = vrf_setup, 1383 .maxtype = IFLA_VRF_MAX, 1384 }; 1385 1386 static int vrf_device_event(struct notifier_block *unused, 1387 unsigned long event, void *ptr) 1388 { 1389 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1390 1391 /* only care about unregister events to drop slave references */ 1392 if (event == NETDEV_UNREGISTER) { 1393 struct net_device *vrf_dev; 1394 1395 if (!netif_is_l3_slave(dev)) 1396 goto out; 1397 1398 vrf_dev = netdev_master_upper_dev_get(dev); 1399 vrf_del_slave(vrf_dev, dev); 1400 } 1401 out: 1402 return NOTIFY_DONE; 1403 } 1404 1405 static struct notifier_block vrf_notifier_block __read_mostly = { 1406 .notifier_call = vrf_device_event, 1407 }; 1408 1409 /* Initialize per network namespace state */ 1410 static int __net_init vrf_netns_init(struct net *net) 1411 { 1412 bool *add_fib_rules = net_generic(net, vrf_net_id); 1413 1414 *add_fib_rules = true; 1415 1416 return 0; 1417 } 1418 1419 static struct pernet_operations vrf_net_ops __net_initdata = { 1420 .init = vrf_netns_init, 1421 .id = &vrf_net_id, 1422 .size = sizeof(bool), 1423 }; 1424 1425 static int __init vrf_init_module(void) 1426 { 1427 int rc; 1428 1429 register_netdevice_notifier(&vrf_notifier_block); 1430 1431 rc = register_pernet_subsys(&vrf_net_ops); 1432 if (rc < 0) 1433 goto error; 1434 1435 rc = rtnl_link_register(&vrf_link_ops); 1436 if (rc < 0) { 1437 unregister_pernet_subsys(&vrf_net_ops); 1438 goto error; 1439 } 1440 1441 return 0; 1442 1443 error: 1444 unregister_netdevice_notifier(&vrf_notifier_block); 1445 return rc; 1446 } 1447 1448 module_init(vrf_init_module); 1449 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1450 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1451 MODULE_LICENSE("GPL"); 1452 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1453 MODULE_VERSION(DRV_VERSION); 1454