xref: /linux/drivers/net/vrf.c (revision 9d8a2b033db179bef9b6b5bad492f611a0fe89b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/inet_dscp.h>
41 
42 #define DRV_NAME	"vrf"
43 #define DRV_VERSION	"1.1"
44 
45 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
46 
47 #define HT_MAP_BITS	4
48 #define HASH_INITVAL	((u32)0xcafef00d)
49 
50 struct  vrf_map {
51 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
52 	spinlock_t vmap_lock;
53 
54 	/* shared_tables:
55 	 * count how many distinct tables do not comply with the strict mode
56 	 * requirement.
57 	 * shared_tables value must be 0 in order to enable the strict mode.
58 	 *
59 	 * example of the evolution of shared_tables:
60 	 *                                                        | time
61 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
62 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
63 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
64 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
65 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
66 	 *
67 	 * shared_tables is a "step function" (or "staircase function")
68 	 * and it is increased by one when the second vrf is associated to a
69 	 * table.
70 	 *
71 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
72 	 *
73 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
74 	 * value of shared_tables is still 1.
75 	 * This means that no matter how many new vrfs will register on the
76 	 * table 100, the shared_tables will not increase (considering only
77 	 * table 100).
78 	 *
79 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
80 	 *
81 	 * Looking at the value of shared_tables we can immediately know if
82 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
83 	 * can be enforced iff shared_tables = 0.
84 	 *
85 	 * Conversely, shared_tables is decreased when a vrf is de-associated
86 	 * from a table with exactly two associated vrfs.
87 	 */
88 	u32 shared_tables;
89 
90 	bool strict_mode;
91 };
92 
93 struct vrf_map_elem {
94 	struct hlist_node hnode;
95 	struct list_head vrf_list;  /* VRFs registered to this table */
96 
97 	u32 table_id;
98 	int users;
99 	int ifindex;
100 };
101 
102 static unsigned int vrf_net_id;
103 
104 /* per netns vrf data */
105 struct netns_vrf {
106 	/* protected by rtnl lock */
107 	bool add_fib_rules;
108 
109 	struct vrf_map vmap;
110 	struct ctl_table_header	*ctl_hdr;
111 };
112 
113 struct net_vrf {
114 	struct rtable __rcu	*rth;
115 	struct rt6_info	__rcu	*rt6;
116 #if IS_ENABLED(CONFIG_IPV6)
117 	struct fib6_table	*fib6_table;
118 #endif
119 	u32                     tb_id;
120 
121 	struct list_head	me_list;   /* entry in vrf_map_elem */
122 	int			ifindex;
123 };
124 
125 static void vrf_rx_stats(struct net_device *dev, int len)
126 {
127 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
128 
129 	u64_stats_update_begin(&dstats->syncp);
130 	u64_stats_inc(&dstats->rx_packets);
131 	u64_stats_add(&dstats->rx_bytes, len);
132 	u64_stats_update_end(&dstats->syncp);
133 }
134 
135 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
136 {
137 	vrf_dev->stats.tx_errors++;
138 	kfree_skb(skb);
139 }
140 
141 static struct vrf_map *netns_vrf_map(struct net *net)
142 {
143 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
144 
145 	return &nn_vrf->vmap;
146 }
147 
148 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
149 {
150 	return netns_vrf_map(dev_net(dev));
151 }
152 
153 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
154 {
155 	struct list_head *me_head = &me->vrf_list;
156 	struct net_vrf *vrf;
157 
158 	if (list_empty(me_head))
159 		return -ENODEV;
160 
161 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
162 
163 	return vrf->ifindex;
164 }
165 
166 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
167 {
168 	struct vrf_map_elem *me;
169 
170 	me = kmalloc(sizeof(*me), flags);
171 	if (!me)
172 		return NULL;
173 
174 	return me;
175 }
176 
177 static void vrf_map_elem_free(struct vrf_map_elem *me)
178 {
179 	kfree(me);
180 }
181 
182 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
183 			      int ifindex, int users)
184 {
185 	me->table_id = table_id;
186 	me->ifindex = ifindex;
187 	me->users = users;
188 	INIT_LIST_HEAD(&me->vrf_list);
189 }
190 
191 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
192 						u32 table_id)
193 {
194 	struct vrf_map_elem *me;
195 	u32 key;
196 
197 	key = jhash_1word(table_id, HASH_INITVAL);
198 	hash_for_each_possible(vmap->ht, me, hnode, key) {
199 		if (me->table_id == table_id)
200 			return me;
201 	}
202 
203 	return NULL;
204 }
205 
206 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
207 {
208 	u32 table_id = me->table_id;
209 	u32 key;
210 
211 	key = jhash_1word(table_id, HASH_INITVAL);
212 	hash_add(vmap->ht, &me->hnode, key);
213 }
214 
215 static void vrf_map_del_elem(struct vrf_map_elem *me)
216 {
217 	hash_del(&me->hnode);
218 }
219 
220 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
221 {
222 	spin_lock(&vmap->vmap_lock);
223 }
224 
225 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
226 {
227 	spin_unlock(&vmap->vmap_lock);
228 }
229 
230 /* called with rtnl lock held */
231 static int
232 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
233 {
234 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
235 	struct net_vrf *vrf = netdev_priv(dev);
236 	struct vrf_map_elem *new_me, *me;
237 	u32 table_id = vrf->tb_id;
238 	bool free_new_me = false;
239 	int users;
240 	int res;
241 
242 	/* we pre-allocate elements used in the spin-locked section (so that we
243 	 * keep the spinlock as short as possible).
244 	 */
245 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
246 	if (!new_me)
247 		return -ENOMEM;
248 
249 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
250 
251 	vrf_map_lock(vmap);
252 
253 	me = vrf_map_lookup_elem(vmap, table_id);
254 	if (!me) {
255 		me = new_me;
256 		vrf_map_add_elem(vmap, me);
257 		goto link_vrf;
258 	}
259 
260 	/* we already have an entry in the vrf_map, so it means there is (at
261 	 * least) a vrf registered on the specific table.
262 	 */
263 	free_new_me = true;
264 	if (vmap->strict_mode) {
265 		/* vrfs cannot share the same table */
266 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
267 		res = -EBUSY;
268 		goto unlock;
269 	}
270 
271 link_vrf:
272 	users = ++me->users;
273 	if (users == 2)
274 		++vmap->shared_tables;
275 
276 	list_add(&vrf->me_list, &me->vrf_list);
277 
278 	res = 0;
279 
280 unlock:
281 	vrf_map_unlock(vmap);
282 
283 	/* clean-up, if needed */
284 	if (free_new_me)
285 		vrf_map_elem_free(new_me);
286 
287 	return res;
288 }
289 
290 /* called with rtnl lock held */
291 static void vrf_map_unregister_dev(struct net_device *dev)
292 {
293 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
294 	struct net_vrf *vrf = netdev_priv(dev);
295 	u32 table_id = vrf->tb_id;
296 	struct vrf_map_elem *me;
297 	int users;
298 
299 	vrf_map_lock(vmap);
300 
301 	me = vrf_map_lookup_elem(vmap, table_id);
302 	if (!me)
303 		goto unlock;
304 
305 	list_del(&vrf->me_list);
306 
307 	users = --me->users;
308 	if (users == 1) {
309 		--vmap->shared_tables;
310 	} else if (users == 0) {
311 		vrf_map_del_elem(me);
312 
313 		/* no one will refer to this element anymore */
314 		vrf_map_elem_free(me);
315 	}
316 
317 unlock:
318 	vrf_map_unlock(vmap);
319 }
320 
321 /* return the vrf device index associated with the table_id */
322 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
323 {
324 	struct vrf_map *vmap = netns_vrf_map(net);
325 	struct vrf_map_elem *me;
326 	int ifindex;
327 
328 	vrf_map_lock(vmap);
329 
330 	if (!vmap->strict_mode) {
331 		ifindex = -EPERM;
332 		goto unlock;
333 	}
334 
335 	me = vrf_map_lookup_elem(vmap, table_id);
336 	if (!me) {
337 		ifindex = -ENODEV;
338 		goto unlock;
339 	}
340 
341 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
342 
343 unlock:
344 	vrf_map_unlock(vmap);
345 
346 	return ifindex;
347 }
348 
349 /* by default VRF devices do not have a qdisc and are expected
350  * to be created with only a single queue.
351  */
352 static bool qdisc_tx_is_default(const struct net_device *dev)
353 {
354 	struct netdev_queue *txq;
355 	struct Qdisc *qdisc;
356 
357 	if (dev->num_tx_queues > 1)
358 		return false;
359 
360 	txq = netdev_get_tx_queue(dev, 0);
361 	qdisc = rcu_access_pointer(txq->qdisc);
362 
363 	return !qdisc->enqueue;
364 }
365 
366 /* Local traffic destined to local address. Reinsert the packet to rx
367  * path, similar to loopback handling.
368  */
369 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
370 			  struct dst_entry *dst)
371 {
372 	int len = skb->len;
373 
374 	skb_orphan(skb);
375 
376 	skb_dst_set(skb, dst);
377 
378 	/* set pkt_type to avoid skb hitting packet taps twice -
379 	 * once on Tx and again in Rx processing
380 	 */
381 	skb->pkt_type = PACKET_LOOPBACK;
382 
383 	skb->protocol = eth_type_trans(skb, dev);
384 
385 	if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) {
386 		vrf_rx_stats(dev, len);
387 	} else {
388 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
389 
390 		u64_stats_update_begin(&dstats->syncp);
391 		u64_stats_inc(&dstats->rx_drops);
392 		u64_stats_update_end(&dstats->syncp);
393 	}
394 
395 	return NETDEV_TX_OK;
396 }
397 
398 static void vrf_nf_set_untracked(struct sk_buff *skb)
399 {
400 	if (skb_get_nfct(skb) == 0)
401 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
402 }
403 
404 static void vrf_nf_reset_ct(struct sk_buff *skb)
405 {
406 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
407 		nf_reset_ct(skb);
408 }
409 
410 #if IS_ENABLED(CONFIG_IPV6)
411 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
412 			     struct sk_buff *skb)
413 {
414 	int err;
415 
416 	vrf_nf_reset_ct(skb);
417 
418 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
419 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
420 
421 	if (likely(err == 1))
422 		err = dst_output(net, sk, skb);
423 
424 	return err;
425 }
426 
427 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
428 					   struct net_device *dev)
429 {
430 	const struct ipv6hdr *iph;
431 	struct net *net = dev_net(skb->dev);
432 	struct flowi6 fl6;
433 	int ret = NET_XMIT_DROP;
434 	struct dst_entry *dst;
435 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
436 
437 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
438 		goto err;
439 
440 	iph = ipv6_hdr(skb);
441 
442 	memset(&fl6, 0, sizeof(fl6));
443 	/* needed to match OIF rule */
444 	fl6.flowi6_l3mdev = dev->ifindex;
445 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
446 	fl6.daddr = iph->daddr;
447 	fl6.saddr = iph->saddr;
448 	fl6.flowlabel = ip6_flowinfo(iph);
449 	fl6.flowi6_mark = skb->mark;
450 	fl6.flowi6_proto = iph->nexthdr;
451 
452 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
453 	if (IS_ERR(dst) || dst == dst_null)
454 		goto err;
455 
456 	skb_dst_drop(skb);
457 
458 	/* if dst.dev is the VRF device again this is locally originated traffic
459 	 * destined to a local address. Short circuit to Rx path.
460 	 */
461 	if (dst->dev == dev)
462 		return vrf_local_xmit(skb, dev, dst);
463 
464 	skb_dst_set(skb, dst);
465 
466 	/* strip the ethernet header added for pass through VRF device */
467 	__skb_pull(skb, skb_network_offset(skb));
468 
469 	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
470 	ret = vrf_ip6_local_out(net, skb->sk, skb);
471 	if (unlikely(net_xmit_eval(ret)))
472 		dev->stats.tx_errors++;
473 	else
474 		ret = NET_XMIT_SUCCESS;
475 
476 	return ret;
477 err:
478 	vrf_tx_error(dev, skb);
479 	return NET_XMIT_DROP;
480 }
481 #else
482 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
483 					   struct net_device *dev)
484 {
485 	vrf_tx_error(dev, skb);
486 	return NET_XMIT_DROP;
487 }
488 #endif
489 
490 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
491 static int vrf_ip_local_out(struct net *net, struct sock *sk,
492 			    struct sk_buff *skb)
493 {
494 	int err;
495 
496 	vrf_nf_reset_ct(skb);
497 
498 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
499 		      skb, NULL, skb_dst(skb)->dev, dst_output);
500 	if (likely(err == 1))
501 		err = dst_output(net, sk, skb);
502 
503 	return err;
504 }
505 
506 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
507 					   struct net_device *vrf_dev)
508 {
509 	struct iphdr *ip4h;
510 	int ret = NET_XMIT_DROP;
511 	struct flowi4 fl4;
512 	struct net *net = dev_net(vrf_dev);
513 	struct rtable *rt;
514 
515 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
516 		goto err;
517 
518 	ip4h = ip_hdr(skb);
519 
520 	memset(&fl4, 0, sizeof(fl4));
521 	/* needed to match OIF rule */
522 	fl4.flowi4_l3mdev = vrf_dev->ifindex;
523 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
524 	fl4.flowi4_tos = ip4h->tos & INET_DSCP_MASK;
525 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
526 	fl4.flowi4_proto = ip4h->protocol;
527 	fl4.daddr = ip4h->daddr;
528 	fl4.saddr = ip4h->saddr;
529 
530 	rt = ip_route_output_flow(net, &fl4, NULL);
531 	if (IS_ERR(rt))
532 		goto err;
533 
534 	skb_dst_drop(skb);
535 
536 	/* if dst.dev is the VRF device again this is locally originated traffic
537 	 * destined to a local address. Short circuit to Rx path.
538 	 */
539 	if (rt->dst.dev == vrf_dev)
540 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
541 
542 	skb_dst_set(skb, &rt->dst);
543 
544 	/* strip the ethernet header added for pass through VRF device */
545 	__skb_pull(skb, skb_network_offset(skb));
546 
547 	if (!ip4h->saddr) {
548 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
549 					       RT_SCOPE_LINK);
550 	}
551 
552 	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
553 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
554 	if (unlikely(net_xmit_eval(ret)))
555 		vrf_dev->stats.tx_errors++;
556 	else
557 		ret = NET_XMIT_SUCCESS;
558 
559 out:
560 	return ret;
561 err:
562 	vrf_tx_error(vrf_dev, skb);
563 	goto out;
564 }
565 
566 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
567 {
568 	switch (skb->protocol) {
569 	case htons(ETH_P_IP):
570 		return vrf_process_v4_outbound(skb, dev);
571 	case htons(ETH_P_IPV6):
572 		return vrf_process_v6_outbound(skb, dev);
573 	default:
574 		vrf_tx_error(dev, skb);
575 		return NET_XMIT_DROP;
576 	}
577 }
578 
579 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
580 {
581 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
582 
583 	int len = skb->len;
584 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
585 
586 	u64_stats_update_begin(&dstats->syncp);
587 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
588 
589 		u64_stats_inc(&dstats->tx_packets);
590 		u64_stats_add(&dstats->tx_bytes, len);
591 	} else {
592 		u64_stats_inc(&dstats->tx_drops);
593 	}
594 	u64_stats_update_end(&dstats->syncp);
595 
596 	return ret;
597 }
598 
599 static void vrf_finish_direct(struct sk_buff *skb)
600 {
601 	struct net_device *vrf_dev = skb->dev;
602 
603 	if (!list_empty(&vrf_dev->ptype_all) &&
604 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
605 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
606 
607 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
608 		eth_zero_addr(eth->h_dest);
609 		eth->h_proto = skb->protocol;
610 
611 		rcu_read_lock_bh();
612 		dev_queue_xmit_nit(skb, vrf_dev);
613 		rcu_read_unlock_bh();
614 
615 		skb_pull(skb, ETH_HLEN);
616 	}
617 
618 	vrf_nf_reset_ct(skb);
619 }
620 
621 #if IS_ENABLED(CONFIG_IPV6)
622 /* modelled after ip6_finish_output2 */
623 static int vrf_finish_output6(struct net *net, struct sock *sk,
624 			      struct sk_buff *skb)
625 {
626 	struct dst_entry *dst = skb_dst(skb);
627 	struct net_device *dev = dst->dev;
628 	const struct in6_addr *nexthop;
629 	struct neighbour *neigh;
630 	int ret;
631 
632 	vrf_nf_reset_ct(skb);
633 
634 	skb->protocol = htons(ETH_P_IPV6);
635 	skb->dev = dev;
636 
637 	rcu_read_lock();
638 	nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
639 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
640 	if (unlikely(!neigh))
641 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
642 	if (!IS_ERR(neigh)) {
643 		sock_confirm_neigh(skb, neigh);
644 		ret = neigh_output(neigh, skb, false);
645 		rcu_read_unlock();
646 		return ret;
647 	}
648 	rcu_read_unlock();
649 
650 	IP6_INC_STATS(dev_net(dst->dev),
651 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
652 	kfree_skb(skb);
653 	return -EINVAL;
654 }
655 
656 /* modelled after ip6_output */
657 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
658 {
659 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
660 			    net, sk, skb, NULL, skb_dst(skb)->dev,
661 			    vrf_finish_output6,
662 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
663 }
664 
665 /* set dst on skb to send packet to us via dev_xmit path. Allows
666  * packet to go through device based features such as qdisc, netfilter
667  * hooks and packet sockets with skb->dev set to vrf device.
668  */
669 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
670 					    struct sk_buff *skb)
671 {
672 	struct net_vrf *vrf = netdev_priv(vrf_dev);
673 	struct dst_entry *dst = NULL;
674 	struct rt6_info *rt6;
675 
676 	rcu_read_lock();
677 
678 	rt6 = rcu_dereference(vrf->rt6);
679 	if (likely(rt6)) {
680 		dst = &rt6->dst;
681 		dst_hold(dst);
682 	}
683 
684 	rcu_read_unlock();
685 
686 	if (unlikely(!dst)) {
687 		vrf_tx_error(vrf_dev, skb);
688 		return NULL;
689 	}
690 
691 	skb_dst_drop(skb);
692 	skb_dst_set(skb, dst);
693 
694 	return skb;
695 }
696 
697 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
698 				     struct sk_buff *skb)
699 {
700 	vrf_finish_direct(skb);
701 
702 	return vrf_ip6_local_out(net, sk, skb);
703 }
704 
705 static int vrf_output6_direct(struct net *net, struct sock *sk,
706 			      struct sk_buff *skb)
707 {
708 	int err = 1;
709 
710 	skb->protocol = htons(ETH_P_IPV6);
711 
712 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
713 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
714 			      NULL, skb->dev, vrf_output6_direct_finish);
715 
716 	if (likely(err == 1))
717 		vrf_finish_direct(skb);
718 
719 	return err;
720 }
721 
722 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
723 				     struct sk_buff *skb)
724 {
725 	int err;
726 
727 	err = vrf_output6_direct(net, sk, skb);
728 	if (likely(err == 1))
729 		err = vrf_ip6_local_out(net, sk, skb);
730 
731 	return err;
732 }
733 
734 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
735 					  struct sock *sk,
736 					  struct sk_buff *skb)
737 {
738 	struct net *net = dev_net(vrf_dev);
739 	int err;
740 
741 	skb->dev = vrf_dev;
742 
743 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
744 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
745 
746 	if (likely(err == 1))
747 		err = vrf_output6_direct(net, sk, skb);
748 
749 	if (likely(err == 1))
750 		return skb;
751 
752 	return NULL;
753 }
754 
755 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
756 				   struct sock *sk,
757 				   struct sk_buff *skb)
758 {
759 	/* don't divert link scope packets */
760 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
761 		return skb;
762 
763 	vrf_nf_set_untracked(skb);
764 
765 	if (qdisc_tx_is_default(vrf_dev) ||
766 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
767 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
768 
769 	return vrf_ip6_out_redirect(vrf_dev, skb);
770 }
771 
772 /* holding rtnl */
773 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
774 {
775 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
776 	struct net *net = dev_net(dev);
777 	struct dst_entry *dst;
778 
779 	RCU_INIT_POINTER(vrf->rt6, NULL);
780 	synchronize_rcu();
781 
782 	/* move dev in dst's to loopback so this VRF device can be deleted
783 	 * - based on dst_ifdown
784 	 */
785 	if (rt6) {
786 		dst = &rt6->dst;
787 		netdev_ref_replace(dst->dev, net->loopback_dev,
788 				   &dst->dev_tracker, GFP_KERNEL);
789 		dst->dev = net->loopback_dev;
790 		dst_release(dst);
791 	}
792 }
793 
794 static int vrf_rt6_create(struct net_device *dev)
795 {
796 	int flags = DST_NOPOLICY | DST_NOXFRM;
797 	struct net_vrf *vrf = netdev_priv(dev);
798 	struct net *net = dev_net(dev);
799 	struct rt6_info *rt6;
800 	int rc = -ENOMEM;
801 
802 	/* IPv6 can be CONFIG enabled and then disabled runtime */
803 	if (!ipv6_mod_enabled())
804 		return 0;
805 
806 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
807 	if (!vrf->fib6_table)
808 		goto out;
809 
810 	/* create a dst for routing packets out a VRF device */
811 	rt6 = ip6_dst_alloc(net, dev, flags);
812 	if (!rt6)
813 		goto out;
814 
815 	rt6->dst.output	= vrf_output6;
816 
817 	rcu_assign_pointer(vrf->rt6, rt6);
818 
819 	rc = 0;
820 out:
821 	return rc;
822 }
823 #else
824 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
825 				   struct sock *sk,
826 				   struct sk_buff *skb)
827 {
828 	return skb;
829 }
830 
831 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
832 {
833 }
834 
835 static int vrf_rt6_create(struct net_device *dev)
836 {
837 	return 0;
838 }
839 #endif
840 
841 /* modelled after ip_finish_output2 */
842 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
843 {
844 	struct dst_entry *dst = skb_dst(skb);
845 	struct rtable *rt = dst_rtable(dst);
846 	struct net_device *dev = dst->dev;
847 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
848 	struct neighbour *neigh;
849 	bool is_v6gw = false;
850 
851 	vrf_nf_reset_ct(skb);
852 
853 	/* Be paranoid, rather than too clever. */
854 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
855 		skb = skb_expand_head(skb, hh_len);
856 		if (!skb) {
857 			dev->stats.tx_errors++;
858 			return -ENOMEM;
859 		}
860 	}
861 
862 	rcu_read_lock();
863 
864 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
865 	if (!IS_ERR(neigh)) {
866 		int ret;
867 
868 		sock_confirm_neigh(skb, neigh);
869 		/* if crossing protocols, can not use the cached header */
870 		ret = neigh_output(neigh, skb, is_v6gw);
871 		rcu_read_unlock();
872 		return ret;
873 	}
874 
875 	rcu_read_unlock();
876 	vrf_tx_error(skb->dev, skb);
877 	return -EINVAL;
878 }
879 
880 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
881 {
882 	struct net_device *dev = skb_dst(skb)->dev;
883 
884 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
885 
886 	skb->dev = dev;
887 	skb->protocol = htons(ETH_P_IP);
888 
889 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
890 			    net, sk, skb, NULL, dev,
891 			    vrf_finish_output,
892 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
893 }
894 
895 /* set dst on skb to send packet to us via dev_xmit path. Allows
896  * packet to go through device based features such as qdisc, netfilter
897  * hooks and packet sockets with skb->dev set to vrf device.
898  */
899 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
900 					   struct sk_buff *skb)
901 {
902 	struct net_vrf *vrf = netdev_priv(vrf_dev);
903 	struct dst_entry *dst = NULL;
904 	struct rtable *rth;
905 
906 	rcu_read_lock();
907 
908 	rth = rcu_dereference(vrf->rth);
909 	if (likely(rth)) {
910 		dst = &rth->dst;
911 		dst_hold(dst);
912 	}
913 
914 	rcu_read_unlock();
915 
916 	if (unlikely(!dst)) {
917 		vrf_tx_error(vrf_dev, skb);
918 		return NULL;
919 	}
920 
921 	skb_dst_drop(skb);
922 	skb_dst_set(skb, dst);
923 
924 	return skb;
925 }
926 
927 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
928 				    struct sk_buff *skb)
929 {
930 	vrf_finish_direct(skb);
931 
932 	return vrf_ip_local_out(net, sk, skb);
933 }
934 
935 static int vrf_output_direct(struct net *net, struct sock *sk,
936 			     struct sk_buff *skb)
937 {
938 	int err = 1;
939 
940 	skb->protocol = htons(ETH_P_IP);
941 
942 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
943 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
944 			      NULL, skb->dev, vrf_output_direct_finish);
945 
946 	if (likely(err == 1))
947 		vrf_finish_direct(skb);
948 
949 	return err;
950 }
951 
952 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
953 				    struct sk_buff *skb)
954 {
955 	int err;
956 
957 	err = vrf_output_direct(net, sk, skb);
958 	if (likely(err == 1))
959 		err = vrf_ip_local_out(net, sk, skb);
960 
961 	return err;
962 }
963 
964 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
965 					 struct sock *sk,
966 					 struct sk_buff *skb)
967 {
968 	struct net *net = dev_net(vrf_dev);
969 	int err;
970 
971 	skb->dev = vrf_dev;
972 
973 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
974 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
975 
976 	if (likely(err == 1))
977 		err = vrf_output_direct(net, sk, skb);
978 
979 	if (likely(err == 1))
980 		return skb;
981 
982 	return NULL;
983 }
984 
985 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
986 				  struct sock *sk,
987 				  struct sk_buff *skb)
988 {
989 	/* don't divert multicast or local broadcast */
990 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
991 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
992 		return skb;
993 
994 	vrf_nf_set_untracked(skb);
995 
996 	if (qdisc_tx_is_default(vrf_dev) ||
997 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
998 		return vrf_ip_out_direct(vrf_dev, sk, skb);
999 
1000 	return vrf_ip_out_redirect(vrf_dev, skb);
1001 }
1002 
1003 /* called with rcu lock held */
1004 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1005 				  struct sock *sk,
1006 				  struct sk_buff *skb,
1007 				  u16 proto)
1008 {
1009 	switch (proto) {
1010 	case AF_INET:
1011 		return vrf_ip_out(vrf_dev, sk, skb);
1012 	case AF_INET6:
1013 		return vrf_ip6_out(vrf_dev, sk, skb);
1014 	}
1015 
1016 	return skb;
1017 }
1018 
1019 /* holding rtnl */
1020 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1021 {
1022 	struct rtable *rth = rtnl_dereference(vrf->rth);
1023 	struct net *net = dev_net(dev);
1024 	struct dst_entry *dst;
1025 
1026 	RCU_INIT_POINTER(vrf->rth, NULL);
1027 	synchronize_rcu();
1028 
1029 	/* move dev in dst's to loopback so this VRF device can be deleted
1030 	 * - based on dst_ifdown
1031 	 */
1032 	if (rth) {
1033 		dst = &rth->dst;
1034 		netdev_ref_replace(dst->dev, net->loopback_dev,
1035 				   &dst->dev_tracker, GFP_KERNEL);
1036 		dst->dev = net->loopback_dev;
1037 		dst_release(dst);
1038 	}
1039 }
1040 
1041 static int vrf_rtable_create(struct net_device *dev)
1042 {
1043 	struct net_vrf *vrf = netdev_priv(dev);
1044 	struct rtable *rth;
1045 
1046 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1047 		return -ENOMEM;
1048 
1049 	/* create a dst for routing packets out through a VRF device */
1050 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1051 	if (!rth)
1052 		return -ENOMEM;
1053 
1054 	rth->dst.output	= vrf_output;
1055 
1056 	rcu_assign_pointer(vrf->rth, rth);
1057 
1058 	return 0;
1059 }
1060 
1061 /**************************** device handling ********************/
1062 
1063 /* cycle interface to flush neighbor cache and move routes across tables */
1064 static void cycle_netdev(struct net_device *dev,
1065 			 struct netlink_ext_ack *extack)
1066 {
1067 	unsigned int flags = dev->flags;
1068 	int ret;
1069 
1070 	if (!netif_running(dev))
1071 		return;
1072 
1073 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1074 	if (ret >= 0)
1075 		ret = dev_change_flags(dev, flags, extack);
1076 
1077 	if (ret < 0) {
1078 		netdev_err(dev,
1079 			   "Failed to cycle device %s; route tables might be wrong!\n",
1080 			   dev->name);
1081 	}
1082 }
1083 
1084 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1085 			    struct netlink_ext_ack *extack)
1086 {
1087 	int ret;
1088 
1089 	/* do not allow loopback device to be enslaved to a VRF.
1090 	 * The vrf device acts as the loopback for the vrf.
1091 	 */
1092 	if (port_dev == dev_net(dev)->loopback_dev) {
1093 		NL_SET_ERR_MSG(extack,
1094 			       "Can not enslave loopback device to a VRF");
1095 		return -EOPNOTSUPP;
1096 	}
1097 
1098 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1099 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1100 	if (ret < 0)
1101 		goto err;
1102 
1103 	cycle_netdev(port_dev, extack);
1104 
1105 	return 0;
1106 
1107 err:
1108 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1109 	return ret;
1110 }
1111 
1112 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1113 			 struct netlink_ext_ack *extack)
1114 {
1115 	if (netif_is_l3_master(port_dev)) {
1116 		NL_SET_ERR_MSG(extack,
1117 			       "Can not enslave an L3 master device to a VRF");
1118 		return -EINVAL;
1119 	}
1120 
1121 	if (netif_is_l3_slave(port_dev))
1122 		return -EINVAL;
1123 
1124 	return do_vrf_add_slave(dev, port_dev, extack);
1125 }
1126 
1127 /* inverse of do_vrf_add_slave */
1128 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1129 {
1130 	netdev_upper_dev_unlink(port_dev, dev);
1131 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1132 
1133 	cycle_netdev(port_dev, NULL);
1134 
1135 	return 0;
1136 }
1137 
1138 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1139 {
1140 	return do_vrf_del_slave(dev, port_dev);
1141 }
1142 
1143 static void vrf_dev_uninit(struct net_device *dev)
1144 {
1145 	struct net_vrf *vrf = netdev_priv(dev);
1146 
1147 	vrf_rtable_release(dev, vrf);
1148 	vrf_rt6_release(dev, vrf);
1149 }
1150 
1151 static int vrf_dev_init(struct net_device *dev)
1152 {
1153 	struct net_vrf *vrf = netdev_priv(dev);
1154 
1155 	/* create the default dst which points back to us */
1156 	if (vrf_rtable_create(dev) != 0)
1157 		goto out_nomem;
1158 
1159 	if (vrf_rt6_create(dev) != 0)
1160 		goto out_rth;
1161 
1162 	dev->flags = IFF_MASTER | IFF_NOARP;
1163 
1164 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1165 	dev->operstate = IF_OPER_UP;
1166 	netdev_lockdep_set_classes(dev);
1167 	return 0;
1168 
1169 out_rth:
1170 	vrf_rtable_release(dev, vrf);
1171 out_nomem:
1172 	return -ENOMEM;
1173 }
1174 
1175 static const struct net_device_ops vrf_netdev_ops = {
1176 	.ndo_init		= vrf_dev_init,
1177 	.ndo_uninit		= vrf_dev_uninit,
1178 	.ndo_start_xmit		= vrf_xmit,
1179 	.ndo_set_mac_address	= eth_mac_addr,
1180 	.ndo_add_slave		= vrf_add_slave,
1181 	.ndo_del_slave		= vrf_del_slave,
1182 };
1183 
1184 static u32 vrf_fib_table(const struct net_device *dev)
1185 {
1186 	struct net_vrf *vrf = netdev_priv(dev);
1187 
1188 	return vrf->tb_id;
1189 }
1190 
1191 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1192 {
1193 	kfree_skb(skb);
1194 	return 0;
1195 }
1196 
1197 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1198 				      struct sk_buff *skb,
1199 				      struct net_device *dev)
1200 {
1201 	struct net *net = dev_net(dev);
1202 
1203 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1204 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1205 
1206 	return skb;
1207 }
1208 
1209 static int vrf_prepare_mac_header(struct sk_buff *skb,
1210 				  struct net_device *vrf_dev, u16 proto)
1211 {
1212 	struct ethhdr *eth;
1213 	int err;
1214 
1215 	/* in general, we do not know if there is enough space in the head of
1216 	 * the packet for hosting the mac header.
1217 	 */
1218 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1219 	if (unlikely(err))
1220 		/* no space in the skb head */
1221 		return -ENOBUFS;
1222 
1223 	__skb_push(skb, ETH_HLEN);
1224 	eth = (struct ethhdr *)skb->data;
1225 
1226 	skb_reset_mac_header(skb);
1227 	skb_reset_mac_len(skb);
1228 
1229 	/* we set the ethernet destination and the source addresses to the
1230 	 * address of the VRF device.
1231 	 */
1232 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1233 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1234 	eth->h_proto = htons(proto);
1235 
1236 	/* the destination address of the Ethernet frame corresponds to the
1237 	 * address set on the VRF interface; therefore, the packet is intended
1238 	 * to be processed locally.
1239 	 */
1240 	skb->protocol = eth->h_proto;
1241 	skb->pkt_type = PACKET_HOST;
1242 
1243 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1244 
1245 	skb_pull_inline(skb, ETH_HLEN);
1246 
1247 	return 0;
1248 }
1249 
1250 /* prepare and add the mac header to the packet if it was not set previously.
1251  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1252  * If the mac header was already set, the original mac header is left
1253  * untouched and the function returns immediately.
1254  */
1255 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1256 				       struct net_device *vrf_dev,
1257 				       u16 proto, struct net_device *orig_dev)
1258 {
1259 	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1260 		return 0;
1261 
1262 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1263 }
1264 
1265 #if IS_ENABLED(CONFIG_IPV6)
1266 /* neighbor handling is done with actual device; do not want
1267  * to flip skb->dev for those ndisc packets. This really fails
1268  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1269  * a start.
1270  */
1271 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1272 {
1273 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1274 	bool rc = false;
1275 
1276 	if (iph->nexthdr == NEXTHDR_ICMP) {
1277 		const struct icmp6hdr *icmph;
1278 		struct icmp6hdr _icmph;
1279 
1280 		icmph = skb_header_pointer(skb, sizeof(*iph),
1281 					   sizeof(_icmph), &_icmph);
1282 		if (!icmph)
1283 			goto out;
1284 
1285 		switch (icmph->icmp6_type) {
1286 		case NDISC_ROUTER_SOLICITATION:
1287 		case NDISC_ROUTER_ADVERTISEMENT:
1288 		case NDISC_NEIGHBOUR_SOLICITATION:
1289 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1290 		case NDISC_REDIRECT:
1291 			rc = true;
1292 			break;
1293 		}
1294 	}
1295 
1296 out:
1297 	return rc;
1298 }
1299 
1300 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1301 					     const struct net_device *dev,
1302 					     struct flowi6 *fl6,
1303 					     int ifindex,
1304 					     const struct sk_buff *skb,
1305 					     int flags)
1306 {
1307 	struct net_vrf *vrf = netdev_priv(dev);
1308 
1309 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1310 }
1311 
1312 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1313 			      int ifindex)
1314 {
1315 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1316 	struct flowi6 fl6 = {
1317 		.flowi6_iif     = ifindex,
1318 		.flowi6_mark    = skb->mark,
1319 		.flowi6_proto   = iph->nexthdr,
1320 		.daddr          = iph->daddr,
1321 		.saddr          = iph->saddr,
1322 		.flowlabel      = ip6_flowinfo(iph),
1323 	};
1324 	struct net *net = dev_net(vrf_dev);
1325 	struct rt6_info *rt6;
1326 
1327 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1328 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1329 	if (unlikely(!rt6))
1330 		return;
1331 
1332 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1333 		return;
1334 
1335 	skb_dst_set(skb, &rt6->dst);
1336 }
1337 
1338 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1339 				   struct sk_buff *skb)
1340 {
1341 	int orig_iif = skb->skb_iif;
1342 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1343 	bool is_ndisc = ipv6_ndisc_frame(skb);
1344 
1345 	/* loopback, multicast & non-ND link-local traffic; do not push through
1346 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1347 	 * For non-loopback strict packets, determine the dst using the original
1348 	 * ifindex.
1349 	 */
1350 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1351 		skb->dev = vrf_dev;
1352 		skb->skb_iif = vrf_dev->ifindex;
1353 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1354 
1355 		if (skb->pkt_type == PACKET_LOOPBACK)
1356 			skb->pkt_type = PACKET_HOST;
1357 		else
1358 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1359 
1360 		goto out;
1361 	}
1362 
1363 	/* if packet is NDISC then keep the ingress interface */
1364 	if (!is_ndisc) {
1365 		struct net_device *orig_dev = skb->dev;
1366 
1367 		vrf_rx_stats(vrf_dev, skb->len);
1368 		skb->dev = vrf_dev;
1369 		skb->skb_iif = vrf_dev->ifindex;
1370 
1371 		if (!list_empty(&vrf_dev->ptype_all)) {
1372 			int err;
1373 
1374 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1375 							  ETH_P_IPV6,
1376 							  orig_dev);
1377 			if (likely(!err)) {
1378 				skb_push(skb, skb->mac_len);
1379 				dev_queue_xmit_nit(skb, vrf_dev);
1380 				skb_pull(skb, skb->mac_len);
1381 			}
1382 		}
1383 
1384 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1385 	}
1386 
1387 	if (need_strict)
1388 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1389 
1390 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1391 out:
1392 	return skb;
1393 }
1394 
1395 #else
1396 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1397 				   struct sk_buff *skb)
1398 {
1399 	return skb;
1400 }
1401 #endif
1402 
1403 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1404 				  struct sk_buff *skb)
1405 {
1406 	struct net_device *orig_dev = skb->dev;
1407 
1408 	skb->dev = vrf_dev;
1409 	skb->skb_iif = vrf_dev->ifindex;
1410 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1411 
1412 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1413 		goto out;
1414 
1415 	/* loopback traffic; do not push through packet taps again.
1416 	 * Reset pkt_type for upper layers to process skb
1417 	 */
1418 	if (skb->pkt_type == PACKET_LOOPBACK) {
1419 		skb->pkt_type = PACKET_HOST;
1420 		goto out;
1421 	}
1422 
1423 	vrf_rx_stats(vrf_dev, skb->len);
1424 
1425 	if (!list_empty(&vrf_dev->ptype_all)) {
1426 		int err;
1427 
1428 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1429 						  orig_dev);
1430 		if (likely(!err)) {
1431 			skb_push(skb, skb->mac_len);
1432 			dev_queue_xmit_nit(skb, vrf_dev);
1433 			skb_pull(skb, skb->mac_len);
1434 		}
1435 	}
1436 
1437 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1438 out:
1439 	return skb;
1440 }
1441 
1442 /* called with rcu lock held */
1443 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1444 				  struct sk_buff *skb,
1445 				  u16 proto)
1446 {
1447 	switch (proto) {
1448 	case AF_INET:
1449 		return vrf_ip_rcv(vrf_dev, skb);
1450 	case AF_INET6:
1451 		return vrf_ip6_rcv(vrf_dev, skb);
1452 	}
1453 
1454 	return skb;
1455 }
1456 
1457 #if IS_ENABLED(CONFIG_IPV6)
1458 /* send to link-local or multicast address via interface enslaved to
1459  * VRF device. Force lookup to VRF table without changing flow struct
1460  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1461  * is taken on the dst by this function.
1462  */
1463 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1464 					      struct flowi6 *fl6)
1465 {
1466 	struct net *net = dev_net(dev);
1467 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1468 	struct dst_entry *dst = NULL;
1469 	struct rt6_info *rt;
1470 
1471 	/* VRF device does not have a link-local address and
1472 	 * sending packets to link-local or mcast addresses over
1473 	 * a VRF device does not make sense
1474 	 */
1475 	if (fl6->flowi6_oif == dev->ifindex) {
1476 		dst = &net->ipv6.ip6_null_entry->dst;
1477 		return dst;
1478 	}
1479 
1480 	if (!ipv6_addr_any(&fl6->saddr))
1481 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1482 
1483 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1484 	if (rt)
1485 		dst = &rt->dst;
1486 
1487 	return dst;
1488 }
1489 #endif
1490 
1491 static const struct l3mdev_ops vrf_l3mdev_ops = {
1492 	.l3mdev_fib_table	= vrf_fib_table,
1493 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1494 	.l3mdev_l3_out		= vrf_l3_out,
1495 #if IS_ENABLED(CONFIG_IPV6)
1496 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1497 #endif
1498 };
1499 
1500 static void vrf_get_drvinfo(struct net_device *dev,
1501 			    struct ethtool_drvinfo *info)
1502 {
1503 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1504 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1505 }
1506 
1507 static const struct ethtool_ops vrf_ethtool_ops = {
1508 	.get_drvinfo	= vrf_get_drvinfo,
1509 };
1510 
1511 static inline size_t vrf_fib_rule_nl_size(void)
1512 {
1513 	size_t sz;
1514 
1515 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1516 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1517 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1518 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1519 
1520 	return sz;
1521 }
1522 
1523 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1524 {
1525 	struct fib_rule_hdr *frh;
1526 	struct nlmsghdr *nlh;
1527 	struct sk_buff *skb;
1528 	int err;
1529 
1530 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1531 	    !ipv6_mod_enabled())
1532 		return 0;
1533 
1534 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1535 	if (!skb)
1536 		return -ENOMEM;
1537 
1538 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1539 	if (!nlh)
1540 		goto nla_put_failure;
1541 
1542 	/* rule only needs to appear once */
1543 	nlh->nlmsg_flags |= NLM_F_EXCL;
1544 
1545 	frh = nlmsg_data(nlh);
1546 	memset(frh, 0, sizeof(*frh));
1547 	frh->family = family;
1548 	frh->action = FR_ACT_TO_TBL;
1549 
1550 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1551 		goto nla_put_failure;
1552 
1553 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1554 		goto nla_put_failure;
1555 
1556 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1557 		goto nla_put_failure;
1558 
1559 	nlmsg_end(skb, nlh);
1560 
1561 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1562 	skb->sk = dev_net(dev)->rtnl;
1563 	if (add_it) {
1564 		err = fib_nl_newrule(skb, nlh, NULL);
1565 		if (err == -EEXIST)
1566 			err = 0;
1567 	} else {
1568 		err = fib_nl_delrule(skb, nlh, NULL);
1569 		if (err == -ENOENT)
1570 			err = 0;
1571 	}
1572 	nlmsg_free(skb);
1573 
1574 	return err;
1575 
1576 nla_put_failure:
1577 	nlmsg_free(skb);
1578 
1579 	return -EMSGSIZE;
1580 }
1581 
1582 static int vrf_add_fib_rules(const struct net_device *dev)
1583 {
1584 	int err;
1585 
1586 	err = vrf_fib_rule(dev, AF_INET,  true);
1587 	if (err < 0)
1588 		goto out_err;
1589 
1590 	err = vrf_fib_rule(dev, AF_INET6, true);
1591 	if (err < 0)
1592 		goto ipv6_err;
1593 
1594 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1595 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1596 	if (err < 0)
1597 		goto ipmr_err;
1598 #endif
1599 
1600 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1601 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1602 	if (err < 0)
1603 		goto ip6mr_err;
1604 #endif
1605 
1606 	return 0;
1607 
1608 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1609 ip6mr_err:
1610 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1611 #endif
1612 
1613 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614 ipmr_err:
1615 	vrf_fib_rule(dev, AF_INET6,  false);
1616 #endif
1617 
1618 ipv6_err:
1619 	vrf_fib_rule(dev, AF_INET,  false);
1620 
1621 out_err:
1622 	netdev_err(dev, "Failed to add FIB rules.\n");
1623 	return err;
1624 }
1625 
1626 static void vrf_setup(struct net_device *dev)
1627 {
1628 	ether_setup(dev);
1629 
1630 	/* Initialize the device structure. */
1631 	dev->netdev_ops = &vrf_netdev_ops;
1632 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1633 	dev->ethtool_ops = &vrf_ethtool_ops;
1634 	dev->needs_free_netdev = true;
1635 
1636 	/* Fill in device structure with ethernet-generic values. */
1637 	eth_hw_addr_random(dev);
1638 
1639 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1640 	dev->lltx = true;
1641 
1642 	/* don't allow vrf devices to change network namespaces. */
1643 	dev->netns_local = true;
1644 
1645 	/* does not make sense for a VLAN to be added to a vrf device */
1646 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1647 
1648 	/* enable offload features */
1649 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1650 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1651 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1652 
1653 	dev->hw_features = dev->features;
1654 	dev->hw_enc_features = dev->features;
1655 
1656 	/* default to no qdisc; user can add if desired */
1657 	dev->priv_flags |= IFF_NO_QUEUE;
1658 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1659 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1660 
1661 	/* VRF devices do not care about MTU, but if the MTU is set
1662 	 * too low then the ipv4 and ipv6 protocols are disabled
1663 	 * which breaks networking.
1664 	 */
1665 	dev->min_mtu = IPV6_MIN_MTU;
1666 	dev->max_mtu = IP6_MAX_MTU;
1667 	dev->mtu = dev->max_mtu;
1668 
1669 	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1670 }
1671 
1672 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1673 			struct netlink_ext_ack *extack)
1674 {
1675 	if (tb[IFLA_ADDRESS]) {
1676 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1677 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1678 			return -EINVAL;
1679 		}
1680 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1681 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1682 			return -EADDRNOTAVAIL;
1683 		}
1684 	}
1685 	return 0;
1686 }
1687 
1688 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1689 {
1690 	struct net_device *port_dev;
1691 	struct list_head *iter;
1692 
1693 	netdev_for_each_lower_dev(dev, port_dev, iter)
1694 		vrf_del_slave(dev, port_dev);
1695 
1696 	vrf_map_unregister_dev(dev);
1697 
1698 	unregister_netdevice_queue(dev, head);
1699 }
1700 
1701 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1702 		       struct nlattr *tb[], struct nlattr *data[],
1703 		       struct netlink_ext_ack *extack)
1704 {
1705 	struct net_vrf *vrf = netdev_priv(dev);
1706 	struct netns_vrf *nn_vrf;
1707 	bool *add_fib_rules;
1708 	struct net *net;
1709 	int err;
1710 
1711 	if (!data || !data[IFLA_VRF_TABLE]) {
1712 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1713 		return -EINVAL;
1714 	}
1715 
1716 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1717 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1718 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1719 				    "Invalid VRF table id");
1720 		return -EINVAL;
1721 	}
1722 
1723 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1724 
1725 	err = register_netdevice(dev);
1726 	if (err)
1727 		goto out;
1728 
1729 	/* mapping between table_id and vrf;
1730 	 * note: such binding could not be done in the dev init function
1731 	 * because dev->ifindex id is not available yet.
1732 	 */
1733 	vrf->ifindex = dev->ifindex;
1734 
1735 	err = vrf_map_register_dev(dev, extack);
1736 	if (err) {
1737 		unregister_netdevice(dev);
1738 		goto out;
1739 	}
1740 
1741 	net = dev_net(dev);
1742 	nn_vrf = net_generic(net, vrf_net_id);
1743 
1744 	add_fib_rules = &nn_vrf->add_fib_rules;
1745 	if (*add_fib_rules) {
1746 		err = vrf_add_fib_rules(dev);
1747 		if (err) {
1748 			vrf_map_unregister_dev(dev);
1749 			unregister_netdevice(dev);
1750 			goto out;
1751 		}
1752 		*add_fib_rules = false;
1753 	}
1754 
1755 out:
1756 	return err;
1757 }
1758 
1759 static size_t vrf_nl_getsize(const struct net_device *dev)
1760 {
1761 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1762 }
1763 
1764 static int vrf_fillinfo(struct sk_buff *skb,
1765 			const struct net_device *dev)
1766 {
1767 	struct net_vrf *vrf = netdev_priv(dev);
1768 
1769 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1770 }
1771 
1772 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1773 				 const struct net_device *slave_dev)
1774 {
1775 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1776 }
1777 
1778 static int vrf_fill_slave_info(struct sk_buff *skb,
1779 			       const struct net_device *vrf_dev,
1780 			       const struct net_device *slave_dev)
1781 {
1782 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1783 
1784 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1785 		return -EMSGSIZE;
1786 
1787 	return 0;
1788 }
1789 
1790 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1791 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1792 };
1793 
1794 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1795 	.kind		= DRV_NAME,
1796 	.priv_size	= sizeof(struct net_vrf),
1797 
1798 	.get_size	= vrf_nl_getsize,
1799 	.policy		= vrf_nl_policy,
1800 	.validate	= vrf_validate,
1801 	.fill_info	= vrf_fillinfo,
1802 
1803 	.get_slave_size  = vrf_get_slave_size,
1804 	.fill_slave_info = vrf_fill_slave_info,
1805 
1806 	.newlink	= vrf_newlink,
1807 	.dellink	= vrf_dellink,
1808 	.setup		= vrf_setup,
1809 	.maxtype	= IFLA_VRF_MAX,
1810 };
1811 
1812 static int vrf_device_event(struct notifier_block *unused,
1813 			    unsigned long event, void *ptr)
1814 {
1815 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1816 
1817 	/* only care about unregister events to drop slave references */
1818 	if (event == NETDEV_UNREGISTER) {
1819 		struct net_device *vrf_dev;
1820 
1821 		if (!netif_is_l3_slave(dev))
1822 			goto out;
1823 
1824 		vrf_dev = netdev_master_upper_dev_get(dev);
1825 		vrf_del_slave(vrf_dev, dev);
1826 	}
1827 out:
1828 	return NOTIFY_DONE;
1829 }
1830 
1831 static struct notifier_block vrf_notifier_block __read_mostly = {
1832 	.notifier_call = vrf_device_event,
1833 };
1834 
1835 static int vrf_map_init(struct vrf_map *vmap)
1836 {
1837 	spin_lock_init(&vmap->vmap_lock);
1838 	hash_init(vmap->ht);
1839 
1840 	vmap->strict_mode = false;
1841 
1842 	return 0;
1843 }
1844 
1845 #ifdef CONFIG_SYSCTL
1846 static bool vrf_strict_mode(struct vrf_map *vmap)
1847 {
1848 	bool strict_mode;
1849 
1850 	vrf_map_lock(vmap);
1851 	strict_mode = vmap->strict_mode;
1852 	vrf_map_unlock(vmap);
1853 
1854 	return strict_mode;
1855 }
1856 
1857 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1858 {
1859 	bool *cur_mode;
1860 	int res = 0;
1861 
1862 	vrf_map_lock(vmap);
1863 
1864 	cur_mode = &vmap->strict_mode;
1865 	if (*cur_mode == new_mode)
1866 		goto unlock;
1867 
1868 	if (*cur_mode) {
1869 		/* disable strict mode */
1870 		*cur_mode = false;
1871 	} else {
1872 		if (vmap->shared_tables) {
1873 			/* we cannot allow strict_mode because there are some
1874 			 * vrfs that share one or more tables.
1875 			 */
1876 			res = -EBUSY;
1877 			goto unlock;
1878 		}
1879 
1880 		/* no tables are shared among vrfs, so we can go back
1881 		 * to 1:1 association between a vrf with its table.
1882 		 */
1883 		*cur_mode = true;
1884 	}
1885 
1886 unlock:
1887 	vrf_map_unlock(vmap);
1888 
1889 	return res;
1890 }
1891 
1892 static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1893 				    void *buffer, size_t *lenp, loff_t *ppos)
1894 {
1895 	struct net *net = (struct net *)table->extra1;
1896 	struct vrf_map *vmap = netns_vrf_map(net);
1897 	int proc_strict_mode = 0;
1898 	struct ctl_table tmp = {
1899 		.procname	= table->procname,
1900 		.data		= &proc_strict_mode,
1901 		.maxlen		= sizeof(int),
1902 		.mode		= table->mode,
1903 		.extra1		= SYSCTL_ZERO,
1904 		.extra2		= SYSCTL_ONE,
1905 	};
1906 	int ret;
1907 
1908 	if (!write)
1909 		proc_strict_mode = vrf_strict_mode(vmap);
1910 
1911 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1912 
1913 	if (write && ret == 0)
1914 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1915 
1916 	return ret;
1917 }
1918 
1919 static const struct ctl_table vrf_table[] = {
1920 	{
1921 		.procname	= "strict_mode",
1922 		.data		= NULL,
1923 		.maxlen		= sizeof(int),
1924 		.mode		= 0644,
1925 		.proc_handler	= vrf_shared_table_handler,
1926 		/* set by the vrf_netns_init */
1927 		.extra1		= NULL,
1928 	},
1929 };
1930 
1931 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1932 {
1933 	struct ctl_table *table;
1934 
1935 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1936 	if (!table)
1937 		return -ENOMEM;
1938 
1939 	/* init the extra1 parameter with the reference to current netns */
1940 	table[0].extra1 = net;
1941 
1942 	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1943 						 ARRAY_SIZE(vrf_table));
1944 	if (!nn_vrf->ctl_hdr) {
1945 		kfree(table);
1946 		return -ENOMEM;
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static void vrf_netns_exit_sysctl(struct net *net)
1953 {
1954 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1955 	const struct ctl_table *table;
1956 
1957 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1958 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1959 	kfree(table);
1960 }
1961 #else
1962 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1963 {
1964 	return 0;
1965 }
1966 
1967 static void vrf_netns_exit_sysctl(struct net *net)
1968 {
1969 }
1970 #endif
1971 
1972 /* Initialize per network namespace state */
1973 static int __net_init vrf_netns_init(struct net *net)
1974 {
1975 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1976 
1977 	nn_vrf->add_fib_rules = true;
1978 	vrf_map_init(&nn_vrf->vmap);
1979 
1980 	return vrf_netns_init_sysctl(net, nn_vrf);
1981 }
1982 
1983 static void __net_exit vrf_netns_exit(struct net *net)
1984 {
1985 	vrf_netns_exit_sysctl(net);
1986 }
1987 
1988 static struct pernet_operations vrf_net_ops __net_initdata = {
1989 	.init = vrf_netns_init,
1990 	.exit = vrf_netns_exit,
1991 	.id   = &vrf_net_id,
1992 	.size = sizeof(struct netns_vrf),
1993 };
1994 
1995 static int __init vrf_init_module(void)
1996 {
1997 	int rc;
1998 
1999 	register_netdevice_notifier(&vrf_notifier_block);
2000 
2001 	rc = register_pernet_subsys(&vrf_net_ops);
2002 	if (rc < 0)
2003 		goto error;
2004 
2005 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2006 					  vrf_ifindex_lookup_by_table_id);
2007 	if (rc < 0)
2008 		goto unreg_pernet;
2009 
2010 	rc = rtnl_link_register(&vrf_link_ops);
2011 	if (rc < 0)
2012 		goto table_lookup_unreg;
2013 
2014 	return 0;
2015 
2016 table_lookup_unreg:
2017 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2018 				       vrf_ifindex_lookup_by_table_id);
2019 
2020 unreg_pernet:
2021 	unregister_pernet_subsys(&vrf_net_ops);
2022 
2023 error:
2024 	unregister_netdevice_notifier(&vrf_notifier_block);
2025 	return rc;
2026 }
2027 
2028 module_init(vrf_init_module);
2029 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2030 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2031 MODULE_LICENSE("GPL");
2032 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2033 MODULE_VERSION(DRV_VERSION);
2034