xref: /linux/drivers/net/vrf.c (revision 8ce936c2f1a68c3a4f46578eed016ff92a67fbc6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netns/generic.h>
38 
39 #define DRV_NAME	"vrf"
40 #define DRV_VERSION	"1.1"
41 
42 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
43 
44 #define HT_MAP_BITS	4
45 #define HASH_INITVAL	((u32)0xcafef00d)
46 
47 struct  vrf_map {
48 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
49 	spinlock_t vmap_lock;
50 
51 	/* shared_tables:
52 	 * count how many distinct tables do not comply with the strict mode
53 	 * requirement.
54 	 * shared_tables value must be 0 in order to enable the strict mode.
55 	 *
56 	 * example of the evolution of shared_tables:
57 	 *                                                        | time
58 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
59 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
60 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
61 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
62 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
63 	 *
64 	 * shared_tables is a "step function" (or "staircase function")
65 	 * and it is increased by one when the second vrf is associated to a
66 	 * table.
67 	 *
68 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 	 *
70 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 	 * value of shared_tables is still 1.
72 	 * This means that no matter how many new vrfs will register on the
73 	 * table 100, the shared_tables will not increase (considering only
74 	 * table 100).
75 	 *
76 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 	 *
78 	 * Looking at the value of shared_tables we can immediately know if
79 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 	 * can be enforced iff shared_tables = 0.
81 	 *
82 	 * Conversely, shared_tables is decreased when a vrf is de-associated
83 	 * from a table with exactly two associated vrfs.
84 	 */
85 	u32 shared_tables;
86 
87 	bool strict_mode;
88 };
89 
90 struct vrf_map_elem {
91 	struct hlist_node hnode;
92 	struct list_head vrf_list;  /* VRFs registered to this table */
93 
94 	u32 table_id;
95 	int users;
96 	int ifindex;
97 };
98 
99 static unsigned int vrf_net_id;
100 
101 /* per netns vrf data */
102 struct netns_vrf {
103 	/* protected by rtnl lock */
104 	bool add_fib_rules;
105 
106 	struct vrf_map vmap;
107 	struct ctl_table_header	*ctl_hdr;
108 };
109 
110 struct net_vrf {
111 	struct rtable __rcu	*rth;
112 	struct rt6_info	__rcu	*rt6;
113 #if IS_ENABLED(CONFIG_IPV6)
114 	struct fib6_table	*fib6_table;
115 #endif
116 	u32                     tb_id;
117 
118 	struct list_head	me_list;   /* entry in vrf_map_elem */
119 	int			ifindex;
120 };
121 
122 struct pcpu_dstats {
123 	u64			tx_pkts;
124 	u64			tx_bytes;
125 	u64			tx_drps;
126 	u64			rx_pkts;
127 	u64			rx_bytes;
128 	u64			rx_drps;
129 	struct u64_stats_sync	syncp;
130 };
131 
132 static void vrf_rx_stats(struct net_device *dev, int len)
133 {
134 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135 
136 	u64_stats_update_begin(&dstats->syncp);
137 	dstats->rx_pkts++;
138 	dstats->rx_bytes += len;
139 	u64_stats_update_end(&dstats->syncp);
140 }
141 
142 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143 {
144 	vrf_dev->stats.tx_errors++;
145 	kfree_skb(skb);
146 }
147 
148 static void vrf_get_stats64(struct net_device *dev,
149 			    struct rtnl_link_stats64 *stats)
150 {
151 	int i;
152 
153 	for_each_possible_cpu(i) {
154 		const struct pcpu_dstats *dstats;
155 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
156 		unsigned int start;
157 
158 		dstats = per_cpu_ptr(dev->dstats, i);
159 		do {
160 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 			tbytes = dstats->tx_bytes;
162 			tpkts = dstats->tx_pkts;
163 			tdrops = dstats->tx_drps;
164 			rbytes = dstats->rx_bytes;
165 			rpkts = dstats->rx_pkts;
166 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 		stats->tx_bytes += tbytes;
168 		stats->tx_packets += tpkts;
169 		stats->tx_dropped += tdrops;
170 		stats->rx_bytes += rbytes;
171 		stats->rx_packets += rpkts;
172 	}
173 }
174 
175 static struct vrf_map *netns_vrf_map(struct net *net)
176 {
177 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178 
179 	return &nn_vrf->vmap;
180 }
181 
182 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183 {
184 	return netns_vrf_map(dev_net(dev));
185 }
186 
187 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188 {
189 	struct list_head *me_head = &me->vrf_list;
190 	struct net_vrf *vrf;
191 
192 	if (list_empty(me_head))
193 		return -ENODEV;
194 
195 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
196 
197 	return vrf->ifindex;
198 }
199 
200 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201 {
202 	struct vrf_map_elem *me;
203 
204 	me = kmalloc(sizeof(*me), flags);
205 	if (!me)
206 		return NULL;
207 
208 	return me;
209 }
210 
211 static void vrf_map_elem_free(struct vrf_map_elem *me)
212 {
213 	kfree(me);
214 }
215 
216 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 			      int ifindex, int users)
218 {
219 	me->table_id = table_id;
220 	me->ifindex = ifindex;
221 	me->users = users;
222 	INIT_LIST_HEAD(&me->vrf_list);
223 }
224 
225 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
226 						u32 table_id)
227 {
228 	struct vrf_map_elem *me;
229 	u32 key;
230 
231 	key = jhash_1word(table_id, HASH_INITVAL);
232 	hash_for_each_possible(vmap->ht, me, hnode, key) {
233 		if (me->table_id == table_id)
234 			return me;
235 	}
236 
237 	return NULL;
238 }
239 
240 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241 {
242 	u32 table_id = me->table_id;
243 	u32 key;
244 
245 	key = jhash_1word(table_id, HASH_INITVAL);
246 	hash_add(vmap->ht, &me->hnode, key);
247 }
248 
249 static void vrf_map_del_elem(struct vrf_map_elem *me)
250 {
251 	hash_del(&me->hnode);
252 }
253 
254 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255 {
256 	spin_lock(&vmap->vmap_lock);
257 }
258 
259 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260 {
261 	spin_unlock(&vmap->vmap_lock);
262 }
263 
264 /* called with rtnl lock held */
265 static int
266 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267 {
268 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 	struct net_vrf *vrf = netdev_priv(dev);
270 	struct vrf_map_elem *new_me, *me;
271 	u32 table_id = vrf->tb_id;
272 	bool free_new_me = false;
273 	int users;
274 	int res;
275 
276 	/* we pre-allocate elements used in the spin-locked section (so that we
277 	 * keep the spinlock as short as possible).
278 	 */
279 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
280 	if (!new_me)
281 		return -ENOMEM;
282 
283 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
284 
285 	vrf_map_lock(vmap);
286 
287 	me = vrf_map_lookup_elem(vmap, table_id);
288 	if (!me) {
289 		me = new_me;
290 		vrf_map_add_elem(vmap, me);
291 		goto link_vrf;
292 	}
293 
294 	/* we already have an entry in the vrf_map, so it means there is (at
295 	 * least) a vrf registered on the specific table.
296 	 */
297 	free_new_me = true;
298 	if (vmap->strict_mode) {
299 		/* vrfs cannot share the same table */
300 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
301 		res = -EBUSY;
302 		goto unlock;
303 	}
304 
305 link_vrf:
306 	users = ++me->users;
307 	if (users == 2)
308 		++vmap->shared_tables;
309 
310 	list_add(&vrf->me_list, &me->vrf_list);
311 
312 	res = 0;
313 
314 unlock:
315 	vrf_map_unlock(vmap);
316 
317 	/* clean-up, if needed */
318 	if (free_new_me)
319 		vrf_map_elem_free(new_me);
320 
321 	return res;
322 }
323 
324 /* called with rtnl lock held */
325 static void vrf_map_unregister_dev(struct net_device *dev)
326 {
327 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 	struct net_vrf *vrf = netdev_priv(dev);
329 	u32 table_id = vrf->tb_id;
330 	struct vrf_map_elem *me;
331 	int users;
332 
333 	vrf_map_lock(vmap);
334 
335 	me = vrf_map_lookup_elem(vmap, table_id);
336 	if (!me)
337 		goto unlock;
338 
339 	list_del(&vrf->me_list);
340 
341 	users = --me->users;
342 	if (users == 1) {
343 		--vmap->shared_tables;
344 	} else if (users == 0) {
345 		vrf_map_del_elem(me);
346 
347 		/* no one will refer to this element anymore */
348 		vrf_map_elem_free(me);
349 	}
350 
351 unlock:
352 	vrf_map_unlock(vmap);
353 }
354 
355 /* return the vrf device index associated with the table_id */
356 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357 {
358 	struct vrf_map *vmap = netns_vrf_map(net);
359 	struct vrf_map_elem *me;
360 	int ifindex;
361 
362 	vrf_map_lock(vmap);
363 
364 	if (!vmap->strict_mode) {
365 		ifindex = -EPERM;
366 		goto unlock;
367 	}
368 
369 	me = vrf_map_lookup_elem(vmap, table_id);
370 	if (!me) {
371 		ifindex = -ENODEV;
372 		goto unlock;
373 	}
374 
375 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
376 
377 unlock:
378 	vrf_map_unlock(vmap);
379 
380 	return ifindex;
381 }
382 
383 /* by default VRF devices do not have a qdisc and are expected
384  * to be created with only a single queue.
385  */
386 static bool qdisc_tx_is_default(const struct net_device *dev)
387 {
388 	struct netdev_queue *txq;
389 	struct Qdisc *qdisc;
390 
391 	if (dev->num_tx_queues > 1)
392 		return false;
393 
394 	txq = netdev_get_tx_queue(dev, 0);
395 	qdisc = rcu_access_pointer(txq->qdisc);
396 
397 	return !qdisc->enqueue;
398 }
399 
400 /* Local traffic destined to local address. Reinsert the packet to rx
401  * path, similar to loopback handling.
402  */
403 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 			  struct dst_entry *dst)
405 {
406 	int len = skb->len;
407 
408 	skb_orphan(skb);
409 
410 	skb_dst_set(skb, dst);
411 
412 	/* set pkt_type to avoid skb hitting packet taps twice -
413 	 * once on Tx and again in Rx processing
414 	 */
415 	skb->pkt_type = PACKET_LOOPBACK;
416 
417 	skb->protocol = eth_type_trans(skb, dev);
418 
419 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 		vrf_rx_stats(dev, len);
421 	else
422 		this_cpu_inc(dev->dstats->rx_drps);
423 
424 	return NETDEV_TX_OK;
425 }
426 
427 #if IS_ENABLED(CONFIG_IPV6)
428 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
429 			     struct sk_buff *skb)
430 {
431 	int err;
432 
433 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
434 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
435 
436 	if (likely(err == 1))
437 		err = dst_output(net, sk, skb);
438 
439 	return err;
440 }
441 
442 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
443 					   struct net_device *dev)
444 {
445 	const struct ipv6hdr *iph;
446 	struct net *net = dev_net(skb->dev);
447 	struct flowi6 fl6;
448 	int ret = NET_XMIT_DROP;
449 	struct dst_entry *dst;
450 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
451 
452 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
453 		goto err;
454 
455 	iph = ipv6_hdr(skb);
456 
457 	memset(&fl6, 0, sizeof(fl6));
458 	/* needed to match OIF rule */
459 	fl6.flowi6_oif = dev->ifindex;
460 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
461 	fl6.daddr = iph->daddr;
462 	fl6.saddr = iph->saddr;
463 	fl6.flowlabel = ip6_flowinfo(iph);
464 	fl6.flowi6_mark = skb->mark;
465 	fl6.flowi6_proto = iph->nexthdr;
466 	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
467 
468 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
469 	if (IS_ERR(dst) || dst == dst_null)
470 		goto err;
471 
472 	skb_dst_drop(skb);
473 
474 	/* if dst.dev is the VRF device again this is locally originated traffic
475 	 * destined to a local address. Short circuit to Rx path.
476 	 */
477 	if (dst->dev == dev)
478 		return vrf_local_xmit(skb, dev, dst);
479 
480 	skb_dst_set(skb, dst);
481 
482 	/* strip the ethernet header added for pass through VRF device */
483 	__skb_pull(skb, skb_network_offset(skb));
484 
485 	ret = vrf_ip6_local_out(net, skb->sk, skb);
486 	if (unlikely(net_xmit_eval(ret)))
487 		dev->stats.tx_errors++;
488 	else
489 		ret = NET_XMIT_SUCCESS;
490 
491 	return ret;
492 err:
493 	vrf_tx_error(dev, skb);
494 	return NET_XMIT_DROP;
495 }
496 #else
497 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
498 					   struct net_device *dev)
499 {
500 	vrf_tx_error(dev, skb);
501 	return NET_XMIT_DROP;
502 }
503 #endif
504 
505 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
506 static int vrf_ip_local_out(struct net *net, struct sock *sk,
507 			    struct sk_buff *skb)
508 {
509 	int err;
510 
511 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
512 		      skb, NULL, skb_dst(skb)->dev, dst_output);
513 	if (likely(err == 1))
514 		err = dst_output(net, sk, skb);
515 
516 	return err;
517 }
518 
519 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
520 					   struct net_device *vrf_dev)
521 {
522 	struct iphdr *ip4h;
523 	int ret = NET_XMIT_DROP;
524 	struct flowi4 fl4;
525 	struct net *net = dev_net(vrf_dev);
526 	struct rtable *rt;
527 
528 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
529 		goto err;
530 
531 	ip4h = ip_hdr(skb);
532 
533 	memset(&fl4, 0, sizeof(fl4));
534 	/* needed to match OIF rule */
535 	fl4.flowi4_oif = vrf_dev->ifindex;
536 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
537 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
538 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
539 	fl4.flowi4_proto = ip4h->protocol;
540 	fl4.daddr = ip4h->daddr;
541 	fl4.saddr = ip4h->saddr;
542 
543 	rt = ip_route_output_flow(net, &fl4, NULL);
544 	if (IS_ERR(rt))
545 		goto err;
546 
547 	skb_dst_drop(skb);
548 
549 	/* if dst.dev is the VRF device again this is locally originated traffic
550 	 * destined to a local address. Short circuit to Rx path.
551 	 */
552 	if (rt->dst.dev == vrf_dev)
553 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
554 
555 	skb_dst_set(skb, &rt->dst);
556 
557 	/* strip the ethernet header added for pass through VRF device */
558 	__skb_pull(skb, skb_network_offset(skb));
559 
560 	if (!ip4h->saddr) {
561 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
562 					       RT_SCOPE_LINK);
563 	}
564 
565 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
566 	if (unlikely(net_xmit_eval(ret)))
567 		vrf_dev->stats.tx_errors++;
568 	else
569 		ret = NET_XMIT_SUCCESS;
570 
571 out:
572 	return ret;
573 err:
574 	vrf_tx_error(vrf_dev, skb);
575 	goto out;
576 }
577 
578 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
579 {
580 	switch (skb->protocol) {
581 	case htons(ETH_P_IP):
582 		return vrf_process_v4_outbound(skb, dev);
583 	case htons(ETH_P_IPV6):
584 		return vrf_process_v6_outbound(skb, dev);
585 	default:
586 		vrf_tx_error(dev, skb);
587 		return NET_XMIT_DROP;
588 	}
589 }
590 
591 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
592 {
593 	int len = skb->len;
594 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
595 
596 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
597 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
598 
599 		u64_stats_update_begin(&dstats->syncp);
600 		dstats->tx_pkts++;
601 		dstats->tx_bytes += len;
602 		u64_stats_update_end(&dstats->syncp);
603 	} else {
604 		this_cpu_inc(dev->dstats->tx_drps);
605 	}
606 
607 	return ret;
608 }
609 
610 static void vrf_finish_direct(struct sk_buff *skb)
611 {
612 	struct net_device *vrf_dev = skb->dev;
613 
614 	if (!list_empty(&vrf_dev->ptype_all) &&
615 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
616 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
617 
618 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
619 		eth_zero_addr(eth->h_dest);
620 		eth->h_proto = skb->protocol;
621 
622 		rcu_read_lock_bh();
623 		dev_queue_xmit_nit(skb, vrf_dev);
624 		rcu_read_unlock_bh();
625 
626 		skb_pull(skb, ETH_HLEN);
627 	}
628 
629 	/* reset skb device */
630 	nf_reset_ct(skb);
631 }
632 
633 #if IS_ENABLED(CONFIG_IPV6)
634 /* modelled after ip6_finish_output2 */
635 static int vrf_finish_output6(struct net *net, struct sock *sk,
636 			      struct sk_buff *skb)
637 {
638 	struct dst_entry *dst = skb_dst(skb);
639 	struct net_device *dev = dst->dev;
640 	const struct in6_addr *nexthop;
641 	struct neighbour *neigh;
642 	int ret;
643 
644 	nf_reset_ct(skb);
645 
646 	skb->protocol = htons(ETH_P_IPV6);
647 	skb->dev = dev;
648 
649 	rcu_read_lock_bh();
650 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
651 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
652 	if (unlikely(!neigh))
653 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
654 	if (!IS_ERR(neigh)) {
655 		sock_confirm_neigh(skb, neigh);
656 		ret = neigh_output(neigh, skb, false);
657 		rcu_read_unlock_bh();
658 		return ret;
659 	}
660 	rcu_read_unlock_bh();
661 
662 	IP6_INC_STATS(dev_net(dst->dev),
663 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
664 	kfree_skb(skb);
665 	return -EINVAL;
666 }
667 
668 /* modelled after ip6_output */
669 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
670 {
671 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
672 			    net, sk, skb, NULL, skb_dst(skb)->dev,
673 			    vrf_finish_output6,
674 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
675 }
676 
677 /* set dst on skb to send packet to us via dev_xmit path. Allows
678  * packet to go through device based features such as qdisc, netfilter
679  * hooks and packet sockets with skb->dev set to vrf device.
680  */
681 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
682 					    struct sk_buff *skb)
683 {
684 	struct net_vrf *vrf = netdev_priv(vrf_dev);
685 	struct dst_entry *dst = NULL;
686 	struct rt6_info *rt6;
687 
688 	rcu_read_lock();
689 
690 	rt6 = rcu_dereference(vrf->rt6);
691 	if (likely(rt6)) {
692 		dst = &rt6->dst;
693 		dst_hold(dst);
694 	}
695 
696 	rcu_read_unlock();
697 
698 	if (unlikely(!dst)) {
699 		vrf_tx_error(vrf_dev, skb);
700 		return NULL;
701 	}
702 
703 	skb_dst_drop(skb);
704 	skb_dst_set(skb, dst);
705 
706 	return skb;
707 }
708 
709 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
710 				     struct sk_buff *skb)
711 {
712 	vrf_finish_direct(skb);
713 
714 	return vrf_ip6_local_out(net, sk, skb);
715 }
716 
717 static int vrf_output6_direct(struct net *net, struct sock *sk,
718 			      struct sk_buff *skb)
719 {
720 	int err = 1;
721 
722 	skb->protocol = htons(ETH_P_IPV6);
723 
724 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
725 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
726 			      NULL, skb->dev, vrf_output6_direct_finish);
727 
728 	if (likely(err == 1))
729 		vrf_finish_direct(skb);
730 
731 	return err;
732 }
733 
734 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
735 				     struct sk_buff *skb)
736 {
737 	int err;
738 
739 	err = vrf_output6_direct(net, sk, skb);
740 	if (likely(err == 1))
741 		err = vrf_ip6_local_out(net, sk, skb);
742 
743 	return err;
744 }
745 
746 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
747 					  struct sock *sk,
748 					  struct sk_buff *skb)
749 {
750 	struct net *net = dev_net(vrf_dev);
751 	int err;
752 
753 	skb->dev = vrf_dev;
754 
755 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
756 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
757 
758 	if (likely(err == 1))
759 		err = vrf_output6_direct(net, sk, skb);
760 
761 	if (likely(err == 1))
762 		return skb;
763 
764 	return NULL;
765 }
766 
767 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
768 				   struct sock *sk,
769 				   struct sk_buff *skb)
770 {
771 	/* don't divert link scope packets */
772 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
773 		return skb;
774 
775 	if (qdisc_tx_is_default(vrf_dev) ||
776 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
777 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
778 
779 	return vrf_ip6_out_redirect(vrf_dev, skb);
780 }
781 
782 /* holding rtnl */
783 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
784 {
785 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
786 	struct net *net = dev_net(dev);
787 	struct dst_entry *dst;
788 
789 	RCU_INIT_POINTER(vrf->rt6, NULL);
790 	synchronize_rcu();
791 
792 	/* move dev in dst's to loopback so this VRF device can be deleted
793 	 * - based on dst_ifdown
794 	 */
795 	if (rt6) {
796 		dst = &rt6->dst;
797 		dev_put(dst->dev);
798 		dst->dev = net->loopback_dev;
799 		dev_hold(dst->dev);
800 		dst_release(dst);
801 	}
802 }
803 
804 static int vrf_rt6_create(struct net_device *dev)
805 {
806 	int flags = DST_NOPOLICY | DST_NOXFRM;
807 	struct net_vrf *vrf = netdev_priv(dev);
808 	struct net *net = dev_net(dev);
809 	struct rt6_info *rt6;
810 	int rc = -ENOMEM;
811 
812 	/* IPv6 can be CONFIG enabled and then disabled runtime */
813 	if (!ipv6_mod_enabled())
814 		return 0;
815 
816 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
817 	if (!vrf->fib6_table)
818 		goto out;
819 
820 	/* create a dst for routing packets out a VRF device */
821 	rt6 = ip6_dst_alloc(net, dev, flags);
822 	if (!rt6)
823 		goto out;
824 
825 	rt6->dst.output	= vrf_output6;
826 
827 	rcu_assign_pointer(vrf->rt6, rt6);
828 
829 	rc = 0;
830 out:
831 	return rc;
832 }
833 #else
834 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
835 				   struct sock *sk,
836 				   struct sk_buff *skb)
837 {
838 	return skb;
839 }
840 
841 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
842 {
843 }
844 
845 static int vrf_rt6_create(struct net_device *dev)
846 {
847 	return 0;
848 }
849 #endif
850 
851 /* modelled after ip_finish_output2 */
852 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
853 {
854 	struct dst_entry *dst = skb_dst(skb);
855 	struct rtable *rt = (struct rtable *)dst;
856 	struct net_device *dev = dst->dev;
857 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
858 	struct neighbour *neigh;
859 	bool is_v6gw = false;
860 
861 	nf_reset_ct(skb);
862 
863 	/* Be paranoid, rather than too clever. */
864 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
865 		skb = skb_expand_head(skb, hh_len);
866 		if (!skb) {
867 			dev->stats.tx_errors++;
868 			return -ENOMEM;
869 		}
870 	}
871 
872 	rcu_read_lock_bh();
873 
874 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
875 	if (!IS_ERR(neigh)) {
876 		int ret;
877 
878 		sock_confirm_neigh(skb, neigh);
879 		/* if crossing protocols, can not use the cached header */
880 		ret = neigh_output(neigh, skb, is_v6gw);
881 		rcu_read_unlock_bh();
882 		return ret;
883 	}
884 
885 	rcu_read_unlock_bh();
886 	vrf_tx_error(skb->dev, skb);
887 	return -EINVAL;
888 }
889 
890 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
891 {
892 	struct net_device *dev = skb_dst(skb)->dev;
893 
894 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
895 
896 	skb->dev = dev;
897 	skb->protocol = htons(ETH_P_IP);
898 
899 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
900 			    net, sk, skb, NULL, dev,
901 			    vrf_finish_output,
902 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
903 }
904 
905 /* set dst on skb to send packet to us via dev_xmit path. Allows
906  * packet to go through device based features such as qdisc, netfilter
907  * hooks and packet sockets with skb->dev set to vrf device.
908  */
909 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
910 					   struct sk_buff *skb)
911 {
912 	struct net_vrf *vrf = netdev_priv(vrf_dev);
913 	struct dst_entry *dst = NULL;
914 	struct rtable *rth;
915 
916 	rcu_read_lock();
917 
918 	rth = rcu_dereference(vrf->rth);
919 	if (likely(rth)) {
920 		dst = &rth->dst;
921 		dst_hold(dst);
922 	}
923 
924 	rcu_read_unlock();
925 
926 	if (unlikely(!dst)) {
927 		vrf_tx_error(vrf_dev, skb);
928 		return NULL;
929 	}
930 
931 	skb_dst_drop(skb);
932 	skb_dst_set(skb, dst);
933 
934 	return skb;
935 }
936 
937 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
938 				    struct sk_buff *skb)
939 {
940 	vrf_finish_direct(skb);
941 
942 	return vrf_ip_local_out(net, sk, skb);
943 }
944 
945 static int vrf_output_direct(struct net *net, struct sock *sk,
946 			     struct sk_buff *skb)
947 {
948 	int err = 1;
949 
950 	skb->protocol = htons(ETH_P_IP);
951 
952 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
953 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
954 			      NULL, skb->dev, vrf_output_direct_finish);
955 
956 	if (likely(err == 1))
957 		vrf_finish_direct(skb);
958 
959 	return err;
960 }
961 
962 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
963 				    struct sk_buff *skb)
964 {
965 	int err;
966 
967 	err = vrf_output_direct(net, sk, skb);
968 	if (likely(err == 1))
969 		err = vrf_ip_local_out(net, sk, skb);
970 
971 	return err;
972 }
973 
974 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
975 					 struct sock *sk,
976 					 struct sk_buff *skb)
977 {
978 	struct net *net = dev_net(vrf_dev);
979 	int err;
980 
981 	skb->dev = vrf_dev;
982 
983 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
984 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
985 
986 	if (likely(err == 1))
987 		err = vrf_output_direct(net, sk, skb);
988 
989 	if (likely(err == 1))
990 		return skb;
991 
992 	return NULL;
993 }
994 
995 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
996 				  struct sock *sk,
997 				  struct sk_buff *skb)
998 {
999 	/* don't divert multicast or local broadcast */
1000 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1001 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1002 		return skb;
1003 
1004 	if (qdisc_tx_is_default(vrf_dev) ||
1005 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1006 		return vrf_ip_out_direct(vrf_dev, sk, skb);
1007 
1008 	return vrf_ip_out_redirect(vrf_dev, skb);
1009 }
1010 
1011 /* called with rcu lock held */
1012 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1013 				  struct sock *sk,
1014 				  struct sk_buff *skb,
1015 				  u16 proto)
1016 {
1017 	switch (proto) {
1018 	case AF_INET:
1019 		return vrf_ip_out(vrf_dev, sk, skb);
1020 	case AF_INET6:
1021 		return vrf_ip6_out(vrf_dev, sk, skb);
1022 	}
1023 
1024 	return skb;
1025 }
1026 
1027 /* holding rtnl */
1028 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1029 {
1030 	struct rtable *rth = rtnl_dereference(vrf->rth);
1031 	struct net *net = dev_net(dev);
1032 	struct dst_entry *dst;
1033 
1034 	RCU_INIT_POINTER(vrf->rth, NULL);
1035 	synchronize_rcu();
1036 
1037 	/* move dev in dst's to loopback so this VRF device can be deleted
1038 	 * - based on dst_ifdown
1039 	 */
1040 	if (rth) {
1041 		dst = &rth->dst;
1042 		dev_put(dst->dev);
1043 		dst->dev = net->loopback_dev;
1044 		dev_hold(dst->dev);
1045 		dst_release(dst);
1046 	}
1047 }
1048 
1049 static int vrf_rtable_create(struct net_device *dev)
1050 {
1051 	struct net_vrf *vrf = netdev_priv(dev);
1052 	struct rtable *rth;
1053 
1054 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1055 		return -ENOMEM;
1056 
1057 	/* create a dst for routing packets out through a VRF device */
1058 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1059 	if (!rth)
1060 		return -ENOMEM;
1061 
1062 	rth->dst.output	= vrf_output;
1063 
1064 	rcu_assign_pointer(vrf->rth, rth);
1065 
1066 	return 0;
1067 }
1068 
1069 /**************************** device handling ********************/
1070 
1071 /* cycle interface to flush neighbor cache and move routes across tables */
1072 static void cycle_netdev(struct net_device *dev,
1073 			 struct netlink_ext_ack *extack)
1074 {
1075 	unsigned int flags = dev->flags;
1076 	int ret;
1077 
1078 	if (!netif_running(dev))
1079 		return;
1080 
1081 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1082 	if (ret >= 0)
1083 		ret = dev_change_flags(dev, flags, extack);
1084 
1085 	if (ret < 0) {
1086 		netdev_err(dev,
1087 			   "Failed to cycle device %s; route tables might be wrong!\n",
1088 			   dev->name);
1089 	}
1090 }
1091 
1092 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1093 			    struct netlink_ext_ack *extack)
1094 {
1095 	int ret;
1096 
1097 	/* do not allow loopback device to be enslaved to a VRF.
1098 	 * The vrf device acts as the loopback for the vrf.
1099 	 */
1100 	if (port_dev == dev_net(dev)->loopback_dev) {
1101 		NL_SET_ERR_MSG(extack,
1102 			       "Can not enslave loopback device to a VRF");
1103 		return -EOPNOTSUPP;
1104 	}
1105 
1106 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1107 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1108 	if (ret < 0)
1109 		goto err;
1110 
1111 	cycle_netdev(port_dev, extack);
1112 
1113 	return 0;
1114 
1115 err:
1116 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1117 	return ret;
1118 }
1119 
1120 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1121 			 struct netlink_ext_ack *extack)
1122 {
1123 	if (netif_is_l3_master(port_dev)) {
1124 		NL_SET_ERR_MSG(extack,
1125 			       "Can not enslave an L3 master device to a VRF");
1126 		return -EINVAL;
1127 	}
1128 
1129 	if (netif_is_l3_slave(port_dev))
1130 		return -EINVAL;
1131 
1132 	return do_vrf_add_slave(dev, port_dev, extack);
1133 }
1134 
1135 /* inverse of do_vrf_add_slave */
1136 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1137 {
1138 	netdev_upper_dev_unlink(port_dev, dev);
1139 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1140 
1141 	cycle_netdev(port_dev, NULL);
1142 
1143 	return 0;
1144 }
1145 
1146 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1147 {
1148 	return do_vrf_del_slave(dev, port_dev);
1149 }
1150 
1151 static void vrf_dev_uninit(struct net_device *dev)
1152 {
1153 	struct net_vrf *vrf = netdev_priv(dev);
1154 
1155 	vrf_rtable_release(dev, vrf);
1156 	vrf_rt6_release(dev, vrf);
1157 
1158 	free_percpu(dev->dstats);
1159 	dev->dstats = NULL;
1160 }
1161 
1162 static int vrf_dev_init(struct net_device *dev)
1163 {
1164 	struct net_vrf *vrf = netdev_priv(dev);
1165 
1166 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1167 	if (!dev->dstats)
1168 		goto out_nomem;
1169 
1170 	/* create the default dst which points back to us */
1171 	if (vrf_rtable_create(dev) != 0)
1172 		goto out_stats;
1173 
1174 	if (vrf_rt6_create(dev) != 0)
1175 		goto out_rth;
1176 
1177 	dev->flags = IFF_MASTER | IFF_NOARP;
1178 
1179 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1180 	dev->operstate = IF_OPER_UP;
1181 	netdev_lockdep_set_classes(dev);
1182 	return 0;
1183 
1184 out_rth:
1185 	vrf_rtable_release(dev, vrf);
1186 out_stats:
1187 	free_percpu(dev->dstats);
1188 	dev->dstats = NULL;
1189 out_nomem:
1190 	return -ENOMEM;
1191 }
1192 
1193 static const struct net_device_ops vrf_netdev_ops = {
1194 	.ndo_init		= vrf_dev_init,
1195 	.ndo_uninit		= vrf_dev_uninit,
1196 	.ndo_start_xmit		= vrf_xmit,
1197 	.ndo_set_mac_address	= eth_mac_addr,
1198 	.ndo_get_stats64	= vrf_get_stats64,
1199 	.ndo_add_slave		= vrf_add_slave,
1200 	.ndo_del_slave		= vrf_del_slave,
1201 };
1202 
1203 static u32 vrf_fib_table(const struct net_device *dev)
1204 {
1205 	struct net_vrf *vrf = netdev_priv(dev);
1206 
1207 	return vrf->tb_id;
1208 }
1209 
1210 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1211 {
1212 	kfree_skb(skb);
1213 	return 0;
1214 }
1215 
1216 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1217 				      struct sk_buff *skb,
1218 				      struct net_device *dev)
1219 {
1220 	struct net *net = dev_net(dev);
1221 
1222 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1223 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1224 
1225 	return skb;
1226 }
1227 
1228 static int vrf_prepare_mac_header(struct sk_buff *skb,
1229 				  struct net_device *vrf_dev, u16 proto)
1230 {
1231 	struct ethhdr *eth;
1232 	int err;
1233 
1234 	/* in general, we do not know if there is enough space in the head of
1235 	 * the packet for hosting the mac header.
1236 	 */
1237 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1238 	if (unlikely(err))
1239 		/* no space in the skb head */
1240 		return -ENOBUFS;
1241 
1242 	__skb_push(skb, ETH_HLEN);
1243 	eth = (struct ethhdr *)skb->data;
1244 
1245 	skb_reset_mac_header(skb);
1246 
1247 	/* we set the ethernet destination and the source addresses to the
1248 	 * address of the VRF device.
1249 	 */
1250 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1251 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1252 	eth->h_proto = htons(proto);
1253 
1254 	/* the destination address of the Ethernet frame corresponds to the
1255 	 * address set on the VRF interface; therefore, the packet is intended
1256 	 * to be processed locally.
1257 	 */
1258 	skb->protocol = eth->h_proto;
1259 	skb->pkt_type = PACKET_HOST;
1260 
1261 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1262 
1263 	skb_pull_inline(skb, ETH_HLEN);
1264 
1265 	return 0;
1266 }
1267 
1268 /* prepare and add the mac header to the packet if it was not set previously.
1269  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1270  * If the mac header was already set, the original mac header is left
1271  * untouched and the function returns immediately.
1272  */
1273 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1274 				       struct net_device *vrf_dev,
1275 				       u16 proto)
1276 {
1277 	if (skb_mac_header_was_set(skb))
1278 		return 0;
1279 
1280 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1281 }
1282 
1283 #if IS_ENABLED(CONFIG_IPV6)
1284 /* neighbor handling is done with actual device; do not want
1285  * to flip skb->dev for those ndisc packets. This really fails
1286  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1287  * a start.
1288  */
1289 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1290 {
1291 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1292 	bool rc = false;
1293 
1294 	if (iph->nexthdr == NEXTHDR_ICMP) {
1295 		const struct icmp6hdr *icmph;
1296 		struct icmp6hdr _icmph;
1297 
1298 		icmph = skb_header_pointer(skb, sizeof(*iph),
1299 					   sizeof(_icmph), &_icmph);
1300 		if (!icmph)
1301 			goto out;
1302 
1303 		switch (icmph->icmp6_type) {
1304 		case NDISC_ROUTER_SOLICITATION:
1305 		case NDISC_ROUTER_ADVERTISEMENT:
1306 		case NDISC_NEIGHBOUR_SOLICITATION:
1307 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1308 		case NDISC_REDIRECT:
1309 			rc = true;
1310 			break;
1311 		}
1312 	}
1313 
1314 out:
1315 	return rc;
1316 }
1317 
1318 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1319 					     const struct net_device *dev,
1320 					     struct flowi6 *fl6,
1321 					     int ifindex,
1322 					     const struct sk_buff *skb,
1323 					     int flags)
1324 {
1325 	struct net_vrf *vrf = netdev_priv(dev);
1326 
1327 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1328 }
1329 
1330 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1331 			      int ifindex)
1332 {
1333 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1334 	struct flowi6 fl6 = {
1335 		.flowi6_iif     = ifindex,
1336 		.flowi6_mark    = skb->mark,
1337 		.flowi6_proto   = iph->nexthdr,
1338 		.daddr          = iph->daddr,
1339 		.saddr          = iph->saddr,
1340 		.flowlabel      = ip6_flowinfo(iph),
1341 	};
1342 	struct net *net = dev_net(vrf_dev);
1343 	struct rt6_info *rt6;
1344 
1345 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1346 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1347 	if (unlikely(!rt6))
1348 		return;
1349 
1350 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1351 		return;
1352 
1353 	skb_dst_set(skb, &rt6->dst);
1354 }
1355 
1356 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1357 				   struct sk_buff *skb)
1358 {
1359 	int orig_iif = skb->skb_iif;
1360 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1361 	bool is_ndisc = ipv6_ndisc_frame(skb);
1362 
1363 	nf_reset_ct(skb);
1364 
1365 	/* loopback, multicast & non-ND link-local traffic; do not push through
1366 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1367 	 * For strict packets with a source LLA, determine the dst using the
1368 	 * original ifindex.
1369 	 */
1370 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1371 		skb->dev = vrf_dev;
1372 		skb->skb_iif = vrf_dev->ifindex;
1373 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1374 
1375 		if (skb->pkt_type == PACKET_LOOPBACK)
1376 			skb->pkt_type = PACKET_HOST;
1377 		else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1378 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1379 
1380 		goto out;
1381 	}
1382 
1383 	/* if packet is NDISC then keep the ingress interface */
1384 	if (!is_ndisc) {
1385 		vrf_rx_stats(vrf_dev, skb->len);
1386 		skb->dev = vrf_dev;
1387 		skb->skb_iif = vrf_dev->ifindex;
1388 
1389 		if (!list_empty(&vrf_dev->ptype_all)) {
1390 			int err;
1391 
1392 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1393 							  ETH_P_IPV6);
1394 			if (likely(!err)) {
1395 				skb_push(skb, skb->mac_len);
1396 				dev_queue_xmit_nit(skb, vrf_dev);
1397 				skb_pull(skb, skb->mac_len);
1398 			}
1399 		}
1400 
1401 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1402 	}
1403 
1404 	if (need_strict)
1405 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1406 
1407 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1408 out:
1409 	return skb;
1410 }
1411 
1412 #else
1413 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1414 				   struct sk_buff *skb)
1415 {
1416 	return skb;
1417 }
1418 #endif
1419 
1420 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1421 				  struct sk_buff *skb)
1422 {
1423 	skb->dev = vrf_dev;
1424 	skb->skb_iif = vrf_dev->ifindex;
1425 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1426 
1427 	nf_reset_ct(skb);
1428 
1429 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1430 		goto out;
1431 
1432 	/* loopback traffic; do not push through packet taps again.
1433 	 * Reset pkt_type for upper layers to process skb
1434 	 */
1435 	if (skb->pkt_type == PACKET_LOOPBACK) {
1436 		skb->pkt_type = PACKET_HOST;
1437 		goto out;
1438 	}
1439 
1440 	vrf_rx_stats(vrf_dev, skb->len);
1441 
1442 	if (!list_empty(&vrf_dev->ptype_all)) {
1443 		int err;
1444 
1445 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1446 		if (likely(!err)) {
1447 			skb_push(skb, skb->mac_len);
1448 			dev_queue_xmit_nit(skb, vrf_dev);
1449 			skb_pull(skb, skb->mac_len);
1450 		}
1451 	}
1452 
1453 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1454 out:
1455 	return skb;
1456 }
1457 
1458 /* called with rcu lock held */
1459 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1460 				  struct sk_buff *skb,
1461 				  u16 proto)
1462 {
1463 	switch (proto) {
1464 	case AF_INET:
1465 		return vrf_ip_rcv(vrf_dev, skb);
1466 	case AF_INET6:
1467 		return vrf_ip6_rcv(vrf_dev, skb);
1468 	}
1469 
1470 	return skb;
1471 }
1472 
1473 #if IS_ENABLED(CONFIG_IPV6)
1474 /* send to link-local or multicast address via interface enslaved to
1475  * VRF device. Force lookup to VRF table without changing flow struct
1476  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1477  * is taken on the dst by this function.
1478  */
1479 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1480 					      struct flowi6 *fl6)
1481 {
1482 	struct net *net = dev_net(dev);
1483 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1484 	struct dst_entry *dst = NULL;
1485 	struct rt6_info *rt;
1486 
1487 	/* VRF device does not have a link-local address and
1488 	 * sending packets to link-local or mcast addresses over
1489 	 * a VRF device does not make sense
1490 	 */
1491 	if (fl6->flowi6_oif == dev->ifindex) {
1492 		dst = &net->ipv6.ip6_null_entry->dst;
1493 		return dst;
1494 	}
1495 
1496 	if (!ipv6_addr_any(&fl6->saddr))
1497 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1498 
1499 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1500 	if (rt)
1501 		dst = &rt->dst;
1502 
1503 	return dst;
1504 }
1505 #endif
1506 
1507 static const struct l3mdev_ops vrf_l3mdev_ops = {
1508 	.l3mdev_fib_table	= vrf_fib_table,
1509 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1510 	.l3mdev_l3_out		= vrf_l3_out,
1511 #if IS_ENABLED(CONFIG_IPV6)
1512 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1513 #endif
1514 };
1515 
1516 static void vrf_get_drvinfo(struct net_device *dev,
1517 			    struct ethtool_drvinfo *info)
1518 {
1519 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1520 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1521 }
1522 
1523 static const struct ethtool_ops vrf_ethtool_ops = {
1524 	.get_drvinfo	= vrf_get_drvinfo,
1525 };
1526 
1527 static inline size_t vrf_fib_rule_nl_size(void)
1528 {
1529 	size_t sz;
1530 
1531 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1532 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1533 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1534 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1535 
1536 	return sz;
1537 }
1538 
1539 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1540 {
1541 	struct fib_rule_hdr *frh;
1542 	struct nlmsghdr *nlh;
1543 	struct sk_buff *skb;
1544 	int err;
1545 
1546 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1547 	    !ipv6_mod_enabled())
1548 		return 0;
1549 
1550 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1551 	if (!skb)
1552 		return -ENOMEM;
1553 
1554 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1555 	if (!nlh)
1556 		goto nla_put_failure;
1557 
1558 	/* rule only needs to appear once */
1559 	nlh->nlmsg_flags |= NLM_F_EXCL;
1560 
1561 	frh = nlmsg_data(nlh);
1562 	memset(frh, 0, sizeof(*frh));
1563 	frh->family = family;
1564 	frh->action = FR_ACT_TO_TBL;
1565 
1566 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1567 		goto nla_put_failure;
1568 
1569 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1570 		goto nla_put_failure;
1571 
1572 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1573 		goto nla_put_failure;
1574 
1575 	nlmsg_end(skb, nlh);
1576 
1577 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1578 	skb->sk = dev_net(dev)->rtnl;
1579 	if (add_it) {
1580 		err = fib_nl_newrule(skb, nlh, NULL);
1581 		if (err == -EEXIST)
1582 			err = 0;
1583 	} else {
1584 		err = fib_nl_delrule(skb, nlh, NULL);
1585 		if (err == -ENOENT)
1586 			err = 0;
1587 	}
1588 	nlmsg_free(skb);
1589 
1590 	return err;
1591 
1592 nla_put_failure:
1593 	nlmsg_free(skb);
1594 
1595 	return -EMSGSIZE;
1596 }
1597 
1598 static int vrf_add_fib_rules(const struct net_device *dev)
1599 {
1600 	int err;
1601 
1602 	err = vrf_fib_rule(dev, AF_INET,  true);
1603 	if (err < 0)
1604 		goto out_err;
1605 
1606 	err = vrf_fib_rule(dev, AF_INET6, true);
1607 	if (err < 0)
1608 		goto ipv6_err;
1609 
1610 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1611 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1612 	if (err < 0)
1613 		goto ipmr_err;
1614 #endif
1615 
1616 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1617 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1618 	if (err < 0)
1619 		goto ip6mr_err;
1620 #endif
1621 
1622 	return 0;
1623 
1624 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1625 ip6mr_err:
1626 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1627 #endif
1628 
1629 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1630 ipmr_err:
1631 	vrf_fib_rule(dev, AF_INET6,  false);
1632 #endif
1633 
1634 ipv6_err:
1635 	vrf_fib_rule(dev, AF_INET,  false);
1636 
1637 out_err:
1638 	netdev_err(dev, "Failed to add FIB rules.\n");
1639 	return err;
1640 }
1641 
1642 static void vrf_setup(struct net_device *dev)
1643 {
1644 	ether_setup(dev);
1645 
1646 	/* Initialize the device structure. */
1647 	dev->netdev_ops = &vrf_netdev_ops;
1648 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1649 	dev->ethtool_ops = &vrf_ethtool_ops;
1650 	dev->needs_free_netdev = true;
1651 
1652 	/* Fill in device structure with ethernet-generic values. */
1653 	eth_hw_addr_random(dev);
1654 
1655 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1656 	dev->features |= NETIF_F_LLTX;
1657 
1658 	/* don't allow vrf devices to change network namespaces. */
1659 	dev->features |= NETIF_F_NETNS_LOCAL;
1660 
1661 	/* does not make sense for a VLAN to be added to a vrf device */
1662 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1663 
1664 	/* enable offload features */
1665 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1666 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1667 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1668 
1669 	dev->hw_features = dev->features;
1670 	dev->hw_enc_features = dev->features;
1671 
1672 	/* default to no qdisc; user can add if desired */
1673 	dev->priv_flags |= IFF_NO_QUEUE;
1674 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1675 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1676 
1677 	/* VRF devices do not care about MTU, but if the MTU is set
1678 	 * too low then the ipv4 and ipv6 protocols are disabled
1679 	 * which breaks networking.
1680 	 */
1681 	dev->min_mtu = IPV6_MIN_MTU;
1682 	dev->max_mtu = IP6_MAX_MTU;
1683 	dev->mtu = dev->max_mtu;
1684 }
1685 
1686 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1687 			struct netlink_ext_ack *extack)
1688 {
1689 	if (tb[IFLA_ADDRESS]) {
1690 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1691 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1692 			return -EINVAL;
1693 		}
1694 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1695 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1696 			return -EADDRNOTAVAIL;
1697 		}
1698 	}
1699 	return 0;
1700 }
1701 
1702 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1703 {
1704 	struct net_device *port_dev;
1705 	struct list_head *iter;
1706 
1707 	netdev_for_each_lower_dev(dev, port_dev, iter)
1708 		vrf_del_slave(dev, port_dev);
1709 
1710 	vrf_map_unregister_dev(dev);
1711 
1712 	unregister_netdevice_queue(dev, head);
1713 }
1714 
1715 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1716 		       struct nlattr *tb[], struct nlattr *data[],
1717 		       struct netlink_ext_ack *extack)
1718 {
1719 	struct net_vrf *vrf = netdev_priv(dev);
1720 	struct netns_vrf *nn_vrf;
1721 	bool *add_fib_rules;
1722 	struct net *net;
1723 	int err;
1724 
1725 	if (!data || !data[IFLA_VRF_TABLE]) {
1726 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1727 		return -EINVAL;
1728 	}
1729 
1730 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1731 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1732 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1733 				    "Invalid VRF table id");
1734 		return -EINVAL;
1735 	}
1736 
1737 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1738 
1739 	err = register_netdevice(dev);
1740 	if (err)
1741 		goto out;
1742 
1743 	/* mapping between table_id and vrf;
1744 	 * note: such binding could not be done in the dev init function
1745 	 * because dev->ifindex id is not available yet.
1746 	 */
1747 	vrf->ifindex = dev->ifindex;
1748 
1749 	err = vrf_map_register_dev(dev, extack);
1750 	if (err) {
1751 		unregister_netdevice(dev);
1752 		goto out;
1753 	}
1754 
1755 	net = dev_net(dev);
1756 	nn_vrf = net_generic(net, vrf_net_id);
1757 
1758 	add_fib_rules = &nn_vrf->add_fib_rules;
1759 	if (*add_fib_rules) {
1760 		err = vrf_add_fib_rules(dev);
1761 		if (err) {
1762 			vrf_map_unregister_dev(dev);
1763 			unregister_netdevice(dev);
1764 			goto out;
1765 		}
1766 		*add_fib_rules = false;
1767 	}
1768 
1769 out:
1770 	return err;
1771 }
1772 
1773 static size_t vrf_nl_getsize(const struct net_device *dev)
1774 {
1775 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1776 }
1777 
1778 static int vrf_fillinfo(struct sk_buff *skb,
1779 			const struct net_device *dev)
1780 {
1781 	struct net_vrf *vrf = netdev_priv(dev);
1782 
1783 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1784 }
1785 
1786 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1787 				 const struct net_device *slave_dev)
1788 {
1789 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1790 }
1791 
1792 static int vrf_fill_slave_info(struct sk_buff *skb,
1793 			       const struct net_device *vrf_dev,
1794 			       const struct net_device *slave_dev)
1795 {
1796 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1797 
1798 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1799 		return -EMSGSIZE;
1800 
1801 	return 0;
1802 }
1803 
1804 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1805 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1806 };
1807 
1808 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1809 	.kind		= DRV_NAME,
1810 	.priv_size	= sizeof(struct net_vrf),
1811 
1812 	.get_size	= vrf_nl_getsize,
1813 	.policy		= vrf_nl_policy,
1814 	.validate	= vrf_validate,
1815 	.fill_info	= vrf_fillinfo,
1816 
1817 	.get_slave_size  = vrf_get_slave_size,
1818 	.fill_slave_info = vrf_fill_slave_info,
1819 
1820 	.newlink	= vrf_newlink,
1821 	.dellink	= vrf_dellink,
1822 	.setup		= vrf_setup,
1823 	.maxtype	= IFLA_VRF_MAX,
1824 };
1825 
1826 static int vrf_device_event(struct notifier_block *unused,
1827 			    unsigned long event, void *ptr)
1828 {
1829 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1830 
1831 	/* only care about unregister events to drop slave references */
1832 	if (event == NETDEV_UNREGISTER) {
1833 		struct net_device *vrf_dev;
1834 
1835 		if (!netif_is_l3_slave(dev))
1836 			goto out;
1837 
1838 		vrf_dev = netdev_master_upper_dev_get(dev);
1839 		vrf_del_slave(vrf_dev, dev);
1840 	}
1841 out:
1842 	return NOTIFY_DONE;
1843 }
1844 
1845 static struct notifier_block vrf_notifier_block __read_mostly = {
1846 	.notifier_call = vrf_device_event,
1847 };
1848 
1849 static int vrf_map_init(struct vrf_map *vmap)
1850 {
1851 	spin_lock_init(&vmap->vmap_lock);
1852 	hash_init(vmap->ht);
1853 
1854 	vmap->strict_mode = false;
1855 
1856 	return 0;
1857 }
1858 
1859 #ifdef CONFIG_SYSCTL
1860 static bool vrf_strict_mode(struct vrf_map *vmap)
1861 {
1862 	bool strict_mode;
1863 
1864 	vrf_map_lock(vmap);
1865 	strict_mode = vmap->strict_mode;
1866 	vrf_map_unlock(vmap);
1867 
1868 	return strict_mode;
1869 }
1870 
1871 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1872 {
1873 	bool *cur_mode;
1874 	int res = 0;
1875 
1876 	vrf_map_lock(vmap);
1877 
1878 	cur_mode = &vmap->strict_mode;
1879 	if (*cur_mode == new_mode)
1880 		goto unlock;
1881 
1882 	if (*cur_mode) {
1883 		/* disable strict mode */
1884 		*cur_mode = false;
1885 	} else {
1886 		if (vmap->shared_tables) {
1887 			/* we cannot allow strict_mode because there are some
1888 			 * vrfs that share one or more tables.
1889 			 */
1890 			res = -EBUSY;
1891 			goto unlock;
1892 		}
1893 
1894 		/* no tables are shared among vrfs, so we can go back
1895 		 * to 1:1 association between a vrf with its table.
1896 		 */
1897 		*cur_mode = true;
1898 	}
1899 
1900 unlock:
1901 	vrf_map_unlock(vmap);
1902 
1903 	return res;
1904 }
1905 
1906 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1907 				    void *buffer, size_t *lenp, loff_t *ppos)
1908 {
1909 	struct net *net = (struct net *)table->extra1;
1910 	struct vrf_map *vmap = netns_vrf_map(net);
1911 	int proc_strict_mode = 0;
1912 	struct ctl_table tmp = {
1913 		.procname	= table->procname,
1914 		.data		= &proc_strict_mode,
1915 		.maxlen		= sizeof(int),
1916 		.mode		= table->mode,
1917 		.extra1		= SYSCTL_ZERO,
1918 		.extra2		= SYSCTL_ONE,
1919 	};
1920 	int ret;
1921 
1922 	if (!write)
1923 		proc_strict_mode = vrf_strict_mode(vmap);
1924 
1925 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1926 
1927 	if (write && ret == 0)
1928 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1929 
1930 	return ret;
1931 }
1932 
1933 static const struct ctl_table vrf_table[] = {
1934 	{
1935 		.procname	= "strict_mode",
1936 		.data		= NULL,
1937 		.maxlen		= sizeof(int),
1938 		.mode		= 0644,
1939 		.proc_handler	= vrf_shared_table_handler,
1940 		/* set by the vrf_netns_init */
1941 		.extra1		= NULL,
1942 	},
1943 	{ },
1944 };
1945 
1946 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1947 {
1948 	struct ctl_table *table;
1949 
1950 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1951 	if (!table)
1952 		return -ENOMEM;
1953 
1954 	/* init the extra1 parameter with the reference to current netns */
1955 	table[0].extra1 = net;
1956 
1957 	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1958 	if (!nn_vrf->ctl_hdr) {
1959 		kfree(table);
1960 		return -ENOMEM;
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 static void vrf_netns_exit_sysctl(struct net *net)
1967 {
1968 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1969 	struct ctl_table *table;
1970 
1971 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1972 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1973 	kfree(table);
1974 }
1975 #else
1976 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1977 {
1978 	return 0;
1979 }
1980 
1981 static void vrf_netns_exit_sysctl(struct net *net)
1982 {
1983 }
1984 #endif
1985 
1986 /* Initialize per network namespace state */
1987 static int __net_init vrf_netns_init(struct net *net)
1988 {
1989 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1990 
1991 	nn_vrf->add_fib_rules = true;
1992 	vrf_map_init(&nn_vrf->vmap);
1993 
1994 	return vrf_netns_init_sysctl(net, nn_vrf);
1995 }
1996 
1997 static void __net_exit vrf_netns_exit(struct net *net)
1998 {
1999 	vrf_netns_exit_sysctl(net);
2000 }
2001 
2002 static struct pernet_operations vrf_net_ops __net_initdata = {
2003 	.init = vrf_netns_init,
2004 	.exit = vrf_netns_exit,
2005 	.id   = &vrf_net_id,
2006 	.size = sizeof(struct netns_vrf),
2007 };
2008 
2009 static int __init vrf_init_module(void)
2010 {
2011 	int rc;
2012 
2013 	register_netdevice_notifier(&vrf_notifier_block);
2014 
2015 	rc = register_pernet_subsys(&vrf_net_ops);
2016 	if (rc < 0)
2017 		goto error;
2018 
2019 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2020 					  vrf_ifindex_lookup_by_table_id);
2021 	if (rc < 0)
2022 		goto unreg_pernet;
2023 
2024 	rc = rtnl_link_register(&vrf_link_ops);
2025 	if (rc < 0)
2026 		goto table_lookup_unreg;
2027 
2028 	return 0;
2029 
2030 table_lookup_unreg:
2031 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2032 				       vrf_ifindex_lookup_by_table_id);
2033 
2034 unreg_pernet:
2035 	unregister_pernet_subsys(&vrf_net_ops);
2036 
2037 error:
2038 	unregister_netdevice_notifier(&vrf_notifier_block);
2039 	return rc;
2040 }
2041 
2042 module_init(vrf_init_module);
2043 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2044 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2045 MODULE_LICENSE("GPL");
2046 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2047 MODULE_VERSION(DRV_VERSION);
2048