xref: /linux/drivers/net/vrf.c (revision 6ca80638b90cec66547011ee1ef79e534589989a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 
41 #define DRV_NAME	"vrf"
42 #define DRV_VERSION	"1.1"
43 
44 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
45 
46 #define HT_MAP_BITS	4
47 #define HASH_INITVAL	((u32)0xcafef00d)
48 
49 struct  vrf_map {
50 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 	spinlock_t vmap_lock;
52 
53 	/* shared_tables:
54 	 * count how many distinct tables do not comply with the strict mode
55 	 * requirement.
56 	 * shared_tables value must be 0 in order to enable the strict mode.
57 	 *
58 	 * example of the evolution of shared_tables:
59 	 *                                                        | time
60 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
61 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
62 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
63 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
64 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
65 	 *
66 	 * shared_tables is a "step function" (or "staircase function")
67 	 * and it is increased by one when the second vrf is associated to a
68 	 * table.
69 	 *
70 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
71 	 *
72 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 	 * value of shared_tables is still 1.
74 	 * This means that no matter how many new vrfs will register on the
75 	 * table 100, the shared_tables will not increase (considering only
76 	 * table 100).
77 	 *
78 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
79 	 *
80 	 * Looking at the value of shared_tables we can immediately know if
81 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 	 * can be enforced iff shared_tables = 0.
83 	 *
84 	 * Conversely, shared_tables is decreased when a vrf is de-associated
85 	 * from a table with exactly two associated vrfs.
86 	 */
87 	u32 shared_tables;
88 
89 	bool strict_mode;
90 };
91 
92 struct vrf_map_elem {
93 	struct hlist_node hnode;
94 	struct list_head vrf_list;  /* VRFs registered to this table */
95 
96 	u32 table_id;
97 	int users;
98 	int ifindex;
99 };
100 
101 static unsigned int vrf_net_id;
102 
103 /* per netns vrf data */
104 struct netns_vrf {
105 	/* protected by rtnl lock */
106 	bool add_fib_rules;
107 
108 	struct vrf_map vmap;
109 	struct ctl_table_header	*ctl_hdr;
110 };
111 
112 struct net_vrf {
113 	struct rtable __rcu	*rth;
114 	struct rt6_info	__rcu	*rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 	struct fib6_table	*fib6_table;
117 #endif
118 	u32                     tb_id;
119 
120 	struct list_head	me_list;   /* entry in vrf_map_elem */
121 	int			ifindex;
122 };
123 
124 struct pcpu_dstats {
125 	u64			tx_pkts;
126 	u64			tx_bytes;
127 	u64			tx_drps;
128 	u64			rx_pkts;
129 	u64			rx_bytes;
130 	u64			rx_drps;
131 	struct u64_stats_sync	syncp;
132 };
133 
134 static void vrf_rx_stats(struct net_device *dev, int len)
135 {
136 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
137 
138 	u64_stats_update_begin(&dstats->syncp);
139 	dstats->rx_pkts++;
140 	dstats->rx_bytes += len;
141 	u64_stats_update_end(&dstats->syncp);
142 }
143 
144 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
145 {
146 	vrf_dev->stats.tx_errors++;
147 	kfree_skb(skb);
148 }
149 
150 static void vrf_get_stats64(struct net_device *dev,
151 			    struct rtnl_link_stats64 *stats)
152 {
153 	int i;
154 
155 	for_each_possible_cpu(i) {
156 		const struct pcpu_dstats *dstats;
157 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
158 		unsigned int start;
159 
160 		dstats = per_cpu_ptr(dev->dstats, i);
161 		do {
162 			start = u64_stats_fetch_begin(&dstats->syncp);
163 			tbytes = dstats->tx_bytes;
164 			tpkts = dstats->tx_pkts;
165 			tdrops = dstats->tx_drps;
166 			rbytes = dstats->rx_bytes;
167 			rpkts = dstats->rx_pkts;
168 		} while (u64_stats_fetch_retry(&dstats->syncp, start));
169 		stats->tx_bytes += tbytes;
170 		stats->tx_packets += tpkts;
171 		stats->tx_dropped += tdrops;
172 		stats->rx_bytes += rbytes;
173 		stats->rx_packets += rpkts;
174 	}
175 }
176 
177 static struct vrf_map *netns_vrf_map(struct net *net)
178 {
179 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
180 
181 	return &nn_vrf->vmap;
182 }
183 
184 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
185 {
186 	return netns_vrf_map(dev_net(dev));
187 }
188 
189 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
190 {
191 	struct list_head *me_head = &me->vrf_list;
192 	struct net_vrf *vrf;
193 
194 	if (list_empty(me_head))
195 		return -ENODEV;
196 
197 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
198 
199 	return vrf->ifindex;
200 }
201 
202 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
203 {
204 	struct vrf_map_elem *me;
205 
206 	me = kmalloc(sizeof(*me), flags);
207 	if (!me)
208 		return NULL;
209 
210 	return me;
211 }
212 
213 static void vrf_map_elem_free(struct vrf_map_elem *me)
214 {
215 	kfree(me);
216 }
217 
218 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
219 			      int ifindex, int users)
220 {
221 	me->table_id = table_id;
222 	me->ifindex = ifindex;
223 	me->users = users;
224 	INIT_LIST_HEAD(&me->vrf_list);
225 }
226 
227 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
228 						u32 table_id)
229 {
230 	struct vrf_map_elem *me;
231 	u32 key;
232 
233 	key = jhash_1word(table_id, HASH_INITVAL);
234 	hash_for_each_possible(vmap->ht, me, hnode, key) {
235 		if (me->table_id == table_id)
236 			return me;
237 	}
238 
239 	return NULL;
240 }
241 
242 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
243 {
244 	u32 table_id = me->table_id;
245 	u32 key;
246 
247 	key = jhash_1word(table_id, HASH_INITVAL);
248 	hash_add(vmap->ht, &me->hnode, key);
249 }
250 
251 static void vrf_map_del_elem(struct vrf_map_elem *me)
252 {
253 	hash_del(&me->hnode);
254 }
255 
256 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
257 {
258 	spin_lock(&vmap->vmap_lock);
259 }
260 
261 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
262 {
263 	spin_unlock(&vmap->vmap_lock);
264 }
265 
266 /* called with rtnl lock held */
267 static int
268 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
269 {
270 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
271 	struct net_vrf *vrf = netdev_priv(dev);
272 	struct vrf_map_elem *new_me, *me;
273 	u32 table_id = vrf->tb_id;
274 	bool free_new_me = false;
275 	int users;
276 	int res;
277 
278 	/* we pre-allocate elements used in the spin-locked section (so that we
279 	 * keep the spinlock as short as possible).
280 	 */
281 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
282 	if (!new_me)
283 		return -ENOMEM;
284 
285 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
286 
287 	vrf_map_lock(vmap);
288 
289 	me = vrf_map_lookup_elem(vmap, table_id);
290 	if (!me) {
291 		me = new_me;
292 		vrf_map_add_elem(vmap, me);
293 		goto link_vrf;
294 	}
295 
296 	/* we already have an entry in the vrf_map, so it means there is (at
297 	 * least) a vrf registered on the specific table.
298 	 */
299 	free_new_me = true;
300 	if (vmap->strict_mode) {
301 		/* vrfs cannot share the same table */
302 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
303 		res = -EBUSY;
304 		goto unlock;
305 	}
306 
307 link_vrf:
308 	users = ++me->users;
309 	if (users == 2)
310 		++vmap->shared_tables;
311 
312 	list_add(&vrf->me_list, &me->vrf_list);
313 
314 	res = 0;
315 
316 unlock:
317 	vrf_map_unlock(vmap);
318 
319 	/* clean-up, if needed */
320 	if (free_new_me)
321 		vrf_map_elem_free(new_me);
322 
323 	return res;
324 }
325 
326 /* called with rtnl lock held */
327 static void vrf_map_unregister_dev(struct net_device *dev)
328 {
329 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
330 	struct net_vrf *vrf = netdev_priv(dev);
331 	u32 table_id = vrf->tb_id;
332 	struct vrf_map_elem *me;
333 	int users;
334 
335 	vrf_map_lock(vmap);
336 
337 	me = vrf_map_lookup_elem(vmap, table_id);
338 	if (!me)
339 		goto unlock;
340 
341 	list_del(&vrf->me_list);
342 
343 	users = --me->users;
344 	if (users == 1) {
345 		--vmap->shared_tables;
346 	} else if (users == 0) {
347 		vrf_map_del_elem(me);
348 
349 		/* no one will refer to this element anymore */
350 		vrf_map_elem_free(me);
351 	}
352 
353 unlock:
354 	vrf_map_unlock(vmap);
355 }
356 
357 /* return the vrf device index associated with the table_id */
358 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
359 {
360 	struct vrf_map *vmap = netns_vrf_map(net);
361 	struct vrf_map_elem *me;
362 	int ifindex;
363 
364 	vrf_map_lock(vmap);
365 
366 	if (!vmap->strict_mode) {
367 		ifindex = -EPERM;
368 		goto unlock;
369 	}
370 
371 	me = vrf_map_lookup_elem(vmap, table_id);
372 	if (!me) {
373 		ifindex = -ENODEV;
374 		goto unlock;
375 	}
376 
377 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
378 
379 unlock:
380 	vrf_map_unlock(vmap);
381 
382 	return ifindex;
383 }
384 
385 /* by default VRF devices do not have a qdisc and are expected
386  * to be created with only a single queue.
387  */
388 static bool qdisc_tx_is_default(const struct net_device *dev)
389 {
390 	struct netdev_queue *txq;
391 	struct Qdisc *qdisc;
392 
393 	if (dev->num_tx_queues > 1)
394 		return false;
395 
396 	txq = netdev_get_tx_queue(dev, 0);
397 	qdisc = rcu_access_pointer(txq->qdisc);
398 
399 	return !qdisc->enqueue;
400 }
401 
402 /* Local traffic destined to local address. Reinsert the packet to rx
403  * path, similar to loopback handling.
404  */
405 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
406 			  struct dst_entry *dst)
407 {
408 	int len = skb->len;
409 
410 	skb_orphan(skb);
411 
412 	skb_dst_set(skb, dst);
413 
414 	/* set pkt_type to avoid skb hitting packet taps twice -
415 	 * once on Tx and again in Rx processing
416 	 */
417 	skb->pkt_type = PACKET_LOOPBACK;
418 
419 	skb->protocol = eth_type_trans(skb, dev);
420 
421 	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
422 		vrf_rx_stats(dev, len);
423 	else
424 		this_cpu_inc(dev->dstats->rx_drps);
425 
426 	return NETDEV_TX_OK;
427 }
428 
429 static void vrf_nf_set_untracked(struct sk_buff *skb)
430 {
431 	if (skb_get_nfct(skb) == 0)
432 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
433 }
434 
435 static void vrf_nf_reset_ct(struct sk_buff *skb)
436 {
437 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
438 		nf_reset_ct(skb);
439 }
440 
441 #if IS_ENABLED(CONFIG_IPV6)
442 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
443 			     struct sk_buff *skb)
444 {
445 	int err;
446 
447 	vrf_nf_reset_ct(skb);
448 
449 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
450 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
451 
452 	if (likely(err == 1))
453 		err = dst_output(net, sk, skb);
454 
455 	return err;
456 }
457 
458 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
459 					   struct net_device *dev)
460 {
461 	const struct ipv6hdr *iph;
462 	struct net *net = dev_net(skb->dev);
463 	struct flowi6 fl6;
464 	int ret = NET_XMIT_DROP;
465 	struct dst_entry *dst;
466 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
467 
468 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
469 		goto err;
470 
471 	iph = ipv6_hdr(skb);
472 
473 	memset(&fl6, 0, sizeof(fl6));
474 	/* needed to match OIF rule */
475 	fl6.flowi6_l3mdev = dev->ifindex;
476 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
477 	fl6.daddr = iph->daddr;
478 	fl6.saddr = iph->saddr;
479 	fl6.flowlabel = ip6_flowinfo(iph);
480 	fl6.flowi6_mark = skb->mark;
481 	fl6.flowi6_proto = iph->nexthdr;
482 
483 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
484 	if (IS_ERR(dst) || dst == dst_null)
485 		goto err;
486 
487 	skb_dst_drop(skb);
488 
489 	/* if dst.dev is the VRF device again this is locally originated traffic
490 	 * destined to a local address. Short circuit to Rx path.
491 	 */
492 	if (dst->dev == dev)
493 		return vrf_local_xmit(skb, dev, dst);
494 
495 	skb_dst_set(skb, dst);
496 
497 	/* strip the ethernet header added for pass through VRF device */
498 	__skb_pull(skb, skb_network_offset(skb));
499 
500 	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
501 	ret = vrf_ip6_local_out(net, skb->sk, skb);
502 	if (unlikely(net_xmit_eval(ret)))
503 		dev->stats.tx_errors++;
504 	else
505 		ret = NET_XMIT_SUCCESS;
506 
507 	return ret;
508 err:
509 	vrf_tx_error(dev, skb);
510 	return NET_XMIT_DROP;
511 }
512 #else
513 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
514 					   struct net_device *dev)
515 {
516 	vrf_tx_error(dev, skb);
517 	return NET_XMIT_DROP;
518 }
519 #endif
520 
521 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
522 static int vrf_ip_local_out(struct net *net, struct sock *sk,
523 			    struct sk_buff *skb)
524 {
525 	int err;
526 
527 	vrf_nf_reset_ct(skb);
528 
529 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
530 		      skb, NULL, skb_dst(skb)->dev, dst_output);
531 	if (likely(err == 1))
532 		err = dst_output(net, sk, skb);
533 
534 	return err;
535 }
536 
537 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
538 					   struct net_device *vrf_dev)
539 {
540 	struct iphdr *ip4h;
541 	int ret = NET_XMIT_DROP;
542 	struct flowi4 fl4;
543 	struct net *net = dev_net(vrf_dev);
544 	struct rtable *rt;
545 
546 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
547 		goto err;
548 
549 	ip4h = ip_hdr(skb);
550 
551 	memset(&fl4, 0, sizeof(fl4));
552 	/* needed to match OIF rule */
553 	fl4.flowi4_l3mdev = vrf_dev->ifindex;
554 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
555 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
556 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
557 	fl4.flowi4_proto = ip4h->protocol;
558 	fl4.daddr = ip4h->daddr;
559 	fl4.saddr = ip4h->saddr;
560 
561 	rt = ip_route_output_flow(net, &fl4, NULL);
562 	if (IS_ERR(rt))
563 		goto err;
564 
565 	skb_dst_drop(skb);
566 
567 	/* if dst.dev is the VRF device again this is locally originated traffic
568 	 * destined to a local address. Short circuit to Rx path.
569 	 */
570 	if (rt->dst.dev == vrf_dev)
571 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
572 
573 	skb_dst_set(skb, &rt->dst);
574 
575 	/* strip the ethernet header added for pass through VRF device */
576 	__skb_pull(skb, skb_network_offset(skb));
577 
578 	if (!ip4h->saddr) {
579 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
580 					       RT_SCOPE_LINK);
581 	}
582 
583 	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
584 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
585 	if (unlikely(net_xmit_eval(ret)))
586 		vrf_dev->stats.tx_errors++;
587 	else
588 		ret = NET_XMIT_SUCCESS;
589 
590 out:
591 	return ret;
592 err:
593 	vrf_tx_error(vrf_dev, skb);
594 	goto out;
595 }
596 
597 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
598 {
599 	switch (skb->protocol) {
600 	case htons(ETH_P_IP):
601 		return vrf_process_v4_outbound(skb, dev);
602 	case htons(ETH_P_IPV6):
603 		return vrf_process_v6_outbound(skb, dev);
604 	default:
605 		vrf_tx_error(dev, skb);
606 		return NET_XMIT_DROP;
607 	}
608 }
609 
610 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
611 {
612 	int len = skb->len;
613 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
614 
615 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
616 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
617 
618 		u64_stats_update_begin(&dstats->syncp);
619 		dstats->tx_pkts++;
620 		dstats->tx_bytes += len;
621 		u64_stats_update_end(&dstats->syncp);
622 	} else {
623 		this_cpu_inc(dev->dstats->tx_drps);
624 	}
625 
626 	return ret;
627 }
628 
629 static void vrf_finish_direct(struct sk_buff *skb)
630 {
631 	struct net_device *vrf_dev = skb->dev;
632 
633 	if (!list_empty(&vrf_dev->ptype_all) &&
634 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
635 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
636 
637 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
638 		eth_zero_addr(eth->h_dest);
639 		eth->h_proto = skb->protocol;
640 
641 		dev_queue_xmit_nit(skb, vrf_dev);
642 
643 		skb_pull(skb, ETH_HLEN);
644 	}
645 
646 	vrf_nf_reset_ct(skb);
647 }
648 
649 #if IS_ENABLED(CONFIG_IPV6)
650 /* modelled after ip6_finish_output2 */
651 static int vrf_finish_output6(struct net *net, struct sock *sk,
652 			      struct sk_buff *skb)
653 {
654 	struct dst_entry *dst = skb_dst(skb);
655 	struct net_device *dev = dst->dev;
656 	const struct in6_addr *nexthop;
657 	struct neighbour *neigh;
658 	int ret;
659 
660 	vrf_nf_reset_ct(skb);
661 
662 	skb->protocol = htons(ETH_P_IPV6);
663 	skb->dev = dev;
664 
665 	rcu_read_lock();
666 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
667 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
668 	if (unlikely(!neigh))
669 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
670 	if (!IS_ERR(neigh)) {
671 		sock_confirm_neigh(skb, neigh);
672 		ret = neigh_output(neigh, skb, false);
673 		rcu_read_unlock();
674 		return ret;
675 	}
676 	rcu_read_unlock();
677 
678 	IP6_INC_STATS(dev_net(dst->dev),
679 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
680 	kfree_skb(skb);
681 	return -EINVAL;
682 }
683 
684 /* modelled after ip6_output */
685 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
686 {
687 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
688 			    net, sk, skb, NULL, skb_dst(skb)->dev,
689 			    vrf_finish_output6,
690 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
691 }
692 
693 /* set dst on skb to send packet to us via dev_xmit path. Allows
694  * packet to go through device based features such as qdisc, netfilter
695  * hooks and packet sockets with skb->dev set to vrf device.
696  */
697 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
698 					    struct sk_buff *skb)
699 {
700 	struct net_vrf *vrf = netdev_priv(vrf_dev);
701 	struct dst_entry *dst = NULL;
702 	struct rt6_info *rt6;
703 
704 	rcu_read_lock();
705 
706 	rt6 = rcu_dereference(vrf->rt6);
707 	if (likely(rt6)) {
708 		dst = &rt6->dst;
709 		dst_hold(dst);
710 	}
711 
712 	rcu_read_unlock();
713 
714 	if (unlikely(!dst)) {
715 		vrf_tx_error(vrf_dev, skb);
716 		return NULL;
717 	}
718 
719 	skb_dst_drop(skb);
720 	skb_dst_set(skb, dst);
721 
722 	return skb;
723 }
724 
725 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
726 				     struct sk_buff *skb)
727 {
728 	vrf_finish_direct(skb);
729 
730 	return vrf_ip6_local_out(net, sk, skb);
731 }
732 
733 static int vrf_output6_direct(struct net *net, struct sock *sk,
734 			      struct sk_buff *skb)
735 {
736 	int err = 1;
737 
738 	skb->protocol = htons(ETH_P_IPV6);
739 
740 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
741 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
742 			      NULL, skb->dev, vrf_output6_direct_finish);
743 
744 	if (likely(err == 1))
745 		vrf_finish_direct(skb);
746 
747 	return err;
748 }
749 
750 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
751 				     struct sk_buff *skb)
752 {
753 	int err;
754 
755 	err = vrf_output6_direct(net, sk, skb);
756 	if (likely(err == 1))
757 		err = vrf_ip6_local_out(net, sk, skb);
758 
759 	return err;
760 }
761 
762 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
763 					  struct sock *sk,
764 					  struct sk_buff *skb)
765 {
766 	struct net *net = dev_net(vrf_dev);
767 	int err;
768 
769 	skb->dev = vrf_dev;
770 
771 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
772 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
773 
774 	if (likely(err == 1))
775 		err = vrf_output6_direct(net, sk, skb);
776 
777 	if (likely(err == 1))
778 		return skb;
779 
780 	return NULL;
781 }
782 
783 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
784 				   struct sock *sk,
785 				   struct sk_buff *skb)
786 {
787 	/* don't divert link scope packets */
788 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
789 		return skb;
790 
791 	vrf_nf_set_untracked(skb);
792 
793 	if (qdisc_tx_is_default(vrf_dev) ||
794 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
795 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
796 
797 	return vrf_ip6_out_redirect(vrf_dev, skb);
798 }
799 
800 /* holding rtnl */
801 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
802 {
803 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
804 	struct net *net = dev_net(dev);
805 	struct dst_entry *dst;
806 
807 	RCU_INIT_POINTER(vrf->rt6, NULL);
808 	synchronize_rcu();
809 
810 	/* move dev in dst's to loopback so this VRF device can be deleted
811 	 * - based on dst_ifdown
812 	 */
813 	if (rt6) {
814 		dst = &rt6->dst;
815 		netdev_ref_replace(dst->dev, net->loopback_dev,
816 				   &dst->dev_tracker, GFP_KERNEL);
817 		dst->dev = net->loopback_dev;
818 		dst_release(dst);
819 	}
820 }
821 
822 static int vrf_rt6_create(struct net_device *dev)
823 {
824 	int flags = DST_NOPOLICY | DST_NOXFRM;
825 	struct net_vrf *vrf = netdev_priv(dev);
826 	struct net *net = dev_net(dev);
827 	struct rt6_info *rt6;
828 	int rc = -ENOMEM;
829 
830 	/* IPv6 can be CONFIG enabled and then disabled runtime */
831 	if (!ipv6_mod_enabled())
832 		return 0;
833 
834 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
835 	if (!vrf->fib6_table)
836 		goto out;
837 
838 	/* create a dst for routing packets out a VRF device */
839 	rt6 = ip6_dst_alloc(net, dev, flags);
840 	if (!rt6)
841 		goto out;
842 
843 	rt6->dst.output	= vrf_output6;
844 
845 	rcu_assign_pointer(vrf->rt6, rt6);
846 
847 	rc = 0;
848 out:
849 	return rc;
850 }
851 #else
852 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
853 				   struct sock *sk,
854 				   struct sk_buff *skb)
855 {
856 	return skb;
857 }
858 
859 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
860 {
861 }
862 
863 static int vrf_rt6_create(struct net_device *dev)
864 {
865 	return 0;
866 }
867 #endif
868 
869 /* modelled after ip_finish_output2 */
870 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
871 {
872 	struct dst_entry *dst = skb_dst(skb);
873 	struct rtable *rt = (struct rtable *)dst;
874 	struct net_device *dev = dst->dev;
875 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
876 	struct neighbour *neigh;
877 	bool is_v6gw = false;
878 
879 	vrf_nf_reset_ct(skb);
880 
881 	/* Be paranoid, rather than too clever. */
882 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
883 		skb = skb_expand_head(skb, hh_len);
884 		if (!skb) {
885 			dev->stats.tx_errors++;
886 			return -ENOMEM;
887 		}
888 	}
889 
890 	rcu_read_lock();
891 
892 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
893 	if (!IS_ERR(neigh)) {
894 		int ret;
895 
896 		sock_confirm_neigh(skb, neigh);
897 		/* if crossing protocols, can not use the cached header */
898 		ret = neigh_output(neigh, skb, is_v6gw);
899 		rcu_read_unlock();
900 		return ret;
901 	}
902 
903 	rcu_read_unlock();
904 	vrf_tx_error(skb->dev, skb);
905 	return -EINVAL;
906 }
907 
908 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
909 {
910 	struct net_device *dev = skb_dst(skb)->dev;
911 
912 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
913 
914 	skb->dev = dev;
915 	skb->protocol = htons(ETH_P_IP);
916 
917 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
918 			    net, sk, skb, NULL, dev,
919 			    vrf_finish_output,
920 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
921 }
922 
923 /* set dst on skb to send packet to us via dev_xmit path. Allows
924  * packet to go through device based features such as qdisc, netfilter
925  * hooks and packet sockets with skb->dev set to vrf device.
926  */
927 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
928 					   struct sk_buff *skb)
929 {
930 	struct net_vrf *vrf = netdev_priv(vrf_dev);
931 	struct dst_entry *dst = NULL;
932 	struct rtable *rth;
933 
934 	rcu_read_lock();
935 
936 	rth = rcu_dereference(vrf->rth);
937 	if (likely(rth)) {
938 		dst = &rth->dst;
939 		dst_hold(dst);
940 	}
941 
942 	rcu_read_unlock();
943 
944 	if (unlikely(!dst)) {
945 		vrf_tx_error(vrf_dev, skb);
946 		return NULL;
947 	}
948 
949 	skb_dst_drop(skb);
950 	skb_dst_set(skb, dst);
951 
952 	return skb;
953 }
954 
955 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
956 				    struct sk_buff *skb)
957 {
958 	vrf_finish_direct(skb);
959 
960 	return vrf_ip_local_out(net, sk, skb);
961 }
962 
963 static int vrf_output_direct(struct net *net, struct sock *sk,
964 			     struct sk_buff *skb)
965 {
966 	int err = 1;
967 
968 	skb->protocol = htons(ETH_P_IP);
969 
970 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
971 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
972 			      NULL, skb->dev, vrf_output_direct_finish);
973 
974 	if (likely(err == 1))
975 		vrf_finish_direct(skb);
976 
977 	return err;
978 }
979 
980 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
981 				    struct sk_buff *skb)
982 {
983 	int err;
984 
985 	err = vrf_output_direct(net, sk, skb);
986 	if (likely(err == 1))
987 		err = vrf_ip_local_out(net, sk, skb);
988 
989 	return err;
990 }
991 
992 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
993 					 struct sock *sk,
994 					 struct sk_buff *skb)
995 {
996 	struct net *net = dev_net(vrf_dev);
997 	int err;
998 
999 	skb->dev = vrf_dev;
1000 
1001 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1002 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1003 
1004 	if (likely(err == 1))
1005 		err = vrf_output_direct(net, sk, skb);
1006 
1007 	if (likely(err == 1))
1008 		return skb;
1009 
1010 	return NULL;
1011 }
1012 
1013 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1014 				  struct sock *sk,
1015 				  struct sk_buff *skb)
1016 {
1017 	/* don't divert multicast or local broadcast */
1018 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1019 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1020 		return skb;
1021 
1022 	vrf_nf_set_untracked(skb);
1023 
1024 	if (qdisc_tx_is_default(vrf_dev) ||
1025 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1026 		return vrf_ip_out_direct(vrf_dev, sk, skb);
1027 
1028 	return vrf_ip_out_redirect(vrf_dev, skb);
1029 }
1030 
1031 /* called with rcu lock held */
1032 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1033 				  struct sock *sk,
1034 				  struct sk_buff *skb,
1035 				  u16 proto)
1036 {
1037 	switch (proto) {
1038 	case AF_INET:
1039 		return vrf_ip_out(vrf_dev, sk, skb);
1040 	case AF_INET6:
1041 		return vrf_ip6_out(vrf_dev, sk, skb);
1042 	}
1043 
1044 	return skb;
1045 }
1046 
1047 /* holding rtnl */
1048 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1049 {
1050 	struct rtable *rth = rtnl_dereference(vrf->rth);
1051 	struct net *net = dev_net(dev);
1052 	struct dst_entry *dst;
1053 
1054 	RCU_INIT_POINTER(vrf->rth, NULL);
1055 	synchronize_rcu();
1056 
1057 	/* move dev in dst's to loopback so this VRF device can be deleted
1058 	 * - based on dst_ifdown
1059 	 */
1060 	if (rth) {
1061 		dst = &rth->dst;
1062 		netdev_ref_replace(dst->dev, net->loopback_dev,
1063 				   &dst->dev_tracker, GFP_KERNEL);
1064 		dst->dev = net->loopback_dev;
1065 		dst_release(dst);
1066 	}
1067 }
1068 
1069 static int vrf_rtable_create(struct net_device *dev)
1070 {
1071 	struct net_vrf *vrf = netdev_priv(dev);
1072 	struct rtable *rth;
1073 
1074 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1075 		return -ENOMEM;
1076 
1077 	/* create a dst for routing packets out through a VRF device */
1078 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1079 	if (!rth)
1080 		return -ENOMEM;
1081 
1082 	rth->dst.output	= vrf_output;
1083 
1084 	rcu_assign_pointer(vrf->rth, rth);
1085 
1086 	return 0;
1087 }
1088 
1089 /**************************** device handling ********************/
1090 
1091 /* cycle interface to flush neighbor cache and move routes across tables */
1092 static void cycle_netdev(struct net_device *dev,
1093 			 struct netlink_ext_ack *extack)
1094 {
1095 	unsigned int flags = dev->flags;
1096 	int ret;
1097 
1098 	if (!netif_running(dev))
1099 		return;
1100 
1101 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1102 	if (ret >= 0)
1103 		ret = dev_change_flags(dev, flags, extack);
1104 
1105 	if (ret < 0) {
1106 		netdev_err(dev,
1107 			   "Failed to cycle device %s; route tables might be wrong!\n",
1108 			   dev->name);
1109 	}
1110 }
1111 
1112 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1113 			    struct netlink_ext_ack *extack)
1114 {
1115 	int ret;
1116 
1117 	/* do not allow loopback device to be enslaved to a VRF.
1118 	 * The vrf device acts as the loopback for the vrf.
1119 	 */
1120 	if (port_dev == dev_net(dev)->loopback_dev) {
1121 		NL_SET_ERR_MSG(extack,
1122 			       "Can not enslave loopback device to a VRF");
1123 		return -EOPNOTSUPP;
1124 	}
1125 
1126 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1127 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1128 	if (ret < 0)
1129 		goto err;
1130 
1131 	cycle_netdev(port_dev, extack);
1132 
1133 	return 0;
1134 
1135 err:
1136 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1137 	return ret;
1138 }
1139 
1140 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1141 			 struct netlink_ext_ack *extack)
1142 {
1143 	if (netif_is_l3_master(port_dev)) {
1144 		NL_SET_ERR_MSG(extack,
1145 			       "Can not enslave an L3 master device to a VRF");
1146 		return -EINVAL;
1147 	}
1148 
1149 	if (netif_is_l3_slave(port_dev))
1150 		return -EINVAL;
1151 
1152 	return do_vrf_add_slave(dev, port_dev, extack);
1153 }
1154 
1155 /* inverse of do_vrf_add_slave */
1156 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1157 {
1158 	netdev_upper_dev_unlink(port_dev, dev);
1159 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1160 
1161 	cycle_netdev(port_dev, NULL);
1162 
1163 	return 0;
1164 }
1165 
1166 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1167 {
1168 	return do_vrf_del_slave(dev, port_dev);
1169 }
1170 
1171 static void vrf_dev_uninit(struct net_device *dev)
1172 {
1173 	struct net_vrf *vrf = netdev_priv(dev);
1174 
1175 	vrf_rtable_release(dev, vrf);
1176 	vrf_rt6_release(dev, vrf);
1177 
1178 	free_percpu(dev->dstats);
1179 	dev->dstats = NULL;
1180 }
1181 
1182 static int vrf_dev_init(struct net_device *dev)
1183 {
1184 	struct net_vrf *vrf = netdev_priv(dev);
1185 
1186 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1187 	if (!dev->dstats)
1188 		goto out_nomem;
1189 
1190 	/* create the default dst which points back to us */
1191 	if (vrf_rtable_create(dev) != 0)
1192 		goto out_stats;
1193 
1194 	if (vrf_rt6_create(dev) != 0)
1195 		goto out_rth;
1196 
1197 	dev->flags = IFF_MASTER | IFF_NOARP;
1198 
1199 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1200 	dev->operstate = IF_OPER_UP;
1201 	netdev_lockdep_set_classes(dev);
1202 	return 0;
1203 
1204 out_rth:
1205 	vrf_rtable_release(dev, vrf);
1206 out_stats:
1207 	free_percpu(dev->dstats);
1208 	dev->dstats = NULL;
1209 out_nomem:
1210 	return -ENOMEM;
1211 }
1212 
1213 static const struct net_device_ops vrf_netdev_ops = {
1214 	.ndo_init		= vrf_dev_init,
1215 	.ndo_uninit		= vrf_dev_uninit,
1216 	.ndo_start_xmit		= vrf_xmit,
1217 	.ndo_set_mac_address	= eth_mac_addr,
1218 	.ndo_get_stats64	= vrf_get_stats64,
1219 	.ndo_add_slave		= vrf_add_slave,
1220 	.ndo_del_slave		= vrf_del_slave,
1221 };
1222 
1223 static u32 vrf_fib_table(const struct net_device *dev)
1224 {
1225 	struct net_vrf *vrf = netdev_priv(dev);
1226 
1227 	return vrf->tb_id;
1228 }
1229 
1230 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1231 {
1232 	kfree_skb(skb);
1233 	return 0;
1234 }
1235 
1236 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1237 				      struct sk_buff *skb,
1238 				      struct net_device *dev)
1239 {
1240 	struct net *net = dev_net(dev);
1241 
1242 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1243 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1244 
1245 	return skb;
1246 }
1247 
1248 static int vrf_prepare_mac_header(struct sk_buff *skb,
1249 				  struct net_device *vrf_dev, u16 proto)
1250 {
1251 	struct ethhdr *eth;
1252 	int err;
1253 
1254 	/* in general, we do not know if there is enough space in the head of
1255 	 * the packet for hosting the mac header.
1256 	 */
1257 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1258 	if (unlikely(err))
1259 		/* no space in the skb head */
1260 		return -ENOBUFS;
1261 
1262 	__skb_push(skb, ETH_HLEN);
1263 	eth = (struct ethhdr *)skb->data;
1264 
1265 	skb_reset_mac_header(skb);
1266 	skb_reset_mac_len(skb);
1267 
1268 	/* we set the ethernet destination and the source addresses to the
1269 	 * address of the VRF device.
1270 	 */
1271 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1272 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1273 	eth->h_proto = htons(proto);
1274 
1275 	/* the destination address of the Ethernet frame corresponds to the
1276 	 * address set on the VRF interface; therefore, the packet is intended
1277 	 * to be processed locally.
1278 	 */
1279 	skb->protocol = eth->h_proto;
1280 	skb->pkt_type = PACKET_HOST;
1281 
1282 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1283 
1284 	skb_pull_inline(skb, ETH_HLEN);
1285 
1286 	return 0;
1287 }
1288 
1289 /* prepare and add the mac header to the packet if it was not set previously.
1290  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1291  * If the mac header was already set, the original mac header is left
1292  * untouched and the function returns immediately.
1293  */
1294 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1295 				       struct net_device *vrf_dev,
1296 				       u16 proto, struct net_device *orig_dev)
1297 {
1298 	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1299 		return 0;
1300 
1301 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1302 }
1303 
1304 #if IS_ENABLED(CONFIG_IPV6)
1305 /* neighbor handling is done with actual device; do not want
1306  * to flip skb->dev for those ndisc packets. This really fails
1307  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1308  * a start.
1309  */
1310 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1311 {
1312 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1313 	bool rc = false;
1314 
1315 	if (iph->nexthdr == NEXTHDR_ICMP) {
1316 		const struct icmp6hdr *icmph;
1317 		struct icmp6hdr _icmph;
1318 
1319 		icmph = skb_header_pointer(skb, sizeof(*iph),
1320 					   sizeof(_icmph), &_icmph);
1321 		if (!icmph)
1322 			goto out;
1323 
1324 		switch (icmph->icmp6_type) {
1325 		case NDISC_ROUTER_SOLICITATION:
1326 		case NDISC_ROUTER_ADVERTISEMENT:
1327 		case NDISC_NEIGHBOUR_SOLICITATION:
1328 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1329 		case NDISC_REDIRECT:
1330 			rc = true;
1331 			break;
1332 		}
1333 	}
1334 
1335 out:
1336 	return rc;
1337 }
1338 
1339 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1340 					     const struct net_device *dev,
1341 					     struct flowi6 *fl6,
1342 					     int ifindex,
1343 					     const struct sk_buff *skb,
1344 					     int flags)
1345 {
1346 	struct net_vrf *vrf = netdev_priv(dev);
1347 
1348 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1349 }
1350 
1351 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1352 			      int ifindex)
1353 {
1354 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1355 	struct flowi6 fl6 = {
1356 		.flowi6_iif     = ifindex,
1357 		.flowi6_mark    = skb->mark,
1358 		.flowi6_proto   = iph->nexthdr,
1359 		.daddr          = iph->daddr,
1360 		.saddr          = iph->saddr,
1361 		.flowlabel      = ip6_flowinfo(iph),
1362 	};
1363 	struct net *net = dev_net(vrf_dev);
1364 	struct rt6_info *rt6;
1365 
1366 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1367 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1368 	if (unlikely(!rt6))
1369 		return;
1370 
1371 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1372 		return;
1373 
1374 	skb_dst_set(skb, &rt6->dst);
1375 }
1376 
1377 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1378 				   struct sk_buff *skb)
1379 {
1380 	int orig_iif = skb->skb_iif;
1381 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1382 	bool is_ndisc = ipv6_ndisc_frame(skb);
1383 
1384 	/* loopback, multicast & non-ND link-local traffic; do not push through
1385 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1386 	 * For non-loopback strict packets, determine the dst using the original
1387 	 * ifindex.
1388 	 */
1389 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1390 		skb->dev = vrf_dev;
1391 		skb->skb_iif = vrf_dev->ifindex;
1392 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1393 
1394 		if (skb->pkt_type == PACKET_LOOPBACK)
1395 			skb->pkt_type = PACKET_HOST;
1396 		else
1397 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1398 
1399 		goto out;
1400 	}
1401 
1402 	/* if packet is NDISC then keep the ingress interface */
1403 	if (!is_ndisc) {
1404 		struct net_device *orig_dev = skb->dev;
1405 
1406 		vrf_rx_stats(vrf_dev, skb->len);
1407 		skb->dev = vrf_dev;
1408 		skb->skb_iif = vrf_dev->ifindex;
1409 
1410 		if (!list_empty(&vrf_dev->ptype_all)) {
1411 			int err;
1412 
1413 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1414 							  ETH_P_IPV6,
1415 							  orig_dev);
1416 			if (likely(!err)) {
1417 				skb_push(skb, skb->mac_len);
1418 				dev_queue_xmit_nit(skb, vrf_dev);
1419 				skb_pull(skb, skb->mac_len);
1420 			}
1421 		}
1422 
1423 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1424 	}
1425 
1426 	if (need_strict)
1427 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1428 
1429 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1430 out:
1431 	return skb;
1432 }
1433 
1434 #else
1435 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1436 				   struct sk_buff *skb)
1437 {
1438 	return skb;
1439 }
1440 #endif
1441 
1442 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1443 				  struct sk_buff *skb)
1444 {
1445 	struct net_device *orig_dev = skb->dev;
1446 
1447 	skb->dev = vrf_dev;
1448 	skb->skb_iif = vrf_dev->ifindex;
1449 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1450 
1451 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1452 		goto out;
1453 
1454 	/* loopback traffic; do not push through packet taps again.
1455 	 * Reset pkt_type for upper layers to process skb
1456 	 */
1457 	if (skb->pkt_type == PACKET_LOOPBACK) {
1458 		skb->pkt_type = PACKET_HOST;
1459 		goto out;
1460 	}
1461 
1462 	vrf_rx_stats(vrf_dev, skb->len);
1463 
1464 	if (!list_empty(&vrf_dev->ptype_all)) {
1465 		int err;
1466 
1467 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1468 						  orig_dev);
1469 		if (likely(!err)) {
1470 			skb_push(skb, skb->mac_len);
1471 			dev_queue_xmit_nit(skb, vrf_dev);
1472 			skb_pull(skb, skb->mac_len);
1473 		}
1474 	}
1475 
1476 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1477 out:
1478 	return skb;
1479 }
1480 
1481 /* called with rcu lock held */
1482 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1483 				  struct sk_buff *skb,
1484 				  u16 proto)
1485 {
1486 	switch (proto) {
1487 	case AF_INET:
1488 		return vrf_ip_rcv(vrf_dev, skb);
1489 	case AF_INET6:
1490 		return vrf_ip6_rcv(vrf_dev, skb);
1491 	}
1492 
1493 	return skb;
1494 }
1495 
1496 #if IS_ENABLED(CONFIG_IPV6)
1497 /* send to link-local or multicast address via interface enslaved to
1498  * VRF device. Force lookup to VRF table without changing flow struct
1499  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1500  * is taken on the dst by this function.
1501  */
1502 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1503 					      struct flowi6 *fl6)
1504 {
1505 	struct net *net = dev_net(dev);
1506 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1507 	struct dst_entry *dst = NULL;
1508 	struct rt6_info *rt;
1509 
1510 	/* VRF device does not have a link-local address and
1511 	 * sending packets to link-local or mcast addresses over
1512 	 * a VRF device does not make sense
1513 	 */
1514 	if (fl6->flowi6_oif == dev->ifindex) {
1515 		dst = &net->ipv6.ip6_null_entry->dst;
1516 		return dst;
1517 	}
1518 
1519 	if (!ipv6_addr_any(&fl6->saddr))
1520 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1521 
1522 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1523 	if (rt)
1524 		dst = &rt->dst;
1525 
1526 	return dst;
1527 }
1528 #endif
1529 
1530 static const struct l3mdev_ops vrf_l3mdev_ops = {
1531 	.l3mdev_fib_table	= vrf_fib_table,
1532 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1533 	.l3mdev_l3_out		= vrf_l3_out,
1534 #if IS_ENABLED(CONFIG_IPV6)
1535 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1536 #endif
1537 };
1538 
1539 static void vrf_get_drvinfo(struct net_device *dev,
1540 			    struct ethtool_drvinfo *info)
1541 {
1542 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1543 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1544 }
1545 
1546 static const struct ethtool_ops vrf_ethtool_ops = {
1547 	.get_drvinfo	= vrf_get_drvinfo,
1548 };
1549 
1550 static inline size_t vrf_fib_rule_nl_size(void)
1551 {
1552 	size_t sz;
1553 
1554 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1555 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1556 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1557 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1558 
1559 	return sz;
1560 }
1561 
1562 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1563 {
1564 	struct fib_rule_hdr *frh;
1565 	struct nlmsghdr *nlh;
1566 	struct sk_buff *skb;
1567 	int err;
1568 
1569 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1570 	    !ipv6_mod_enabled())
1571 		return 0;
1572 
1573 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1574 	if (!skb)
1575 		return -ENOMEM;
1576 
1577 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1578 	if (!nlh)
1579 		goto nla_put_failure;
1580 
1581 	/* rule only needs to appear once */
1582 	nlh->nlmsg_flags |= NLM_F_EXCL;
1583 
1584 	frh = nlmsg_data(nlh);
1585 	memset(frh, 0, sizeof(*frh));
1586 	frh->family = family;
1587 	frh->action = FR_ACT_TO_TBL;
1588 
1589 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1590 		goto nla_put_failure;
1591 
1592 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1593 		goto nla_put_failure;
1594 
1595 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1596 		goto nla_put_failure;
1597 
1598 	nlmsg_end(skb, nlh);
1599 
1600 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1601 	skb->sk = dev_net(dev)->rtnl;
1602 	if (add_it) {
1603 		err = fib_nl_newrule(skb, nlh, NULL);
1604 		if (err == -EEXIST)
1605 			err = 0;
1606 	} else {
1607 		err = fib_nl_delrule(skb, nlh, NULL);
1608 		if (err == -ENOENT)
1609 			err = 0;
1610 	}
1611 	nlmsg_free(skb);
1612 
1613 	return err;
1614 
1615 nla_put_failure:
1616 	nlmsg_free(skb);
1617 
1618 	return -EMSGSIZE;
1619 }
1620 
1621 static int vrf_add_fib_rules(const struct net_device *dev)
1622 {
1623 	int err;
1624 
1625 	err = vrf_fib_rule(dev, AF_INET,  true);
1626 	if (err < 0)
1627 		goto out_err;
1628 
1629 	err = vrf_fib_rule(dev, AF_INET6, true);
1630 	if (err < 0)
1631 		goto ipv6_err;
1632 
1633 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1634 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1635 	if (err < 0)
1636 		goto ipmr_err;
1637 #endif
1638 
1639 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1640 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1641 	if (err < 0)
1642 		goto ip6mr_err;
1643 #endif
1644 
1645 	return 0;
1646 
1647 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1648 ip6mr_err:
1649 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1650 #endif
1651 
1652 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1653 ipmr_err:
1654 	vrf_fib_rule(dev, AF_INET6,  false);
1655 #endif
1656 
1657 ipv6_err:
1658 	vrf_fib_rule(dev, AF_INET,  false);
1659 
1660 out_err:
1661 	netdev_err(dev, "Failed to add FIB rules.\n");
1662 	return err;
1663 }
1664 
1665 static void vrf_setup(struct net_device *dev)
1666 {
1667 	ether_setup(dev);
1668 
1669 	/* Initialize the device structure. */
1670 	dev->netdev_ops = &vrf_netdev_ops;
1671 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1672 	dev->ethtool_ops = &vrf_ethtool_ops;
1673 	dev->needs_free_netdev = true;
1674 
1675 	/* Fill in device structure with ethernet-generic values. */
1676 	eth_hw_addr_random(dev);
1677 
1678 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1679 	dev->features |= NETIF_F_LLTX;
1680 
1681 	/* don't allow vrf devices to change network namespaces. */
1682 	dev->features |= NETIF_F_NETNS_LOCAL;
1683 
1684 	/* does not make sense for a VLAN to be added to a vrf device */
1685 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1686 
1687 	/* enable offload features */
1688 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1689 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1690 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1691 
1692 	dev->hw_features = dev->features;
1693 	dev->hw_enc_features = dev->features;
1694 
1695 	/* default to no qdisc; user can add if desired */
1696 	dev->priv_flags |= IFF_NO_QUEUE;
1697 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1698 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1699 
1700 	/* VRF devices do not care about MTU, but if the MTU is set
1701 	 * too low then the ipv4 and ipv6 protocols are disabled
1702 	 * which breaks networking.
1703 	 */
1704 	dev->min_mtu = IPV6_MIN_MTU;
1705 	dev->max_mtu = IP6_MAX_MTU;
1706 	dev->mtu = dev->max_mtu;
1707 }
1708 
1709 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1710 			struct netlink_ext_ack *extack)
1711 {
1712 	if (tb[IFLA_ADDRESS]) {
1713 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1714 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1715 			return -EINVAL;
1716 		}
1717 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1718 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1719 			return -EADDRNOTAVAIL;
1720 		}
1721 	}
1722 	return 0;
1723 }
1724 
1725 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1726 {
1727 	struct net_device *port_dev;
1728 	struct list_head *iter;
1729 
1730 	netdev_for_each_lower_dev(dev, port_dev, iter)
1731 		vrf_del_slave(dev, port_dev);
1732 
1733 	vrf_map_unregister_dev(dev);
1734 
1735 	unregister_netdevice_queue(dev, head);
1736 }
1737 
1738 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1739 		       struct nlattr *tb[], struct nlattr *data[],
1740 		       struct netlink_ext_ack *extack)
1741 {
1742 	struct net_vrf *vrf = netdev_priv(dev);
1743 	struct netns_vrf *nn_vrf;
1744 	bool *add_fib_rules;
1745 	struct net *net;
1746 	int err;
1747 
1748 	if (!data || !data[IFLA_VRF_TABLE]) {
1749 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1750 		return -EINVAL;
1751 	}
1752 
1753 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1754 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1755 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1756 				    "Invalid VRF table id");
1757 		return -EINVAL;
1758 	}
1759 
1760 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1761 
1762 	err = register_netdevice(dev);
1763 	if (err)
1764 		goto out;
1765 
1766 	/* mapping between table_id and vrf;
1767 	 * note: such binding could not be done in the dev init function
1768 	 * because dev->ifindex id is not available yet.
1769 	 */
1770 	vrf->ifindex = dev->ifindex;
1771 
1772 	err = vrf_map_register_dev(dev, extack);
1773 	if (err) {
1774 		unregister_netdevice(dev);
1775 		goto out;
1776 	}
1777 
1778 	net = dev_net(dev);
1779 	nn_vrf = net_generic(net, vrf_net_id);
1780 
1781 	add_fib_rules = &nn_vrf->add_fib_rules;
1782 	if (*add_fib_rules) {
1783 		err = vrf_add_fib_rules(dev);
1784 		if (err) {
1785 			vrf_map_unregister_dev(dev);
1786 			unregister_netdevice(dev);
1787 			goto out;
1788 		}
1789 		*add_fib_rules = false;
1790 	}
1791 
1792 out:
1793 	return err;
1794 }
1795 
1796 static size_t vrf_nl_getsize(const struct net_device *dev)
1797 {
1798 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1799 }
1800 
1801 static int vrf_fillinfo(struct sk_buff *skb,
1802 			const struct net_device *dev)
1803 {
1804 	struct net_vrf *vrf = netdev_priv(dev);
1805 
1806 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1807 }
1808 
1809 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1810 				 const struct net_device *slave_dev)
1811 {
1812 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1813 }
1814 
1815 static int vrf_fill_slave_info(struct sk_buff *skb,
1816 			       const struct net_device *vrf_dev,
1817 			       const struct net_device *slave_dev)
1818 {
1819 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1820 
1821 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1822 		return -EMSGSIZE;
1823 
1824 	return 0;
1825 }
1826 
1827 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1828 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1829 };
1830 
1831 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1832 	.kind		= DRV_NAME,
1833 	.priv_size	= sizeof(struct net_vrf),
1834 
1835 	.get_size	= vrf_nl_getsize,
1836 	.policy		= vrf_nl_policy,
1837 	.validate	= vrf_validate,
1838 	.fill_info	= vrf_fillinfo,
1839 
1840 	.get_slave_size  = vrf_get_slave_size,
1841 	.fill_slave_info = vrf_fill_slave_info,
1842 
1843 	.newlink	= vrf_newlink,
1844 	.dellink	= vrf_dellink,
1845 	.setup		= vrf_setup,
1846 	.maxtype	= IFLA_VRF_MAX,
1847 };
1848 
1849 static int vrf_device_event(struct notifier_block *unused,
1850 			    unsigned long event, void *ptr)
1851 {
1852 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1853 
1854 	/* only care about unregister events to drop slave references */
1855 	if (event == NETDEV_UNREGISTER) {
1856 		struct net_device *vrf_dev;
1857 
1858 		if (!netif_is_l3_slave(dev))
1859 			goto out;
1860 
1861 		vrf_dev = netdev_master_upper_dev_get(dev);
1862 		vrf_del_slave(vrf_dev, dev);
1863 	}
1864 out:
1865 	return NOTIFY_DONE;
1866 }
1867 
1868 static struct notifier_block vrf_notifier_block __read_mostly = {
1869 	.notifier_call = vrf_device_event,
1870 };
1871 
1872 static int vrf_map_init(struct vrf_map *vmap)
1873 {
1874 	spin_lock_init(&vmap->vmap_lock);
1875 	hash_init(vmap->ht);
1876 
1877 	vmap->strict_mode = false;
1878 
1879 	return 0;
1880 }
1881 
1882 #ifdef CONFIG_SYSCTL
1883 static bool vrf_strict_mode(struct vrf_map *vmap)
1884 {
1885 	bool strict_mode;
1886 
1887 	vrf_map_lock(vmap);
1888 	strict_mode = vmap->strict_mode;
1889 	vrf_map_unlock(vmap);
1890 
1891 	return strict_mode;
1892 }
1893 
1894 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1895 {
1896 	bool *cur_mode;
1897 	int res = 0;
1898 
1899 	vrf_map_lock(vmap);
1900 
1901 	cur_mode = &vmap->strict_mode;
1902 	if (*cur_mode == new_mode)
1903 		goto unlock;
1904 
1905 	if (*cur_mode) {
1906 		/* disable strict mode */
1907 		*cur_mode = false;
1908 	} else {
1909 		if (vmap->shared_tables) {
1910 			/* we cannot allow strict_mode because there are some
1911 			 * vrfs that share one or more tables.
1912 			 */
1913 			res = -EBUSY;
1914 			goto unlock;
1915 		}
1916 
1917 		/* no tables are shared among vrfs, so we can go back
1918 		 * to 1:1 association between a vrf with its table.
1919 		 */
1920 		*cur_mode = true;
1921 	}
1922 
1923 unlock:
1924 	vrf_map_unlock(vmap);
1925 
1926 	return res;
1927 }
1928 
1929 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1930 				    void *buffer, size_t *lenp, loff_t *ppos)
1931 {
1932 	struct net *net = (struct net *)table->extra1;
1933 	struct vrf_map *vmap = netns_vrf_map(net);
1934 	int proc_strict_mode = 0;
1935 	struct ctl_table tmp = {
1936 		.procname	= table->procname,
1937 		.data		= &proc_strict_mode,
1938 		.maxlen		= sizeof(int),
1939 		.mode		= table->mode,
1940 		.extra1		= SYSCTL_ZERO,
1941 		.extra2		= SYSCTL_ONE,
1942 	};
1943 	int ret;
1944 
1945 	if (!write)
1946 		proc_strict_mode = vrf_strict_mode(vmap);
1947 
1948 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1949 
1950 	if (write && ret == 0)
1951 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1952 
1953 	return ret;
1954 }
1955 
1956 static const struct ctl_table vrf_table[] = {
1957 	{
1958 		.procname	= "strict_mode",
1959 		.data		= NULL,
1960 		.maxlen		= sizeof(int),
1961 		.mode		= 0644,
1962 		.proc_handler	= vrf_shared_table_handler,
1963 		/* set by the vrf_netns_init */
1964 		.extra1		= NULL,
1965 	},
1966 	{ },
1967 };
1968 
1969 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1970 {
1971 	struct ctl_table *table;
1972 
1973 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1974 	if (!table)
1975 		return -ENOMEM;
1976 
1977 	/* init the extra1 parameter with the reference to current netns */
1978 	table[0].extra1 = net;
1979 
1980 	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1981 						 ARRAY_SIZE(vrf_table));
1982 	if (!nn_vrf->ctl_hdr) {
1983 		kfree(table);
1984 		return -ENOMEM;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 static void vrf_netns_exit_sysctl(struct net *net)
1991 {
1992 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1993 	struct ctl_table *table;
1994 
1995 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1996 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1997 	kfree(table);
1998 }
1999 #else
2000 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
2001 {
2002 	return 0;
2003 }
2004 
2005 static void vrf_netns_exit_sysctl(struct net *net)
2006 {
2007 }
2008 #endif
2009 
2010 /* Initialize per network namespace state */
2011 static int __net_init vrf_netns_init(struct net *net)
2012 {
2013 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
2014 
2015 	nn_vrf->add_fib_rules = true;
2016 	vrf_map_init(&nn_vrf->vmap);
2017 
2018 	return vrf_netns_init_sysctl(net, nn_vrf);
2019 }
2020 
2021 static void __net_exit vrf_netns_exit(struct net *net)
2022 {
2023 	vrf_netns_exit_sysctl(net);
2024 }
2025 
2026 static struct pernet_operations vrf_net_ops __net_initdata = {
2027 	.init = vrf_netns_init,
2028 	.exit = vrf_netns_exit,
2029 	.id   = &vrf_net_id,
2030 	.size = sizeof(struct netns_vrf),
2031 };
2032 
2033 static int __init vrf_init_module(void)
2034 {
2035 	int rc;
2036 
2037 	register_netdevice_notifier(&vrf_notifier_block);
2038 
2039 	rc = register_pernet_subsys(&vrf_net_ops);
2040 	if (rc < 0)
2041 		goto error;
2042 
2043 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2044 					  vrf_ifindex_lookup_by_table_id);
2045 	if (rc < 0)
2046 		goto unreg_pernet;
2047 
2048 	rc = rtnl_link_register(&vrf_link_ops);
2049 	if (rc < 0)
2050 		goto table_lookup_unreg;
2051 
2052 	return 0;
2053 
2054 table_lookup_unreg:
2055 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2056 				       vrf_ifindex_lookup_by_table_id);
2057 
2058 unreg_pernet:
2059 	unregister_pernet_subsys(&vrf_net_ops);
2060 
2061 error:
2062 	unregister_netdevice_notifier(&vrf_notifier_block);
2063 	return rc;
2064 }
2065 
2066 module_init(vrf_init_module);
2067 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2068 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2069 MODULE_LICENSE("GPL");
2070 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2071 MODULE_VERSION(DRV_VERSION);
2072