xref: /linux/drivers/net/vrf.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/inet_dscp.h>
41 
42 #define DRV_NAME	"vrf"
43 #define DRV_VERSION	"1.1"
44 
45 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
46 
47 #define HT_MAP_BITS	4
48 #define HASH_INITVAL	((u32)0xcafef00d)
49 
50 struct  vrf_map {
51 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
52 	spinlock_t vmap_lock;
53 
54 	/* shared_tables:
55 	 * count how many distinct tables do not comply with the strict mode
56 	 * requirement.
57 	 * shared_tables value must be 0 in order to enable the strict mode.
58 	 *
59 	 * example of the evolution of shared_tables:
60 	 *                                                        | time
61 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
62 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
63 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
64 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
65 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
66 	 *
67 	 * shared_tables is a "step function" (or "staircase function")
68 	 * and it is increased by one when the second vrf is associated to a
69 	 * table.
70 	 *
71 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
72 	 *
73 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
74 	 * value of shared_tables is still 1.
75 	 * This means that no matter how many new vrfs will register on the
76 	 * table 100, the shared_tables will not increase (considering only
77 	 * table 100).
78 	 *
79 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
80 	 *
81 	 * Looking at the value of shared_tables we can immediately know if
82 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
83 	 * can be enforced iff shared_tables = 0.
84 	 *
85 	 * Conversely, shared_tables is decreased when a vrf is de-associated
86 	 * from a table with exactly two associated vrfs.
87 	 */
88 	u32 shared_tables;
89 
90 	bool strict_mode;
91 };
92 
93 struct vrf_map_elem {
94 	struct hlist_node hnode;
95 	struct list_head vrf_list;  /* VRFs registered to this table */
96 
97 	u32 table_id;
98 	int users;
99 	int ifindex;
100 };
101 
102 static unsigned int vrf_net_id;
103 
104 /* per netns vrf data */
105 struct netns_vrf {
106 	/* protected by rtnl lock */
107 	bool add_fib_rules;
108 
109 	struct vrf_map vmap;
110 	struct ctl_table_header	*ctl_hdr;
111 };
112 
113 struct net_vrf {
114 	struct rtable __rcu	*rth;
115 	struct rt6_info	__rcu	*rt6;
116 #if IS_ENABLED(CONFIG_IPV6)
117 	struct fib6_table	*fib6_table;
118 #endif
119 	u32                     tb_id;
120 
121 	struct list_head	me_list;   /* entry in vrf_map_elem */
122 	int			ifindex;
123 };
124 
125 static void vrf_rx_stats(struct net_device *dev, int len)
126 {
127 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
128 
129 	u64_stats_update_begin(&dstats->syncp);
130 	u64_stats_inc(&dstats->rx_packets);
131 	u64_stats_add(&dstats->rx_bytes, len);
132 	u64_stats_update_end(&dstats->syncp);
133 }
134 
135 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
136 {
137 	vrf_dev->stats.tx_errors++;
138 	kfree_skb(skb);
139 }
140 
141 static struct vrf_map *netns_vrf_map(struct net *net)
142 {
143 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
144 
145 	return &nn_vrf->vmap;
146 }
147 
148 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
149 {
150 	return netns_vrf_map(dev_net(dev));
151 }
152 
153 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
154 {
155 	struct list_head *me_head = &me->vrf_list;
156 	struct net_vrf *vrf;
157 
158 	if (list_empty(me_head))
159 		return -ENODEV;
160 
161 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
162 
163 	return vrf->ifindex;
164 }
165 
166 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
167 {
168 	struct vrf_map_elem *me;
169 
170 	me = kmalloc(sizeof(*me), flags);
171 	if (!me)
172 		return NULL;
173 
174 	return me;
175 }
176 
177 static void vrf_map_elem_free(struct vrf_map_elem *me)
178 {
179 	kfree(me);
180 }
181 
182 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
183 			      int ifindex, int users)
184 {
185 	me->table_id = table_id;
186 	me->ifindex = ifindex;
187 	me->users = users;
188 	INIT_LIST_HEAD(&me->vrf_list);
189 }
190 
191 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
192 						u32 table_id)
193 {
194 	struct vrf_map_elem *me;
195 	u32 key;
196 
197 	key = jhash_1word(table_id, HASH_INITVAL);
198 	hash_for_each_possible(vmap->ht, me, hnode, key) {
199 		if (me->table_id == table_id)
200 			return me;
201 	}
202 
203 	return NULL;
204 }
205 
206 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
207 {
208 	u32 table_id = me->table_id;
209 	u32 key;
210 
211 	key = jhash_1word(table_id, HASH_INITVAL);
212 	hash_add(vmap->ht, &me->hnode, key);
213 }
214 
215 static void vrf_map_del_elem(struct vrf_map_elem *me)
216 {
217 	hash_del(&me->hnode);
218 }
219 
220 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
221 {
222 	spin_lock(&vmap->vmap_lock);
223 }
224 
225 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
226 {
227 	spin_unlock(&vmap->vmap_lock);
228 }
229 
230 /* called with rtnl lock held */
231 static int
232 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
233 {
234 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
235 	struct net_vrf *vrf = netdev_priv(dev);
236 	struct vrf_map_elem *new_me, *me;
237 	u32 table_id = vrf->tb_id;
238 	bool free_new_me = false;
239 	int users;
240 	int res;
241 
242 	/* we pre-allocate elements used in the spin-locked section (so that we
243 	 * keep the spinlock as short as possible).
244 	 */
245 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
246 	if (!new_me)
247 		return -ENOMEM;
248 
249 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
250 
251 	vrf_map_lock(vmap);
252 
253 	me = vrf_map_lookup_elem(vmap, table_id);
254 	if (!me) {
255 		me = new_me;
256 		vrf_map_add_elem(vmap, me);
257 		goto link_vrf;
258 	}
259 
260 	/* we already have an entry in the vrf_map, so it means there is (at
261 	 * least) a vrf registered on the specific table.
262 	 */
263 	free_new_me = true;
264 	if (vmap->strict_mode) {
265 		/* vrfs cannot share the same table */
266 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
267 		res = -EBUSY;
268 		goto unlock;
269 	}
270 
271 link_vrf:
272 	users = ++me->users;
273 	if (users == 2)
274 		++vmap->shared_tables;
275 
276 	list_add(&vrf->me_list, &me->vrf_list);
277 
278 	res = 0;
279 
280 unlock:
281 	vrf_map_unlock(vmap);
282 
283 	/* clean-up, if needed */
284 	if (free_new_me)
285 		vrf_map_elem_free(new_me);
286 
287 	return res;
288 }
289 
290 /* called with rtnl lock held */
291 static void vrf_map_unregister_dev(struct net_device *dev)
292 {
293 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
294 	struct net_vrf *vrf = netdev_priv(dev);
295 	u32 table_id = vrf->tb_id;
296 	struct vrf_map_elem *me;
297 	int users;
298 
299 	vrf_map_lock(vmap);
300 
301 	me = vrf_map_lookup_elem(vmap, table_id);
302 	if (!me)
303 		goto unlock;
304 
305 	list_del(&vrf->me_list);
306 
307 	users = --me->users;
308 	if (users == 1) {
309 		--vmap->shared_tables;
310 	} else if (users == 0) {
311 		vrf_map_del_elem(me);
312 
313 		/* no one will refer to this element anymore */
314 		vrf_map_elem_free(me);
315 	}
316 
317 unlock:
318 	vrf_map_unlock(vmap);
319 }
320 
321 /* return the vrf device index associated with the table_id */
322 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
323 {
324 	struct vrf_map *vmap = netns_vrf_map(net);
325 	struct vrf_map_elem *me;
326 	int ifindex;
327 
328 	vrf_map_lock(vmap);
329 
330 	if (!vmap->strict_mode) {
331 		ifindex = -EPERM;
332 		goto unlock;
333 	}
334 
335 	me = vrf_map_lookup_elem(vmap, table_id);
336 	if (!me) {
337 		ifindex = -ENODEV;
338 		goto unlock;
339 	}
340 
341 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
342 
343 unlock:
344 	vrf_map_unlock(vmap);
345 
346 	return ifindex;
347 }
348 
349 /* by default VRF devices do not have a qdisc and are expected
350  * to be created with only a single queue.
351  */
352 static bool qdisc_tx_is_default(const struct net_device *dev)
353 {
354 	struct netdev_queue *txq;
355 	struct Qdisc *qdisc;
356 
357 	if (dev->num_tx_queues > 1)
358 		return false;
359 
360 	txq = netdev_get_tx_queue(dev, 0);
361 	qdisc = rcu_access_pointer(txq->qdisc);
362 
363 	return !qdisc->enqueue;
364 }
365 
366 /* Local traffic destined to local address. Reinsert the packet to rx
367  * path, similar to loopback handling.
368  */
369 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
370 			  struct dst_entry *dst)
371 {
372 	int len = skb->len;
373 
374 	skb_orphan(skb);
375 
376 	skb_dst_set(skb, dst);
377 
378 	/* set pkt_type to avoid skb hitting packet taps twice -
379 	 * once on Tx and again in Rx processing
380 	 */
381 	skb->pkt_type = PACKET_LOOPBACK;
382 
383 	skb->protocol = eth_type_trans(skb, dev);
384 
385 	if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) {
386 		vrf_rx_stats(dev, len);
387 	} else {
388 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
389 
390 		u64_stats_update_begin(&dstats->syncp);
391 		u64_stats_inc(&dstats->rx_drops);
392 		u64_stats_update_end(&dstats->syncp);
393 	}
394 
395 	return NETDEV_TX_OK;
396 }
397 
398 static void vrf_nf_set_untracked(struct sk_buff *skb)
399 {
400 	if (skb_get_nfct(skb) == 0)
401 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
402 }
403 
404 static void vrf_nf_reset_ct(struct sk_buff *skb)
405 {
406 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
407 		nf_reset_ct(skb);
408 }
409 
410 #if IS_ENABLED(CONFIG_IPV6)
411 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
412 			     struct sk_buff *skb)
413 {
414 	int err;
415 
416 	vrf_nf_reset_ct(skb);
417 
418 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
419 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
420 
421 	if (likely(err == 1))
422 		err = dst_output(net, sk, skb);
423 
424 	return err;
425 }
426 
427 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
428 					   struct net_device *dev)
429 {
430 	const struct ipv6hdr *iph;
431 	struct net *net = dev_net(skb->dev);
432 	struct flowi6 fl6;
433 	int ret = NET_XMIT_DROP;
434 	struct dst_entry *dst;
435 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
436 
437 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
438 		goto err;
439 
440 	iph = ipv6_hdr(skb);
441 
442 	memset(&fl6, 0, sizeof(fl6));
443 	/* needed to match OIF rule */
444 	fl6.flowi6_l3mdev = dev->ifindex;
445 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
446 	fl6.daddr = iph->daddr;
447 	fl6.saddr = iph->saddr;
448 	fl6.flowlabel = ip6_flowinfo(iph);
449 	fl6.flowi6_mark = skb->mark;
450 	fl6.flowi6_proto = iph->nexthdr;
451 
452 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
453 	if (IS_ERR(dst) || dst == dst_null)
454 		goto err;
455 
456 	skb_dst_drop(skb);
457 
458 	/* if dst.dev is the VRF device again this is locally originated traffic
459 	 * destined to a local address. Short circuit to Rx path.
460 	 */
461 	if (dst->dev == dev)
462 		return vrf_local_xmit(skb, dev, dst);
463 
464 	skb_dst_set(skb, dst);
465 
466 	/* strip the ethernet header added for pass through VRF device */
467 	__skb_pull(skb, skb_network_offset(skb));
468 
469 	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
470 	ret = vrf_ip6_local_out(net, skb->sk, skb);
471 	if (unlikely(net_xmit_eval(ret)))
472 		dev->stats.tx_errors++;
473 	else
474 		ret = NET_XMIT_SUCCESS;
475 
476 	return ret;
477 err:
478 	vrf_tx_error(dev, skb);
479 	return NET_XMIT_DROP;
480 }
481 #else
482 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
483 					   struct net_device *dev)
484 {
485 	vrf_tx_error(dev, skb);
486 	return NET_XMIT_DROP;
487 }
488 #endif
489 
490 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
491 static int vrf_ip_local_out(struct net *net, struct sock *sk,
492 			    struct sk_buff *skb)
493 {
494 	int err;
495 
496 	vrf_nf_reset_ct(skb);
497 
498 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
499 		      skb, NULL, skb_dst(skb)->dev, dst_output);
500 	if (likely(err == 1))
501 		err = dst_output(net, sk, skb);
502 
503 	return err;
504 }
505 
506 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
507 					   struct net_device *vrf_dev)
508 {
509 	struct iphdr *ip4h;
510 	int ret = NET_XMIT_DROP;
511 	struct flowi4 fl4;
512 	struct net *net = dev_net(vrf_dev);
513 	struct rtable *rt;
514 
515 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
516 		goto err;
517 
518 	ip4h = ip_hdr(skb);
519 
520 	memset(&fl4, 0, sizeof(fl4));
521 	/* needed to match OIF rule */
522 	fl4.flowi4_l3mdev = vrf_dev->ifindex;
523 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
524 	fl4.flowi4_tos = ip4h->tos & INET_DSCP_MASK;
525 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
526 	fl4.flowi4_proto = ip4h->protocol;
527 	fl4.daddr = ip4h->daddr;
528 	fl4.saddr = ip4h->saddr;
529 
530 	rt = ip_route_output_flow(net, &fl4, NULL);
531 	if (IS_ERR(rt))
532 		goto err;
533 
534 	skb_dst_drop(skb);
535 
536 	/* if dst.dev is the VRF device again this is locally originated traffic
537 	 * destined to a local address. Short circuit to Rx path.
538 	 */
539 	if (rt->dst.dev == vrf_dev)
540 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
541 
542 	skb_dst_set(skb, &rt->dst);
543 
544 	/* strip the ethernet header added for pass through VRF device */
545 	__skb_pull(skb, skb_network_offset(skb));
546 
547 	if (!ip4h->saddr) {
548 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
549 					       RT_SCOPE_LINK);
550 	}
551 
552 	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
553 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
554 	if (unlikely(net_xmit_eval(ret)))
555 		vrf_dev->stats.tx_errors++;
556 	else
557 		ret = NET_XMIT_SUCCESS;
558 
559 out:
560 	return ret;
561 err:
562 	vrf_tx_error(vrf_dev, skb);
563 	goto out;
564 }
565 
566 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
567 {
568 	switch (skb->protocol) {
569 	case htons(ETH_P_IP):
570 		return vrf_process_v4_outbound(skb, dev);
571 	case htons(ETH_P_IPV6):
572 		return vrf_process_v6_outbound(skb, dev);
573 	default:
574 		vrf_tx_error(dev, skb);
575 		return NET_XMIT_DROP;
576 	}
577 }
578 
579 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
580 {
581 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
582 
583 	int len = skb->len;
584 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
585 
586 	u64_stats_update_begin(&dstats->syncp);
587 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
588 
589 		u64_stats_inc(&dstats->tx_packets);
590 		u64_stats_add(&dstats->tx_bytes, len);
591 	} else {
592 		u64_stats_inc(&dstats->tx_drops);
593 	}
594 	u64_stats_update_end(&dstats->syncp);
595 
596 	return ret;
597 }
598 
599 static void vrf_finish_direct(struct sk_buff *skb)
600 {
601 	struct net_device *vrf_dev = skb->dev;
602 
603 	if (!list_empty(&vrf_dev->ptype_all) &&
604 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
605 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
606 
607 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
608 		eth_zero_addr(eth->h_dest);
609 		eth->h_proto = skb->protocol;
610 
611 		dev_queue_xmit_nit(skb, vrf_dev);
612 
613 		skb_pull(skb, ETH_HLEN);
614 	}
615 
616 	vrf_nf_reset_ct(skb);
617 }
618 
619 #if IS_ENABLED(CONFIG_IPV6)
620 /* modelled after ip6_finish_output2 */
621 static int vrf_finish_output6(struct net *net, struct sock *sk,
622 			      struct sk_buff *skb)
623 {
624 	struct dst_entry *dst = skb_dst(skb);
625 	struct net_device *dev = dst->dev;
626 	const struct in6_addr *nexthop;
627 	struct neighbour *neigh;
628 	int ret;
629 
630 	vrf_nf_reset_ct(skb);
631 
632 	skb->protocol = htons(ETH_P_IPV6);
633 	skb->dev = dev;
634 
635 	rcu_read_lock();
636 	nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
637 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
638 	if (unlikely(!neigh))
639 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
640 	if (!IS_ERR(neigh)) {
641 		sock_confirm_neigh(skb, neigh);
642 		ret = neigh_output(neigh, skb, false);
643 		rcu_read_unlock();
644 		return ret;
645 	}
646 	rcu_read_unlock();
647 
648 	IP6_INC_STATS(dev_net(dst->dev),
649 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
650 	kfree_skb(skb);
651 	return -EINVAL;
652 }
653 
654 /* modelled after ip6_output */
655 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
656 {
657 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
658 			    net, sk, skb, NULL, skb_dst(skb)->dev,
659 			    vrf_finish_output6,
660 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
661 }
662 
663 /* set dst on skb to send packet to us via dev_xmit path. Allows
664  * packet to go through device based features such as qdisc, netfilter
665  * hooks and packet sockets with skb->dev set to vrf device.
666  */
667 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
668 					    struct sk_buff *skb)
669 {
670 	struct net_vrf *vrf = netdev_priv(vrf_dev);
671 	struct dst_entry *dst = NULL;
672 	struct rt6_info *rt6;
673 
674 	rcu_read_lock();
675 
676 	rt6 = rcu_dereference(vrf->rt6);
677 	if (likely(rt6)) {
678 		dst = &rt6->dst;
679 		dst_hold(dst);
680 	}
681 
682 	rcu_read_unlock();
683 
684 	if (unlikely(!dst)) {
685 		vrf_tx_error(vrf_dev, skb);
686 		return NULL;
687 	}
688 
689 	skb_dst_drop(skb);
690 	skb_dst_set(skb, dst);
691 
692 	return skb;
693 }
694 
695 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
696 				     struct sk_buff *skb)
697 {
698 	vrf_finish_direct(skb);
699 
700 	return vrf_ip6_local_out(net, sk, skb);
701 }
702 
703 static int vrf_output6_direct(struct net *net, struct sock *sk,
704 			      struct sk_buff *skb)
705 {
706 	int err = 1;
707 
708 	skb->protocol = htons(ETH_P_IPV6);
709 
710 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
711 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
712 			      NULL, skb->dev, vrf_output6_direct_finish);
713 
714 	if (likely(err == 1))
715 		vrf_finish_direct(skb);
716 
717 	return err;
718 }
719 
720 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
721 				     struct sk_buff *skb)
722 {
723 	int err;
724 
725 	err = vrf_output6_direct(net, sk, skb);
726 	if (likely(err == 1))
727 		err = vrf_ip6_local_out(net, sk, skb);
728 
729 	return err;
730 }
731 
732 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
733 					  struct sock *sk,
734 					  struct sk_buff *skb)
735 {
736 	struct net *net = dev_net(vrf_dev);
737 	int err;
738 
739 	skb->dev = vrf_dev;
740 
741 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
742 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
743 
744 	if (likely(err == 1))
745 		err = vrf_output6_direct(net, sk, skb);
746 
747 	if (likely(err == 1))
748 		return skb;
749 
750 	return NULL;
751 }
752 
753 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
754 				   struct sock *sk,
755 				   struct sk_buff *skb)
756 {
757 	/* don't divert link scope packets */
758 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
759 		return skb;
760 
761 	vrf_nf_set_untracked(skb);
762 
763 	if (qdisc_tx_is_default(vrf_dev) ||
764 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
765 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
766 
767 	return vrf_ip6_out_redirect(vrf_dev, skb);
768 }
769 
770 /* holding rtnl */
771 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
772 {
773 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
774 	struct net *net = dev_net(dev);
775 	struct dst_entry *dst;
776 
777 	RCU_INIT_POINTER(vrf->rt6, NULL);
778 	synchronize_rcu();
779 
780 	/* move dev in dst's to loopback so this VRF device can be deleted
781 	 * - based on dst_ifdown
782 	 */
783 	if (rt6) {
784 		dst = &rt6->dst;
785 		netdev_ref_replace(dst->dev, net->loopback_dev,
786 				   &dst->dev_tracker, GFP_KERNEL);
787 		dst->dev = net->loopback_dev;
788 		dst_release(dst);
789 	}
790 }
791 
792 static int vrf_rt6_create(struct net_device *dev)
793 {
794 	int flags = DST_NOPOLICY | DST_NOXFRM;
795 	struct net_vrf *vrf = netdev_priv(dev);
796 	struct net *net = dev_net(dev);
797 	struct rt6_info *rt6;
798 	int rc = -ENOMEM;
799 
800 	/* IPv6 can be CONFIG enabled and then disabled runtime */
801 	if (!ipv6_mod_enabled())
802 		return 0;
803 
804 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
805 	if (!vrf->fib6_table)
806 		goto out;
807 
808 	/* create a dst for routing packets out a VRF device */
809 	rt6 = ip6_dst_alloc(net, dev, flags);
810 	if (!rt6)
811 		goto out;
812 
813 	rt6->dst.output	= vrf_output6;
814 
815 	rcu_assign_pointer(vrf->rt6, rt6);
816 
817 	rc = 0;
818 out:
819 	return rc;
820 }
821 #else
822 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
823 				   struct sock *sk,
824 				   struct sk_buff *skb)
825 {
826 	return skb;
827 }
828 
829 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
830 {
831 }
832 
833 static int vrf_rt6_create(struct net_device *dev)
834 {
835 	return 0;
836 }
837 #endif
838 
839 /* modelled after ip_finish_output2 */
840 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
841 {
842 	struct dst_entry *dst = skb_dst(skb);
843 	struct rtable *rt = dst_rtable(dst);
844 	struct net_device *dev = dst->dev;
845 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
846 	struct neighbour *neigh;
847 	bool is_v6gw = false;
848 
849 	vrf_nf_reset_ct(skb);
850 
851 	/* Be paranoid, rather than too clever. */
852 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
853 		skb = skb_expand_head(skb, hh_len);
854 		if (!skb) {
855 			dev->stats.tx_errors++;
856 			return -ENOMEM;
857 		}
858 	}
859 
860 	rcu_read_lock();
861 
862 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
863 	if (!IS_ERR(neigh)) {
864 		int ret;
865 
866 		sock_confirm_neigh(skb, neigh);
867 		/* if crossing protocols, can not use the cached header */
868 		ret = neigh_output(neigh, skb, is_v6gw);
869 		rcu_read_unlock();
870 		return ret;
871 	}
872 
873 	rcu_read_unlock();
874 	vrf_tx_error(skb->dev, skb);
875 	return -EINVAL;
876 }
877 
878 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
879 {
880 	struct net_device *dev = skb_dst(skb)->dev;
881 
882 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
883 
884 	skb->dev = dev;
885 	skb->protocol = htons(ETH_P_IP);
886 
887 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
888 			    net, sk, skb, NULL, dev,
889 			    vrf_finish_output,
890 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
891 }
892 
893 /* set dst on skb to send packet to us via dev_xmit path. Allows
894  * packet to go through device based features such as qdisc, netfilter
895  * hooks and packet sockets with skb->dev set to vrf device.
896  */
897 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
898 					   struct sk_buff *skb)
899 {
900 	struct net_vrf *vrf = netdev_priv(vrf_dev);
901 	struct dst_entry *dst = NULL;
902 	struct rtable *rth;
903 
904 	rcu_read_lock();
905 
906 	rth = rcu_dereference(vrf->rth);
907 	if (likely(rth)) {
908 		dst = &rth->dst;
909 		dst_hold(dst);
910 	}
911 
912 	rcu_read_unlock();
913 
914 	if (unlikely(!dst)) {
915 		vrf_tx_error(vrf_dev, skb);
916 		return NULL;
917 	}
918 
919 	skb_dst_drop(skb);
920 	skb_dst_set(skb, dst);
921 
922 	return skb;
923 }
924 
925 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
926 				    struct sk_buff *skb)
927 {
928 	vrf_finish_direct(skb);
929 
930 	return vrf_ip_local_out(net, sk, skb);
931 }
932 
933 static int vrf_output_direct(struct net *net, struct sock *sk,
934 			     struct sk_buff *skb)
935 {
936 	int err = 1;
937 
938 	skb->protocol = htons(ETH_P_IP);
939 
940 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
941 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
942 			      NULL, skb->dev, vrf_output_direct_finish);
943 
944 	if (likely(err == 1))
945 		vrf_finish_direct(skb);
946 
947 	return err;
948 }
949 
950 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
951 				    struct sk_buff *skb)
952 {
953 	int err;
954 
955 	err = vrf_output_direct(net, sk, skb);
956 	if (likely(err == 1))
957 		err = vrf_ip_local_out(net, sk, skb);
958 
959 	return err;
960 }
961 
962 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
963 					 struct sock *sk,
964 					 struct sk_buff *skb)
965 {
966 	struct net *net = dev_net(vrf_dev);
967 	int err;
968 
969 	skb->dev = vrf_dev;
970 
971 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
972 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
973 
974 	if (likely(err == 1))
975 		err = vrf_output_direct(net, sk, skb);
976 
977 	if (likely(err == 1))
978 		return skb;
979 
980 	return NULL;
981 }
982 
983 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
984 				  struct sock *sk,
985 				  struct sk_buff *skb)
986 {
987 	/* don't divert multicast or local broadcast */
988 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
989 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
990 		return skb;
991 
992 	vrf_nf_set_untracked(skb);
993 
994 	if (qdisc_tx_is_default(vrf_dev) ||
995 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
996 		return vrf_ip_out_direct(vrf_dev, sk, skb);
997 
998 	return vrf_ip_out_redirect(vrf_dev, skb);
999 }
1000 
1001 /* called with rcu lock held */
1002 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1003 				  struct sock *sk,
1004 				  struct sk_buff *skb,
1005 				  u16 proto)
1006 {
1007 	switch (proto) {
1008 	case AF_INET:
1009 		return vrf_ip_out(vrf_dev, sk, skb);
1010 	case AF_INET6:
1011 		return vrf_ip6_out(vrf_dev, sk, skb);
1012 	}
1013 
1014 	return skb;
1015 }
1016 
1017 /* holding rtnl */
1018 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1019 {
1020 	struct rtable *rth = rtnl_dereference(vrf->rth);
1021 	struct net *net = dev_net(dev);
1022 	struct dst_entry *dst;
1023 
1024 	RCU_INIT_POINTER(vrf->rth, NULL);
1025 	synchronize_rcu();
1026 
1027 	/* move dev in dst's to loopback so this VRF device can be deleted
1028 	 * - based on dst_ifdown
1029 	 */
1030 	if (rth) {
1031 		dst = &rth->dst;
1032 		netdev_ref_replace(dst->dev, net->loopback_dev,
1033 				   &dst->dev_tracker, GFP_KERNEL);
1034 		dst->dev = net->loopback_dev;
1035 		dst_release(dst);
1036 	}
1037 }
1038 
1039 static int vrf_rtable_create(struct net_device *dev)
1040 {
1041 	struct net_vrf *vrf = netdev_priv(dev);
1042 	struct rtable *rth;
1043 
1044 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1045 		return -ENOMEM;
1046 
1047 	/* create a dst for routing packets out through a VRF device */
1048 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1049 	if (!rth)
1050 		return -ENOMEM;
1051 
1052 	rth->dst.output	= vrf_output;
1053 
1054 	rcu_assign_pointer(vrf->rth, rth);
1055 
1056 	return 0;
1057 }
1058 
1059 /**************************** device handling ********************/
1060 
1061 /* cycle interface to flush neighbor cache and move routes across tables */
1062 static void cycle_netdev(struct net_device *dev,
1063 			 struct netlink_ext_ack *extack)
1064 {
1065 	unsigned int flags = dev->flags;
1066 	int ret;
1067 
1068 	if (!netif_running(dev))
1069 		return;
1070 
1071 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1072 	if (ret >= 0)
1073 		ret = dev_change_flags(dev, flags, extack);
1074 
1075 	if (ret < 0) {
1076 		netdev_err(dev,
1077 			   "Failed to cycle device %s; route tables might be wrong!\n",
1078 			   dev->name);
1079 	}
1080 }
1081 
1082 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1083 			    struct netlink_ext_ack *extack)
1084 {
1085 	int ret;
1086 
1087 	/* do not allow loopback device to be enslaved to a VRF.
1088 	 * The vrf device acts as the loopback for the vrf.
1089 	 */
1090 	if (port_dev == dev_net(dev)->loopback_dev) {
1091 		NL_SET_ERR_MSG(extack,
1092 			       "Can not enslave loopback device to a VRF");
1093 		return -EOPNOTSUPP;
1094 	}
1095 
1096 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1097 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1098 	if (ret < 0)
1099 		goto err;
1100 
1101 	cycle_netdev(port_dev, extack);
1102 
1103 	return 0;
1104 
1105 err:
1106 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1107 	return ret;
1108 }
1109 
1110 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1111 			 struct netlink_ext_ack *extack)
1112 {
1113 	if (netif_is_l3_master(port_dev)) {
1114 		NL_SET_ERR_MSG(extack,
1115 			       "Can not enslave an L3 master device to a VRF");
1116 		return -EINVAL;
1117 	}
1118 
1119 	if (netif_is_l3_slave(port_dev))
1120 		return -EINVAL;
1121 
1122 	return do_vrf_add_slave(dev, port_dev, extack);
1123 }
1124 
1125 /* inverse of do_vrf_add_slave */
1126 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1127 {
1128 	netdev_upper_dev_unlink(port_dev, dev);
1129 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1130 
1131 	cycle_netdev(port_dev, NULL);
1132 
1133 	return 0;
1134 }
1135 
1136 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1137 {
1138 	return do_vrf_del_slave(dev, port_dev);
1139 }
1140 
1141 static void vrf_dev_uninit(struct net_device *dev)
1142 {
1143 	struct net_vrf *vrf = netdev_priv(dev);
1144 
1145 	vrf_rtable_release(dev, vrf);
1146 	vrf_rt6_release(dev, vrf);
1147 }
1148 
1149 static int vrf_dev_init(struct net_device *dev)
1150 {
1151 	struct net_vrf *vrf = netdev_priv(dev);
1152 
1153 	/* create the default dst which points back to us */
1154 	if (vrf_rtable_create(dev) != 0)
1155 		goto out_nomem;
1156 
1157 	if (vrf_rt6_create(dev) != 0)
1158 		goto out_rth;
1159 
1160 	dev->flags = IFF_MASTER | IFF_NOARP;
1161 
1162 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1163 	dev->operstate = IF_OPER_UP;
1164 	netdev_lockdep_set_classes(dev);
1165 	return 0;
1166 
1167 out_rth:
1168 	vrf_rtable_release(dev, vrf);
1169 out_nomem:
1170 	return -ENOMEM;
1171 }
1172 
1173 static const struct net_device_ops vrf_netdev_ops = {
1174 	.ndo_init		= vrf_dev_init,
1175 	.ndo_uninit		= vrf_dev_uninit,
1176 	.ndo_start_xmit		= vrf_xmit,
1177 	.ndo_set_mac_address	= eth_mac_addr,
1178 	.ndo_add_slave		= vrf_add_slave,
1179 	.ndo_del_slave		= vrf_del_slave,
1180 };
1181 
1182 static u32 vrf_fib_table(const struct net_device *dev)
1183 {
1184 	struct net_vrf *vrf = netdev_priv(dev);
1185 
1186 	return vrf->tb_id;
1187 }
1188 
1189 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1190 {
1191 	kfree_skb(skb);
1192 	return 0;
1193 }
1194 
1195 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1196 				      struct sk_buff *skb,
1197 				      struct net_device *dev)
1198 {
1199 	struct net *net = dev_net(dev);
1200 
1201 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1202 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1203 
1204 	return skb;
1205 }
1206 
1207 static int vrf_prepare_mac_header(struct sk_buff *skb,
1208 				  struct net_device *vrf_dev, u16 proto)
1209 {
1210 	struct ethhdr *eth;
1211 	int err;
1212 
1213 	/* in general, we do not know if there is enough space in the head of
1214 	 * the packet for hosting the mac header.
1215 	 */
1216 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1217 	if (unlikely(err))
1218 		/* no space in the skb head */
1219 		return -ENOBUFS;
1220 
1221 	__skb_push(skb, ETH_HLEN);
1222 	eth = (struct ethhdr *)skb->data;
1223 
1224 	skb_reset_mac_header(skb);
1225 	skb_reset_mac_len(skb);
1226 
1227 	/* we set the ethernet destination and the source addresses to the
1228 	 * address of the VRF device.
1229 	 */
1230 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1231 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1232 	eth->h_proto = htons(proto);
1233 
1234 	/* the destination address of the Ethernet frame corresponds to the
1235 	 * address set on the VRF interface; therefore, the packet is intended
1236 	 * to be processed locally.
1237 	 */
1238 	skb->protocol = eth->h_proto;
1239 	skb->pkt_type = PACKET_HOST;
1240 
1241 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1242 
1243 	skb_pull_inline(skb, ETH_HLEN);
1244 
1245 	return 0;
1246 }
1247 
1248 /* prepare and add the mac header to the packet if it was not set previously.
1249  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1250  * If the mac header was already set, the original mac header is left
1251  * untouched and the function returns immediately.
1252  */
1253 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1254 				       struct net_device *vrf_dev,
1255 				       u16 proto, struct net_device *orig_dev)
1256 {
1257 	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1258 		return 0;
1259 
1260 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1261 }
1262 
1263 #if IS_ENABLED(CONFIG_IPV6)
1264 /* neighbor handling is done with actual device; do not want
1265  * to flip skb->dev for those ndisc packets. This really fails
1266  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1267  * a start.
1268  */
1269 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1270 {
1271 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1272 	bool rc = false;
1273 
1274 	if (iph->nexthdr == NEXTHDR_ICMP) {
1275 		const struct icmp6hdr *icmph;
1276 		struct icmp6hdr _icmph;
1277 
1278 		icmph = skb_header_pointer(skb, sizeof(*iph),
1279 					   sizeof(_icmph), &_icmph);
1280 		if (!icmph)
1281 			goto out;
1282 
1283 		switch (icmph->icmp6_type) {
1284 		case NDISC_ROUTER_SOLICITATION:
1285 		case NDISC_ROUTER_ADVERTISEMENT:
1286 		case NDISC_NEIGHBOUR_SOLICITATION:
1287 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1288 		case NDISC_REDIRECT:
1289 			rc = true;
1290 			break;
1291 		}
1292 	}
1293 
1294 out:
1295 	return rc;
1296 }
1297 
1298 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1299 					     const struct net_device *dev,
1300 					     struct flowi6 *fl6,
1301 					     int ifindex,
1302 					     const struct sk_buff *skb,
1303 					     int flags)
1304 {
1305 	struct net_vrf *vrf = netdev_priv(dev);
1306 
1307 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1308 }
1309 
1310 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1311 			      int ifindex)
1312 {
1313 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1314 	struct flowi6 fl6 = {
1315 		.flowi6_iif     = ifindex,
1316 		.flowi6_mark    = skb->mark,
1317 		.flowi6_proto   = iph->nexthdr,
1318 		.daddr          = iph->daddr,
1319 		.saddr          = iph->saddr,
1320 		.flowlabel      = ip6_flowinfo(iph),
1321 	};
1322 	struct net *net = dev_net(vrf_dev);
1323 	struct rt6_info *rt6;
1324 
1325 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1326 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1327 	if (unlikely(!rt6))
1328 		return;
1329 
1330 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1331 		return;
1332 
1333 	skb_dst_set(skb, &rt6->dst);
1334 }
1335 
1336 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1337 				   struct sk_buff *skb)
1338 {
1339 	int orig_iif = skb->skb_iif;
1340 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1341 	bool is_ndisc = ipv6_ndisc_frame(skb);
1342 
1343 	/* loopback, multicast & non-ND link-local traffic; do not push through
1344 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1345 	 * For non-loopback strict packets, determine the dst using the original
1346 	 * ifindex.
1347 	 */
1348 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1349 		skb->dev = vrf_dev;
1350 		skb->skb_iif = vrf_dev->ifindex;
1351 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1352 
1353 		if (skb->pkt_type == PACKET_LOOPBACK)
1354 			skb->pkt_type = PACKET_HOST;
1355 		else
1356 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1357 
1358 		goto out;
1359 	}
1360 
1361 	/* if packet is NDISC then keep the ingress interface */
1362 	if (!is_ndisc) {
1363 		struct net_device *orig_dev = skb->dev;
1364 
1365 		vrf_rx_stats(vrf_dev, skb->len);
1366 		skb->dev = vrf_dev;
1367 		skb->skb_iif = vrf_dev->ifindex;
1368 
1369 		if (!list_empty(&vrf_dev->ptype_all)) {
1370 			int err;
1371 
1372 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1373 							  ETH_P_IPV6,
1374 							  orig_dev);
1375 			if (likely(!err)) {
1376 				skb_push(skb, skb->mac_len);
1377 				dev_queue_xmit_nit(skb, vrf_dev);
1378 				skb_pull(skb, skb->mac_len);
1379 			}
1380 		}
1381 
1382 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1383 	}
1384 
1385 	if (need_strict)
1386 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1387 
1388 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1389 out:
1390 	return skb;
1391 }
1392 
1393 #else
1394 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1395 				   struct sk_buff *skb)
1396 {
1397 	return skb;
1398 }
1399 #endif
1400 
1401 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1402 				  struct sk_buff *skb)
1403 {
1404 	struct net_device *orig_dev = skb->dev;
1405 
1406 	skb->dev = vrf_dev;
1407 	skb->skb_iif = vrf_dev->ifindex;
1408 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1409 
1410 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1411 		goto out;
1412 
1413 	/* loopback traffic; do not push through packet taps again.
1414 	 * Reset pkt_type for upper layers to process skb
1415 	 */
1416 	if (skb->pkt_type == PACKET_LOOPBACK) {
1417 		skb->pkt_type = PACKET_HOST;
1418 		goto out;
1419 	}
1420 
1421 	vrf_rx_stats(vrf_dev, skb->len);
1422 
1423 	if (!list_empty(&vrf_dev->ptype_all)) {
1424 		int err;
1425 
1426 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1427 						  orig_dev);
1428 		if (likely(!err)) {
1429 			skb_push(skb, skb->mac_len);
1430 			dev_queue_xmit_nit(skb, vrf_dev);
1431 			skb_pull(skb, skb->mac_len);
1432 		}
1433 	}
1434 
1435 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1436 out:
1437 	return skb;
1438 }
1439 
1440 /* called with rcu lock held */
1441 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1442 				  struct sk_buff *skb,
1443 				  u16 proto)
1444 {
1445 	switch (proto) {
1446 	case AF_INET:
1447 		return vrf_ip_rcv(vrf_dev, skb);
1448 	case AF_INET6:
1449 		return vrf_ip6_rcv(vrf_dev, skb);
1450 	}
1451 
1452 	return skb;
1453 }
1454 
1455 #if IS_ENABLED(CONFIG_IPV6)
1456 /* send to link-local or multicast address via interface enslaved to
1457  * VRF device. Force lookup to VRF table without changing flow struct
1458  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1459  * is taken on the dst by this function.
1460  */
1461 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1462 					      struct flowi6 *fl6)
1463 {
1464 	struct net *net = dev_net(dev);
1465 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1466 	struct dst_entry *dst = NULL;
1467 	struct rt6_info *rt;
1468 
1469 	/* VRF device does not have a link-local address and
1470 	 * sending packets to link-local or mcast addresses over
1471 	 * a VRF device does not make sense
1472 	 */
1473 	if (fl6->flowi6_oif == dev->ifindex) {
1474 		dst = &net->ipv6.ip6_null_entry->dst;
1475 		return dst;
1476 	}
1477 
1478 	if (!ipv6_addr_any(&fl6->saddr))
1479 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1480 
1481 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1482 	if (rt)
1483 		dst = &rt->dst;
1484 
1485 	return dst;
1486 }
1487 #endif
1488 
1489 static const struct l3mdev_ops vrf_l3mdev_ops = {
1490 	.l3mdev_fib_table	= vrf_fib_table,
1491 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1492 	.l3mdev_l3_out		= vrf_l3_out,
1493 #if IS_ENABLED(CONFIG_IPV6)
1494 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1495 #endif
1496 };
1497 
1498 static void vrf_get_drvinfo(struct net_device *dev,
1499 			    struct ethtool_drvinfo *info)
1500 {
1501 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1502 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1503 }
1504 
1505 static const struct ethtool_ops vrf_ethtool_ops = {
1506 	.get_drvinfo	= vrf_get_drvinfo,
1507 };
1508 
1509 static inline size_t vrf_fib_rule_nl_size(void)
1510 {
1511 	size_t sz;
1512 
1513 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1514 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1515 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1516 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1517 
1518 	return sz;
1519 }
1520 
1521 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1522 {
1523 	struct fib_rule_hdr *frh;
1524 	struct nlmsghdr *nlh;
1525 	struct sk_buff *skb;
1526 	int err;
1527 
1528 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1529 	    !ipv6_mod_enabled())
1530 		return 0;
1531 
1532 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1533 	if (!skb)
1534 		return -ENOMEM;
1535 
1536 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1537 	if (!nlh)
1538 		goto nla_put_failure;
1539 
1540 	/* rule only needs to appear once */
1541 	nlh->nlmsg_flags |= NLM_F_EXCL;
1542 
1543 	frh = nlmsg_data(nlh);
1544 	memset(frh, 0, sizeof(*frh));
1545 	frh->family = family;
1546 	frh->action = FR_ACT_TO_TBL;
1547 
1548 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1549 		goto nla_put_failure;
1550 
1551 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1552 		goto nla_put_failure;
1553 
1554 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1555 		goto nla_put_failure;
1556 
1557 	nlmsg_end(skb, nlh);
1558 
1559 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1560 	skb->sk = dev_net(dev)->rtnl;
1561 	if (add_it) {
1562 		err = fib_nl_newrule(skb, nlh, NULL);
1563 		if (err == -EEXIST)
1564 			err = 0;
1565 	} else {
1566 		err = fib_nl_delrule(skb, nlh, NULL);
1567 		if (err == -ENOENT)
1568 			err = 0;
1569 	}
1570 	nlmsg_free(skb);
1571 
1572 	return err;
1573 
1574 nla_put_failure:
1575 	nlmsg_free(skb);
1576 
1577 	return -EMSGSIZE;
1578 }
1579 
1580 static int vrf_add_fib_rules(const struct net_device *dev)
1581 {
1582 	int err;
1583 
1584 	err = vrf_fib_rule(dev, AF_INET,  true);
1585 	if (err < 0)
1586 		goto out_err;
1587 
1588 	err = vrf_fib_rule(dev, AF_INET6, true);
1589 	if (err < 0)
1590 		goto ipv6_err;
1591 
1592 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1593 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1594 	if (err < 0)
1595 		goto ipmr_err;
1596 #endif
1597 
1598 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1599 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1600 	if (err < 0)
1601 		goto ip6mr_err;
1602 #endif
1603 
1604 	return 0;
1605 
1606 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1607 ip6mr_err:
1608 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1609 #endif
1610 
1611 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1612 ipmr_err:
1613 	vrf_fib_rule(dev, AF_INET6,  false);
1614 #endif
1615 
1616 ipv6_err:
1617 	vrf_fib_rule(dev, AF_INET,  false);
1618 
1619 out_err:
1620 	netdev_err(dev, "Failed to add FIB rules.\n");
1621 	return err;
1622 }
1623 
1624 static void vrf_setup(struct net_device *dev)
1625 {
1626 	ether_setup(dev);
1627 
1628 	/* Initialize the device structure. */
1629 	dev->netdev_ops = &vrf_netdev_ops;
1630 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1631 	dev->ethtool_ops = &vrf_ethtool_ops;
1632 	dev->needs_free_netdev = true;
1633 
1634 	/* Fill in device structure with ethernet-generic values. */
1635 	eth_hw_addr_random(dev);
1636 
1637 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1638 	dev->lltx = true;
1639 
1640 	/* don't allow vrf devices to change network namespaces. */
1641 	dev->netns_local = true;
1642 
1643 	/* does not make sense for a VLAN to be added to a vrf device */
1644 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1645 
1646 	/* enable offload features */
1647 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1648 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1649 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1650 
1651 	dev->hw_features = dev->features;
1652 	dev->hw_enc_features = dev->features;
1653 
1654 	/* default to no qdisc; user can add if desired */
1655 	dev->priv_flags |= IFF_NO_QUEUE;
1656 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1657 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1658 
1659 	/* VRF devices do not care about MTU, but if the MTU is set
1660 	 * too low then the ipv4 and ipv6 protocols are disabled
1661 	 * which breaks networking.
1662 	 */
1663 	dev->min_mtu = IPV6_MIN_MTU;
1664 	dev->max_mtu = IP6_MAX_MTU;
1665 	dev->mtu = dev->max_mtu;
1666 
1667 	dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1668 }
1669 
1670 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1671 			struct netlink_ext_ack *extack)
1672 {
1673 	if (tb[IFLA_ADDRESS]) {
1674 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1675 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1676 			return -EINVAL;
1677 		}
1678 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1679 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1680 			return -EADDRNOTAVAIL;
1681 		}
1682 	}
1683 	return 0;
1684 }
1685 
1686 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1687 {
1688 	struct net_device *port_dev;
1689 	struct list_head *iter;
1690 
1691 	netdev_for_each_lower_dev(dev, port_dev, iter)
1692 		vrf_del_slave(dev, port_dev);
1693 
1694 	vrf_map_unregister_dev(dev);
1695 
1696 	unregister_netdevice_queue(dev, head);
1697 }
1698 
1699 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1700 		       struct nlattr *tb[], struct nlattr *data[],
1701 		       struct netlink_ext_ack *extack)
1702 {
1703 	struct net_vrf *vrf = netdev_priv(dev);
1704 	struct netns_vrf *nn_vrf;
1705 	bool *add_fib_rules;
1706 	struct net *net;
1707 	int err;
1708 
1709 	if (!data || !data[IFLA_VRF_TABLE]) {
1710 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1711 		return -EINVAL;
1712 	}
1713 
1714 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1715 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1716 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1717 				    "Invalid VRF table id");
1718 		return -EINVAL;
1719 	}
1720 
1721 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1722 
1723 	err = register_netdevice(dev);
1724 	if (err)
1725 		goto out;
1726 
1727 	/* mapping between table_id and vrf;
1728 	 * note: such binding could not be done in the dev init function
1729 	 * because dev->ifindex id is not available yet.
1730 	 */
1731 	vrf->ifindex = dev->ifindex;
1732 
1733 	err = vrf_map_register_dev(dev, extack);
1734 	if (err) {
1735 		unregister_netdevice(dev);
1736 		goto out;
1737 	}
1738 
1739 	net = dev_net(dev);
1740 	nn_vrf = net_generic(net, vrf_net_id);
1741 
1742 	add_fib_rules = &nn_vrf->add_fib_rules;
1743 	if (*add_fib_rules) {
1744 		err = vrf_add_fib_rules(dev);
1745 		if (err) {
1746 			vrf_map_unregister_dev(dev);
1747 			unregister_netdevice(dev);
1748 			goto out;
1749 		}
1750 		*add_fib_rules = false;
1751 	}
1752 
1753 out:
1754 	return err;
1755 }
1756 
1757 static size_t vrf_nl_getsize(const struct net_device *dev)
1758 {
1759 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1760 }
1761 
1762 static int vrf_fillinfo(struct sk_buff *skb,
1763 			const struct net_device *dev)
1764 {
1765 	struct net_vrf *vrf = netdev_priv(dev);
1766 
1767 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1768 }
1769 
1770 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1771 				 const struct net_device *slave_dev)
1772 {
1773 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1774 }
1775 
1776 static int vrf_fill_slave_info(struct sk_buff *skb,
1777 			       const struct net_device *vrf_dev,
1778 			       const struct net_device *slave_dev)
1779 {
1780 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1781 
1782 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1783 		return -EMSGSIZE;
1784 
1785 	return 0;
1786 }
1787 
1788 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1789 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1790 };
1791 
1792 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1793 	.kind		= DRV_NAME,
1794 	.priv_size	= sizeof(struct net_vrf),
1795 
1796 	.get_size	= vrf_nl_getsize,
1797 	.policy		= vrf_nl_policy,
1798 	.validate	= vrf_validate,
1799 	.fill_info	= vrf_fillinfo,
1800 
1801 	.get_slave_size  = vrf_get_slave_size,
1802 	.fill_slave_info = vrf_fill_slave_info,
1803 
1804 	.newlink	= vrf_newlink,
1805 	.dellink	= vrf_dellink,
1806 	.setup		= vrf_setup,
1807 	.maxtype	= IFLA_VRF_MAX,
1808 };
1809 
1810 static int vrf_device_event(struct notifier_block *unused,
1811 			    unsigned long event, void *ptr)
1812 {
1813 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1814 
1815 	/* only care about unregister events to drop slave references */
1816 	if (event == NETDEV_UNREGISTER) {
1817 		struct net_device *vrf_dev;
1818 
1819 		if (!netif_is_l3_slave(dev))
1820 			goto out;
1821 
1822 		vrf_dev = netdev_master_upper_dev_get(dev);
1823 		vrf_del_slave(vrf_dev, dev);
1824 	}
1825 out:
1826 	return NOTIFY_DONE;
1827 }
1828 
1829 static struct notifier_block vrf_notifier_block __read_mostly = {
1830 	.notifier_call = vrf_device_event,
1831 };
1832 
1833 static int vrf_map_init(struct vrf_map *vmap)
1834 {
1835 	spin_lock_init(&vmap->vmap_lock);
1836 	hash_init(vmap->ht);
1837 
1838 	vmap->strict_mode = false;
1839 
1840 	return 0;
1841 }
1842 
1843 #ifdef CONFIG_SYSCTL
1844 static bool vrf_strict_mode(struct vrf_map *vmap)
1845 {
1846 	bool strict_mode;
1847 
1848 	vrf_map_lock(vmap);
1849 	strict_mode = vmap->strict_mode;
1850 	vrf_map_unlock(vmap);
1851 
1852 	return strict_mode;
1853 }
1854 
1855 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1856 {
1857 	bool *cur_mode;
1858 	int res = 0;
1859 
1860 	vrf_map_lock(vmap);
1861 
1862 	cur_mode = &vmap->strict_mode;
1863 	if (*cur_mode == new_mode)
1864 		goto unlock;
1865 
1866 	if (*cur_mode) {
1867 		/* disable strict mode */
1868 		*cur_mode = false;
1869 	} else {
1870 		if (vmap->shared_tables) {
1871 			/* we cannot allow strict_mode because there are some
1872 			 * vrfs that share one or more tables.
1873 			 */
1874 			res = -EBUSY;
1875 			goto unlock;
1876 		}
1877 
1878 		/* no tables are shared among vrfs, so we can go back
1879 		 * to 1:1 association between a vrf with its table.
1880 		 */
1881 		*cur_mode = true;
1882 	}
1883 
1884 unlock:
1885 	vrf_map_unlock(vmap);
1886 
1887 	return res;
1888 }
1889 
1890 static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1891 				    void *buffer, size_t *lenp, loff_t *ppos)
1892 {
1893 	struct net *net = (struct net *)table->extra1;
1894 	struct vrf_map *vmap = netns_vrf_map(net);
1895 	int proc_strict_mode = 0;
1896 	struct ctl_table tmp = {
1897 		.procname	= table->procname,
1898 		.data		= &proc_strict_mode,
1899 		.maxlen		= sizeof(int),
1900 		.mode		= table->mode,
1901 		.extra1		= SYSCTL_ZERO,
1902 		.extra2		= SYSCTL_ONE,
1903 	};
1904 	int ret;
1905 
1906 	if (!write)
1907 		proc_strict_mode = vrf_strict_mode(vmap);
1908 
1909 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1910 
1911 	if (write && ret == 0)
1912 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1913 
1914 	return ret;
1915 }
1916 
1917 static const struct ctl_table vrf_table[] = {
1918 	{
1919 		.procname	= "strict_mode",
1920 		.data		= NULL,
1921 		.maxlen		= sizeof(int),
1922 		.mode		= 0644,
1923 		.proc_handler	= vrf_shared_table_handler,
1924 		/* set by the vrf_netns_init */
1925 		.extra1		= NULL,
1926 	},
1927 };
1928 
1929 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1930 {
1931 	struct ctl_table *table;
1932 
1933 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1934 	if (!table)
1935 		return -ENOMEM;
1936 
1937 	/* init the extra1 parameter with the reference to current netns */
1938 	table[0].extra1 = net;
1939 
1940 	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1941 						 ARRAY_SIZE(vrf_table));
1942 	if (!nn_vrf->ctl_hdr) {
1943 		kfree(table);
1944 		return -ENOMEM;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static void vrf_netns_exit_sysctl(struct net *net)
1951 {
1952 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1953 	const struct ctl_table *table;
1954 
1955 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1956 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1957 	kfree(table);
1958 }
1959 #else
1960 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1961 {
1962 	return 0;
1963 }
1964 
1965 static void vrf_netns_exit_sysctl(struct net *net)
1966 {
1967 }
1968 #endif
1969 
1970 /* Initialize per network namespace state */
1971 static int __net_init vrf_netns_init(struct net *net)
1972 {
1973 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1974 
1975 	nn_vrf->add_fib_rules = true;
1976 	vrf_map_init(&nn_vrf->vmap);
1977 
1978 	return vrf_netns_init_sysctl(net, nn_vrf);
1979 }
1980 
1981 static void __net_exit vrf_netns_exit(struct net *net)
1982 {
1983 	vrf_netns_exit_sysctl(net);
1984 }
1985 
1986 static struct pernet_operations vrf_net_ops __net_initdata = {
1987 	.init = vrf_netns_init,
1988 	.exit = vrf_netns_exit,
1989 	.id   = &vrf_net_id,
1990 	.size = sizeof(struct netns_vrf),
1991 };
1992 
1993 static int __init vrf_init_module(void)
1994 {
1995 	int rc;
1996 
1997 	register_netdevice_notifier(&vrf_notifier_block);
1998 
1999 	rc = register_pernet_subsys(&vrf_net_ops);
2000 	if (rc < 0)
2001 		goto error;
2002 
2003 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2004 					  vrf_ifindex_lookup_by_table_id);
2005 	if (rc < 0)
2006 		goto unreg_pernet;
2007 
2008 	rc = rtnl_link_register(&vrf_link_ops);
2009 	if (rc < 0)
2010 		goto table_lookup_unreg;
2011 
2012 	return 0;
2013 
2014 table_lookup_unreg:
2015 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2016 				       vrf_ifindex_lookup_by_table_id);
2017 
2018 unreg_pernet:
2019 	unregister_pernet_subsys(&vrf_net_ops);
2020 
2021 error:
2022 	unregister_netdevice_notifier(&vrf_notifier_block);
2023 	return rc;
2024 }
2025 
2026 module_init(vrf_init_module);
2027 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2028 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2029 MODULE_LICENSE("GPL");
2030 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2031 MODULE_VERSION(DRV_VERSION);
2032