1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_fib.h> 34 #include <net/ip6_route.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/l3mdev.h> 38 #include <net/fib_rules.h> 39 #include <net/netns/generic.h> 40 41 #define DRV_NAME "vrf" 42 #define DRV_VERSION "1.0" 43 44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 45 46 static unsigned int vrf_net_id; 47 48 struct net_vrf { 49 struct rtable __rcu *rth; 50 struct rt6_info __rcu *rt6; 51 #if IS_ENABLED(CONFIG_IPV6) 52 struct fib6_table *fib6_table; 53 #endif 54 u32 tb_id; 55 }; 56 57 struct pcpu_dstats { 58 u64 tx_pkts; 59 u64 tx_bytes; 60 u64 tx_drps; 61 u64 rx_pkts; 62 u64 rx_bytes; 63 u64 rx_drps; 64 struct u64_stats_sync syncp; 65 }; 66 67 static void vrf_rx_stats(struct net_device *dev, int len) 68 { 69 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 70 71 u64_stats_update_begin(&dstats->syncp); 72 dstats->rx_pkts++; 73 dstats->rx_bytes += len; 74 u64_stats_update_end(&dstats->syncp); 75 } 76 77 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 78 { 79 vrf_dev->stats.tx_errors++; 80 kfree_skb(skb); 81 } 82 83 static void vrf_get_stats64(struct net_device *dev, 84 struct rtnl_link_stats64 *stats) 85 { 86 int i; 87 88 for_each_possible_cpu(i) { 89 const struct pcpu_dstats *dstats; 90 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 91 unsigned int start; 92 93 dstats = per_cpu_ptr(dev->dstats, i); 94 do { 95 start = u64_stats_fetch_begin_irq(&dstats->syncp); 96 tbytes = dstats->tx_bytes; 97 tpkts = dstats->tx_pkts; 98 tdrops = dstats->tx_drps; 99 rbytes = dstats->rx_bytes; 100 rpkts = dstats->rx_pkts; 101 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 102 stats->tx_bytes += tbytes; 103 stats->tx_packets += tpkts; 104 stats->tx_dropped += tdrops; 105 stats->rx_bytes += rbytes; 106 stats->rx_packets += rpkts; 107 } 108 } 109 110 /* by default VRF devices do not have a qdisc and are expected 111 * to be created with only a single queue. 112 */ 113 static bool qdisc_tx_is_default(const struct net_device *dev) 114 { 115 struct netdev_queue *txq; 116 struct Qdisc *qdisc; 117 118 if (dev->num_tx_queues > 1) 119 return false; 120 121 txq = netdev_get_tx_queue(dev, 0); 122 qdisc = rcu_access_pointer(txq->qdisc); 123 124 return !qdisc->enqueue; 125 } 126 127 /* Local traffic destined to local address. Reinsert the packet to rx 128 * path, similar to loopback handling. 129 */ 130 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 131 struct dst_entry *dst) 132 { 133 int len = skb->len; 134 135 skb_orphan(skb); 136 137 skb_dst_set(skb, dst); 138 139 /* set pkt_type to avoid skb hitting packet taps twice - 140 * once on Tx and again in Rx processing 141 */ 142 skb->pkt_type = PACKET_LOOPBACK; 143 144 skb->protocol = eth_type_trans(skb, dev); 145 146 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 147 vrf_rx_stats(dev, len); 148 else 149 this_cpu_inc(dev->dstats->rx_drps); 150 151 return NETDEV_TX_OK; 152 } 153 154 #if IS_ENABLED(CONFIG_IPV6) 155 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 156 struct sk_buff *skb) 157 { 158 int err; 159 160 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 161 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 162 163 if (likely(err == 1)) 164 err = dst_output(net, sk, skb); 165 166 return err; 167 } 168 169 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 170 struct net_device *dev) 171 { 172 const struct ipv6hdr *iph = ipv6_hdr(skb); 173 struct net *net = dev_net(skb->dev); 174 struct flowi6 fl6 = { 175 /* needed to match OIF rule */ 176 .flowi6_oif = dev->ifindex, 177 .flowi6_iif = LOOPBACK_IFINDEX, 178 .daddr = iph->daddr, 179 .saddr = iph->saddr, 180 .flowlabel = ip6_flowinfo(iph), 181 .flowi6_mark = skb->mark, 182 .flowi6_proto = iph->nexthdr, 183 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF, 184 }; 185 int ret = NET_XMIT_DROP; 186 struct dst_entry *dst; 187 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 188 189 dst = ip6_route_output(net, NULL, &fl6); 190 if (dst == dst_null) 191 goto err; 192 193 skb_dst_drop(skb); 194 195 /* if dst.dev is loopback or the VRF device again this is locally 196 * originated traffic destined to a local address. Short circuit 197 * to Rx path 198 */ 199 if (dst->dev == dev) 200 return vrf_local_xmit(skb, dev, dst); 201 202 skb_dst_set(skb, dst); 203 204 /* strip the ethernet header added for pass through VRF device */ 205 __skb_pull(skb, skb_network_offset(skb)); 206 207 ret = vrf_ip6_local_out(net, skb->sk, skb); 208 if (unlikely(net_xmit_eval(ret))) 209 dev->stats.tx_errors++; 210 else 211 ret = NET_XMIT_SUCCESS; 212 213 return ret; 214 err: 215 vrf_tx_error(dev, skb); 216 return NET_XMIT_DROP; 217 } 218 #else 219 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 220 struct net_device *dev) 221 { 222 vrf_tx_error(dev, skb); 223 return NET_XMIT_DROP; 224 } 225 #endif 226 227 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 228 static int vrf_ip_local_out(struct net *net, struct sock *sk, 229 struct sk_buff *skb) 230 { 231 int err; 232 233 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 234 skb, NULL, skb_dst(skb)->dev, dst_output); 235 if (likely(err == 1)) 236 err = dst_output(net, sk, skb); 237 238 return err; 239 } 240 241 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 242 struct net_device *vrf_dev) 243 { 244 struct iphdr *ip4h = ip_hdr(skb); 245 int ret = NET_XMIT_DROP; 246 struct flowi4 fl4 = { 247 /* needed to match OIF rule */ 248 .flowi4_oif = vrf_dev->ifindex, 249 .flowi4_iif = LOOPBACK_IFINDEX, 250 .flowi4_tos = RT_TOS(ip4h->tos), 251 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF, 252 .flowi4_proto = ip4h->protocol, 253 .daddr = ip4h->daddr, 254 .saddr = ip4h->saddr, 255 }; 256 struct net *net = dev_net(vrf_dev); 257 struct rtable *rt; 258 259 rt = ip_route_output_flow(net, &fl4, NULL); 260 if (IS_ERR(rt)) 261 goto err; 262 263 skb_dst_drop(skb); 264 265 /* if dst.dev is loopback or the VRF device again this is locally 266 * originated traffic destined to a local address. Short circuit 267 * to Rx path 268 */ 269 if (rt->dst.dev == vrf_dev) 270 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 271 272 skb_dst_set(skb, &rt->dst); 273 274 /* strip the ethernet header added for pass through VRF device */ 275 __skb_pull(skb, skb_network_offset(skb)); 276 277 if (!ip4h->saddr) { 278 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 279 RT_SCOPE_LINK); 280 } 281 282 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 283 if (unlikely(net_xmit_eval(ret))) 284 vrf_dev->stats.tx_errors++; 285 else 286 ret = NET_XMIT_SUCCESS; 287 288 out: 289 return ret; 290 err: 291 vrf_tx_error(vrf_dev, skb); 292 goto out; 293 } 294 295 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 296 { 297 switch (skb->protocol) { 298 case htons(ETH_P_IP): 299 return vrf_process_v4_outbound(skb, dev); 300 case htons(ETH_P_IPV6): 301 return vrf_process_v6_outbound(skb, dev); 302 default: 303 vrf_tx_error(dev, skb); 304 return NET_XMIT_DROP; 305 } 306 } 307 308 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 309 { 310 int len = skb->len; 311 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 312 313 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 314 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 315 316 u64_stats_update_begin(&dstats->syncp); 317 dstats->tx_pkts++; 318 dstats->tx_bytes += len; 319 u64_stats_update_end(&dstats->syncp); 320 } else { 321 this_cpu_inc(dev->dstats->tx_drps); 322 } 323 324 return ret; 325 } 326 327 static int vrf_finish_direct(struct net *net, struct sock *sk, 328 struct sk_buff *skb) 329 { 330 struct net_device *vrf_dev = skb->dev; 331 332 if (!list_empty(&vrf_dev->ptype_all) && 333 likely(skb_headroom(skb) >= ETH_HLEN)) { 334 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 335 336 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 337 eth_zero_addr(eth->h_dest); 338 eth->h_proto = skb->protocol; 339 340 rcu_read_lock_bh(); 341 dev_queue_xmit_nit(skb, vrf_dev); 342 rcu_read_unlock_bh(); 343 344 skb_pull(skb, ETH_HLEN); 345 } 346 347 return 1; 348 } 349 350 #if IS_ENABLED(CONFIG_IPV6) 351 /* modelled after ip6_finish_output2 */ 352 static int vrf_finish_output6(struct net *net, struct sock *sk, 353 struct sk_buff *skb) 354 { 355 struct dst_entry *dst = skb_dst(skb); 356 struct net_device *dev = dst->dev; 357 struct neighbour *neigh; 358 struct in6_addr *nexthop; 359 int ret; 360 361 nf_reset(skb); 362 363 skb->protocol = htons(ETH_P_IPV6); 364 skb->dev = dev; 365 366 rcu_read_lock_bh(); 367 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 368 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 369 if (unlikely(!neigh)) 370 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 371 if (!IS_ERR(neigh)) { 372 sock_confirm_neigh(skb, neigh); 373 ret = neigh_output(neigh, skb); 374 rcu_read_unlock_bh(); 375 return ret; 376 } 377 rcu_read_unlock_bh(); 378 379 IP6_INC_STATS(dev_net(dst->dev), 380 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 381 kfree_skb(skb); 382 return -EINVAL; 383 } 384 385 /* modelled after ip6_output */ 386 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 387 { 388 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 389 net, sk, skb, NULL, skb_dst(skb)->dev, 390 vrf_finish_output6, 391 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 392 } 393 394 /* set dst on skb to send packet to us via dev_xmit path. Allows 395 * packet to go through device based features such as qdisc, netfilter 396 * hooks and packet sockets with skb->dev set to vrf device. 397 */ 398 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 399 struct sk_buff *skb) 400 { 401 struct net_vrf *vrf = netdev_priv(vrf_dev); 402 struct dst_entry *dst = NULL; 403 struct rt6_info *rt6; 404 405 rcu_read_lock(); 406 407 rt6 = rcu_dereference(vrf->rt6); 408 if (likely(rt6)) { 409 dst = &rt6->dst; 410 dst_hold(dst); 411 } 412 413 rcu_read_unlock(); 414 415 if (unlikely(!dst)) { 416 vrf_tx_error(vrf_dev, skb); 417 return NULL; 418 } 419 420 skb_dst_drop(skb); 421 skb_dst_set(skb, dst); 422 423 return skb; 424 } 425 426 static int vrf_output6_direct(struct net *net, struct sock *sk, 427 struct sk_buff *skb) 428 { 429 skb->protocol = htons(ETH_P_IPV6); 430 431 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 432 net, sk, skb, NULL, skb->dev, 433 vrf_finish_direct, 434 !(IPCB(skb)->flags & IPSKB_REROUTED)); 435 } 436 437 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 438 struct sock *sk, 439 struct sk_buff *skb) 440 { 441 struct net *net = dev_net(vrf_dev); 442 int err; 443 444 skb->dev = vrf_dev; 445 446 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 447 skb, NULL, vrf_dev, vrf_output6_direct); 448 449 if (likely(err == 1)) 450 err = vrf_output6_direct(net, sk, skb); 451 452 /* reset skb device */ 453 if (likely(err == 1)) 454 nf_reset(skb); 455 else 456 skb = NULL; 457 458 return skb; 459 } 460 461 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 462 struct sock *sk, 463 struct sk_buff *skb) 464 { 465 /* don't divert link scope packets */ 466 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 467 return skb; 468 469 if (qdisc_tx_is_default(vrf_dev)) 470 return vrf_ip6_out_direct(vrf_dev, sk, skb); 471 472 return vrf_ip6_out_redirect(vrf_dev, skb); 473 } 474 475 /* holding rtnl */ 476 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 477 { 478 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 479 struct net *net = dev_net(dev); 480 struct dst_entry *dst; 481 482 RCU_INIT_POINTER(vrf->rt6, NULL); 483 synchronize_rcu(); 484 485 /* move dev in dst's to loopback so this VRF device can be deleted 486 * - based on dst_ifdown 487 */ 488 if (rt6) { 489 dst = &rt6->dst; 490 dev_put(dst->dev); 491 dst->dev = net->loopback_dev; 492 dev_hold(dst->dev); 493 dst_release(dst); 494 } 495 } 496 497 static int vrf_rt6_create(struct net_device *dev) 498 { 499 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM; 500 struct net_vrf *vrf = netdev_priv(dev); 501 struct net *net = dev_net(dev); 502 struct rt6_info *rt6; 503 int rc = -ENOMEM; 504 505 /* IPv6 can be CONFIG enabled and then disabled runtime */ 506 if (!ipv6_mod_enabled()) 507 return 0; 508 509 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 510 if (!vrf->fib6_table) 511 goto out; 512 513 /* create a dst for routing packets out a VRF device */ 514 rt6 = ip6_dst_alloc(net, dev, flags); 515 if (!rt6) 516 goto out; 517 518 rt6->dst.output = vrf_output6; 519 520 rcu_assign_pointer(vrf->rt6, rt6); 521 522 rc = 0; 523 out: 524 return rc; 525 } 526 #else 527 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 528 struct sock *sk, 529 struct sk_buff *skb) 530 { 531 return skb; 532 } 533 534 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 535 { 536 } 537 538 static int vrf_rt6_create(struct net_device *dev) 539 { 540 return 0; 541 } 542 #endif 543 544 /* modelled after ip_finish_output2 */ 545 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 546 { 547 struct dst_entry *dst = skb_dst(skb); 548 struct rtable *rt = (struct rtable *)dst; 549 struct net_device *dev = dst->dev; 550 unsigned int hh_len = LL_RESERVED_SPACE(dev); 551 struct neighbour *neigh; 552 u32 nexthop; 553 int ret = -EINVAL; 554 555 nf_reset(skb); 556 557 /* Be paranoid, rather than too clever. */ 558 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 559 struct sk_buff *skb2; 560 561 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 562 if (!skb2) { 563 ret = -ENOMEM; 564 goto err; 565 } 566 if (skb->sk) 567 skb_set_owner_w(skb2, skb->sk); 568 569 consume_skb(skb); 570 skb = skb2; 571 } 572 573 rcu_read_lock_bh(); 574 575 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 576 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 577 if (unlikely(!neigh)) 578 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 579 if (!IS_ERR(neigh)) { 580 sock_confirm_neigh(skb, neigh); 581 ret = neigh_output(neigh, skb); 582 rcu_read_unlock_bh(); 583 return ret; 584 } 585 586 rcu_read_unlock_bh(); 587 err: 588 vrf_tx_error(skb->dev, skb); 589 return ret; 590 } 591 592 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 593 { 594 struct net_device *dev = skb_dst(skb)->dev; 595 596 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 597 598 skb->dev = dev; 599 skb->protocol = htons(ETH_P_IP); 600 601 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 602 net, sk, skb, NULL, dev, 603 vrf_finish_output, 604 !(IPCB(skb)->flags & IPSKB_REROUTED)); 605 } 606 607 /* set dst on skb to send packet to us via dev_xmit path. Allows 608 * packet to go through device based features such as qdisc, netfilter 609 * hooks and packet sockets with skb->dev set to vrf device. 610 */ 611 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 612 struct sk_buff *skb) 613 { 614 struct net_vrf *vrf = netdev_priv(vrf_dev); 615 struct dst_entry *dst = NULL; 616 struct rtable *rth; 617 618 rcu_read_lock(); 619 620 rth = rcu_dereference(vrf->rth); 621 if (likely(rth)) { 622 dst = &rth->dst; 623 dst_hold(dst); 624 } 625 626 rcu_read_unlock(); 627 628 if (unlikely(!dst)) { 629 vrf_tx_error(vrf_dev, skb); 630 return NULL; 631 } 632 633 skb_dst_drop(skb); 634 skb_dst_set(skb, dst); 635 636 return skb; 637 } 638 639 static int vrf_output_direct(struct net *net, struct sock *sk, 640 struct sk_buff *skb) 641 { 642 skb->protocol = htons(ETH_P_IP); 643 644 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 645 net, sk, skb, NULL, skb->dev, 646 vrf_finish_direct, 647 !(IPCB(skb)->flags & IPSKB_REROUTED)); 648 } 649 650 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 651 struct sock *sk, 652 struct sk_buff *skb) 653 { 654 struct net *net = dev_net(vrf_dev); 655 int err; 656 657 skb->dev = vrf_dev; 658 659 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 660 skb, NULL, vrf_dev, vrf_output_direct); 661 662 if (likely(err == 1)) 663 err = vrf_output_direct(net, sk, skb); 664 665 /* reset skb device */ 666 if (likely(err == 1)) 667 nf_reset(skb); 668 else 669 skb = NULL; 670 671 return skb; 672 } 673 674 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 675 struct sock *sk, 676 struct sk_buff *skb) 677 { 678 /* don't divert multicast or local broadcast */ 679 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 680 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 681 return skb; 682 683 if (qdisc_tx_is_default(vrf_dev)) 684 return vrf_ip_out_direct(vrf_dev, sk, skb); 685 686 return vrf_ip_out_redirect(vrf_dev, skb); 687 } 688 689 /* called with rcu lock held */ 690 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 691 struct sock *sk, 692 struct sk_buff *skb, 693 u16 proto) 694 { 695 switch (proto) { 696 case AF_INET: 697 return vrf_ip_out(vrf_dev, sk, skb); 698 case AF_INET6: 699 return vrf_ip6_out(vrf_dev, sk, skb); 700 } 701 702 return skb; 703 } 704 705 /* holding rtnl */ 706 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 707 { 708 struct rtable *rth = rtnl_dereference(vrf->rth); 709 struct net *net = dev_net(dev); 710 struct dst_entry *dst; 711 712 RCU_INIT_POINTER(vrf->rth, NULL); 713 synchronize_rcu(); 714 715 /* move dev in dst's to loopback so this VRF device can be deleted 716 * - based on dst_ifdown 717 */ 718 if (rth) { 719 dst = &rth->dst; 720 dev_put(dst->dev); 721 dst->dev = net->loopback_dev; 722 dev_hold(dst->dev); 723 dst_release(dst); 724 } 725 } 726 727 static int vrf_rtable_create(struct net_device *dev) 728 { 729 struct net_vrf *vrf = netdev_priv(dev); 730 struct rtable *rth; 731 732 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 733 return -ENOMEM; 734 735 /* create a dst for routing packets out through a VRF device */ 736 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 737 if (!rth) 738 return -ENOMEM; 739 740 rth->dst.output = vrf_output; 741 742 rcu_assign_pointer(vrf->rth, rth); 743 744 return 0; 745 } 746 747 /**************************** device handling ********************/ 748 749 /* cycle interface to flush neighbor cache and move routes across tables */ 750 static void cycle_netdev(struct net_device *dev, 751 struct netlink_ext_ack *extack) 752 { 753 unsigned int flags = dev->flags; 754 int ret; 755 756 if (!netif_running(dev)) 757 return; 758 759 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 760 if (ret >= 0) 761 ret = dev_change_flags(dev, flags, extack); 762 763 if (ret < 0) { 764 netdev_err(dev, 765 "Failed to cycle device %s; route tables might be wrong!\n", 766 dev->name); 767 } 768 } 769 770 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 771 struct netlink_ext_ack *extack) 772 { 773 int ret; 774 775 /* do not allow loopback device to be enslaved to a VRF. 776 * The vrf device acts as the loopback for the vrf. 777 */ 778 if (port_dev == dev_net(dev)->loopback_dev) { 779 NL_SET_ERR_MSG(extack, 780 "Can not enslave loopback device to a VRF"); 781 return -EOPNOTSUPP; 782 } 783 784 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 785 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 786 if (ret < 0) 787 goto err; 788 789 cycle_netdev(port_dev, extack); 790 791 return 0; 792 793 err: 794 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 795 return ret; 796 } 797 798 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 799 struct netlink_ext_ack *extack) 800 { 801 if (netif_is_l3_master(port_dev)) { 802 NL_SET_ERR_MSG(extack, 803 "Can not enslave an L3 master device to a VRF"); 804 return -EINVAL; 805 } 806 807 if (netif_is_l3_slave(port_dev)) 808 return -EINVAL; 809 810 return do_vrf_add_slave(dev, port_dev, extack); 811 } 812 813 /* inverse of do_vrf_add_slave */ 814 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 815 { 816 netdev_upper_dev_unlink(port_dev, dev); 817 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 818 819 cycle_netdev(port_dev, NULL); 820 821 return 0; 822 } 823 824 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 825 { 826 return do_vrf_del_slave(dev, port_dev); 827 } 828 829 static void vrf_dev_uninit(struct net_device *dev) 830 { 831 struct net_vrf *vrf = netdev_priv(dev); 832 833 vrf_rtable_release(dev, vrf); 834 vrf_rt6_release(dev, vrf); 835 836 free_percpu(dev->dstats); 837 dev->dstats = NULL; 838 } 839 840 static int vrf_dev_init(struct net_device *dev) 841 { 842 struct net_vrf *vrf = netdev_priv(dev); 843 844 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 845 if (!dev->dstats) 846 goto out_nomem; 847 848 /* create the default dst which points back to us */ 849 if (vrf_rtable_create(dev) != 0) 850 goto out_stats; 851 852 if (vrf_rt6_create(dev) != 0) 853 goto out_rth; 854 855 dev->flags = IFF_MASTER | IFF_NOARP; 856 857 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 858 dev->mtu = 64 * 1024; 859 860 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 861 dev->operstate = IF_OPER_UP; 862 netdev_lockdep_set_classes(dev); 863 return 0; 864 865 out_rth: 866 vrf_rtable_release(dev, vrf); 867 out_stats: 868 free_percpu(dev->dstats); 869 dev->dstats = NULL; 870 out_nomem: 871 return -ENOMEM; 872 } 873 874 static const struct net_device_ops vrf_netdev_ops = { 875 .ndo_init = vrf_dev_init, 876 .ndo_uninit = vrf_dev_uninit, 877 .ndo_start_xmit = vrf_xmit, 878 .ndo_get_stats64 = vrf_get_stats64, 879 .ndo_add_slave = vrf_add_slave, 880 .ndo_del_slave = vrf_del_slave, 881 }; 882 883 static u32 vrf_fib_table(const struct net_device *dev) 884 { 885 struct net_vrf *vrf = netdev_priv(dev); 886 887 return vrf->tb_id; 888 } 889 890 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 891 { 892 kfree_skb(skb); 893 return 0; 894 } 895 896 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 897 struct sk_buff *skb, 898 struct net_device *dev) 899 { 900 struct net *net = dev_net(dev); 901 902 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 903 skb = NULL; /* kfree_skb(skb) handled by nf code */ 904 905 return skb; 906 } 907 908 #if IS_ENABLED(CONFIG_IPV6) 909 /* neighbor handling is done with actual device; do not want 910 * to flip skb->dev for those ndisc packets. This really fails 911 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 912 * a start. 913 */ 914 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 915 { 916 const struct ipv6hdr *iph = ipv6_hdr(skb); 917 bool rc = false; 918 919 if (iph->nexthdr == NEXTHDR_ICMP) { 920 const struct icmp6hdr *icmph; 921 struct icmp6hdr _icmph; 922 923 icmph = skb_header_pointer(skb, sizeof(*iph), 924 sizeof(_icmph), &_icmph); 925 if (!icmph) 926 goto out; 927 928 switch (icmph->icmp6_type) { 929 case NDISC_ROUTER_SOLICITATION: 930 case NDISC_ROUTER_ADVERTISEMENT: 931 case NDISC_NEIGHBOUR_SOLICITATION: 932 case NDISC_NEIGHBOUR_ADVERTISEMENT: 933 case NDISC_REDIRECT: 934 rc = true; 935 break; 936 } 937 } 938 939 out: 940 return rc; 941 } 942 943 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 944 const struct net_device *dev, 945 struct flowi6 *fl6, 946 int ifindex, 947 const struct sk_buff *skb, 948 int flags) 949 { 950 struct net_vrf *vrf = netdev_priv(dev); 951 952 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 953 } 954 955 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 956 int ifindex) 957 { 958 const struct ipv6hdr *iph = ipv6_hdr(skb); 959 struct flowi6 fl6 = { 960 .flowi6_iif = ifindex, 961 .flowi6_mark = skb->mark, 962 .flowi6_proto = iph->nexthdr, 963 .daddr = iph->daddr, 964 .saddr = iph->saddr, 965 .flowlabel = ip6_flowinfo(iph), 966 }; 967 struct net *net = dev_net(vrf_dev); 968 struct rt6_info *rt6; 969 970 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 971 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 972 if (unlikely(!rt6)) 973 return; 974 975 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 976 return; 977 978 skb_dst_set(skb, &rt6->dst); 979 } 980 981 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 982 struct sk_buff *skb) 983 { 984 int orig_iif = skb->skb_iif; 985 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 986 bool is_ndisc = ipv6_ndisc_frame(skb); 987 988 /* loopback, multicast & non-ND link-local traffic; do not push through 989 * packet taps again. Reset pkt_type for upper layers to process skb 990 */ 991 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 992 skb->dev = vrf_dev; 993 skb->skb_iif = vrf_dev->ifindex; 994 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 995 if (skb->pkt_type == PACKET_LOOPBACK) 996 skb->pkt_type = PACKET_HOST; 997 goto out; 998 } 999 1000 /* if packet is NDISC then keep the ingress interface */ 1001 if (!is_ndisc) { 1002 vrf_rx_stats(vrf_dev, skb->len); 1003 skb->dev = vrf_dev; 1004 skb->skb_iif = vrf_dev->ifindex; 1005 1006 if (!list_empty(&vrf_dev->ptype_all)) { 1007 skb_push(skb, skb->mac_len); 1008 dev_queue_xmit_nit(skb, vrf_dev); 1009 skb_pull(skb, skb->mac_len); 1010 } 1011 1012 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1013 } 1014 1015 if (need_strict) 1016 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1017 1018 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1019 out: 1020 return skb; 1021 } 1022 1023 #else 1024 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1025 struct sk_buff *skb) 1026 { 1027 return skb; 1028 } 1029 #endif 1030 1031 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1032 struct sk_buff *skb) 1033 { 1034 skb->dev = vrf_dev; 1035 skb->skb_iif = vrf_dev->ifindex; 1036 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1037 1038 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1039 goto out; 1040 1041 /* loopback traffic; do not push through packet taps again. 1042 * Reset pkt_type for upper layers to process skb 1043 */ 1044 if (skb->pkt_type == PACKET_LOOPBACK) { 1045 skb->pkt_type = PACKET_HOST; 1046 goto out; 1047 } 1048 1049 vrf_rx_stats(vrf_dev, skb->len); 1050 1051 if (!list_empty(&vrf_dev->ptype_all)) { 1052 skb_push(skb, skb->mac_len); 1053 dev_queue_xmit_nit(skb, vrf_dev); 1054 skb_pull(skb, skb->mac_len); 1055 } 1056 1057 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1058 out: 1059 return skb; 1060 } 1061 1062 /* called with rcu lock held */ 1063 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1064 struct sk_buff *skb, 1065 u16 proto) 1066 { 1067 switch (proto) { 1068 case AF_INET: 1069 return vrf_ip_rcv(vrf_dev, skb); 1070 case AF_INET6: 1071 return vrf_ip6_rcv(vrf_dev, skb); 1072 } 1073 1074 return skb; 1075 } 1076 1077 #if IS_ENABLED(CONFIG_IPV6) 1078 /* send to link-local or multicast address via interface enslaved to 1079 * VRF device. Force lookup to VRF table without changing flow struct 1080 */ 1081 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1082 struct flowi6 *fl6) 1083 { 1084 struct net *net = dev_net(dev); 1085 int flags = RT6_LOOKUP_F_IFACE; 1086 struct dst_entry *dst = NULL; 1087 struct rt6_info *rt; 1088 1089 /* VRF device does not have a link-local address and 1090 * sending packets to link-local or mcast addresses over 1091 * a VRF device does not make sense 1092 */ 1093 if (fl6->flowi6_oif == dev->ifindex) { 1094 dst = &net->ipv6.ip6_null_entry->dst; 1095 dst_hold(dst); 1096 return dst; 1097 } 1098 1099 if (!ipv6_addr_any(&fl6->saddr)) 1100 flags |= RT6_LOOKUP_F_HAS_SADDR; 1101 1102 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1103 if (rt) 1104 dst = &rt->dst; 1105 1106 return dst; 1107 } 1108 #endif 1109 1110 static const struct l3mdev_ops vrf_l3mdev_ops = { 1111 .l3mdev_fib_table = vrf_fib_table, 1112 .l3mdev_l3_rcv = vrf_l3_rcv, 1113 .l3mdev_l3_out = vrf_l3_out, 1114 #if IS_ENABLED(CONFIG_IPV6) 1115 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1116 #endif 1117 }; 1118 1119 static void vrf_get_drvinfo(struct net_device *dev, 1120 struct ethtool_drvinfo *info) 1121 { 1122 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1123 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1124 } 1125 1126 static const struct ethtool_ops vrf_ethtool_ops = { 1127 .get_drvinfo = vrf_get_drvinfo, 1128 }; 1129 1130 static inline size_t vrf_fib_rule_nl_size(void) 1131 { 1132 size_t sz; 1133 1134 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1135 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1136 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1137 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1138 1139 return sz; 1140 } 1141 1142 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1143 { 1144 struct fib_rule_hdr *frh; 1145 struct nlmsghdr *nlh; 1146 struct sk_buff *skb; 1147 int err; 1148 1149 if (family == AF_INET6 && !ipv6_mod_enabled()) 1150 return 0; 1151 1152 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1153 if (!skb) 1154 return -ENOMEM; 1155 1156 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1157 if (!nlh) 1158 goto nla_put_failure; 1159 1160 /* rule only needs to appear once */ 1161 nlh->nlmsg_flags |= NLM_F_EXCL; 1162 1163 frh = nlmsg_data(nlh); 1164 memset(frh, 0, sizeof(*frh)); 1165 frh->family = family; 1166 frh->action = FR_ACT_TO_TBL; 1167 1168 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1169 goto nla_put_failure; 1170 1171 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1172 goto nla_put_failure; 1173 1174 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1175 goto nla_put_failure; 1176 1177 nlmsg_end(skb, nlh); 1178 1179 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1180 skb->sk = dev_net(dev)->rtnl; 1181 if (add_it) { 1182 err = fib_nl_newrule(skb, nlh, NULL); 1183 if (err == -EEXIST) 1184 err = 0; 1185 } else { 1186 err = fib_nl_delrule(skb, nlh, NULL); 1187 if (err == -ENOENT) 1188 err = 0; 1189 } 1190 nlmsg_free(skb); 1191 1192 return err; 1193 1194 nla_put_failure: 1195 nlmsg_free(skb); 1196 1197 return -EMSGSIZE; 1198 } 1199 1200 static int vrf_add_fib_rules(const struct net_device *dev) 1201 { 1202 int err; 1203 1204 err = vrf_fib_rule(dev, AF_INET, true); 1205 if (err < 0) 1206 goto out_err; 1207 1208 err = vrf_fib_rule(dev, AF_INET6, true); 1209 if (err < 0) 1210 goto ipv6_err; 1211 1212 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1213 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1214 if (err < 0) 1215 goto ipmr_err; 1216 #endif 1217 1218 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1219 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1220 if (err < 0) 1221 goto ip6mr_err; 1222 #endif 1223 1224 return 0; 1225 1226 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1227 ip6mr_err: 1228 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1229 #endif 1230 1231 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1232 ipmr_err: 1233 vrf_fib_rule(dev, AF_INET6, false); 1234 #endif 1235 1236 ipv6_err: 1237 vrf_fib_rule(dev, AF_INET, false); 1238 1239 out_err: 1240 netdev_err(dev, "Failed to add FIB rules.\n"); 1241 return err; 1242 } 1243 1244 static void vrf_setup(struct net_device *dev) 1245 { 1246 ether_setup(dev); 1247 1248 /* Initialize the device structure. */ 1249 dev->netdev_ops = &vrf_netdev_ops; 1250 dev->l3mdev_ops = &vrf_l3mdev_ops; 1251 dev->ethtool_ops = &vrf_ethtool_ops; 1252 dev->needs_free_netdev = true; 1253 1254 /* Fill in device structure with ethernet-generic values. */ 1255 eth_hw_addr_random(dev); 1256 1257 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1258 dev->features |= NETIF_F_LLTX; 1259 1260 /* don't allow vrf devices to change network namespaces. */ 1261 dev->features |= NETIF_F_NETNS_LOCAL; 1262 1263 /* does not make sense for a VLAN to be added to a vrf device */ 1264 dev->features |= NETIF_F_VLAN_CHALLENGED; 1265 1266 /* enable offload features */ 1267 dev->features |= NETIF_F_GSO_SOFTWARE; 1268 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1269 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1270 1271 dev->hw_features = dev->features; 1272 dev->hw_enc_features = dev->features; 1273 1274 /* default to no qdisc; user can add if desired */ 1275 dev->priv_flags |= IFF_NO_QUEUE; 1276 dev->priv_flags |= IFF_NO_RX_HANDLER; 1277 1278 /* VRF devices do not care about MTU, but if the MTU is set 1279 * too low then the ipv4 and ipv6 protocols are disabled 1280 * which breaks networking. 1281 */ 1282 dev->min_mtu = IPV6_MIN_MTU; 1283 dev->max_mtu = ETH_MAX_MTU; 1284 } 1285 1286 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1287 struct netlink_ext_ack *extack) 1288 { 1289 if (tb[IFLA_ADDRESS]) { 1290 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1291 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1292 return -EINVAL; 1293 } 1294 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1295 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1296 return -EADDRNOTAVAIL; 1297 } 1298 } 1299 return 0; 1300 } 1301 1302 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1303 { 1304 struct net_device *port_dev; 1305 struct list_head *iter; 1306 1307 netdev_for_each_lower_dev(dev, port_dev, iter) 1308 vrf_del_slave(dev, port_dev); 1309 1310 unregister_netdevice_queue(dev, head); 1311 } 1312 1313 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1314 struct nlattr *tb[], struct nlattr *data[], 1315 struct netlink_ext_ack *extack) 1316 { 1317 struct net_vrf *vrf = netdev_priv(dev); 1318 bool *add_fib_rules; 1319 struct net *net; 1320 int err; 1321 1322 if (!data || !data[IFLA_VRF_TABLE]) { 1323 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1324 return -EINVAL; 1325 } 1326 1327 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1328 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1329 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1330 "Invalid VRF table id"); 1331 return -EINVAL; 1332 } 1333 1334 dev->priv_flags |= IFF_L3MDEV_MASTER; 1335 1336 err = register_netdevice(dev); 1337 if (err) 1338 goto out; 1339 1340 net = dev_net(dev); 1341 add_fib_rules = net_generic(net, vrf_net_id); 1342 if (*add_fib_rules) { 1343 err = vrf_add_fib_rules(dev); 1344 if (err) { 1345 unregister_netdevice(dev); 1346 goto out; 1347 } 1348 *add_fib_rules = false; 1349 } 1350 1351 out: 1352 return err; 1353 } 1354 1355 static size_t vrf_nl_getsize(const struct net_device *dev) 1356 { 1357 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1358 } 1359 1360 static int vrf_fillinfo(struct sk_buff *skb, 1361 const struct net_device *dev) 1362 { 1363 struct net_vrf *vrf = netdev_priv(dev); 1364 1365 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1366 } 1367 1368 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1369 const struct net_device *slave_dev) 1370 { 1371 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1372 } 1373 1374 static int vrf_fill_slave_info(struct sk_buff *skb, 1375 const struct net_device *vrf_dev, 1376 const struct net_device *slave_dev) 1377 { 1378 struct net_vrf *vrf = netdev_priv(vrf_dev); 1379 1380 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1381 return -EMSGSIZE; 1382 1383 return 0; 1384 } 1385 1386 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1387 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1388 }; 1389 1390 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1391 .kind = DRV_NAME, 1392 .priv_size = sizeof(struct net_vrf), 1393 1394 .get_size = vrf_nl_getsize, 1395 .policy = vrf_nl_policy, 1396 .validate = vrf_validate, 1397 .fill_info = vrf_fillinfo, 1398 1399 .get_slave_size = vrf_get_slave_size, 1400 .fill_slave_info = vrf_fill_slave_info, 1401 1402 .newlink = vrf_newlink, 1403 .dellink = vrf_dellink, 1404 .setup = vrf_setup, 1405 .maxtype = IFLA_VRF_MAX, 1406 }; 1407 1408 static int vrf_device_event(struct notifier_block *unused, 1409 unsigned long event, void *ptr) 1410 { 1411 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1412 1413 /* only care about unregister events to drop slave references */ 1414 if (event == NETDEV_UNREGISTER) { 1415 struct net_device *vrf_dev; 1416 1417 if (!netif_is_l3_slave(dev)) 1418 goto out; 1419 1420 vrf_dev = netdev_master_upper_dev_get(dev); 1421 vrf_del_slave(vrf_dev, dev); 1422 } 1423 out: 1424 return NOTIFY_DONE; 1425 } 1426 1427 static struct notifier_block vrf_notifier_block __read_mostly = { 1428 .notifier_call = vrf_device_event, 1429 }; 1430 1431 /* Initialize per network namespace state */ 1432 static int __net_init vrf_netns_init(struct net *net) 1433 { 1434 bool *add_fib_rules = net_generic(net, vrf_net_id); 1435 1436 *add_fib_rules = true; 1437 1438 return 0; 1439 } 1440 1441 static struct pernet_operations vrf_net_ops __net_initdata = { 1442 .init = vrf_netns_init, 1443 .id = &vrf_net_id, 1444 .size = sizeof(bool), 1445 }; 1446 1447 static int __init vrf_init_module(void) 1448 { 1449 int rc; 1450 1451 register_netdevice_notifier(&vrf_notifier_block); 1452 1453 rc = register_pernet_subsys(&vrf_net_ops); 1454 if (rc < 0) 1455 goto error; 1456 1457 rc = rtnl_link_register(&vrf_link_ops); 1458 if (rc < 0) { 1459 unregister_pernet_subsys(&vrf_net_ops); 1460 goto error; 1461 } 1462 1463 return 0; 1464 1465 error: 1466 unregister_netdevice_notifier(&vrf_notifier_block); 1467 return rc; 1468 } 1469 1470 module_init(vrf_init_module); 1471 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1472 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1473 MODULE_LICENSE("GPL"); 1474 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1475 MODULE_VERSION(DRV_VERSION); 1476