1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_fib.h> 34 #include <net/ip6_route.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/l3mdev.h> 38 39 #define RT_FL_TOS(oldflp4) \ 40 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)) 41 42 #define DRV_NAME "vrf" 43 #define DRV_VERSION "1.0" 44 45 #define vrf_master_get_rcu(dev) \ 46 ((struct net_device *)rcu_dereference(dev->rx_handler_data)) 47 48 struct net_vrf { 49 struct rtable *rth; 50 struct rt6_info *rt6; 51 u32 tb_id; 52 }; 53 54 struct pcpu_dstats { 55 u64 tx_pkts; 56 u64 tx_bytes; 57 u64 tx_drps; 58 u64 rx_pkts; 59 u64 rx_bytes; 60 struct u64_stats_sync syncp; 61 }; 62 63 /* neighbor handling is done with actual device; do not want 64 * to flip skb->dev for those ndisc packets. This really fails 65 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 66 * a start. 67 */ 68 #if IS_ENABLED(CONFIG_IPV6) 69 static bool check_ipv6_frame(const struct sk_buff *skb) 70 { 71 const struct ipv6hdr *ipv6h; 72 struct ipv6hdr _ipv6h; 73 bool rc = true; 74 75 ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h); 76 if (!ipv6h) 77 goto out; 78 79 if (ipv6h->nexthdr == NEXTHDR_ICMP) { 80 const struct icmp6hdr *icmph; 81 struct icmp6hdr _icmph; 82 83 icmph = skb_header_pointer(skb, sizeof(_ipv6h), 84 sizeof(_icmph), &_icmph); 85 if (!icmph) 86 goto out; 87 88 switch (icmph->icmp6_type) { 89 case NDISC_ROUTER_SOLICITATION: 90 case NDISC_ROUTER_ADVERTISEMENT: 91 case NDISC_NEIGHBOUR_SOLICITATION: 92 case NDISC_NEIGHBOUR_ADVERTISEMENT: 93 case NDISC_REDIRECT: 94 rc = false; 95 break; 96 } 97 } 98 99 out: 100 return rc; 101 } 102 #else 103 static bool check_ipv6_frame(const struct sk_buff *skb) 104 { 105 return false; 106 } 107 #endif 108 109 static bool is_ip_rx_frame(struct sk_buff *skb) 110 { 111 switch (skb->protocol) { 112 case htons(ETH_P_IP): 113 return true; 114 case htons(ETH_P_IPV6): 115 return check_ipv6_frame(skb); 116 } 117 return false; 118 } 119 120 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 121 { 122 vrf_dev->stats.tx_errors++; 123 kfree_skb(skb); 124 } 125 126 /* note: already called with rcu_read_lock */ 127 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb) 128 { 129 struct sk_buff *skb = *pskb; 130 131 if (is_ip_rx_frame(skb)) { 132 struct net_device *dev = vrf_master_get_rcu(skb->dev); 133 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 134 135 u64_stats_update_begin(&dstats->syncp); 136 dstats->rx_pkts++; 137 dstats->rx_bytes += skb->len; 138 u64_stats_update_end(&dstats->syncp); 139 140 skb->dev = dev; 141 142 return RX_HANDLER_ANOTHER; 143 } 144 return RX_HANDLER_PASS; 145 } 146 147 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev, 148 struct rtnl_link_stats64 *stats) 149 { 150 int i; 151 152 for_each_possible_cpu(i) { 153 const struct pcpu_dstats *dstats; 154 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 155 unsigned int start; 156 157 dstats = per_cpu_ptr(dev->dstats, i); 158 do { 159 start = u64_stats_fetch_begin_irq(&dstats->syncp); 160 tbytes = dstats->tx_bytes; 161 tpkts = dstats->tx_pkts; 162 tdrops = dstats->tx_drps; 163 rbytes = dstats->rx_bytes; 164 rpkts = dstats->rx_pkts; 165 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 166 stats->tx_bytes += tbytes; 167 stats->tx_packets += tpkts; 168 stats->tx_dropped += tdrops; 169 stats->rx_bytes += rbytes; 170 stats->rx_packets += rpkts; 171 } 172 return stats; 173 } 174 175 #if IS_ENABLED(CONFIG_IPV6) 176 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 177 struct net_device *dev) 178 { 179 const struct ipv6hdr *iph = ipv6_hdr(skb); 180 struct net *net = dev_net(skb->dev); 181 struct flowi6 fl6 = { 182 /* needed to match OIF rule */ 183 .flowi6_oif = dev->ifindex, 184 .flowi6_iif = LOOPBACK_IFINDEX, 185 .daddr = iph->daddr, 186 .saddr = iph->saddr, 187 .flowlabel = ip6_flowinfo(iph), 188 .flowi6_mark = skb->mark, 189 .flowi6_proto = iph->nexthdr, 190 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF, 191 }; 192 int ret = NET_XMIT_DROP; 193 struct dst_entry *dst; 194 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 195 196 dst = ip6_route_output(net, NULL, &fl6); 197 if (dst == dst_null) 198 goto err; 199 200 skb_dst_drop(skb); 201 skb_dst_set(skb, dst); 202 203 ret = ip6_local_out(net, skb->sk, skb); 204 if (unlikely(net_xmit_eval(ret))) 205 dev->stats.tx_errors++; 206 else 207 ret = NET_XMIT_SUCCESS; 208 209 return ret; 210 err: 211 vrf_tx_error(dev, skb); 212 return NET_XMIT_DROP; 213 } 214 #else 215 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 216 struct net_device *dev) 217 { 218 vrf_tx_error(dev, skb); 219 return NET_XMIT_DROP; 220 } 221 #endif 222 223 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4, 224 struct net_device *vrf_dev) 225 { 226 struct rtable *rt; 227 int err = 1; 228 229 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL); 230 if (IS_ERR(rt)) 231 goto out; 232 233 /* TO-DO: what about broadcast ? */ 234 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { 235 ip_rt_put(rt); 236 goto out; 237 } 238 239 skb_dst_drop(skb); 240 skb_dst_set(skb, &rt->dst); 241 err = 0; 242 out: 243 return err; 244 } 245 246 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 247 struct net_device *vrf_dev) 248 { 249 struct iphdr *ip4h = ip_hdr(skb); 250 int ret = NET_XMIT_DROP; 251 struct flowi4 fl4 = { 252 /* needed to match OIF rule */ 253 .flowi4_oif = vrf_dev->ifindex, 254 .flowi4_iif = LOOPBACK_IFINDEX, 255 .flowi4_tos = RT_TOS(ip4h->tos), 256 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC | 257 FLOWI_FLAG_SKIP_NH_OIF, 258 .daddr = ip4h->daddr, 259 }; 260 261 if (vrf_send_v4_prep(skb, &fl4, vrf_dev)) 262 goto err; 263 264 if (!ip4h->saddr) { 265 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 266 RT_SCOPE_LINK); 267 } 268 269 ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 270 if (unlikely(net_xmit_eval(ret))) 271 vrf_dev->stats.tx_errors++; 272 else 273 ret = NET_XMIT_SUCCESS; 274 275 out: 276 return ret; 277 err: 278 vrf_tx_error(vrf_dev, skb); 279 goto out; 280 } 281 282 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 283 { 284 /* strip the ethernet header added for pass through VRF device */ 285 __skb_pull(skb, skb_network_offset(skb)); 286 287 switch (skb->protocol) { 288 case htons(ETH_P_IP): 289 return vrf_process_v4_outbound(skb, dev); 290 case htons(ETH_P_IPV6): 291 return vrf_process_v6_outbound(skb, dev); 292 default: 293 vrf_tx_error(dev, skb); 294 return NET_XMIT_DROP; 295 } 296 } 297 298 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 299 { 300 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 301 302 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 303 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 304 305 u64_stats_update_begin(&dstats->syncp); 306 dstats->tx_pkts++; 307 dstats->tx_bytes += skb->len; 308 u64_stats_update_end(&dstats->syncp); 309 } else { 310 this_cpu_inc(dev->dstats->tx_drps); 311 } 312 313 return ret; 314 } 315 316 #if IS_ENABLED(CONFIG_IPV6) 317 /* modelled after ip6_finish_output2 */ 318 static int vrf_finish_output6(struct net *net, struct sock *sk, 319 struct sk_buff *skb) 320 { 321 struct dst_entry *dst = skb_dst(skb); 322 struct net_device *dev = dst->dev; 323 struct neighbour *neigh; 324 struct in6_addr *nexthop; 325 int ret; 326 327 skb->protocol = htons(ETH_P_IPV6); 328 skb->dev = dev; 329 330 rcu_read_lock_bh(); 331 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 332 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 333 if (unlikely(!neigh)) 334 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 335 if (!IS_ERR(neigh)) { 336 ret = dst_neigh_output(dst, neigh, skb); 337 rcu_read_unlock_bh(); 338 return ret; 339 } 340 rcu_read_unlock_bh(); 341 342 IP6_INC_STATS(dev_net(dst->dev), 343 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 344 kfree_skb(skb); 345 return -EINVAL; 346 } 347 348 /* modelled after ip6_output */ 349 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 350 { 351 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 352 net, sk, skb, NULL, skb_dst(skb)->dev, 353 vrf_finish_output6, 354 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 355 } 356 357 static void vrf_rt6_release(struct net_vrf *vrf) 358 { 359 dst_release(&vrf->rt6->dst); 360 vrf->rt6 = NULL; 361 } 362 363 static int vrf_rt6_create(struct net_device *dev) 364 { 365 struct net_vrf *vrf = netdev_priv(dev); 366 struct net *net = dev_net(dev); 367 struct rt6_info *rt6; 368 int rc = -ENOMEM; 369 370 rt6 = ip6_dst_alloc(net, dev, 371 DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE); 372 if (!rt6) 373 goto out; 374 375 rt6->dst.output = vrf_output6; 376 rt6->rt6i_table = fib6_get_table(net, vrf->tb_id); 377 dst_hold(&rt6->dst); 378 vrf->rt6 = rt6; 379 rc = 0; 380 out: 381 return rc; 382 } 383 #else 384 static void vrf_rt6_release(struct net_vrf *vrf) 385 { 386 } 387 388 static int vrf_rt6_create(struct net_device *dev) 389 { 390 return 0; 391 } 392 #endif 393 394 /* modelled after ip_finish_output2 */ 395 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 396 { 397 struct dst_entry *dst = skb_dst(skb); 398 struct rtable *rt = (struct rtable *)dst; 399 struct net_device *dev = dst->dev; 400 unsigned int hh_len = LL_RESERVED_SPACE(dev); 401 struct neighbour *neigh; 402 u32 nexthop; 403 int ret = -EINVAL; 404 405 /* Be paranoid, rather than too clever. */ 406 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 407 struct sk_buff *skb2; 408 409 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 410 if (!skb2) { 411 ret = -ENOMEM; 412 goto err; 413 } 414 if (skb->sk) 415 skb_set_owner_w(skb2, skb->sk); 416 417 consume_skb(skb); 418 skb = skb2; 419 } 420 421 rcu_read_lock_bh(); 422 423 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 424 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 425 if (unlikely(!neigh)) 426 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 427 if (!IS_ERR(neigh)) 428 ret = dst_neigh_output(dst, neigh, skb); 429 430 rcu_read_unlock_bh(); 431 err: 432 if (unlikely(ret < 0)) 433 vrf_tx_error(skb->dev, skb); 434 return ret; 435 } 436 437 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 438 { 439 struct net_device *dev = skb_dst(skb)->dev; 440 441 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 442 443 skb->dev = dev; 444 skb->protocol = htons(ETH_P_IP); 445 446 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 447 net, sk, skb, NULL, dev, 448 vrf_finish_output, 449 !(IPCB(skb)->flags & IPSKB_REROUTED)); 450 } 451 452 static void vrf_rtable_release(struct net_vrf *vrf) 453 { 454 struct dst_entry *dst = (struct dst_entry *)vrf->rth; 455 456 dst_release(dst); 457 vrf->rth = NULL; 458 } 459 460 static struct rtable *vrf_rtable_create(struct net_device *dev) 461 { 462 struct net_vrf *vrf = netdev_priv(dev); 463 struct rtable *rth; 464 465 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 466 if (rth) { 467 rth->dst.output = vrf_output; 468 rth->rt_table_id = vrf->tb_id; 469 } 470 471 return rth; 472 } 473 474 /**************************** device handling ********************/ 475 476 /* cycle interface to flush neighbor cache and move routes across tables */ 477 static void cycle_netdev(struct net_device *dev) 478 { 479 unsigned int flags = dev->flags; 480 int ret; 481 482 if (!netif_running(dev)) 483 return; 484 485 ret = dev_change_flags(dev, flags & ~IFF_UP); 486 if (ret >= 0) 487 ret = dev_change_flags(dev, flags); 488 489 if (ret < 0) { 490 netdev_err(dev, 491 "Failed to cycle device %s; route tables might be wrong!\n", 492 dev->name); 493 } 494 } 495 496 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 497 { 498 int ret; 499 500 /* register the packet handler for slave ports */ 501 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev); 502 if (ret) { 503 netdev_err(port_dev, 504 "Device %s failed to register rx_handler\n", 505 port_dev->name); 506 goto out_fail; 507 } 508 509 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL); 510 if (ret < 0) 511 goto out_unregister; 512 513 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 514 cycle_netdev(port_dev); 515 516 return 0; 517 518 out_unregister: 519 netdev_rx_handler_unregister(port_dev); 520 out_fail: 521 return ret; 522 } 523 524 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 525 { 526 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev)) 527 return -EINVAL; 528 529 return do_vrf_add_slave(dev, port_dev); 530 } 531 532 /* inverse of do_vrf_add_slave */ 533 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 534 { 535 netdev_upper_dev_unlink(port_dev, dev); 536 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 537 538 netdev_rx_handler_unregister(port_dev); 539 540 cycle_netdev(port_dev); 541 542 return 0; 543 } 544 545 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 546 { 547 return do_vrf_del_slave(dev, port_dev); 548 } 549 550 static void vrf_dev_uninit(struct net_device *dev) 551 { 552 struct net_vrf *vrf = netdev_priv(dev); 553 struct net_device *port_dev; 554 struct list_head *iter; 555 556 vrf_rtable_release(vrf); 557 vrf_rt6_release(vrf); 558 559 netdev_for_each_lower_dev(dev, port_dev, iter) 560 vrf_del_slave(dev, port_dev); 561 562 free_percpu(dev->dstats); 563 dev->dstats = NULL; 564 } 565 566 static int vrf_dev_init(struct net_device *dev) 567 { 568 struct net_vrf *vrf = netdev_priv(dev); 569 570 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 571 if (!dev->dstats) 572 goto out_nomem; 573 574 /* create the default dst which points back to us */ 575 vrf->rth = vrf_rtable_create(dev); 576 if (!vrf->rth) 577 goto out_stats; 578 579 if (vrf_rt6_create(dev) != 0) 580 goto out_rth; 581 582 dev->flags = IFF_MASTER | IFF_NOARP; 583 584 return 0; 585 586 out_rth: 587 vrf_rtable_release(vrf); 588 out_stats: 589 free_percpu(dev->dstats); 590 dev->dstats = NULL; 591 out_nomem: 592 return -ENOMEM; 593 } 594 595 static const struct net_device_ops vrf_netdev_ops = { 596 .ndo_init = vrf_dev_init, 597 .ndo_uninit = vrf_dev_uninit, 598 .ndo_start_xmit = vrf_xmit, 599 .ndo_get_stats64 = vrf_get_stats64, 600 .ndo_add_slave = vrf_add_slave, 601 .ndo_del_slave = vrf_del_slave, 602 }; 603 604 static u32 vrf_fib_table(const struct net_device *dev) 605 { 606 struct net_vrf *vrf = netdev_priv(dev); 607 608 return vrf->tb_id; 609 } 610 611 static struct rtable *vrf_get_rtable(const struct net_device *dev, 612 const struct flowi4 *fl4) 613 { 614 struct rtable *rth = NULL; 615 616 if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) { 617 struct net_vrf *vrf = netdev_priv(dev); 618 619 rth = vrf->rth; 620 dst_hold(&rth->dst); 621 } 622 623 return rth; 624 } 625 626 /* called under rcu_read_lock */ 627 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4) 628 { 629 struct fib_result res = { .tclassid = 0 }; 630 struct net *net = dev_net(dev); 631 u32 orig_tos = fl4->flowi4_tos; 632 u8 flags = fl4->flowi4_flags; 633 u8 scope = fl4->flowi4_scope; 634 u8 tos = RT_FL_TOS(fl4); 635 int rc; 636 637 if (unlikely(!fl4->daddr)) 638 return 0; 639 640 fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF; 641 fl4->flowi4_iif = LOOPBACK_IFINDEX; 642 fl4->flowi4_tos = tos & IPTOS_RT_MASK; 643 fl4->flowi4_scope = ((tos & RTO_ONLINK) ? 644 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE); 645 646 rc = fib_lookup(net, fl4, &res, 0); 647 if (!rc) { 648 if (res.type == RTN_LOCAL) 649 fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr; 650 else 651 fib_select_path(net, &res, fl4, -1); 652 } 653 654 fl4->flowi4_flags = flags; 655 fl4->flowi4_tos = orig_tos; 656 fl4->flowi4_scope = scope; 657 658 return rc; 659 } 660 661 #if IS_ENABLED(CONFIG_IPV6) 662 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev, 663 const struct flowi6 *fl6) 664 { 665 struct rt6_info *rt = NULL; 666 667 if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) { 668 struct net_vrf *vrf = netdev_priv(dev); 669 670 rt = vrf->rt6; 671 dst_hold(&rt->dst); 672 } 673 674 return (struct dst_entry *)rt; 675 } 676 #endif 677 678 static const struct l3mdev_ops vrf_l3mdev_ops = { 679 .l3mdev_fib_table = vrf_fib_table, 680 .l3mdev_get_rtable = vrf_get_rtable, 681 .l3mdev_get_saddr = vrf_get_saddr, 682 #if IS_ENABLED(CONFIG_IPV6) 683 .l3mdev_get_rt6_dst = vrf_get_rt6_dst, 684 #endif 685 }; 686 687 static void vrf_get_drvinfo(struct net_device *dev, 688 struct ethtool_drvinfo *info) 689 { 690 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 691 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 692 } 693 694 static const struct ethtool_ops vrf_ethtool_ops = { 695 .get_drvinfo = vrf_get_drvinfo, 696 }; 697 698 static void vrf_setup(struct net_device *dev) 699 { 700 ether_setup(dev); 701 702 /* Initialize the device structure. */ 703 dev->netdev_ops = &vrf_netdev_ops; 704 dev->l3mdev_ops = &vrf_l3mdev_ops; 705 dev->ethtool_ops = &vrf_ethtool_ops; 706 dev->destructor = free_netdev; 707 708 /* Fill in device structure with ethernet-generic values. */ 709 eth_hw_addr_random(dev); 710 711 /* don't acquire vrf device's netif_tx_lock when transmitting */ 712 dev->features |= NETIF_F_LLTX; 713 714 /* don't allow vrf devices to change network namespaces. */ 715 dev->features |= NETIF_F_NETNS_LOCAL; 716 } 717 718 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[]) 719 { 720 if (tb[IFLA_ADDRESS]) { 721 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 722 return -EINVAL; 723 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 724 return -EADDRNOTAVAIL; 725 } 726 return 0; 727 } 728 729 static void vrf_dellink(struct net_device *dev, struct list_head *head) 730 { 731 unregister_netdevice_queue(dev, head); 732 } 733 734 static int vrf_newlink(struct net *src_net, struct net_device *dev, 735 struct nlattr *tb[], struct nlattr *data[]) 736 { 737 struct net_vrf *vrf = netdev_priv(dev); 738 739 if (!data || !data[IFLA_VRF_TABLE]) 740 return -EINVAL; 741 742 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 743 744 dev->priv_flags |= IFF_L3MDEV_MASTER; 745 746 return register_netdevice(dev); 747 } 748 749 static size_t vrf_nl_getsize(const struct net_device *dev) 750 { 751 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 752 } 753 754 static int vrf_fillinfo(struct sk_buff *skb, 755 const struct net_device *dev) 756 { 757 struct net_vrf *vrf = netdev_priv(dev); 758 759 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 760 } 761 762 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 763 const struct net_device *slave_dev) 764 { 765 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 766 } 767 768 static int vrf_fill_slave_info(struct sk_buff *skb, 769 const struct net_device *vrf_dev, 770 const struct net_device *slave_dev) 771 { 772 struct net_vrf *vrf = netdev_priv(vrf_dev); 773 774 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 775 return -EMSGSIZE; 776 777 return 0; 778 } 779 780 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 781 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 782 }; 783 784 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 785 .kind = DRV_NAME, 786 .priv_size = sizeof(struct net_vrf), 787 788 .get_size = vrf_nl_getsize, 789 .policy = vrf_nl_policy, 790 .validate = vrf_validate, 791 .fill_info = vrf_fillinfo, 792 793 .get_slave_size = vrf_get_slave_size, 794 .fill_slave_info = vrf_fill_slave_info, 795 796 .newlink = vrf_newlink, 797 .dellink = vrf_dellink, 798 .setup = vrf_setup, 799 .maxtype = IFLA_VRF_MAX, 800 }; 801 802 static int vrf_device_event(struct notifier_block *unused, 803 unsigned long event, void *ptr) 804 { 805 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 806 807 /* only care about unregister events to drop slave references */ 808 if (event == NETDEV_UNREGISTER) { 809 struct net_device *vrf_dev; 810 811 if (!netif_is_l3_slave(dev)) 812 goto out; 813 814 vrf_dev = netdev_master_upper_dev_get(dev); 815 vrf_del_slave(vrf_dev, dev); 816 } 817 out: 818 return NOTIFY_DONE; 819 } 820 821 static struct notifier_block vrf_notifier_block __read_mostly = { 822 .notifier_call = vrf_device_event, 823 }; 824 825 static int __init vrf_init_module(void) 826 { 827 int rc; 828 829 register_netdevice_notifier(&vrf_notifier_block); 830 831 rc = rtnl_link_register(&vrf_link_ops); 832 if (rc < 0) 833 goto error; 834 835 return 0; 836 837 error: 838 unregister_netdevice_notifier(&vrf_notifier_block); 839 return rc; 840 } 841 842 module_init(vrf_init_module); 843 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 844 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 845 MODULE_LICENSE("GPL"); 846 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 847 MODULE_VERSION(DRV_VERSION); 848