1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * vrf.c: device driver to encapsulate a VRF space 4 * 5 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 8 * 9 * Based on dummy, team and ipvlan drivers 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/netdevice.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ip.h> 17 #include <linux/init.h> 18 #include <linux/moduleparam.h> 19 #include <linux/netfilter.h> 20 #include <linux/rtnetlink.h> 21 #include <net/rtnetlink.h> 22 #include <linux/u64_stats_sync.h> 23 #include <linux/hashtable.h> 24 25 #include <linux/inetdevice.h> 26 #include <net/arp.h> 27 #include <net/ip.h> 28 #include <net/ip_fib.h> 29 #include <net/ip6_fib.h> 30 #include <net/ip6_route.h> 31 #include <net/route.h> 32 #include <net/addrconf.h> 33 #include <net/l3mdev.h> 34 #include <net/fib_rules.h> 35 #include <net/netns/generic.h> 36 37 #define DRV_NAME "vrf" 38 #define DRV_VERSION "1.0" 39 40 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 41 42 static unsigned int vrf_net_id; 43 44 struct net_vrf { 45 struct rtable __rcu *rth; 46 struct rt6_info __rcu *rt6; 47 #if IS_ENABLED(CONFIG_IPV6) 48 struct fib6_table *fib6_table; 49 #endif 50 u32 tb_id; 51 }; 52 53 struct pcpu_dstats { 54 u64 tx_pkts; 55 u64 tx_bytes; 56 u64 tx_drps; 57 u64 rx_pkts; 58 u64 rx_bytes; 59 u64 rx_drps; 60 struct u64_stats_sync syncp; 61 }; 62 63 static void vrf_rx_stats(struct net_device *dev, int len) 64 { 65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 66 67 u64_stats_update_begin(&dstats->syncp); 68 dstats->rx_pkts++; 69 dstats->rx_bytes += len; 70 u64_stats_update_end(&dstats->syncp); 71 } 72 73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 74 { 75 vrf_dev->stats.tx_errors++; 76 kfree_skb(skb); 77 } 78 79 static void vrf_get_stats64(struct net_device *dev, 80 struct rtnl_link_stats64 *stats) 81 { 82 int i; 83 84 for_each_possible_cpu(i) { 85 const struct pcpu_dstats *dstats; 86 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 87 unsigned int start; 88 89 dstats = per_cpu_ptr(dev->dstats, i); 90 do { 91 start = u64_stats_fetch_begin_irq(&dstats->syncp); 92 tbytes = dstats->tx_bytes; 93 tpkts = dstats->tx_pkts; 94 tdrops = dstats->tx_drps; 95 rbytes = dstats->rx_bytes; 96 rpkts = dstats->rx_pkts; 97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 98 stats->tx_bytes += tbytes; 99 stats->tx_packets += tpkts; 100 stats->tx_dropped += tdrops; 101 stats->rx_bytes += rbytes; 102 stats->rx_packets += rpkts; 103 } 104 } 105 106 /* by default VRF devices do not have a qdisc and are expected 107 * to be created with only a single queue. 108 */ 109 static bool qdisc_tx_is_default(const struct net_device *dev) 110 { 111 struct netdev_queue *txq; 112 struct Qdisc *qdisc; 113 114 if (dev->num_tx_queues > 1) 115 return false; 116 117 txq = netdev_get_tx_queue(dev, 0); 118 qdisc = rcu_access_pointer(txq->qdisc); 119 120 return !qdisc->enqueue; 121 } 122 123 /* Local traffic destined to local address. Reinsert the packet to rx 124 * path, similar to loopback handling. 125 */ 126 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 127 struct dst_entry *dst) 128 { 129 int len = skb->len; 130 131 skb_orphan(skb); 132 133 skb_dst_set(skb, dst); 134 135 /* set pkt_type to avoid skb hitting packet taps twice - 136 * once on Tx and again in Rx processing 137 */ 138 skb->pkt_type = PACKET_LOOPBACK; 139 140 skb->protocol = eth_type_trans(skb, dev); 141 142 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 143 vrf_rx_stats(dev, len); 144 else 145 this_cpu_inc(dev->dstats->rx_drps); 146 147 return NETDEV_TX_OK; 148 } 149 150 #if IS_ENABLED(CONFIG_IPV6) 151 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 152 struct sk_buff *skb) 153 { 154 int err; 155 156 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 157 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 158 159 if (likely(err == 1)) 160 err = dst_output(net, sk, skb); 161 162 return err; 163 } 164 165 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 166 struct net_device *dev) 167 { 168 const struct ipv6hdr *iph = ipv6_hdr(skb); 169 struct net *net = dev_net(skb->dev); 170 struct flowi6 fl6 = { 171 /* needed to match OIF rule */ 172 .flowi6_oif = dev->ifindex, 173 .flowi6_iif = LOOPBACK_IFINDEX, 174 .daddr = iph->daddr, 175 .saddr = iph->saddr, 176 .flowlabel = ip6_flowinfo(iph), 177 .flowi6_mark = skb->mark, 178 .flowi6_proto = iph->nexthdr, 179 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF, 180 }; 181 int ret = NET_XMIT_DROP; 182 struct dst_entry *dst; 183 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 184 185 dst = ip6_route_output(net, NULL, &fl6); 186 if (dst == dst_null) 187 goto err; 188 189 skb_dst_drop(skb); 190 191 /* if dst.dev is loopback or the VRF device again this is locally 192 * originated traffic destined to a local address. Short circuit 193 * to Rx path 194 */ 195 if (dst->dev == dev) 196 return vrf_local_xmit(skb, dev, dst); 197 198 skb_dst_set(skb, dst); 199 200 /* strip the ethernet header added for pass through VRF device */ 201 __skb_pull(skb, skb_network_offset(skb)); 202 203 ret = vrf_ip6_local_out(net, skb->sk, skb); 204 if (unlikely(net_xmit_eval(ret))) 205 dev->stats.tx_errors++; 206 else 207 ret = NET_XMIT_SUCCESS; 208 209 return ret; 210 err: 211 vrf_tx_error(dev, skb); 212 return NET_XMIT_DROP; 213 } 214 #else 215 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 216 struct net_device *dev) 217 { 218 vrf_tx_error(dev, skb); 219 return NET_XMIT_DROP; 220 } 221 #endif 222 223 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 224 static int vrf_ip_local_out(struct net *net, struct sock *sk, 225 struct sk_buff *skb) 226 { 227 int err; 228 229 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 230 skb, NULL, skb_dst(skb)->dev, dst_output); 231 if (likely(err == 1)) 232 err = dst_output(net, sk, skb); 233 234 return err; 235 } 236 237 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 238 struct net_device *vrf_dev) 239 { 240 struct iphdr *ip4h = ip_hdr(skb); 241 int ret = NET_XMIT_DROP; 242 struct flowi4 fl4 = { 243 /* needed to match OIF rule */ 244 .flowi4_oif = vrf_dev->ifindex, 245 .flowi4_iif = LOOPBACK_IFINDEX, 246 .flowi4_tos = RT_TOS(ip4h->tos), 247 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF, 248 .flowi4_proto = ip4h->protocol, 249 .daddr = ip4h->daddr, 250 .saddr = ip4h->saddr, 251 }; 252 struct net *net = dev_net(vrf_dev); 253 struct rtable *rt; 254 255 rt = ip_route_output_flow(net, &fl4, NULL); 256 if (IS_ERR(rt)) 257 goto err; 258 259 skb_dst_drop(skb); 260 261 /* if dst.dev is loopback or the VRF device again this is locally 262 * originated traffic destined to a local address. Short circuit 263 * to Rx path 264 */ 265 if (rt->dst.dev == vrf_dev) 266 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 267 268 skb_dst_set(skb, &rt->dst); 269 270 /* strip the ethernet header added for pass through VRF device */ 271 __skb_pull(skb, skb_network_offset(skb)); 272 273 if (!ip4h->saddr) { 274 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 275 RT_SCOPE_LINK); 276 } 277 278 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 279 if (unlikely(net_xmit_eval(ret))) 280 vrf_dev->stats.tx_errors++; 281 else 282 ret = NET_XMIT_SUCCESS; 283 284 out: 285 return ret; 286 err: 287 vrf_tx_error(vrf_dev, skb); 288 goto out; 289 } 290 291 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 292 { 293 switch (skb->protocol) { 294 case htons(ETH_P_IP): 295 return vrf_process_v4_outbound(skb, dev); 296 case htons(ETH_P_IPV6): 297 return vrf_process_v6_outbound(skb, dev); 298 default: 299 vrf_tx_error(dev, skb); 300 return NET_XMIT_DROP; 301 } 302 } 303 304 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 305 { 306 int len = skb->len; 307 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 308 309 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 310 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 311 312 u64_stats_update_begin(&dstats->syncp); 313 dstats->tx_pkts++; 314 dstats->tx_bytes += len; 315 u64_stats_update_end(&dstats->syncp); 316 } else { 317 this_cpu_inc(dev->dstats->tx_drps); 318 } 319 320 return ret; 321 } 322 323 static int vrf_finish_direct(struct net *net, struct sock *sk, 324 struct sk_buff *skb) 325 { 326 struct net_device *vrf_dev = skb->dev; 327 328 if (!list_empty(&vrf_dev->ptype_all) && 329 likely(skb_headroom(skb) >= ETH_HLEN)) { 330 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 331 332 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 333 eth_zero_addr(eth->h_dest); 334 eth->h_proto = skb->protocol; 335 336 rcu_read_lock_bh(); 337 dev_queue_xmit_nit(skb, vrf_dev); 338 rcu_read_unlock_bh(); 339 340 skb_pull(skb, ETH_HLEN); 341 } 342 343 return 1; 344 } 345 346 #if IS_ENABLED(CONFIG_IPV6) 347 /* modelled after ip6_finish_output2 */ 348 static int vrf_finish_output6(struct net *net, struct sock *sk, 349 struct sk_buff *skb) 350 { 351 struct dst_entry *dst = skb_dst(skb); 352 struct net_device *dev = dst->dev; 353 const struct in6_addr *nexthop; 354 struct neighbour *neigh; 355 int ret; 356 357 nf_reset(skb); 358 359 skb->protocol = htons(ETH_P_IPV6); 360 skb->dev = dev; 361 362 rcu_read_lock_bh(); 363 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 364 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 365 if (unlikely(!neigh)) 366 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 367 if (!IS_ERR(neigh)) { 368 sock_confirm_neigh(skb, neigh); 369 ret = neigh_output(neigh, skb, false); 370 rcu_read_unlock_bh(); 371 return ret; 372 } 373 rcu_read_unlock_bh(); 374 375 IP6_INC_STATS(dev_net(dst->dev), 376 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 377 kfree_skb(skb); 378 return -EINVAL; 379 } 380 381 /* modelled after ip6_output */ 382 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 383 { 384 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 385 net, sk, skb, NULL, skb_dst(skb)->dev, 386 vrf_finish_output6, 387 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 388 } 389 390 /* set dst on skb to send packet to us via dev_xmit path. Allows 391 * packet to go through device based features such as qdisc, netfilter 392 * hooks and packet sockets with skb->dev set to vrf device. 393 */ 394 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 395 struct sk_buff *skb) 396 { 397 struct net_vrf *vrf = netdev_priv(vrf_dev); 398 struct dst_entry *dst = NULL; 399 struct rt6_info *rt6; 400 401 rcu_read_lock(); 402 403 rt6 = rcu_dereference(vrf->rt6); 404 if (likely(rt6)) { 405 dst = &rt6->dst; 406 dst_hold(dst); 407 } 408 409 rcu_read_unlock(); 410 411 if (unlikely(!dst)) { 412 vrf_tx_error(vrf_dev, skb); 413 return NULL; 414 } 415 416 skb_dst_drop(skb); 417 skb_dst_set(skb, dst); 418 419 return skb; 420 } 421 422 static int vrf_output6_direct(struct net *net, struct sock *sk, 423 struct sk_buff *skb) 424 { 425 skb->protocol = htons(ETH_P_IPV6); 426 427 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 428 net, sk, skb, NULL, skb->dev, 429 vrf_finish_direct, 430 !(IPCB(skb)->flags & IPSKB_REROUTED)); 431 } 432 433 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 434 struct sock *sk, 435 struct sk_buff *skb) 436 { 437 struct net *net = dev_net(vrf_dev); 438 int err; 439 440 skb->dev = vrf_dev; 441 442 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 443 skb, NULL, vrf_dev, vrf_output6_direct); 444 445 if (likely(err == 1)) 446 err = vrf_output6_direct(net, sk, skb); 447 448 /* reset skb device */ 449 if (likely(err == 1)) 450 nf_reset(skb); 451 else 452 skb = NULL; 453 454 return skb; 455 } 456 457 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 458 struct sock *sk, 459 struct sk_buff *skb) 460 { 461 /* don't divert link scope packets */ 462 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 463 return skb; 464 465 if (qdisc_tx_is_default(vrf_dev)) 466 return vrf_ip6_out_direct(vrf_dev, sk, skb); 467 468 return vrf_ip6_out_redirect(vrf_dev, skb); 469 } 470 471 /* holding rtnl */ 472 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 473 { 474 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 475 struct net *net = dev_net(dev); 476 struct dst_entry *dst; 477 478 RCU_INIT_POINTER(vrf->rt6, NULL); 479 synchronize_rcu(); 480 481 /* move dev in dst's to loopback so this VRF device can be deleted 482 * - based on dst_ifdown 483 */ 484 if (rt6) { 485 dst = &rt6->dst; 486 dev_put(dst->dev); 487 dst->dev = net->loopback_dev; 488 dev_hold(dst->dev); 489 dst_release(dst); 490 } 491 } 492 493 static int vrf_rt6_create(struct net_device *dev) 494 { 495 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM; 496 struct net_vrf *vrf = netdev_priv(dev); 497 struct net *net = dev_net(dev); 498 struct rt6_info *rt6; 499 int rc = -ENOMEM; 500 501 /* IPv6 can be CONFIG enabled and then disabled runtime */ 502 if (!ipv6_mod_enabled()) 503 return 0; 504 505 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 506 if (!vrf->fib6_table) 507 goto out; 508 509 /* create a dst for routing packets out a VRF device */ 510 rt6 = ip6_dst_alloc(net, dev, flags); 511 if (!rt6) 512 goto out; 513 514 rt6->dst.output = vrf_output6; 515 516 rcu_assign_pointer(vrf->rt6, rt6); 517 518 rc = 0; 519 out: 520 return rc; 521 } 522 #else 523 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 524 struct sock *sk, 525 struct sk_buff *skb) 526 { 527 return skb; 528 } 529 530 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 531 { 532 } 533 534 static int vrf_rt6_create(struct net_device *dev) 535 { 536 return 0; 537 } 538 #endif 539 540 /* modelled after ip_finish_output2 */ 541 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 542 { 543 struct dst_entry *dst = skb_dst(skb); 544 struct rtable *rt = (struct rtable *)dst; 545 struct net_device *dev = dst->dev; 546 unsigned int hh_len = LL_RESERVED_SPACE(dev); 547 struct neighbour *neigh; 548 bool is_v6gw = false; 549 int ret = -EINVAL; 550 551 nf_reset(skb); 552 553 /* Be paranoid, rather than too clever. */ 554 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 555 struct sk_buff *skb2; 556 557 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 558 if (!skb2) { 559 ret = -ENOMEM; 560 goto err; 561 } 562 if (skb->sk) 563 skb_set_owner_w(skb2, skb->sk); 564 565 consume_skb(skb); 566 skb = skb2; 567 } 568 569 rcu_read_lock_bh(); 570 571 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 572 if (!IS_ERR(neigh)) { 573 sock_confirm_neigh(skb, neigh); 574 /* if crossing protocols, can not use the cached header */ 575 ret = neigh_output(neigh, skb, is_v6gw); 576 rcu_read_unlock_bh(); 577 return ret; 578 } 579 580 rcu_read_unlock_bh(); 581 err: 582 vrf_tx_error(skb->dev, skb); 583 return ret; 584 } 585 586 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 587 { 588 struct net_device *dev = skb_dst(skb)->dev; 589 590 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 591 592 skb->dev = dev; 593 skb->protocol = htons(ETH_P_IP); 594 595 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 596 net, sk, skb, NULL, dev, 597 vrf_finish_output, 598 !(IPCB(skb)->flags & IPSKB_REROUTED)); 599 } 600 601 /* set dst on skb to send packet to us via dev_xmit path. Allows 602 * packet to go through device based features such as qdisc, netfilter 603 * hooks and packet sockets with skb->dev set to vrf device. 604 */ 605 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 606 struct sk_buff *skb) 607 { 608 struct net_vrf *vrf = netdev_priv(vrf_dev); 609 struct dst_entry *dst = NULL; 610 struct rtable *rth; 611 612 rcu_read_lock(); 613 614 rth = rcu_dereference(vrf->rth); 615 if (likely(rth)) { 616 dst = &rth->dst; 617 dst_hold(dst); 618 } 619 620 rcu_read_unlock(); 621 622 if (unlikely(!dst)) { 623 vrf_tx_error(vrf_dev, skb); 624 return NULL; 625 } 626 627 skb_dst_drop(skb); 628 skb_dst_set(skb, dst); 629 630 return skb; 631 } 632 633 static int vrf_output_direct(struct net *net, struct sock *sk, 634 struct sk_buff *skb) 635 { 636 skb->protocol = htons(ETH_P_IP); 637 638 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 639 net, sk, skb, NULL, skb->dev, 640 vrf_finish_direct, 641 !(IPCB(skb)->flags & IPSKB_REROUTED)); 642 } 643 644 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 645 struct sock *sk, 646 struct sk_buff *skb) 647 { 648 struct net *net = dev_net(vrf_dev); 649 int err; 650 651 skb->dev = vrf_dev; 652 653 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 654 skb, NULL, vrf_dev, vrf_output_direct); 655 656 if (likely(err == 1)) 657 err = vrf_output_direct(net, sk, skb); 658 659 /* reset skb device */ 660 if (likely(err == 1)) 661 nf_reset(skb); 662 else 663 skb = NULL; 664 665 return skb; 666 } 667 668 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 669 struct sock *sk, 670 struct sk_buff *skb) 671 { 672 /* don't divert multicast or local broadcast */ 673 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 674 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 675 return skb; 676 677 if (qdisc_tx_is_default(vrf_dev)) 678 return vrf_ip_out_direct(vrf_dev, sk, skb); 679 680 return vrf_ip_out_redirect(vrf_dev, skb); 681 } 682 683 /* called with rcu lock held */ 684 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 685 struct sock *sk, 686 struct sk_buff *skb, 687 u16 proto) 688 { 689 switch (proto) { 690 case AF_INET: 691 return vrf_ip_out(vrf_dev, sk, skb); 692 case AF_INET6: 693 return vrf_ip6_out(vrf_dev, sk, skb); 694 } 695 696 return skb; 697 } 698 699 /* holding rtnl */ 700 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 701 { 702 struct rtable *rth = rtnl_dereference(vrf->rth); 703 struct net *net = dev_net(dev); 704 struct dst_entry *dst; 705 706 RCU_INIT_POINTER(vrf->rth, NULL); 707 synchronize_rcu(); 708 709 /* move dev in dst's to loopback so this VRF device can be deleted 710 * - based on dst_ifdown 711 */ 712 if (rth) { 713 dst = &rth->dst; 714 dev_put(dst->dev); 715 dst->dev = net->loopback_dev; 716 dev_hold(dst->dev); 717 dst_release(dst); 718 } 719 } 720 721 static int vrf_rtable_create(struct net_device *dev) 722 { 723 struct net_vrf *vrf = netdev_priv(dev); 724 struct rtable *rth; 725 726 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 727 return -ENOMEM; 728 729 /* create a dst for routing packets out through a VRF device */ 730 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 731 if (!rth) 732 return -ENOMEM; 733 734 rth->dst.output = vrf_output; 735 736 rcu_assign_pointer(vrf->rth, rth); 737 738 return 0; 739 } 740 741 /**************************** device handling ********************/ 742 743 /* cycle interface to flush neighbor cache and move routes across tables */ 744 static void cycle_netdev(struct net_device *dev, 745 struct netlink_ext_ack *extack) 746 { 747 unsigned int flags = dev->flags; 748 int ret; 749 750 if (!netif_running(dev)) 751 return; 752 753 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 754 if (ret >= 0) 755 ret = dev_change_flags(dev, flags, extack); 756 757 if (ret < 0) { 758 netdev_err(dev, 759 "Failed to cycle device %s; route tables might be wrong!\n", 760 dev->name); 761 } 762 } 763 764 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 765 struct netlink_ext_ack *extack) 766 { 767 int ret; 768 769 /* do not allow loopback device to be enslaved to a VRF. 770 * The vrf device acts as the loopback for the vrf. 771 */ 772 if (port_dev == dev_net(dev)->loopback_dev) { 773 NL_SET_ERR_MSG(extack, 774 "Can not enslave loopback device to a VRF"); 775 return -EOPNOTSUPP; 776 } 777 778 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 779 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 780 if (ret < 0) 781 goto err; 782 783 cycle_netdev(port_dev, extack); 784 785 return 0; 786 787 err: 788 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 789 return ret; 790 } 791 792 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 793 struct netlink_ext_ack *extack) 794 { 795 if (netif_is_l3_master(port_dev)) { 796 NL_SET_ERR_MSG(extack, 797 "Can not enslave an L3 master device to a VRF"); 798 return -EINVAL; 799 } 800 801 if (netif_is_l3_slave(port_dev)) 802 return -EINVAL; 803 804 return do_vrf_add_slave(dev, port_dev, extack); 805 } 806 807 /* inverse of do_vrf_add_slave */ 808 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 809 { 810 netdev_upper_dev_unlink(port_dev, dev); 811 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 812 813 cycle_netdev(port_dev, NULL); 814 815 return 0; 816 } 817 818 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 819 { 820 return do_vrf_del_slave(dev, port_dev); 821 } 822 823 static void vrf_dev_uninit(struct net_device *dev) 824 { 825 struct net_vrf *vrf = netdev_priv(dev); 826 827 vrf_rtable_release(dev, vrf); 828 vrf_rt6_release(dev, vrf); 829 830 free_percpu(dev->dstats); 831 dev->dstats = NULL; 832 } 833 834 static int vrf_dev_init(struct net_device *dev) 835 { 836 struct net_vrf *vrf = netdev_priv(dev); 837 838 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 839 if (!dev->dstats) 840 goto out_nomem; 841 842 /* create the default dst which points back to us */ 843 if (vrf_rtable_create(dev) != 0) 844 goto out_stats; 845 846 if (vrf_rt6_create(dev) != 0) 847 goto out_rth; 848 849 dev->flags = IFF_MASTER | IFF_NOARP; 850 851 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 852 dev->mtu = 64 * 1024; 853 854 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 855 dev->operstate = IF_OPER_UP; 856 netdev_lockdep_set_classes(dev); 857 return 0; 858 859 out_rth: 860 vrf_rtable_release(dev, vrf); 861 out_stats: 862 free_percpu(dev->dstats); 863 dev->dstats = NULL; 864 out_nomem: 865 return -ENOMEM; 866 } 867 868 static const struct net_device_ops vrf_netdev_ops = { 869 .ndo_init = vrf_dev_init, 870 .ndo_uninit = vrf_dev_uninit, 871 .ndo_start_xmit = vrf_xmit, 872 .ndo_set_mac_address = eth_mac_addr, 873 .ndo_get_stats64 = vrf_get_stats64, 874 .ndo_add_slave = vrf_add_slave, 875 .ndo_del_slave = vrf_del_slave, 876 }; 877 878 static u32 vrf_fib_table(const struct net_device *dev) 879 { 880 struct net_vrf *vrf = netdev_priv(dev); 881 882 return vrf->tb_id; 883 } 884 885 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 886 { 887 kfree_skb(skb); 888 return 0; 889 } 890 891 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 892 struct sk_buff *skb, 893 struct net_device *dev) 894 { 895 struct net *net = dev_net(dev); 896 897 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 898 skb = NULL; /* kfree_skb(skb) handled by nf code */ 899 900 return skb; 901 } 902 903 #if IS_ENABLED(CONFIG_IPV6) 904 /* neighbor handling is done with actual device; do not want 905 * to flip skb->dev for those ndisc packets. This really fails 906 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 907 * a start. 908 */ 909 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 910 { 911 const struct ipv6hdr *iph = ipv6_hdr(skb); 912 bool rc = false; 913 914 if (iph->nexthdr == NEXTHDR_ICMP) { 915 const struct icmp6hdr *icmph; 916 struct icmp6hdr _icmph; 917 918 icmph = skb_header_pointer(skb, sizeof(*iph), 919 sizeof(_icmph), &_icmph); 920 if (!icmph) 921 goto out; 922 923 switch (icmph->icmp6_type) { 924 case NDISC_ROUTER_SOLICITATION: 925 case NDISC_ROUTER_ADVERTISEMENT: 926 case NDISC_NEIGHBOUR_SOLICITATION: 927 case NDISC_NEIGHBOUR_ADVERTISEMENT: 928 case NDISC_REDIRECT: 929 rc = true; 930 break; 931 } 932 } 933 934 out: 935 return rc; 936 } 937 938 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 939 const struct net_device *dev, 940 struct flowi6 *fl6, 941 int ifindex, 942 const struct sk_buff *skb, 943 int flags) 944 { 945 struct net_vrf *vrf = netdev_priv(dev); 946 947 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 948 } 949 950 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 951 int ifindex) 952 { 953 const struct ipv6hdr *iph = ipv6_hdr(skb); 954 struct flowi6 fl6 = { 955 .flowi6_iif = ifindex, 956 .flowi6_mark = skb->mark, 957 .flowi6_proto = iph->nexthdr, 958 .daddr = iph->daddr, 959 .saddr = iph->saddr, 960 .flowlabel = ip6_flowinfo(iph), 961 }; 962 struct net *net = dev_net(vrf_dev); 963 struct rt6_info *rt6; 964 965 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 966 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 967 if (unlikely(!rt6)) 968 return; 969 970 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 971 return; 972 973 skb_dst_set(skb, &rt6->dst); 974 } 975 976 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 977 struct sk_buff *skb) 978 { 979 int orig_iif = skb->skb_iif; 980 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 981 bool is_ndisc = ipv6_ndisc_frame(skb); 982 983 /* loopback, multicast & non-ND link-local traffic; do not push through 984 * packet taps again. Reset pkt_type for upper layers to process skb 985 */ 986 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 987 skb->dev = vrf_dev; 988 skb->skb_iif = vrf_dev->ifindex; 989 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 990 if (skb->pkt_type == PACKET_LOOPBACK) 991 skb->pkt_type = PACKET_HOST; 992 goto out; 993 } 994 995 /* if packet is NDISC then keep the ingress interface */ 996 if (!is_ndisc) { 997 vrf_rx_stats(vrf_dev, skb->len); 998 skb->dev = vrf_dev; 999 skb->skb_iif = vrf_dev->ifindex; 1000 1001 if (!list_empty(&vrf_dev->ptype_all)) { 1002 skb_push(skb, skb->mac_len); 1003 dev_queue_xmit_nit(skb, vrf_dev); 1004 skb_pull(skb, skb->mac_len); 1005 } 1006 1007 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1008 } 1009 1010 if (need_strict) 1011 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1012 1013 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1014 out: 1015 return skb; 1016 } 1017 1018 #else 1019 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1020 struct sk_buff *skb) 1021 { 1022 return skb; 1023 } 1024 #endif 1025 1026 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1027 struct sk_buff *skb) 1028 { 1029 skb->dev = vrf_dev; 1030 skb->skb_iif = vrf_dev->ifindex; 1031 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1032 1033 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1034 goto out; 1035 1036 /* loopback traffic; do not push through packet taps again. 1037 * Reset pkt_type for upper layers to process skb 1038 */ 1039 if (skb->pkt_type == PACKET_LOOPBACK) { 1040 skb->pkt_type = PACKET_HOST; 1041 goto out; 1042 } 1043 1044 vrf_rx_stats(vrf_dev, skb->len); 1045 1046 if (!list_empty(&vrf_dev->ptype_all)) { 1047 skb_push(skb, skb->mac_len); 1048 dev_queue_xmit_nit(skb, vrf_dev); 1049 skb_pull(skb, skb->mac_len); 1050 } 1051 1052 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1053 out: 1054 return skb; 1055 } 1056 1057 /* called with rcu lock held */ 1058 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1059 struct sk_buff *skb, 1060 u16 proto) 1061 { 1062 switch (proto) { 1063 case AF_INET: 1064 return vrf_ip_rcv(vrf_dev, skb); 1065 case AF_INET6: 1066 return vrf_ip6_rcv(vrf_dev, skb); 1067 } 1068 1069 return skb; 1070 } 1071 1072 #if IS_ENABLED(CONFIG_IPV6) 1073 /* send to link-local or multicast address via interface enslaved to 1074 * VRF device. Force lookup to VRF table without changing flow struct 1075 * Note: Caller to this function must hold rcu_read_lock() and no refcnt 1076 * is taken on the dst by this function. 1077 */ 1078 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1079 struct flowi6 *fl6) 1080 { 1081 struct net *net = dev_net(dev); 1082 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; 1083 struct dst_entry *dst = NULL; 1084 struct rt6_info *rt; 1085 1086 /* VRF device does not have a link-local address and 1087 * sending packets to link-local or mcast addresses over 1088 * a VRF device does not make sense 1089 */ 1090 if (fl6->flowi6_oif == dev->ifindex) { 1091 dst = &net->ipv6.ip6_null_entry->dst; 1092 return dst; 1093 } 1094 1095 if (!ipv6_addr_any(&fl6->saddr)) 1096 flags |= RT6_LOOKUP_F_HAS_SADDR; 1097 1098 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1099 if (rt) 1100 dst = &rt->dst; 1101 1102 return dst; 1103 } 1104 #endif 1105 1106 static const struct l3mdev_ops vrf_l3mdev_ops = { 1107 .l3mdev_fib_table = vrf_fib_table, 1108 .l3mdev_l3_rcv = vrf_l3_rcv, 1109 .l3mdev_l3_out = vrf_l3_out, 1110 #if IS_ENABLED(CONFIG_IPV6) 1111 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1112 #endif 1113 }; 1114 1115 static void vrf_get_drvinfo(struct net_device *dev, 1116 struct ethtool_drvinfo *info) 1117 { 1118 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1119 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1120 } 1121 1122 static const struct ethtool_ops vrf_ethtool_ops = { 1123 .get_drvinfo = vrf_get_drvinfo, 1124 }; 1125 1126 static inline size_t vrf_fib_rule_nl_size(void) 1127 { 1128 size_t sz; 1129 1130 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1131 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1132 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1133 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1134 1135 return sz; 1136 } 1137 1138 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1139 { 1140 struct fib_rule_hdr *frh; 1141 struct nlmsghdr *nlh; 1142 struct sk_buff *skb; 1143 int err; 1144 1145 if (family == AF_INET6 && !ipv6_mod_enabled()) 1146 return 0; 1147 1148 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1149 if (!skb) 1150 return -ENOMEM; 1151 1152 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1153 if (!nlh) 1154 goto nla_put_failure; 1155 1156 /* rule only needs to appear once */ 1157 nlh->nlmsg_flags |= NLM_F_EXCL; 1158 1159 frh = nlmsg_data(nlh); 1160 memset(frh, 0, sizeof(*frh)); 1161 frh->family = family; 1162 frh->action = FR_ACT_TO_TBL; 1163 1164 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1165 goto nla_put_failure; 1166 1167 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1168 goto nla_put_failure; 1169 1170 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1171 goto nla_put_failure; 1172 1173 nlmsg_end(skb, nlh); 1174 1175 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1176 skb->sk = dev_net(dev)->rtnl; 1177 if (add_it) { 1178 err = fib_nl_newrule(skb, nlh, NULL); 1179 if (err == -EEXIST) 1180 err = 0; 1181 } else { 1182 err = fib_nl_delrule(skb, nlh, NULL); 1183 if (err == -ENOENT) 1184 err = 0; 1185 } 1186 nlmsg_free(skb); 1187 1188 return err; 1189 1190 nla_put_failure: 1191 nlmsg_free(skb); 1192 1193 return -EMSGSIZE; 1194 } 1195 1196 static int vrf_add_fib_rules(const struct net_device *dev) 1197 { 1198 int err; 1199 1200 err = vrf_fib_rule(dev, AF_INET, true); 1201 if (err < 0) 1202 goto out_err; 1203 1204 err = vrf_fib_rule(dev, AF_INET6, true); 1205 if (err < 0) 1206 goto ipv6_err; 1207 1208 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1209 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1210 if (err < 0) 1211 goto ipmr_err; 1212 #endif 1213 1214 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1215 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1216 if (err < 0) 1217 goto ip6mr_err; 1218 #endif 1219 1220 return 0; 1221 1222 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1223 ip6mr_err: 1224 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1225 #endif 1226 1227 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1228 ipmr_err: 1229 vrf_fib_rule(dev, AF_INET6, false); 1230 #endif 1231 1232 ipv6_err: 1233 vrf_fib_rule(dev, AF_INET, false); 1234 1235 out_err: 1236 netdev_err(dev, "Failed to add FIB rules.\n"); 1237 return err; 1238 } 1239 1240 static void vrf_setup(struct net_device *dev) 1241 { 1242 ether_setup(dev); 1243 1244 /* Initialize the device structure. */ 1245 dev->netdev_ops = &vrf_netdev_ops; 1246 dev->l3mdev_ops = &vrf_l3mdev_ops; 1247 dev->ethtool_ops = &vrf_ethtool_ops; 1248 dev->needs_free_netdev = true; 1249 1250 /* Fill in device structure with ethernet-generic values. */ 1251 eth_hw_addr_random(dev); 1252 1253 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1254 dev->features |= NETIF_F_LLTX; 1255 1256 /* don't allow vrf devices to change network namespaces. */ 1257 dev->features |= NETIF_F_NETNS_LOCAL; 1258 1259 /* does not make sense for a VLAN to be added to a vrf device */ 1260 dev->features |= NETIF_F_VLAN_CHALLENGED; 1261 1262 /* enable offload features */ 1263 dev->features |= NETIF_F_GSO_SOFTWARE; 1264 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1265 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1266 1267 dev->hw_features = dev->features; 1268 dev->hw_enc_features = dev->features; 1269 1270 /* default to no qdisc; user can add if desired */ 1271 dev->priv_flags |= IFF_NO_QUEUE; 1272 dev->priv_flags |= IFF_NO_RX_HANDLER; 1273 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1274 1275 /* VRF devices do not care about MTU, but if the MTU is set 1276 * too low then the ipv4 and ipv6 protocols are disabled 1277 * which breaks networking. 1278 */ 1279 dev->min_mtu = IPV6_MIN_MTU; 1280 dev->max_mtu = ETH_MAX_MTU; 1281 } 1282 1283 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1284 struct netlink_ext_ack *extack) 1285 { 1286 if (tb[IFLA_ADDRESS]) { 1287 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1288 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1289 return -EINVAL; 1290 } 1291 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1292 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1293 return -EADDRNOTAVAIL; 1294 } 1295 } 1296 return 0; 1297 } 1298 1299 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1300 { 1301 struct net_device *port_dev; 1302 struct list_head *iter; 1303 1304 netdev_for_each_lower_dev(dev, port_dev, iter) 1305 vrf_del_slave(dev, port_dev); 1306 1307 unregister_netdevice_queue(dev, head); 1308 } 1309 1310 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1311 struct nlattr *tb[], struct nlattr *data[], 1312 struct netlink_ext_ack *extack) 1313 { 1314 struct net_vrf *vrf = netdev_priv(dev); 1315 bool *add_fib_rules; 1316 struct net *net; 1317 int err; 1318 1319 if (!data || !data[IFLA_VRF_TABLE]) { 1320 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1321 return -EINVAL; 1322 } 1323 1324 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1325 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1326 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1327 "Invalid VRF table id"); 1328 return -EINVAL; 1329 } 1330 1331 dev->priv_flags |= IFF_L3MDEV_MASTER; 1332 1333 err = register_netdevice(dev); 1334 if (err) 1335 goto out; 1336 1337 net = dev_net(dev); 1338 add_fib_rules = net_generic(net, vrf_net_id); 1339 if (*add_fib_rules) { 1340 err = vrf_add_fib_rules(dev); 1341 if (err) { 1342 unregister_netdevice(dev); 1343 goto out; 1344 } 1345 *add_fib_rules = false; 1346 } 1347 1348 out: 1349 return err; 1350 } 1351 1352 static size_t vrf_nl_getsize(const struct net_device *dev) 1353 { 1354 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1355 } 1356 1357 static int vrf_fillinfo(struct sk_buff *skb, 1358 const struct net_device *dev) 1359 { 1360 struct net_vrf *vrf = netdev_priv(dev); 1361 1362 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1363 } 1364 1365 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1366 const struct net_device *slave_dev) 1367 { 1368 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1369 } 1370 1371 static int vrf_fill_slave_info(struct sk_buff *skb, 1372 const struct net_device *vrf_dev, 1373 const struct net_device *slave_dev) 1374 { 1375 struct net_vrf *vrf = netdev_priv(vrf_dev); 1376 1377 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1378 return -EMSGSIZE; 1379 1380 return 0; 1381 } 1382 1383 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1384 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1385 }; 1386 1387 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1388 .kind = DRV_NAME, 1389 .priv_size = sizeof(struct net_vrf), 1390 1391 .get_size = vrf_nl_getsize, 1392 .policy = vrf_nl_policy, 1393 .validate = vrf_validate, 1394 .fill_info = vrf_fillinfo, 1395 1396 .get_slave_size = vrf_get_slave_size, 1397 .fill_slave_info = vrf_fill_slave_info, 1398 1399 .newlink = vrf_newlink, 1400 .dellink = vrf_dellink, 1401 .setup = vrf_setup, 1402 .maxtype = IFLA_VRF_MAX, 1403 }; 1404 1405 static int vrf_device_event(struct notifier_block *unused, 1406 unsigned long event, void *ptr) 1407 { 1408 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1409 1410 /* only care about unregister events to drop slave references */ 1411 if (event == NETDEV_UNREGISTER) { 1412 struct net_device *vrf_dev; 1413 1414 if (!netif_is_l3_slave(dev)) 1415 goto out; 1416 1417 vrf_dev = netdev_master_upper_dev_get(dev); 1418 vrf_del_slave(vrf_dev, dev); 1419 } 1420 out: 1421 return NOTIFY_DONE; 1422 } 1423 1424 static struct notifier_block vrf_notifier_block __read_mostly = { 1425 .notifier_call = vrf_device_event, 1426 }; 1427 1428 /* Initialize per network namespace state */ 1429 static int __net_init vrf_netns_init(struct net *net) 1430 { 1431 bool *add_fib_rules = net_generic(net, vrf_net_id); 1432 1433 *add_fib_rules = true; 1434 1435 return 0; 1436 } 1437 1438 static struct pernet_operations vrf_net_ops __net_initdata = { 1439 .init = vrf_netns_init, 1440 .id = &vrf_net_id, 1441 .size = sizeof(bool), 1442 }; 1443 1444 static int __init vrf_init_module(void) 1445 { 1446 int rc; 1447 1448 register_netdevice_notifier(&vrf_notifier_block); 1449 1450 rc = register_pernet_subsys(&vrf_net_ops); 1451 if (rc < 0) 1452 goto error; 1453 1454 rc = rtnl_link_register(&vrf_link_ops); 1455 if (rc < 0) { 1456 unregister_pernet_subsys(&vrf_net_ops); 1457 goto error; 1458 } 1459 1460 return 0; 1461 1462 error: 1463 unregister_netdevice_notifier(&vrf_notifier_block); 1464 return rc; 1465 } 1466 1467 module_init(vrf_init_module); 1468 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1469 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1470 MODULE_LICENSE("GPL"); 1471 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1472 MODULE_VERSION(DRV_VERSION); 1473