xref: /linux/drivers/net/vrf.c (revision 293d5b43948309434568f4dcbb36cce4c3c51bd5)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 
40 #define RT_FL_TOS(oldflp4) \
41 	((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
42 
43 #define DRV_NAME	"vrf"
44 #define DRV_VERSION	"1.0"
45 
46 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
47 static bool add_fib_rules = true;
48 
49 struct net_vrf {
50 	struct rtable __rcu	*rth;
51 	struct rtable __rcu	*rth_local;
52 	struct rt6_info	__rcu	*rt6;
53 	struct rt6_info	__rcu	*rt6_local;
54 	u32                     tb_id;
55 };
56 
57 struct pcpu_dstats {
58 	u64			tx_pkts;
59 	u64			tx_bytes;
60 	u64			tx_drps;
61 	u64			rx_pkts;
62 	u64			rx_bytes;
63 	u64			rx_drps;
64 	struct u64_stats_sync	syncp;
65 };
66 
67 static void vrf_rx_stats(struct net_device *dev, int len)
68 {
69 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
70 
71 	u64_stats_update_begin(&dstats->syncp);
72 	dstats->rx_pkts++;
73 	dstats->rx_bytes += len;
74 	u64_stats_update_end(&dstats->syncp);
75 }
76 
77 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
78 {
79 	vrf_dev->stats.tx_errors++;
80 	kfree_skb(skb);
81 }
82 
83 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
84 						 struct rtnl_link_stats64 *stats)
85 {
86 	int i;
87 
88 	for_each_possible_cpu(i) {
89 		const struct pcpu_dstats *dstats;
90 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
91 		unsigned int start;
92 
93 		dstats = per_cpu_ptr(dev->dstats, i);
94 		do {
95 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
96 			tbytes = dstats->tx_bytes;
97 			tpkts = dstats->tx_pkts;
98 			tdrops = dstats->tx_drps;
99 			rbytes = dstats->rx_bytes;
100 			rpkts = dstats->rx_pkts;
101 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
102 		stats->tx_bytes += tbytes;
103 		stats->tx_packets += tpkts;
104 		stats->tx_dropped += tdrops;
105 		stats->rx_bytes += rbytes;
106 		stats->rx_packets += rpkts;
107 	}
108 	return stats;
109 }
110 
111 /* Local traffic destined to local address. Reinsert the packet to rx
112  * path, similar to loopback handling.
113  */
114 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
115 			  struct dst_entry *dst)
116 {
117 	int len = skb->len;
118 
119 	skb_orphan(skb);
120 
121 	skb_dst_set(skb, dst);
122 	skb_dst_force(skb);
123 
124 	/* set pkt_type to avoid skb hitting packet taps twice -
125 	 * once on Tx and again in Rx processing
126 	 */
127 	skb->pkt_type = PACKET_LOOPBACK;
128 
129 	skb->protocol = eth_type_trans(skb, dev);
130 
131 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
132 		vrf_rx_stats(dev, len);
133 	else
134 		this_cpu_inc(dev->dstats->rx_drps);
135 
136 	return NETDEV_TX_OK;
137 }
138 
139 #if IS_ENABLED(CONFIG_IPV6)
140 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
141 					   struct net_device *dev)
142 {
143 	const struct ipv6hdr *iph = ipv6_hdr(skb);
144 	struct net *net = dev_net(skb->dev);
145 	struct flowi6 fl6 = {
146 		/* needed to match OIF rule */
147 		.flowi6_oif = dev->ifindex,
148 		.flowi6_iif = LOOPBACK_IFINDEX,
149 		.daddr = iph->daddr,
150 		.saddr = iph->saddr,
151 		.flowlabel = ip6_flowinfo(iph),
152 		.flowi6_mark = skb->mark,
153 		.flowi6_proto = iph->nexthdr,
154 		.flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
155 	};
156 	int ret = NET_XMIT_DROP;
157 	struct dst_entry *dst;
158 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
159 
160 	dst = ip6_route_output(net, NULL, &fl6);
161 	if (dst == dst_null)
162 		goto err;
163 
164 	skb_dst_drop(skb);
165 
166 	/* if dst.dev is loopback or the VRF device again this is locally
167 	 * originated traffic destined to a local address. Short circuit
168 	 * to Rx path using our local dst
169 	 */
170 	if (dst->dev == net->loopback_dev || dst->dev == dev) {
171 		struct net_vrf *vrf = netdev_priv(dev);
172 		struct rt6_info *rt6_local;
173 
174 		/* release looked up dst and use cached local dst */
175 		dst_release(dst);
176 
177 		rcu_read_lock();
178 
179 		rt6_local = rcu_dereference(vrf->rt6_local);
180 		if (unlikely(!rt6_local)) {
181 			rcu_read_unlock();
182 			goto err;
183 		}
184 
185 		/* Ordering issue: cached local dst is created on newlink
186 		 * before the IPv6 initialization. Using the local dst
187 		 * requires rt6i_idev to be set so make sure it is.
188 		 */
189 		if (unlikely(!rt6_local->rt6i_idev)) {
190 			rt6_local->rt6i_idev = in6_dev_get(dev);
191 			if (!rt6_local->rt6i_idev) {
192 				rcu_read_unlock();
193 				goto err;
194 			}
195 		}
196 
197 		dst = &rt6_local->dst;
198 		dst_hold(dst);
199 
200 		rcu_read_unlock();
201 
202 		return vrf_local_xmit(skb, dev, &rt6_local->dst);
203 	}
204 
205 	skb_dst_set(skb, dst);
206 
207 	/* strip the ethernet header added for pass through VRF device */
208 	__skb_pull(skb, skb_network_offset(skb));
209 
210 	ret = ip6_local_out(net, skb->sk, skb);
211 	if (unlikely(net_xmit_eval(ret)))
212 		dev->stats.tx_errors++;
213 	else
214 		ret = NET_XMIT_SUCCESS;
215 
216 	return ret;
217 err:
218 	vrf_tx_error(dev, skb);
219 	return NET_XMIT_DROP;
220 }
221 #else
222 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
223 					   struct net_device *dev)
224 {
225 	vrf_tx_error(dev, skb);
226 	return NET_XMIT_DROP;
227 }
228 #endif
229 
230 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
231 					   struct net_device *vrf_dev)
232 {
233 	struct iphdr *ip4h = ip_hdr(skb);
234 	int ret = NET_XMIT_DROP;
235 	struct flowi4 fl4 = {
236 		/* needed to match OIF rule */
237 		.flowi4_oif = vrf_dev->ifindex,
238 		.flowi4_iif = LOOPBACK_IFINDEX,
239 		.flowi4_tos = RT_TOS(ip4h->tos),
240 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
241 				FLOWI_FLAG_SKIP_NH_OIF,
242 		.daddr = ip4h->daddr,
243 	};
244 	struct net *net = dev_net(vrf_dev);
245 	struct rtable *rt;
246 
247 	rt = ip_route_output_flow(net, &fl4, NULL);
248 	if (IS_ERR(rt))
249 		goto err;
250 
251 	if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
252 		ip_rt_put(rt);
253 		goto err;
254 	}
255 
256 	skb_dst_drop(skb);
257 
258 	/* if dst.dev is loopback or the VRF device again this is locally
259 	 * originated traffic destined to a local address. Short circuit
260 	 * to Rx path using our local dst
261 	 */
262 	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
263 		struct net_vrf *vrf = netdev_priv(vrf_dev);
264 		struct rtable *rth_local;
265 		struct dst_entry *dst = NULL;
266 
267 		ip_rt_put(rt);
268 
269 		rcu_read_lock();
270 
271 		rth_local = rcu_dereference(vrf->rth_local);
272 		if (likely(rth_local)) {
273 			dst = &rth_local->dst;
274 			dst_hold(dst);
275 		}
276 
277 		rcu_read_unlock();
278 
279 		if (unlikely(!dst))
280 			goto err;
281 
282 		return vrf_local_xmit(skb, vrf_dev, dst);
283 	}
284 
285 	skb_dst_set(skb, &rt->dst);
286 
287 	/* strip the ethernet header added for pass through VRF device */
288 	__skb_pull(skb, skb_network_offset(skb));
289 
290 	if (!ip4h->saddr) {
291 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
292 					       RT_SCOPE_LINK);
293 	}
294 
295 	ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
296 	if (unlikely(net_xmit_eval(ret)))
297 		vrf_dev->stats.tx_errors++;
298 	else
299 		ret = NET_XMIT_SUCCESS;
300 
301 out:
302 	return ret;
303 err:
304 	vrf_tx_error(vrf_dev, skb);
305 	goto out;
306 }
307 
308 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
309 {
310 	switch (skb->protocol) {
311 	case htons(ETH_P_IP):
312 		return vrf_process_v4_outbound(skb, dev);
313 	case htons(ETH_P_IPV6):
314 		return vrf_process_v6_outbound(skb, dev);
315 	default:
316 		vrf_tx_error(dev, skb);
317 		return NET_XMIT_DROP;
318 	}
319 }
320 
321 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
322 {
323 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
324 
325 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
326 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
327 
328 		u64_stats_update_begin(&dstats->syncp);
329 		dstats->tx_pkts++;
330 		dstats->tx_bytes += skb->len;
331 		u64_stats_update_end(&dstats->syncp);
332 	} else {
333 		this_cpu_inc(dev->dstats->tx_drps);
334 	}
335 
336 	return ret;
337 }
338 
339 #if IS_ENABLED(CONFIG_IPV6)
340 /* modelled after ip6_finish_output2 */
341 static int vrf_finish_output6(struct net *net, struct sock *sk,
342 			      struct sk_buff *skb)
343 {
344 	struct dst_entry *dst = skb_dst(skb);
345 	struct net_device *dev = dst->dev;
346 	struct neighbour *neigh;
347 	struct in6_addr *nexthop;
348 	int ret;
349 
350 	skb->protocol = htons(ETH_P_IPV6);
351 	skb->dev = dev;
352 
353 	rcu_read_lock_bh();
354 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
355 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
356 	if (unlikely(!neigh))
357 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
358 	if (!IS_ERR(neigh)) {
359 		ret = dst_neigh_output(dst, neigh, skb);
360 		rcu_read_unlock_bh();
361 		return ret;
362 	}
363 	rcu_read_unlock_bh();
364 
365 	IP6_INC_STATS(dev_net(dst->dev),
366 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
367 	kfree_skb(skb);
368 	return -EINVAL;
369 }
370 
371 /* modelled after ip6_output */
372 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
373 {
374 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
375 			    net, sk, skb, NULL, skb_dst(skb)->dev,
376 			    vrf_finish_output6,
377 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
378 }
379 
380 /* holding rtnl */
381 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
382 {
383 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
384 	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
385 	struct net *net = dev_net(dev);
386 	struct dst_entry *dst;
387 
388 	RCU_INIT_POINTER(vrf->rt6, NULL);
389 	RCU_INIT_POINTER(vrf->rt6_local, NULL);
390 	synchronize_rcu();
391 
392 	/* move dev in dst's to loopback so this VRF device can be deleted
393 	 * - based on dst_ifdown
394 	 */
395 	if (rt6) {
396 		dst = &rt6->dst;
397 		dev_put(dst->dev);
398 		dst->dev = net->loopback_dev;
399 		dev_hold(dst->dev);
400 		dst_release(dst);
401 	}
402 
403 	if (rt6_local) {
404 		if (rt6_local->rt6i_idev)
405 			in6_dev_put(rt6_local->rt6i_idev);
406 
407 		dst = &rt6_local->dst;
408 		dev_put(dst->dev);
409 		dst->dev = net->loopback_dev;
410 		dev_hold(dst->dev);
411 		dst_release(dst);
412 	}
413 }
414 
415 static int vrf_rt6_create(struct net_device *dev)
416 {
417 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
418 	struct net_vrf *vrf = netdev_priv(dev);
419 	struct net *net = dev_net(dev);
420 	struct fib6_table *rt6i_table;
421 	struct rt6_info *rt6, *rt6_local;
422 	int rc = -ENOMEM;
423 
424 	/* IPv6 can be CONFIG enabled and then disabled runtime */
425 	if (!ipv6_mod_enabled())
426 		return 0;
427 
428 	rt6i_table = fib6_new_table(net, vrf->tb_id);
429 	if (!rt6i_table)
430 		goto out;
431 
432 	/* create a dst for routing packets out a VRF device */
433 	rt6 = ip6_dst_alloc(net, dev, flags);
434 	if (!rt6)
435 		goto out;
436 
437 	dst_hold(&rt6->dst);
438 
439 	rt6->rt6i_table = rt6i_table;
440 	rt6->dst.output	= vrf_output6;
441 
442 	/* create a dst for local routing - packets sent locally
443 	 * to local address via the VRF device as a loopback
444 	 */
445 	rt6_local = ip6_dst_alloc(net, dev, flags);
446 	if (!rt6_local) {
447 		dst_release(&rt6->dst);
448 		goto out;
449 	}
450 
451 	dst_hold(&rt6_local->dst);
452 
453 	rt6_local->rt6i_idev  = in6_dev_get(dev);
454 	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
455 	rt6_local->rt6i_table = rt6i_table;
456 	rt6_local->dst.input  = ip6_input;
457 
458 	rcu_assign_pointer(vrf->rt6, rt6);
459 	rcu_assign_pointer(vrf->rt6_local, rt6_local);
460 
461 	rc = 0;
462 out:
463 	return rc;
464 }
465 #else
466 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
467 {
468 }
469 
470 static int vrf_rt6_create(struct net_device *dev)
471 {
472 	return 0;
473 }
474 #endif
475 
476 /* modelled after ip_finish_output2 */
477 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
478 {
479 	struct dst_entry *dst = skb_dst(skb);
480 	struct rtable *rt = (struct rtable *)dst;
481 	struct net_device *dev = dst->dev;
482 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
483 	struct neighbour *neigh;
484 	u32 nexthop;
485 	int ret = -EINVAL;
486 
487 	/* Be paranoid, rather than too clever. */
488 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
489 		struct sk_buff *skb2;
490 
491 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
492 		if (!skb2) {
493 			ret = -ENOMEM;
494 			goto err;
495 		}
496 		if (skb->sk)
497 			skb_set_owner_w(skb2, skb->sk);
498 
499 		consume_skb(skb);
500 		skb = skb2;
501 	}
502 
503 	rcu_read_lock_bh();
504 
505 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
506 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
507 	if (unlikely(!neigh))
508 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
509 	if (!IS_ERR(neigh))
510 		ret = dst_neigh_output(dst, neigh, skb);
511 
512 	rcu_read_unlock_bh();
513 err:
514 	if (unlikely(ret < 0))
515 		vrf_tx_error(skb->dev, skb);
516 	return ret;
517 }
518 
519 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
520 {
521 	struct net_device *dev = skb_dst(skb)->dev;
522 
523 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
524 
525 	skb->dev = dev;
526 	skb->protocol = htons(ETH_P_IP);
527 
528 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
529 			    net, sk, skb, NULL, dev,
530 			    vrf_finish_output,
531 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
532 }
533 
534 /* holding rtnl */
535 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
536 {
537 	struct rtable *rth = rtnl_dereference(vrf->rth);
538 	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
539 	struct net *net = dev_net(dev);
540 	struct dst_entry *dst;
541 
542 	RCU_INIT_POINTER(vrf->rth, NULL);
543 	RCU_INIT_POINTER(vrf->rth_local, NULL);
544 	synchronize_rcu();
545 
546 	/* move dev in dst's to loopback so this VRF device can be deleted
547 	 * - based on dst_ifdown
548 	 */
549 	if (rth) {
550 		dst = &rth->dst;
551 		dev_put(dst->dev);
552 		dst->dev = net->loopback_dev;
553 		dev_hold(dst->dev);
554 		dst_release(dst);
555 	}
556 
557 	if (rth_local) {
558 		dst = &rth_local->dst;
559 		dev_put(dst->dev);
560 		dst->dev = net->loopback_dev;
561 		dev_hold(dst->dev);
562 		dst_release(dst);
563 	}
564 }
565 
566 static int vrf_rtable_create(struct net_device *dev)
567 {
568 	struct net_vrf *vrf = netdev_priv(dev);
569 	struct rtable *rth, *rth_local;
570 
571 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
572 		return -ENOMEM;
573 
574 	/* create a dst for routing packets out through a VRF device */
575 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
576 	if (!rth)
577 		return -ENOMEM;
578 
579 	/* create a dst for local ingress routing - packets sent locally
580 	 * to local address via the VRF device as a loopback
581 	 */
582 	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
583 	if (!rth_local) {
584 		dst_release(&rth->dst);
585 		return -ENOMEM;
586 	}
587 
588 	rth->dst.output	= vrf_output;
589 	rth->rt_table_id = vrf->tb_id;
590 
591 	rth_local->rt_table_id = vrf->tb_id;
592 
593 	rcu_assign_pointer(vrf->rth, rth);
594 	rcu_assign_pointer(vrf->rth_local, rth_local);
595 
596 	return 0;
597 }
598 
599 /**************************** device handling ********************/
600 
601 /* cycle interface to flush neighbor cache and move routes across tables */
602 static void cycle_netdev(struct net_device *dev)
603 {
604 	unsigned int flags = dev->flags;
605 	int ret;
606 
607 	if (!netif_running(dev))
608 		return;
609 
610 	ret = dev_change_flags(dev, flags & ~IFF_UP);
611 	if (ret >= 0)
612 		ret = dev_change_flags(dev, flags);
613 
614 	if (ret < 0) {
615 		netdev_err(dev,
616 			   "Failed to cycle device %s; route tables might be wrong!\n",
617 			   dev->name);
618 	}
619 }
620 
621 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
622 {
623 	int ret;
624 
625 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
626 	if (ret < 0)
627 		return ret;
628 
629 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
630 	cycle_netdev(port_dev);
631 
632 	return 0;
633 }
634 
635 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
636 {
637 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
638 		return -EINVAL;
639 
640 	return do_vrf_add_slave(dev, port_dev);
641 }
642 
643 /* inverse of do_vrf_add_slave */
644 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
645 {
646 	netdev_upper_dev_unlink(port_dev, dev);
647 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
648 
649 	cycle_netdev(port_dev);
650 
651 	return 0;
652 }
653 
654 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
655 {
656 	return do_vrf_del_slave(dev, port_dev);
657 }
658 
659 static void vrf_dev_uninit(struct net_device *dev)
660 {
661 	struct net_vrf *vrf = netdev_priv(dev);
662 	struct net_device *port_dev;
663 	struct list_head *iter;
664 
665 	vrf_rtable_release(dev, vrf);
666 	vrf_rt6_release(dev, vrf);
667 
668 	netdev_for_each_lower_dev(dev, port_dev, iter)
669 		vrf_del_slave(dev, port_dev);
670 
671 	free_percpu(dev->dstats);
672 	dev->dstats = NULL;
673 }
674 
675 static int vrf_dev_init(struct net_device *dev)
676 {
677 	struct net_vrf *vrf = netdev_priv(dev);
678 
679 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
680 	if (!dev->dstats)
681 		goto out_nomem;
682 
683 	/* create the default dst which points back to us */
684 	if (vrf_rtable_create(dev) != 0)
685 		goto out_stats;
686 
687 	if (vrf_rt6_create(dev) != 0)
688 		goto out_rth;
689 
690 	dev->flags = IFF_MASTER | IFF_NOARP;
691 
692 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
693 	dev->mtu = 64 * 1024;
694 
695 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
696 	dev->operstate = IF_OPER_UP;
697 	netdev_lockdep_set_classes(dev);
698 	return 0;
699 
700 out_rth:
701 	vrf_rtable_release(dev, vrf);
702 out_stats:
703 	free_percpu(dev->dstats);
704 	dev->dstats = NULL;
705 out_nomem:
706 	return -ENOMEM;
707 }
708 
709 static const struct net_device_ops vrf_netdev_ops = {
710 	.ndo_init		= vrf_dev_init,
711 	.ndo_uninit		= vrf_dev_uninit,
712 	.ndo_start_xmit		= vrf_xmit,
713 	.ndo_get_stats64	= vrf_get_stats64,
714 	.ndo_add_slave		= vrf_add_slave,
715 	.ndo_del_slave		= vrf_del_slave,
716 };
717 
718 static u32 vrf_fib_table(const struct net_device *dev)
719 {
720 	struct net_vrf *vrf = netdev_priv(dev);
721 
722 	return vrf->tb_id;
723 }
724 
725 static struct rtable *vrf_get_rtable(const struct net_device *dev,
726 				     const struct flowi4 *fl4)
727 {
728 	struct rtable *rth = NULL;
729 
730 	if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
731 		struct net_vrf *vrf = netdev_priv(dev);
732 
733 		rcu_read_lock();
734 
735 		rth = rcu_dereference(vrf->rth);
736 		if (likely(rth))
737 			dst_hold(&rth->dst);
738 
739 		rcu_read_unlock();
740 	}
741 
742 	return rth;
743 }
744 
745 /* called under rcu_read_lock */
746 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
747 {
748 	struct fib_result res = { .tclassid = 0 };
749 	struct net *net = dev_net(dev);
750 	u32 orig_tos = fl4->flowi4_tos;
751 	u8 flags = fl4->flowi4_flags;
752 	u8 scope = fl4->flowi4_scope;
753 	u8 tos = RT_FL_TOS(fl4);
754 	int rc;
755 
756 	if (unlikely(!fl4->daddr))
757 		return 0;
758 
759 	fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
760 	fl4->flowi4_iif = LOOPBACK_IFINDEX;
761 	/* make sure oif is set to VRF device for lookup */
762 	fl4->flowi4_oif = dev->ifindex;
763 	fl4->flowi4_tos = tos & IPTOS_RT_MASK;
764 	fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
765 			     RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
766 
767 	rc = fib_lookup(net, fl4, &res, 0);
768 	if (!rc) {
769 		if (res.type == RTN_LOCAL)
770 			fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
771 		else
772 			fib_select_path(net, &res, fl4, -1);
773 	}
774 
775 	fl4->flowi4_flags = flags;
776 	fl4->flowi4_tos = orig_tos;
777 	fl4->flowi4_scope = scope;
778 
779 	return rc;
780 }
781 
782 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
783 {
784 	return 0;
785 }
786 
787 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
788 				      struct sk_buff *skb,
789 				      struct net_device *dev)
790 {
791 	struct net *net = dev_net(dev);
792 
793 	nf_reset(skb);
794 
795 	if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
796 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
797 
798 	return skb;
799 }
800 
801 #if IS_ENABLED(CONFIG_IPV6)
802 /* neighbor handling is done with actual device; do not want
803  * to flip skb->dev for those ndisc packets. This really fails
804  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
805  * a start.
806  */
807 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
808 {
809 	const struct ipv6hdr *iph = ipv6_hdr(skb);
810 	bool rc = false;
811 
812 	if (iph->nexthdr == NEXTHDR_ICMP) {
813 		const struct icmp6hdr *icmph;
814 		struct icmp6hdr _icmph;
815 
816 		icmph = skb_header_pointer(skb, sizeof(*iph),
817 					   sizeof(_icmph), &_icmph);
818 		if (!icmph)
819 			goto out;
820 
821 		switch (icmph->icmp6_type) {
822 		case NDISC_ROUTER_SOLICITATION:
823 		case NDISC_ROUTER_ADVERTISEMENT:
824 		case NDISC_NEIGHBOUR_SOLICITATION:
825 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
826 		case NDISC_REDIRECT:
827 			rc = true;
828 			break;
829 		}
830 	}
831 
832 out:
833 	return rc;
834 }
835 
836 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
837 					     const struct net_device *dev,
838 					     struct flowi6 *fl6,
839 					     int ifindex,
840 					     int flags)
841 {
842 	struct net_vrf *vrf = netdev_priv(dev);
843 	struct fib6_table *table = NULL;
844 	struct rt6_info *rt6;
845 
846 	rcu_read_lock();
847 
848 	/* fib6_table does not have a refcnt and can not be freed */
849 	rt6 = rcu_dereference(vrf->rt6);
850 	if (likely(rt6))
851 		table = rt6->rt6i_table;
852 
853 	rcu_read_unlock();
854 
855 	if (!table)
856 		return NULL;
857 
858 	return ip6_pol_route(net, table, ifindex, fl6, flags);
859 }
860 
861 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
862 			      int ifindex)
863 {
864 	const struct ipv6hdr *iph = ipv6_hdr(skb);
865 	struct flowi6 fl6 = {
866 		.daddr          = iph->daddr,
867 		.saddr          = iph->saddr,
868 		.flowlabel      = ip6_flowinfo(iph),
869 		.flowi6_mark    = skb->mark,
870 		.flowi6_proto   = iph->nexthdr,
871 		.flowi6_iif     = ifindex,
872 	};
873 	struct net *net = dev_net(vrf_dev);
874 	struct rt6_info *rt6;
875 
876 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
877 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
878 	if (unlikely(!rt6))
879 		return;
880 
881 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
882 		return;
883 
884 	skb_dst_set(skb, &rt6->dst);
885 }
886 
887 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
888 				   struct sk_buff *skb)
889 {
890 	int orig_iif = skb->skb_iif;
891 	bool need_strict;
892 
893 	/* loopback traffic; do not push through packet taps again.
894 	 * Reset pkt_type for upper layers to process skb
895 	 */
896 	if (skb->pkt_type == PACKET_LOOPBACK) {
897 		skb->dev = vrf_dev;
898 		skb->skb_iif = vrf_dev->ifindex;
899 		skb->pkt_type = PACKET_HOST;
900 		goto out;
901 	}
902 
903 	/* if packet is NDISC or addressed to multicast or link-local
904 	 * then keep the ingress interface
905 	 */
906 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
907 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
908 		skb->dev = vrf_dev;
909 		skb->skb_iif = vrf_dev->ifindex;
910 
911 		skb_push(skb, skb->mac_len);
912 		dev_queue_xmit_nit(skb, vrf_dev);
913 		skb_pull(skb, skb->mac_len);
914 
915 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
916 	}
917 
918 	if (need_strict)
919 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
920 
921 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
922 out:
923 	return skb;
924 }
925 
926 #else
927 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
928 				   struct sk_buff *skb)
929 {
930 	return skb;
931 }
932 #endif
933 
934 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
935 				  struct sk_buff *skb)
936 {
937 	skb->dev = vrf_dev;
938 	skb->skb_iif = vrf_dev->ifindex;
939 
940 	/* loopback traffic; do not push through packet taps again.
941 	 * Reset pkt_type for upper layers to process skb
942 	 */
943 	if (skb->pkt_type == PACKET_LOOPBACK) {
944 		skb->pkt_type = PACKET_HOST;
945 		goto out;
946 	}
947 
948 	skb_push(skb, skb->mac_len);
949 	dev_queue_xmit_nit(skb, vrf_dev);
950 	skb_pull(skb, skb->mac_len);
951 
952 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
953 out:
954 	return skb;
955 }
956 
957 /* called with rcu lock held */
958 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
959 				  struct sk_buff *skb,
960 				  u16 proto)
961 {
962 	switch (proto) {
963 	case AF_INET:
964 		return vrf_ip_rcv(vrf_dev, skb);
965 	case AF_INET6:
966 		return vrf_ip6_rcv(vrf_dev, skb);
967 	}
968 
969 	return skb;
970 }
971 
972 #if IS_ENABLED(CONFIG_IPV6)
973 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
974 					 struct flowi6 *fl6)
975 {
976 	bool need_strict = rt6_need_strict(&fl6->daddr);
977 	struct net_vrf *vrf = netdev_priv(dev);
978 	struct net *net = dev_net(dev);
979 	struct dst_entry *dst = NULL;
980 	struct rt6_info *rt;
981 
982 	/* send to link-local or multicast address */
983 	if (need_strict) {
984 		int flags = RT6_LOOKUP_F_IFACE;
985 
986 		/* VRF device does not have a link-local address and
987 		 * sending packets to link-local or mcast addresses over
988 		 * a VRF device does not make sense
989 		 */
990 		if (fl6->flowi6_oif == dev->ifindex) {
991 			struct dst_entry *dst = &net->ipv6.ip6_null_entry->dst;
992 
993 			dst_hold(dst);
994 			return dst;
995 		}
996 
997 		if (!ipv6_addr_any(&fl6->saddr))
998 			flags |= RT6_LOOKUP_F_HAS_SADDR;
999 
1000 		rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1001 		if (rt)
1002 			dst = &rt->dst;
1003 
1004 	} else if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
1005 
1006 		rcu_read_lock();
1007 
1008 		rt = rcu_dereference(vrf->rt6);
1009 		if (likely(rt)) {
1010 			dst = &rt->dst;
1011 			dst_hold(dst);
1012 		}
1013 
1014 		rcu_read_unlock();
1015 	}
1016 
1017 	/* make sure oif is set to VRF device for lookup */
1018 	if (!need_strict)
1019 		fl6->flowi6_oif = dev->ifindex;
1020 
1021 	return dst;
1022 }
1023 
1024 /* called under rcu_read_lock */
1025 static int vrf_get_saddr6(struct net_device *dev, const struct sock *sk,
1026 			  struct flowi6 *fl6)
1027 {
1028 	struct net *net = dev_net(dev);
1029 	struct dst_entry *dst;
1030 	struct rt6_info *rt;
1031 	int err;
1032 
1033 	if (rt6_need_strict(&fl6->daddr)) {
1034 		rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif,
1035 					  RT6_LOOKUP_F_IFACE);
1036 		if (unlikely(!rt))
1037 			return 0;
1038 
1039 		dst = &rt->dst;
1040 	} else {
1041 		__u8 flags = fl6->flowi6_flags;
1042 
1043 		fl6->flowi6_flags |= FLOWI_FLAG_L3MDEV_SRC;
1044 		fl6->flowi6_flags |= FLOWI_FLAG_SKIP_NH_OIF;
1045 
1046 		dst = ip6_route_output(net, sk, fl6);
1047 		rt = (struct rt6_info *)dst;
1048 
1049 		fl6->flowi6_flags = flags;
1050 	}
1051 
1052 	err = dst->error;
1053 	if (!err) {
1054 		err = ip6_route_get_saddr(net, rt, &fl6->daddr,
1055 					  sk ? inet6_sk(sk)->srcprefs : 0,
1056 					  &fl6->saddr);
1057 	}
1058 
1059 	dst_release(dst);
1060 
1061 	return err;
1062 }
1063 #endif
1064 
1065 static const struct l3mdev_ops vrf_l3mdev_ops = {
1066 	.l3mdev_fib_table	= vrf_fib_table,
1067 	.l3mdev_get_rtable	= vrf_get_rtable,
1068 	.l3mdev_get_saddr	= vrf_get_saddr,
1069 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1070 #if IS_ENABLED(CONFIG_IPV6)
1071 	.l3mdev_get_rt6_dst	= vrf_get_rt6_dst,
1072 	.l3mdev_get_saddr6	= vrf_get_saddr6,
1073 #endif
1074 };
1075 
1076 static void vrf_get_drvinfo(struct net_device *dev,
1077 			    struct ethtool_drvinfo *info)
1078 {
1079 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1080 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1081 }
1082 
1083 static const struct ethtool_ops vrf_ethtool_ops = {
1084 	.get_drvinfo	= vrf_get_drvinfo,
1085 };
1086 
1087 static inline size_t vrf_fib_rule_nl_size(void)
1088 {
1089 	size_t sz;
1090 
1091 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1092 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1093 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1094 
1095 	return sz;
1096 }
1097 
1098 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1099 {
1100 	struct fib_rule_hdr *frh;
1101 	struct nlmsghdr *nlh;
1102 	struct sk_buff *skb;
1103 	int err;
1104 
1105 	if (family == AF_INET6 && !ipv6_mod_enabled())
1106 		return 0;
1107 
1108 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1109 	if (!skb)
1110 		return -ENOMEM;
1111 
1112 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1113 	if (!nlh)
1114 		goto nla_put_failure;
1115 
1116 	/* rule only needs to appear once */
1117 	nlh->nlmsg_flags &= NLM_F_EXCL;
1118 
1119 	frh = nlmsg_data(nlh);
1120 	memset(frh, 0, sizeof(*frh));
1121 	frh->family = family;
1122 	frh->action = FR_ACT_TO_TBL;
1123 
1124 	if (nla_put_u32(skb, FRA_L3MDEV, 1))
1125 		goto nla_put_failure;
1126 
1127 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1128 		goto nla_put_failure;
1129 
1130 	nlmsg_end(skb, nlh);
1131 
1132 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1133 	skb->sk = dev_net(dev)->rtnl;
1134 	if (add_it) {
1135 		err = fib_nl_newrule(skb, nlh);
1136 		if (err == -EEXIST)
1137 			err = 0;
1138 	} else {
1139 		err = fib_nl_delrule(skb, nlh);
1140 		if (err == -ENOENT)
1141 			err = 0;
1142 	}
1143 	nlmsg_free(skb);
1144 
1145 	return err;
1146 
1147 nla_put_failure:
1148 	nlmsg_free(skb);
1149 
1150 	return -EMSGSIZE;
1151 }
1152 
1153 static int vrf_add_fib_rules(const struct net_device *dev)
1154 {
1155 	int err;
1156 
1157 	err = vrf_fib_rule(dev, AF_INET,  true);
1158 	if (err < 0)
1159 		goto out_err;
1160 
1161 	err = vrf_fib_rule(dev, AF_INET6, true);
1162 	if (err < 0)
1163 		goto ipv6_err;
1164 
1165 	return 0;
1166 
1167 ipv6_err:
1168 	vrf_fib_rule(dev, AF_INET,  false);
1169 
1170 out_err:
1171 	netdev_err(dev, "Failed to add FIB rules.\n");
1172 	return err;
1173 }
1174 
1175 static void vrf_setup(struct net_device *dev)
1176 {
1177 	ether_setup(dev);
1178 
1179 	/* Initialize the device structure. */
1180 	dev->netdev_ops = &vrf_netdev_ops;
1181 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1182 	dev->ethtool_ops = &vrf_ethtool_ops;
1183 	dev->destructor = free_netdev;
1184 
1185 	/* Fill in device structure with ethernet-generic values. */
1186 	eth_hw_addr_random(dev);
1187 
1188 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1189 	dev->features |= NETIF_F_LLTX;
1190 
1191 	/* don't allow vrf devices to change network namespaces. */
1192 	dev->features |= NETIF_F_NETNS_LOCAL;
1193 
1194 	/* does not make sense for a VLAN to be added to a vrf device */
1195 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1196 
1197 	/* enable offload features */
1198 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1199 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1200 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1201 
1202 	dev->hw_features = dev->features;
1203 	dev->hw_enc_features = dev->features;
1204 
1205 	/* default to no qdisc; user can add if desired */
1206 	dev->priv_flags |= IFF_NO_QUEUE;
1207 }
1208 
1209 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1210 {
1211 	if (tb[IFLA_ADDRESS]) {
1212 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1213 			return -EINVAL;
1214 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1215 			return -EADDRNOTAVAIL;
1216 	}
1217 	return 0;
1218 }
1219 
1220 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1221 {
1222 	unregister_netdevice_queue(dev, head);
1223 }
1224 
1225 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1226 		       struct nlattr *tb[], struct nlattr *data[])
1227 {
1228 	struct net_vrf *vrf = netdev_priv(dev);
1229 	int err;
1230 
1231 	if (!data || !data[IFLA_VRF_TABLE])
1232 		return -EINVAL;
1233 
1234 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1235 
1236 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1237 
1238 	err = register_netdevice(dev);
1239 	if (err)
1240 		goto out;
1241 
1242 	if (add_fib_rules) {
1243 		err = vrf_add_fib_rules(dev);
1244 		if (err) {
1245 			unregister_netdevice(dev);
1246 			goto out;
1247 		}
1248 		add_fib_rules = false;
1249 	}
1250 
1251 out:
1252 	return err;
1253 }
1254 
1255 static size_t vrf_nl_getsize(const struct net_device *dev)
1256 {
1257 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1258 }
1259 
1260 static int vrf_fillinfo(struct sk_buff *skb,
1261 			const struct net_device *dev)
1262 {
1263 	struct net_vrf *vrf = netdev_priv(dev);
1264 
1265 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1266 }
1267 
1268 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1269 				 const struct net_device *slave_dev)
1270 {
1271 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1272 }
1273 
1274 static int vrf_fill_slave_info(struct sk_buff *skb,
1275 			       const struct net_device *vrf_dev,
1276 			       const struct net_device *slave_dev)
1277 {
1278 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1279 
1280 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1281 		return -EMSGSIZE;
1282 
1283 	return 0;
1284 }
1285 
1286 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1287 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1288 };
1289 
1290 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1291 	.kind		= DRV_NAME,
1292 	.priv_size	= sizeof(struct net_vrf),
1293 
1294 	.get_size	= vrf_nl_getsize,
1295 	.policy		= vrf_nl_policy,
1296 	.validate	= vrf_validate,
1297 	.fill_info	= vrf_fillinfo,
1298 
1299 	.get_slave_size  = vrf_get_slave_size,
1300 	.fill_slave_info = vrf_fill_slave_info,
1301 
1302 	.newlink	= vrf_newlink,
1303 	.dellink	= vrf_dellink,
1304 	.setup		= vrf_setup,
1305 	.maxtype	= IFLA_VRF_MAX,
1306 };
1307 
1308 static int vrf_device_event(struct notifier_block *unused,
1309 			    unsigned long event, void *ptr)
1310 {
1311 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1312 
1313 	/* only care about unregister events to drop slave references */
1314 	if (event == NETDEV_UNREGISTER) {
1315 		struct net_device *vrf_dev;
1316 
1317 		if (!netif_is_l3_slave(dev))
1318 			goto out;
1319 
1320 		vrf_dev = netdev_master_upper_dev_get(dev);
1321 		vrf_del_slave(vrf_dev, dev);
1322 	}
1323 out:
1324 	return NOTIFY_DONE;
1325 }
1326 
1327 static struct notifier_block vrf_notifier_block __read_mostly = {
1328 	.notifier_call = vrf_device_event,
1329 };
1330 
1331 static int __init vrf_init_module(void)
1332 {
1333 	int rc;
1334 
1335 	register_netdevice_notifier(&vrf_notifier_block);
1336 
1337 	rc = rtnl_link_register(&vrf_link_ops);
1338 	if (rc < 0)
1339 		goto error;
1340 
1341 	return 0;
1342 
1343 error:
1344 	unregister_netdevice_notifier(&vrf_notifier_block);
1345 	return rc;
1346 }
1347 
1348 module_init(vrf_init_module);
1349 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1350 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1351 MODULE_LICENSE("GPL");
1352 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1353 MODULE_VERSION(DRV_VERSION);
1354