xref: /linux/drivers/net/vrf.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 
39 #define RT_FL_TOS(oldflp4) \
40 	((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
41 
42 #define DRV_NAME	"vrf"
43 #define DRV_VERSION	"1.0"
44 
45 #define vrf_master_get_rcu(dev) \
46 	((struct net_device *)rcu_dereference(dev->rx_handler_data))
47 
48 struct net_vrf {
49 	struct rtable           *rth;
50 	struct rt6_info		*rt6;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	struct u64_stats_sync	syncp;
61 };
62 
63 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
64 {
65 	return dst;
66 }
67 
68 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
69 {
70 	return ip_local_out(net, sk, skb);
71 }
72 
73 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
74 {
75 	/* TO-DO: return max ethernet size? */
76 	return dst->dev->mtu;
77 }
78 
79 static void vrf_dst_destroy(struct dst_entry *dst)
80 {
81 	/* our dst lives forever - or until the device is closed */
82 }
83 
84 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
85 {
86 	return 65535 - 40;
87 }
88 
89 static struct dst_ops vrf_dst_ops = {
90 	.family		= AF_INET,
91 	.local_out	= vrf_ip_local_out,
92 	.check		= vrf_ip_check,
93 	.mtu		= vrf_v4_mtu,
94 	.destroy	= vrf_dst_destroy,
95 	.default_advmss	= vrf_default_advmss,
96 };
97 
98 /* neighbor handling is done with actual device; do not want
99  * to flip skb->dev for those ndisc packets. This really fails
100  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
101  * a start.
102  */
103 #if IS_ENABLED(CONFIG_IPV6)
104 static bool check_ipv6_frame(const struct sk_buff *skb)
105 {
106 	const struct ipv6hdr *ipv6h;
107 	struct ipv6hdr _ipv6h;
108 	bool rc = true;
109 
110 	ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h);
111 	if (!ipv6h)
112 		goto out;
113 
114 	if (ipv6h->nexthdr == NEXTHDR_ICMP) {
115 		const struct icmp6hdr *icmph;
116 		struct icmp6hdr _icmph;
117 
118 		icmph = skb_header_pointer(skb, sizeof(_ipv6h),
119 					   sizeof(_icmph), &_icmph);
120 		if (!icmph)
121 			goto out;
122 
123 		switch (icmph->icmp6_type) {
124 		case NDISC_ROUTER_SOLICITATION:
125 		case NDISC_ROUTER_ADVERTISEMENT:
126 		case NDISC_NEIGHBOUR_SOLICITATION:
127 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
128 		case NDISC_REDIRECT:
129 			rc = false;
130 			break;
131 		}
132 	}
133 
134 out:
135 	return rc;
136 }
137 #else
138 static bool check_ipv6_frame(const struct sk_buff *skb)
139 {
140 	return false;
141 }
142 #endif
143 
144 static bool is_ip_rx_frame(struct sk_buff *skb)
145 {
146 	switch (skb->protocol) {
147 	case htons(ETH_P_IP):
148 		return true;
149 	case htons(ETH_P_IPV6):
150 		return check_ipv6_frame(skb);
151 	}
152 	return false;
153 }
154 
155 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
156 {
157 	vrf_dev->stats.tx_errors++;
158 	kfree_skb(skb);
159 }
160 
161 /* note: already called with rcu_read_lock */
162 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
163 {
164 	struct sk_buff *skb = *pskb;
165 
166 	if (is_ip_rx_frame(skb)) {
167 		struct net_device *dev = vrf_master_get_rcu(skb->dev);
168 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
169 
170 		u64_stats_update_begin(&dstats->syncp);
171 		dstats->rx_pkts++;
172 		dstats->rx_bytes += skb->len;
173 		u64_stats_update_end(&dstats->syncp);
174 
175 		skb->dev = dev;
176 
177 		return RX_HANDLER_ANOTHER;
178 	}
179 	return RX_HANDLER_PASS;
180 }
181 
182 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
183 						 struct rtnl_link_stats64 *stats)
184 {
185 	int i;
186 
187 	for_each_possible_cpu(i) {
188 		const struct pcpu_dstats *dstats;
189 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
190 		unsigned int start;
191 
192 		dstats = per_cpu_ptr(dev->dstats, i);
193 		do {
194 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
195 			tbytes = dstats->tx_bytes;
196 			tpkts = dstats->tx_pkts;
197 			tdrops = dstats->tx_drps;
198 			rbytes = dstats->rx_bytes;
199 			rpkts = dstats->rx_pkts;
200 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
201 		stats->tx_bytes += tbytes;
202 		stats->tx_packets += tpkts;
203 		stats->tx_dropped += tdrops;
204 		stats->rx_bytes += rbytes;
205 		stats->rx_packets += rpkts;
206 	}
207 	return stats;
208 }
209 
210 #if IS_ENABLED(CONFIG_IPV6)
211 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
212 					   struct net_device *dev)
213 {
214 	const struct ipv6hdr *iph = ipv6_hdr(skb);
215 	struct net *net = dev_net(skb->dev);
216 	struct flowi6 fl6 = {
217 		/* needed to match OIF rule */
218 		.flowi6_oif = dev->ifindex,
219 		.flowi6_iif = LOOPBACK_IFINDEX,
220 		.daddr = iph->daddr,
221 		.saddr = iph->saddr,
222 		.flowlabel = ip6_flowinfo(iph),
223 		.flowi6_mark = skb->mark,
224 		.flowi6_proto = iph->nexthdr,
225 		.flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
226 	};
227 	int ret = NET_XMIT_DROP;
228 	struct dst_entry *dst;
229 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
230 
231 	dst = ip6_route_output(net, NULL, &fl6);
232 	if (dst == dst_null)
233 		goto err;
234 
235 	skb_dst_drop(skb);
236 	skb_dst_set(skb, dst);
237 
238 	ret = ip6_local_out(net, skb->sk, skb);
239 	if (unlikely(net_xmit_eval(ret)))
240 		dev->stats.tx_errors++;
241 	else
242 		ret = NET_XMIT_SUCCESS;
243 
244 	return ret;
245 err:
246 	vrf_tx_error(dev, skb);
247 	return NET_XMIT_DROP;
248 }
249 #else
250 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
251 					   struct net_device *dev)
252 {
253 	vrf_tx_error(dev, skb);
254 	return NET_XMIT_DROP;
255 }
256 #endif
257 
258 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
259 			    struct net_device *vrf_dev)
260 {
261 	struct rtable *rt;
262 	int err = 1;
263 
264 	rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
265 	if (IS_ERR(rt))
266 		goto out;
267 
268 	/* TO-DO: what about broadcast ? */
269 	if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
270 		ip_rt_put(rt);
271 		goto out;
272 	}
273 
274 	skb_dst_drop(skb);
275 	skb_dst_set(skb, &rt->dst);
276 	err = 0;
277 out:
278 	return err;
279 }
280 
281 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
282 					   struct net_device *vrf_dev)
283 {
284 	struct iphdr *ip4h = ip_hdr(skb);
285 	int ret = NET_XMIT_DROP;
286 	struct flowi4 fl4 = {
287 		/* needed to match OIF rule */
288 		.flowi4_oif = vrf_dev->ifindex,
289 		.flowi4_iif = LOOPBACK_IFINDEX,
290 		.flowi4_tos = RT_TOS(ip4h->tos),
291 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
292 				FLOWI_FLAG_SKIP_NH_OIF,
293 		.daddr = ip4h->daddr,
294 	};
295 
296 	if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
297 		goto err;
298 
299 	if (!ip4h->saddr) {
300 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
301 					       RT_SCOPE_LINK);
302 	}
303 
304 	ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
305 	if (unlikely(net_xmit_eval(ret)))
306 		vrf_dev->stats.tx_errors++;
307 	else
308 		ret = NET_XMIT_SUCCESS;
309 
310 out:
311 	return ret;
312 err:
313 	vrf_tx_error(vrf_dev, skb);
314 	goto out;
315 }
316 
317 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
318 {
319 	/* strip the ethernet header added for pass through VRF device */
320 	__skb_pull(skb, skb_network_offset(skb));
321 
322 	switch (skb->protocol) {
323 	case htons(ETH_P_IP):
324 		return vrf_process_v4_outbound(skb, dev);
325 	case htons(ETH_P_IPV6):
326 		return vrf_process_v6_outbound(skb, dev);
327 	default:
328 		vrf_tx_error(dev, skb);
329 		return NET_XMIT_DROP;
330 	}
331 }
332 
333 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
334 {
335 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
336 
337 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
338 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
339 
340 		u64_stats_update_begin(&dstats->syncp);
341 		dstats->tx_pkts++;
342 		dstats->tx_bytes += skb->len;
343 		u64_stats_update_end(&dstats->syncp);
344 	} else {
345 		this_cpu_inc(dev->dstats->tx_drps);
346 	}
347 
348 	return ret;
349 }
350 
351 #if IS_ENABLED(CONFIG_IPV6)
352 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
353 {
354 	return dst;
355 }
356 
357 static struct dst_ops vrf_dst_ops6 = {
358 	.family		= AF_INET6,
359 	.local_out	= ip6_local_out,
360 	.check		= vrf_ip6_check,
361 	.mtu		= vrf_v4_mtu,
362 	.destroy	= vrf_dst_destroy,
363 	.default_advmss	= vrf_default_advmss,
364 };
365 
366 static int init_dst_ops6_kmem_cachep(void)
367 {
368 	vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
369 						     sizeof(struct rt6_info),
370 						     0,
371 						     SLAB_HWCACHE_ALIGN,
372 						     NULL);
373 
374 	if (!vrf_dst_ops6.kmem_cachep)
375 		return -ENOMEM;
376 
377 	return 0;
378 }
379 
380 static void free_dst_ops6_kmem_cachep(void)
381 {
382 	kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
383 }
384 
385 static int vrf_input6(struct sk_buff *skb)
386 {
387 	skb->dev->stats.rx_errors++;
388 	kfree_skb(skb);
389 	return 0;
390 }
391 
392 /* modelled after ip6_finish_output2 */
393 static int vrf_finish_output6(struct net *net, struct sock *sk,
394 			      struct sk_buff *skb)
395 {
396 	struct dst_entry *dst = skb_dst(skb);
397 	struct net_device *dev = dst->dev;
398 	struct neighbour *neigh;
399 	struct in6_addr *nexthop;
400 	int ret;
401 
402 	skb->protocol = htons(ETH_P_IPV6);
403 	skb->dev = dev;
404 
405 	rcu_read_lock_bh();
406 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
407 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
408 	if (unlikely(!neigh))
409 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
410 	if (!IS_ERR(neigh)) {
411 		ret = dst_neigh_output(dst, neigh, skb);
412 		rcu_read_unlock_bh();
413 		return ret;
414 	}
415 	rcu_read_unlock_bh();
416 
417 	IP6_INC_STATS(dev_net(dst->dev),
418 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
419 	kfree_skb(skb);
420 	return -EINVAL;
421 }
422 
423 /* modelled after ip6_output */
424 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
425 {
426 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
427 			    net, sk, skb, NULL, skb_dst(skb)->dev,
428 			    vrf_finish_output6,
429 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
430 }
431 
432 static void vrf_rt6_destroy(struct net_vrf *vrf)
433 {
434 	dst_destroy(&vrf->rt6->dst);
435 	free_percpu(vrf->rt6->rt6i_pcpu);
436 	vrf->rt6 = NULL;
437 }
438 
439 static int vrf_rt6_create(struct net_device *dev)
440 {
441 	struct net_vrf *vrf = netdev_priv(dev);
442 	struct dst_entry *dst;
443 	struct rt6_info *rt6;
444 	int cpu;
445 	int rc = -ENOMEM;
446 
447 	rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
448 			DST_OBSOLETE_NONE,
449 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
450 	if (!rt6)
451 		goto out;
452 
453 	dst = &rt6->dst;
454 
455 	rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
456 	if (!rt6->rt6i_pcpu) {
457 		dst_destroy(dst);
458 		goto out;
459 	}
460 	for_each_possible_cpu(cpu) {
461 		struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
462 		*p =  NULL;
463 	}
464 
465 	memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
466 
467 	INIT_LIST_HEAD(&rt6->rt6i_siblings);
468 	INIT_LIST_HEAD(&rt6->rt6i_uncached);
469 
470 	rt6->dst.input	= vrf_input6;
471 	rt6->dst.output	= vrf_output6;
472 
473 	rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
474 
475 	atomic_set(&rt6->dst.__refcnt, 2);
476 
477 	vrf->rt6 = rt6;
478 	rc = 0;
479 out:
480 	return rc;
481 }
482 #else
483 static int init_dst_ops6_kmem_cachep(void)
484 {
485 	return 0;
486 }
487 
488 static void free_dst_ops6_kmem_cachep(void)
489 {
490 }
491 
492 static void vrf_rt6_destroy(struct net_vrf *vrf)
493 {
494 }
495 
496 static int vrf_rt6_create(struct net_device *dev)
497 {
498 	return 0;
499 }
500 #endif
501 
502 /* modelled after ip_finish_output2 */
503 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
504 {
505 	struct dst_entry *dst = skb_dst(skb);
506 	struct rtable *rt = (struct rtable *)dst;
507 	struct net_device *dev = dst->dev;
508 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
509 	struct neighbour *neigh;
510 	u32 nexthop;
511 	int ret = -EINVAL;
512 
513 	/* Be paranoid, rather than too clever. */
514 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
515 		struct sk_buff *skb2;
516 
517 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
518 		if (!skb2) {
519 			ret = -ENOMEM;
520 			goto err;
521 		}
522 		if (skb->sk)
523 			skb_set_owner_w(skb2, skb->sk);
524 
525 		consume_skb(skb);
526 		skb = skb2;
527 	}
528 
529 	rcu_read_lock_bh();
530 
531 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
532 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
533 	if (unlikely(!neigh))
534 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
535 	if (!IS_ERR(neigh))
536 		ret = dst_neigh_output(dst, neigh, skb);
537 
538 	rcu_read_unlock_bh();
539 err:
540 	if (unlikely(ret < 0))
541 		vrf_tx_error(skb->dev, skb);
542 	return ret;
543 }
544 
545 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
546 {
547 	struct net_device *dev = skb_dst(skb)->dev;
548 
549 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
550 
551 	skb->dev = dev;
552 	skb->protocol = htons(ETH_P_IP);
553 
554 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
555 			    net, sk, skb, NULL, dev,
556 			    vrf_finish_output,
557 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
558 }
559 
560 static void vrf_rtable_destroy(struct net_vrf *vrf)
561 {
562 	struct dst_entry *dst = (struct dst_entry *)vrf->rth;
563 
564 	dst_destroy(dst);
565 	vrf->rth = NULL;
566 }
567 
568 static struct rtable *vrf_rtable_create(struct net_device *dev)
569 {
570 	struct net_vrf *vrf = netdev_priv(dev);
571 	struct rtable *rth;
572 
573 	rth = dst_alloc(&vrf_dst_ops, dev, 2,
574 			DST_OBSOLETE_NONE,
575 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
576 	if (rth) {
577 		rth->dst.output	= vrf_output;
578 		rth->rt_genid	= rt_genid_ipv4(dev_net(dev));
579 		rth->rt_flags	= 0;
580 		rth->rt_type	= RTN_UNICAST;
581 		rth->rt_is_input = 0;
582 		rth->rt_iif	= 0;
583 		rth->rt_pmtu	= 0;
584 		rth->rt_gateway	= 0;
585 		rth->rt_uses_gateway = 0;
586 		rth->rt_table_id = vrf->tb_id;
587 		INIT_LIST_HEAD(&rth->rt_uncached);
588 		rth->rt_uncached_list = NULL;
589 	}
590 
591 	return rth;
592 }
593 
594 /**************************** device handling ********************/
595 
596 /* cycle interface to flush neighbor cache and move routes across tables */
597 static void cycle_netdev(struct net_device *dev)
598 {
599 	unsigned int flags = dev->flags;
600 	int ret;
601 
602 	if (!netif_running(dev))
603 		return;
604 
605 	ret = dev_change_flags(dev, flags & ~IFF_UP);
606 	if (ret >= 0)
607 		ret = dev_change_flags(dev, flags);
608 
609 	if (ret < 0) {
610 		netdev_err(dev,
611 			   "Failed to cycle device %s; route tables might be wrong!\n",
612 			   dev->name);
613 	}
614 }
615 
616 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
617 {
618 	int ret;
619 
620 	/* register the packet handler for slave ports */
621 	ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
622 	if (ret) {
623 		netdev_err(port_dev,
624 			   "Device %s failed to register rx_handler\n",
625 			   port_dev->name);
626 		goto out_fail;
627 	}
628 
629 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
630 	if (ret < 0)
631 		goto out_unregister;
632 
633 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
634 	cycle_netdev(port_dev);
635 
636 	return 0;
637 
638 out_unregister:
639 	netdev_rx_handler_unregister(port_dev);
640 out_fail:
641 	return ret;
642 }
643 
644 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
645 {
646 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
647 		return -EINVAL;
648 
649 	return do_vrf_add_slave(dev, port_dev);
650 }
651 
652 /* inverse of do_vrf_add_slave */
653 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
654 {
655 	netdev_upper_dev_unlink(port_dev, dev);
656 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
657 
658 	netdev_rx_handler_unregister(port_dev);
659 
660 	cycle_netdev(port_dev);
661 
662 	return 0;
663 }
664 
665 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
666 {
667 	return do_vrf_del_slave(dev, port_dev);
668 }
669 
670 static void vrf_dev_uninit(struct net_device *dev)
671 {
672 	struct net_vrf *vrf = netdev_priv(dev);
673 	struct net_device *port_dev;
674 	struct list_head *iter;
675 
676 	vrf_rtable_destroy(vrf);
677 	vrf_rt6_destroy(vrf);
678 
679 	netdev_for_each_lower_dev(dev, port_dev, iter)
680 		vrf_del_slave(dev, port_dev);
681 
682 	free_percpu(dev->dstats);
683 	dev->dstats = NULL;
684 }
685 
686 static int vrf_dev_init(struct net_device *dev)
687 {
688 	struct net_vrf *vrf = netdev_priv(dev);
689 
690 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
691 	if (!dev->dstats)
692 		goto out_nomem;
693 
694 	/* create the default dst which points back to us */
695 	vrf->rth = vrf_rtable_create(dev);
696 	if (!vrf->rth)
697 		goto out_stats;
698 
699 	if (vrf_rt6_create(dev) != 0)
700 		goto out_rth;
701 
702 	dev->flags = IFF_MASTER | IFF_NOARP;
703 
704 	return 0;
705 
706 out_rth:
707 	vrf_rtable_destroy(vrf);
708 out_stats:
709 	free_percpu(dev->dstats);
710 	dev->dstats = NULL;
711 out_nomem:
712 	return -ENOMEM;
713 }
714 
715 static const struct net_device_ops vrf_netdev_ops = {
716 	.ndo_init		= vrf_dev_init,
717 	.ndo_uninit		= vrf_dev_uninit,
718 	.ndo_start_xmit		= vrf_xmit,
719 	.ndo_get_stats64	= vrf_get_stats64,
720 	.ndo_add_slave		= vrf_add_slave,
721 	.ndo_del_slave		= vrf_del_slave,
722 };
723 
724 static u32 vrf_fib_table(const struct net_device *dev)
725 {
726 	struct net_vrf *vrf = netdev_priv(dev);
727 
728 	return vrf->tb_id;
729 }
730 
731 static struct rtable *vrf_get_rtable(const struct net_device *dev,
732 				     const struct flowi4 *fl4)
733 {
734 	struct rtable *rth = NULL;
735 
736 	if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
737 		struct net_vrf *vrf = netdev_priv(dev);
738 
739 		rth = vrf->rth;
740 		atomic_inc(&rth->dst.__refcnt);
741 	}
742 
743 	return rth;
744 }
745 
746 /* called under rcu_read_lock */
747 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
748 {
749 	struct fib_result res = { .tclassid = 0 };
750 	struct net *net = dev_net(dev);
751 	u32 orig_tos = fl4->flowi4_tos;
752 	u8 flags = fl4->flowi4_flags;
753 	u8 scope = fl4->flowi4_scope;
754 	u8 tos = RT_FL_TOS(fl4);
755 	int rc;
756 
757 	if (unlikely(!fl4->daddr))
758 		return 0;
759 
760 	fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
761 	fl4->flowi4_iif = LOOPBACK_IFINDEX;
762 	fl4->flowi4_tos = tos & IPTOS_RT_MASK;
763 	fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
764 			     RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
765 
766 	rc = fib_lookup(net, fl4, &res, 0);
767 	if (!rc) {
768 		if (res.type == RTN_LOCAL)
769 			fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
770 		else
771 			fib_select_path(net, &res, fl4, -1);
772 	}
773 
774 	fl4->flowi4_flags = flags;
775 	fl4->flowi4_tos = orig_tos;
776 	fl4->flowi4_scope = scope;
777 
778 	return rc;
779 }
780 
781 #if IS_ENABLED(CONFIG_IPV6)
782 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
783 					 const struct flowi6 *fl6)
784 {
785 	struct rt6_info *rt = NULL;
786 
787 	if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
788 		struct net_vrf *vrf = netdev_priv(dev);
789 
790 		rt = vrf->rt6;
791 		atomic_inc(&rt->dst.__refcnt);
792 	}
793 
794 	return (struct dst_entry *)rt;
795 }
796 #endif
797 
798 static const struct l3mdev_ops vrf_l3mdev_ops = {
799 	.l3mdev_fib_table	= vrf_fib_table,
800 	.l3mdev_get_rtable	= vrf_get_rtable,
801 	.l3mdev_get_saddr	= vrf_get_saddr,
802 #if IS_ENABLED(CONFIG_IPV6)
803 	.l3mdev_get_rt6_dst	= vrf_get_rt6_dst,
804 #endif
805 };
806 
807 static void vrf_get_drvinfo(struct net_device *dev,
808 			    struct ethtool_drvinfo *info)
809 {
810 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
811 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
812 }
813 
814 static const struct ethtool_ops vrf_ethtool_ops = {
815 	.get_drvinfo	= vrf_get_drvinfo,
816 };
817 
818 static void vrf_setup(struct net_device *dev)
819 {
820 	ether_setup(dev);
821 
822 	/* Initialize the device structure. */
823 	dev->netdev_ops = &vrf_netdev_ops;
824 	dev->l3mdev_ops = &vrf_l3mdev_ops;
825 	dev->ethtool_ops = &vrf_ethtool_ops;
826 	dev->destructor = free_netdev;
827 
828 	/* Fill in device structure with ethernet-generic values. */
829 	eth_hw_addr_random(dev);
830 
831 	/* don't acquire vrf device's netif_tx_lock when transmitting */
832 	dev->features |= NETIF_F_LLTX;
833 
834 	/* don't allow vrf devices to change network namespaces. */
835 	dev->features |= NETIF_F_NETNS_LOCAL;
836 }
837 
838 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
839 {
840 	if (tb[IFLA_ADDRESS]) {
841 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
842 			return -EINVAL;
843 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
844 			return -EADDRNOTAVAIL;
845 	}
846 	return 0;
847 }
848 
849 static void vrf_dellink(struct net_device *dev, struct list_head *head)
850 {
851 	unregister_netdevice_queue(dev, head);
852 }
853 
854 static int vrf_newlink(struct net *src_net, struct net_device *dev,
855 		       struct nlattr *tb[], struct nlattr *data[])
856 {
857 	struct net_vrf *vrf = netdev_priv(dev);
858 
859 	if (!data || !data[IFLA_VRF_TABLE])
860 		return -EINVAL;
861 
862 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
863 
864 	dev->priv_flags |= IFF_L3MDEV_MASTER;
865 
866 	return register_netdevice(dev);
867 }
868 
869 static size_t vrf_nl_getsize(const struct net_device *dev)
870 {
871 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
872 }
873 
874 static int vrf_fillinfo(struct sk_buff *skb,
875 			const struct net_device *dev)
876 {
877 	struct net_vrf *vrf = netdev_priv(dev);
878 
879 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
880 }
881 
882 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
883 				 const struct net_device *slave_dev)
884 {
885 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
886 }
887 
888 static int vrf_fill_slave_info(struct sk_buff *skb,
889 			       const struct net_device *vrf_dev,
890 			       const struct net_device *slave_dev)
891 {
892 	struct net_vrf *vrf = netdev_priv(vrf_dev);
893 
894 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
895 		return -EMSGSIZE;
896 
897 	return 0;
898 }
899 
900 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
901 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
902 };
903 
904 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
905 	.kind		= DRV_NAME,
906 	.priv_size	= sizeof(struct net_vrf),
907 
908 	.get_size	= vrf_nl_getsize,
909 	.policy		= vrf_nl_policy,
910 	.validate	= vrf_validate,
911 	.fill_info	= vrf_fillinfo,
912 
913 	.get_slave_size  = vrf_get_slave_size,
914 	.fill_slave_info = vrf_fill_slave_info,
915 
916 	.newlink	= vrf_newlink,
917 	.dellink	= vrf_dellink,
918 	.setup		= vrf_setup,
919 	.maxtype	= IFLA_VRF_MAX,
920 };
921 
922 static int vrf_device_event(struct notifier_block *unused,
923 			    unsigned long event, void *ptr)
924 {
925 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
926 
927 	/* only care about unregister events to drop slave references */
928 	if (event == NETDEV_UNREGISTER) {
929 		struct net_device *vrf_dev;
930 
931 		if (!netif_is_l3_slave(dev))
932 			goto out;
933 
934 		vrf_dev = netdev_master_upper_dev_get(dev);
935 		vrf_del_slave(vrf_dev, dev);
936 	}
937 out:
938 	return NOTIFY_DONE;
939 }
940 
941 static struct notifier_block vrf_notifier_block __read_mostly = {
942 	.notifier_call = vrf_device_event,
943 };
944 
945 static int __init vrf_init_module(void)
946 {
947 	int rc;
948 
949 	vrf_dst_ops.kmem_cachep =
950 		kmem_cache_create("vrf_ip_dst_cache",
951 				  sizeof(struct rtable), 0,
952 				  SLAB_HWCACHE_ALIGN,
953 				  NULL);
954 
955 	if (!vrf_dst_ops.kmem_cachep)
956 		return -ENOMEM;
957 
958 	rc = init_dst_ops6_kmem_cachep();
959 	if (rc != 0)
960 		goto error2;
961 
962 	register_netdevice_notifier(&vrf_notifier_block);
963 
964 	rc = rtnl_link_register(&vrf_link_ops);
965 	if (rc < 0)
966 		goto error;
967 
968 	return 0;
969 
970 error:
971 	unregister_netdevice_notifier(&vrf_notifier_block);
972 	free_dst_ops6_kmem_cachep();
973 error2:
974 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
975 	return rc;
976 }
977 
978 static void __exit vrf_cleanup_module(void)
979 {
980 	rtnl_link_unregister(&vrf_link_ops);
981 	unregister_netdevice_notifier(&vrf_notifier_block);
982 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
983 	free_dst_ops6_kmem_cachep();
984 }
985 
986 module_init(vrf_init_module);
987 module_exit(vrf_cleanup_module);
988 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
989 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
990 MODULE_LICENSE("GPL");
991 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
992 MODULE_VERSION(DRV_VERSION);
993