xref: /linux/drivers/net/veth.c (revision f8da5dac7e5eebb8da93829eeb988cc37410c9e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 
30 #define DRV_NAME	"veth"
31 #define DRV_VERSION	"1.0"
32 
33 #define VETH_XDP_FLAG		BIT(0)
34 #define VETH_RING_SIZE		256
35 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
36 
37 /* Separating two types of XDP xmit */
38 #define VETH_XDP_TX		BIT(0)
39 #define VETH_XDP_REDIR		BIT(1)
40 
41 struct veth_rq_stats {
42 	u64			xdp_packets;
43 	u64			xdp_bytes;
44 	u64			xdp_drops;
45 	struct u64_stats_sync	syncp;
46 };
47 
48 struct veth_rq {
49 	struct napi_struct	xdp_napi;
50 	struct net_device	*dev;
51 	struct bpf_prog __rcu	*xdp_prog;
52 	struct xdp_mem_info	xdp_mem;
53 	struct veth_rq_stats	stats;
54 	bool			rx_notify_masked;
55 	struct ptr_ring		xdp_ring;
56 	struct xdp_rxq_info	xdp_rxq;
57 };
58 
59 struct veth_priv {
60 	struct net_device __rcu	*peer;
61 	atomic64_t		dropped;
62 	struct bpf_prog		*_xdp_prog;
63 	struct veth_rq		*rq;
64 	unsigned int		requested_headroom;
65 };
66 
67 /*
68  * ethtool interface
69  */
70 
71 struct veth_q_stat_desc {
72 	char	desc[ETH_GSTRING_LEN];
73 	size_t	offset;
74 };
75 
76 #define VETH_RQ_STAT(m)	offsetof(struct veth_rq_stats, m)
77 
78 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
79 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
80 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
81 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
82 };
83 
84 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
85 
86 static struct {
87 	const char string[ETH_GSTRING_LEN];
88 } ethtool_stats_keys[] = {
89 	{ "peer_ifindex" },
90 };
91 
92 static int veth_get_link_ksettings(struct net_device *dev,
93 				   struct ethtool_link_ksettings *cmd)
94 {
95 	cmd->base.speed		= SPEED_10000;
96 	cmd->base.duplex	= DUPLEX_FULL;
97 	cmd->base.port		= PORT_TP;
98 	cmd->base.autoneg	= AUTONEG_DISABLE;
99 	return 0;
100 }
101 
102 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
103 {
104 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
105 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
106 }
107 
108 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
109 {
110 	char *p = (char *)buf;
111 	int i, j;
112 
113 	switch(stringset) {
114 	case ETH_SS_STATS:
115 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
116 		p += sizeof(ethtool_stats_keys);
117 		for (i = 0; i < dev->real_num_rx_queues; i++) {
118 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
119 				snprintf(p, ETH_GSTRING_LEN,
120 					 "rx_queue_%u_%.11s",
121 					 i, veth_rq_stats_desc[j].desc);
122 				p += ETH_GSTRING_LEN;
123 			}
124 		}
125 		break;
126 	}
127 }
128 
129 static int veth_get_sset_count(struct net_device *dev, int sset)
130 {
131 	switch (sset) {
132 	case ETH_SS_STATS:
133 		return ARRAY_SIZE(ethtool_stats_keys) +
134 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues;
135 	default:
136 		return -EOPNOTSUPP;
137 	}
138 }
139 
140 static void veth_get_ethtool_stats(struct net_device *dev,
141 		struct ethtool_stats *stats, u64 *data)
142 {
143 	struct veth_priv *priv = netdev_priv(dev);
144 	struct net_device *peer = rtnl_dereference(priv->peer);
145 	int i, j, idx;
146 
147 	data[0] = peer ? peer->ifindex : 0;
148 	idx = 1;
149 	for (i = 0; i < dev->real_num_rx_queues; i++) {
150 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
151 		const void *stats_base = (void *)rq_stats;
152 		unsigned int start;
153 		size_t offset;
154 
155 		do {
156 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
157 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
158 				offset = veth_rq_stats_desc[j].offset;
159 				data[idx + j] = *(u64 *)(stats_base + offset);
160 			}
161 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
162 		idx += VETH_RQ_STATS_LEN;
163 	}
164 }
165 
166 static const struct ethtool_ops veth_ethtool_ops = {
167 	.get_drvinfo		= veth_get_drvinfo,
168 	.get_link		= ethtool_op_get_link,
169 	.get_strings		= veth_get_strings,
170 	.get_sset_count		= veth_get_sset_count,
171 	.get_ethtool_stats	= veth_get_ethtool_stats,
172 	.get_link_ksettings	= veth_get_link_ksettings,
173 	.get_ts_info		= ethtool_op_get_ts_info,
174 };
175 
176 /* general routines */
177 
178 static bool veth_is_xdp_frame(void *ptr)
179 {
180 	return (unsigned long)ptr & VETH_XDP_FLAG;
181 }
182 
183 static void *veth_ptr_to_xdp(void *ptr)
184 {
185 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
186 }
187 
188 static void *veth_xdp_to_ptr(void *ptr)
189 {
190 	return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
191 }
192 
193 static void veth_ptr_free(void *ptr)
194 {
195 	if (veth_is_xdp_frame(ptr))
196 		xdp_return_frame(veth_ptr_to_xdp(ptr));
197 	else
198 		kfree_skb(ptr);
199 }
200 
201 static void __veth_xdp_flush(struct veth_rq *rq)
202 {
203 	/* Write ptr_ring before reading rx_notify_masked */
204 	smp_mb();
205 	if (!rq->rx_notify_masked) {
206 		rq->rx_notify_masked = true;
207 		napi_schedule(&rq->xdp_napi);
208 	}
209 }
210 
211 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
212 {
213 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
214 		dev_kfree_skb_any(skb);
215 		return NET_RX_DROP;
216 	}
217 
218 	return NET_RX_SUCCESS;
219 }
220 
221 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
222 			    struct veth_rq *rq, bool xdp)
223 {
224 	return __dev_forward_skb(dev, skb) ?: xdp ?
225 		veth_xdp_rx(rq, skb) :
226 		netif_rx(skb);
227 }
228 
229 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
230 {
231 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
232 	struct veth_rq *rq = NULL;
233 	struct net_device *rcv;
234 	int length = skb->len;
235 	bool rcv_xdp = false;
236 	int rxq;
237 
238 	rcu_read_lock();
239 	rcv = rcu_dereference(priv->peer);
240 	if (unlikely(!rcv)) {
241 		kfree_skb(skb);
242 		goto drop;
243 	}
244 
245 	rcv_priv = netdev_priv(rcv);
246 	rxq = skb_get_queue_mapping(skb);
247 	if (rxq < rcv->real_num_rx_queues) {
248 		rq = &rcv_priv->rq[rxq];
249 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
250 		if (rcv_xdp)
251 			skb_record_rx_queue(skb, rxq);
252 	}
253 
254 	skb_tx_timestamp(skb);
255 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
256 		if (!rcv_xdp) {
257 			struct pcpu_lstats *stats = this_cpu_ptr(dev->lstats);
258 
259 			u64_stats_update_begin(&stats->syncp);
260 			stats->bytes += length;
261 			stats->packets++;
262 			u64_stats_update_end(&stats->syncp);
263 		}
264 	} else {
265 drop:
266 		atomic64_inc(&priv->dropped);
267 	}
268 
269 	if (rcv_xdp)
270 		__veth_xdp_flush(rq);
271 
272 	rcu_read_unlock();
273 
274 	return NETDEV_TX_OK;
275 }
276 
277 static u64 veth_stats_tx(struct pcpu_lstats *result, struct net_device *dev)
278 {
279 	struct veth_priv *priv = netdev_priv(dev);
280 	int cpu;
281 
282 	result->packets = 0;
283 	result->bytes = 0;
284 	for_each_possible_cpu(cpu) {
285 		struct pcpu_lstats *stats = per_cpu_ptr(dev->lstats, cpu);
286 		u64 packets, bytes;
287 		unsigned int start;
288 
289 		do {
290 			start = u64_stats_fetch_begin_irq(&stats->syncp);
291 			packets = stats->packets;
292 			bytes = stats->bytes;
293 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
294 		result->packets += packets;
295 		result->bytes += bytes;
296 	}
297 	return atomic64_read(&priv->dropped);
298 }
299 
300 static void veth_stats_rx(struct veth_rq_stats *result, struct net_device *dev)
301 {
302 	struct veth_priv *priv = netdev_priv(dev);
303 	int i;
304 
305 	result->xdp_packets = 0;
306 	result->xdp_bytes = 0;
307 	result->xdp_drops = 0;
308 	for (i = 0; i < dev->num_rx_queues; i++) {
309 		struct veth_rq_stats *stats = &priv->rq[i].stats;
310 		u64 packets, bytes, drops;
311 		unsigned int start;
312 
313 		do {
314 			start = u64_stats_fetch_begin_irq(&stats->syncp);
315 			packets = stats->xdp_packets;
316 			bytes = stats->xdp_bytes;
317 			drops = stats->xdp_drops;
318 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
319 		result->xdp_packets += packets;
320 		result->xdp_bytes += bytes;
321 		result->xdp_drops += drops;
322 	}
323 }
324 
325 static void veth_get_stats64(struct net_device *dev,
326 			     struct rtnl_link_stats64 *tot)
327 {
328 	struct veth_priv *priv = netdev_priv(dev);
329 	struct net_device *peer;
330 	struct veth_rq_stats rx;
331 	struct pcpu_lstats tx;
332 
333 	tot->tx_dropped = veth_stats_tx(&tx, dev);
334 	tot->tx_bytes = tx.bytes;
335 	tot->tx_packets = tx.packets;
336 
337 	veth_stats_rx(&rx, dev);
338 	tot->rx_dropped = rx.xdp_drops;
339 	tot->rx_bytes = rx.xdp_bytes;
340 	tot->rx_packets = rx.xdp_packets;
341 
342 	rcu_read_lock();
343 	peer = rcu_dereference(priv->peer);
344 	if (peer) {
345 		tot->rx_dropped += veth_stats_tx(&tx, peer);
346 		tot->rx_bytes += tx.bytes;
347 		tot->rx_packets += tx.packets;
348 
349 		veth_stats_rx(&rx, peer);
350 		tot->tx_bytes += rx.xdp_bytes;
351 		tot->tx_packets += rx.xdp_packets;
352 	}
353 	rcu_read_unlock();
354 }
355 
356 /* fake multicast ability */
357 static void veth_set_multicast_list(struct net_device *dev)
358 {
359 }
360 
361 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
362 				      int buflen)
363 {
364 	struct sk_buff *skb;
365 
366 	if (!buflen) {
367 		buflen = SKB_DATA_ALIGN(headroom + len) +
368 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
369 	}
370 	skb = build_skb(head, buflen);
371 	if (!skb)
372 		return NULL;
373 
374 	skb_reserve(skb, headroom);
375 	skb_put(skb, len);
376 
377 	return skb;
378 }
379 
380 static int veth_select_rxq(struct net_device *dev)
381 {
382 	return smp_processor_id() % dev->real_num_rx_queues;
383 }
384 
385 static int veth_xdp_xmit(struct net_device *dev, int n,
386 			 struct xdp_frame **frames, u32 flags)
387 {
388 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
389 	struct net_device *rcv;
390 	int i, ret, drops = n;
391 	unsigned int max_len;
392 	struct veth_rq *rq;
393 
394 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) {
395 		ret = -EINVAL;
396 		goto drop;
397 	}
398 
399 	rcv = rcu_dereference(priv->peer);
400 	if (unlikely(!rcv)) {
401 		ret = -ENXIO;
402 		goto drop;
403 	}
404 
405 	rcv_priv = netdev_priv(rcv);
406 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
407 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
408 	 * side. This means an XDP program is loaded on the peer and the peer
409 	 * device is up.
410 	 */
411 	if (!rcu_access_pointer(rq->xdp_prog)) {
412 		ret = -ENXIO;
413 		goto drop;
414 	}
415 
416 	drops = 0;
417 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
418 
419 	spin_lock(&rq->xdp_ring.producer_lock);
420 	for (i = 0; i < n; i++) {
421 		struct xdp_frame *frame = frames[i];
422 		void *ptr = veth_xdp_to_ptr(frame);
423 
424 		if (unlikely(frame->len > max_len ||
425 			     __ptr_ring_produce(&rq->xdp_ring, ptr))) {
426 			xdp_return_frame_rx_napi(frame);
427 			drops++;
428 		}
429 	}
430 	spin_unlock(&rq->xdp_ring.producer_lock);
431 
432 	if (flags & XDP_XMIT_FLUSH)
433 		__veth_xdp_flush(rq);
434 
435 	if (likely(!drops))
436 		return n;
437 
438 	ret = n - drops;
439 drop:
440 	atomic64_add(drops, &priv->dropped);
441 
442 	return ret;
443 }
444 
445 static void veth_xdp_flush(struct net_device *dev)
446 {
447 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
448 	struct net_device *rcv;
449 	struct veth_rq *rq;
450 
451 	rcu_read_lock();
452 	rcv = rcu_dereference(priv->peer);
453 	if (unlikely(!rcv))
454 		goto out;
455 
456 	rcv_priv = netdev_priv(rcv);
457 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
458 	/* xdp_ring is initialized on receive side? */
459 	if (unlikely(!rcu_access_pointer(rq->xdp_prog)))
460 		goto out;
461 
462 	__veth_xdp_flush(rq);
463 out:
464 	rcu_read_unlock();
465 }
466 
467 static int veth_xdp_tx(struct net_device *dev, struct xdp_buff *xdp)
468 {
469 	struct xdp_frame *frame = convert_to_xdp_frame(xdp);
470 
471 	if (unlikely(!frame))
472 		return -EOVERFLOW;
473 
474 	return veth_xdp_xmit(dev, 1, &frame, 0);
475 }
476 
477 static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
478 					struct xdp_frame *frame,
479 					unsigned int *xdp_xmit)
480 {
481 	void *hard_start = frame->data - frame->headroom;
482 	void *head = hard_start - sizeof(struct xdp_frame);
483 	int len = frame->len, delta = 0;
484 	struct xdp_frame orig_frame;
485 	struct bpf_prog *xdp_prog;
486 	unsigned int headroom;
487 	struct sk_buff *skb;
488 
489 	rcu_read_lock();
490 	xdp_prog = rcu_dereference(rq->xdp_prog);
491 	if (likely(xdp_prog)) {
492 		struct xdp_buff xdp;
493 		u32 act;
494 
495 		xdp.data_hard_start = hard_start;
496 		xdp.data = frame->data;
497 		xdp.data_end = frame->data + frame->len;
498 		xdp.data_meta = frame->data - frame->metasize;
499 		xdp.rxq = &rq->xdp_rxq;
500 
501 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
502 
503 		switch (act) {
504 		case XDP_PASS:
505 			delta = frame->data - xdp.data;
506 			len = xdp.data_end - xdp.data;
507 			break;
508 		case XDP_TX:
509 			orig_frame = *frame;
510 			xdp.data_hard_start = head;
511 			xdp.rxq->mem = frame->mem;
512 			if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
513 				trace_xdp_exception(rq->dev, xdp_prog, act);
514 				frame = &orig_frame;
515 				goto err_xdp;
516 			}
517 			*xdp_xmit |= VETH_XDP_TX;
518 			rcu_read_unlock();
519 			goto xdp_xmit;
520 		case XDP_REDIRECT:
521 			orig_frame = *frame;
522 			xdp.data_hard_start = head;
523 			xdp.rxq->mem = frame->mem;
524 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
525 				frame = &orig_frame;
526 				goto err_xdp;
527 			}
528 			*xdp_xmit |= VETH_XDP_REDIR;
529 			rcu_read_unlock();
530 			goto xdp_xmit;
531 		default:
532 			bpf_warn_invalid_xdp_action(act);
533 			/* fall through */
534 		case XDP_ABORTED:
535 			trace_xdp_exception(rq->dev, xdp_prog, act);
536 			/* fall through */
537 		case XDP_DROP:
538 			goto err_xdp;
539 		}
540 	}
541 	rcu_read_unlock();
542 
543 	headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
544 	skb = veth_build_skb(head, headroom, len, 0);
545 	if (!skb) {
546 		xdp_return_frame(frame);
547 		goto err;
548 	}
549 
550 	xdp_release_frame(frame);
551 	xdp_scrub_frame(frame);
552 	skb->protocol = eth_type_trans(skb, rq->dev);
553 err:
554 	return skb;
555 err_xdp:
556 	rcu_read_unlock();
557 	xdp_return_frame(frame);
558 xdp_xmit:
559 	return NULL;
560 }
561 
562 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb,
563 					unsigned int *xdp_xmit)
564 {
565 	u32 pktlen, headroom, act, metalen;
566 	void *orig_data, *orig_data_end;
567 	struct bpf_prog *xdp_prog;
568 	int mac_len, delta, off;
569 	struct xdp_buff xdp;
570 
571 	skb_orphan(skb);
572 
573 	rcu_read_lock();
574 	xdp_prog = rcu_dereference(rq->xdp_prog);
575 	if (unlikely(!xdp_prog)) {
576 		rcu_read_unlock();
577 		goto out;
578 	}
579 
580 	mac_len = skb->data - skb_mac_header(skb);
581 	pktlen = skb->len + mac_len;
582 	headroom = skb_headroom(skb) - mac_len;
583 
584 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
585 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
586 		struct sk_buff *nskb;
587 		int size, head_off;
588 		void *head, *start;
589 		struct page *page;
590 
591 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
592 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
593 		if (size > PAGE_SIZE)
594 			goto drop;
595 
596 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
597 		if (!page)
598 			goto drop;
599 
600 		head = page_address(page);
601 		start = head + VETH_XDP_HEADROOM;
602 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
603 			page_frag_free(head);
604 			goto drop;
605 		}
606 
607 		nskb = veth_build_skb(head,
608 				      VETH_XDP_HEADROOM + mac_len, skb->len,
609 				      PAGE_SIZE);
610 		if (!nskb) {
611 			page_frag_free(head);
612 			goto drop;
613 		}
614 
615 		skb_copy_header(nskb, skb);
616 		head_off = skb_headroom(nskb) - skb_headroom(skb);
617 		skb_headers_offset_update(nskb, head_off);
618 		consume_skb(skb);
619 		skb = nskb;
620 	}
621 
622 	xdp.data_hard_start = skb->head;
623 	xdp.data = skb_mac_header(skb);
624 	xdp.data_end = xdp.data + pktlen;
625 	xdp.data_meta = xdp.data;
626 	xdp.rxq = &rq->xdp_rxq;
627 	orig_data = xdp.data;
628 	orig_data_end = xdp.data_end;
629 
630 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
631 
632 	switch (act) {
633 	case XDP_PASS:
634 		break;
635 	case XDP_TX:
636 		get_page(virt_to_page(xdp.data));
637 		consume_skb(skb);
638 		xdp.rxq->mem = rq->xdp_mem;
639 		if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
640 			trace_xdp_exception(rq->dev, xdp_prog, act);
641 			goto err_xdp;
642 		}
643 		*xdp_xmit |= VETH_XDP_TX;
644 		rcu_read_unlock();
645 		goto xdp_xmit;
646 	case XDP_REDIRECT:
647 		get_page(virt_to_page(xdp.data));
648 		consume_skb(skb);
649 		xdp.rxq->mem = rq->xdp_mem;
650 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog))
651 			goto err_xdp;
652 		*xdp_xmit |= VETH_XDP_REDIR;
653 		rcu_read_unlock();
654 		goto xdp_xmit;
655 	default:
656 		bpf_warn_invalid_xdp_action(act);
657 		/* fall through */
658 	case XDP_ABORTED:
659 		trace_xdp_exception(rq->dev, xdp_prog, act);
660 		/* fall through */
661 	case XDP_DROP:
662 		goto drop;
663 	}
664 	rcu_read_unlock();
665 
666 	delta = orig_data - xdp.data;
667 	off = mac_len + delta;
668 	if (off > 0)
669 		__skb_push(skb, off);
670 	else if (off < 0)
671 		__skb_pull(skb, -off);
672 	skb->mac_header -= delta;
673 	off = xdp.data_end - orig_data_end;
674 	if (off != 0)
675 		__skb_put(skb, off);
676 	skb->protocol = eth_type_trans(skb, rq->dev);
677 
678 	metalen = xdp.data - xdp.data_meta;
679 	if (metalen)
680 		skb_metadata_set(skb, metalen);
681 out:
682 	return skb;
683 drop:
684 	rcu_read_unlock();
685 	kfree_skb(skb);
686 	return NULL;
687 err_xdp:
688 	rcu_read_unlock();
689 	page_frag_free(xdp.data);
690 xdp_xmit:
691 	return NULL;
692 }
693 
694 static int veth_xdp_rcv(struct veth_rq *rq, int budget, unsigned int *xdp_xmit)
695 {
696 	int i, done = 0, drops = 0, bytes = 0;
697 
698 	for (i = 0; i < budget; i++) {
699 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
700 		unsigned int xdp_xmit_one = 0;
701 		struct sk_buff *skb;
702 
703 		if (!ptr)
704 			break;
705 
706 		if (veth_is_xdp_frame(ptr)) {
707 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
708 
709 			bytes += frame->len;
710 			skb = veth_xdp_rcv_one(rq, frame, &xdp_xmit_one);
711 		} else {
712 			skb = ptr;
713 			bytes += skb->len;
714 			skb = veth_xdp_rcv_skb(rq, skb, &xdp_xmit_one);
715 		}
716 		*xdp_xmit |= xdp_xmit_one;
717 
718 		if (skb)
719 			napi_gro_receive(&rq->xdp_napi, skb);
720 		else if (!xdp_xmit_one)
721 			drops++;
722 
723 		done++;
724 	}
725 
726 	u64_stats_update_begin(&rq->stats.syncp);
727 	rq->stats.xdp_packets += done;
728 	rq->stats.xdp_bytes += bytes;
729 	rq->stats.xdp_drops += drops;
730 	u64_stats_update_end(&rq->stats.syncp);
731 
732 	return done;
733 }
734 
735 static int veth_poll(struct napi_struct *napi, int budget)
736 {
737 	struct veth_rq *rq =
738 		container_of(napi, struct veth_rq, xdp_napi);
739 	unsigned int xdp_xmit = 0;
740 	int done;
741 
742 	xdp_set_return_frame_no_direct();
743 	done = veth_xdp_rcv(rq, budget, &xdp_xmit);
744 
745 	if (done < budget && napi_complete_done(napi, done)) {
746 		/* Write rx_notify_masked before reading ptr_ring */
747 		smp_store_mb(rq->rx_notify_masked, false);
748 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
749 			rq->rx_notify_masked = true;
750 			napi_schedule(&rq->xdp_napi);
751 		}
752 	}
753 
754 	if (xdp_xmit & VETH_XDP_TX)
755 		veth_xdp_flush(rq->dev);
756 	if (xdp_xmit & VETH_XDP_REDIR)
757 		xdp_do_flush_map();
758 	xdp_clear_return_frame_no_direct();
759 
760 	return done;
761 }
762 
763 static int veth_napi_add(struct net_device *dev)
764 {
765 	struct veth_priv *priv = netdev_priv(dev);
766 	int err, i;
767 
768 	for (i = 0; i < dev->real_num_rx_queues; i++) {
769 		struct veth_rq *rq = &priv->rq[i];
770 
771 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
772 		if (err)
773 			goto err_xdp_ring;
774 	}
775 
776 	for (i = 0; i < dev->real_num_rx_queues; i++) {
777 		struct veth_rq *rq = &priv->rq[i];
778 
779 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
780 		napi_enable(&rq->xdp_napi);
781 	}
782 
783 	return 0;
784 err_xdp_ring:
785 	for (i--; i >= 0; i--)
786 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
787 
788 	return err;
789 }
790 
791 static void veth_napi_del(struct net_device *dev)
792 {
793 	struct veth_priv *priv = netdev_priv(dev);
794 	int i;
795 
796 	for (i = 0; i < dev->real_num_rx_queues; i++) {
797 		struct veth_rq *rq = &priv->rq[i];
798 
799 		napi_disable(&rq->xdp_napi);
800 		napi_hash_del(&rq->xdp_napi);
801 	}
802 	synchronize_net();
803 
804 	for (i = 0; i < dev->real_num_rx_queues; i++) {
805 		struct veth_rq *rq = &priv->rq[i];
806 
807 		netif_napi_del(&rq->xdp_napi);
808 		rq->rx_notify_masked = false;
809 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
810 	}
811 }
812 
813 static int veth_enable_xdp(struct net_device *dev)
814 {
815 	struct veth_priv *priv = netdev_priv(dev);
816 	int err, i;
817 
818 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
819 		for (i = 0; i < dev->real_num_rx_queues; i++) {
820 			struct veth_rq *rq = &priv->rq[i];
821 
822 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
823 			if (err < 0)
824 				goto err_rxq_reg;
825 
826 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
827 							 MEM_TYPE_PAGE_SHARED,
828 							 NULL);
829 			if (err < 0)
830 				goto err_reg_mem;
831 
832 			/* Save original mem info as it can be overwritten */
833 			rq->xdp_mem = rq->xdp_rxq.mem;
834 		}
835 
836 		err = veth_napi_add(dev);
837 		if (err)
838 			goto err_rxq_reg;
839 	}
840 
841 	for (i = 0; i < dev->real_num_rx_queues; i++)
842 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
843 
844 	return 0;
845 err_reg_mem:
846 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
847 err_rxq_reg:
848 	for (i--; i >= 0; i--)
849 		xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
850 
851 	return err;
852 }
853 
854 static void veth_disable_xdp(struct net_device *dev)
855 {
856 	struct veth_priv *priv = netdev_priv(dev);
857 	int i;
858 
859 	for (i = 0; i < dev->real_num_rx_queues; i++)
860 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
861 	veth_napi_del(dev);
862 	for (i = 0; i < dev->real_num_rx_queues; i++) {
863 		struct veth_rq *rq = &priv->rq[i];
864 
865 		rq->xdp_rxq.mem = rq->xdp_mem;
866 		xdp_rxq_info_unreg(&rq->xdp_rxq);
867 	}
868 }
869 
870 static int veth_open(struct net_device *dev)
871 {
872 	struct veth_priv *priv = netdev_priv(dev);
873 	struct net_device *peer = rtnl_dereference(priv->peer);
874 	int err;
875 
876 	if (!peer)
877 		return -ENOTCONN;
878 
879 	if (priv->_xdp_prog) {
880 		err = veth_enable_xdp(dev);
881 		if (err)
882 			return err;
883 	}
884 
885 	if (peer->flags & IFF_UP) {
886 		netif_carrier_on(dev);
887 		netif_carrier_on(peer);
888 	}
889 
890 	return 0;
891 }
892 
893 static int veth_close(struct net_device *dev)
894 {
895 	struct veth_priv *priv = netdev_priv(dev);
896 	struct net_device *peer = rtnl_dereference(priv->peer);
897 
898 	netif_carrier_off(dev);
899 	if (peer)
900 		netif_carrier_off(peer);
901 
902 	if (priv->_xdp_prog)
903 		veth_disable_xdp(dev);
904 
905 	return 0;
906 }
907 
908 static int is_valid_veth_mtu(int mtu)
909 {
910 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
911 }
912 
913 static int veth_alloc_queues(struct net_device *dev)
914 {
915 	struct veth_priv *priv = netdev_priv(dev);
916 	int i;
917 
918 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
919 	if (!priv->rq)
920 		return -ENOMEM;
921 
922 	for (i = 0; i < dev->num_rx_queues; i++) {
923 		priv->rq[i].dev = dev;
924 		u64_stats_init(&priv->rq[i].stats.syncp);
925 	}
926 
927 	return 0;
928 }
929 
930 static void veth_free_queues(struct net_device *dev)
931 {
932 	struct veth_priv *priv = netdev_priv(dev);
933 
934 	kfree(priv->rq);
935 }
936 
937 static int veth_dev_init(struct net_device *dev)
938 {
939 	int err;
940 
941 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
942 	if (!dev->lstats)
943 		return -ENOMEM;
944 
945 	err = veth_alloc_queues(dev);
946 	if (err) {
947 		free_percpu(dev->lstats);
948 		return err;
949 	}
950 
951 	return 0;
952 }
953 
954 static void veth_dev_free(struct net_device *dev)
955 {
956 	veth_free_queues(dev);
957 	free_percpu(dev->lstats);
958 }
959 
960 #ifdef CONFIG_NET_POLL_CONTROLLER
961 static void veth_poll_controller(struct net_device *dev)
962 {
963 	/* veth only receives frames when its peer sends one
964 	 * Since it has nothing to do with disabling irqs, we are guaranteed
965 	 * never to have pending data when we poll for it so
966 	 * there is nothing to do here.
967 	 *
968 	 * We need this though so netpoll recognizes us as an interface that
969 	 * supports polling, which enables bridge devices in virt setups to
970 	 * still use netconsole
971 	 */
972 }
973 #endif	/* CONFIG_NET_POLL_CONTROLLER */
974 
975 static int veth_get_iflink(const struct net_device *dev)
976 {
977 	struct veth_priv *priv = netdev_priv(dev);
978 	struct net_device *peer;
979 	int iflink;
980 
981 	rcu_read_lock();
982 	peer = rcu_dereference(priv->peer);
983 	iflink = peer ? peer->ifindex : 0;
984 	rcu_read_unlock();
985 
986 	return iflink;
987 }
988 
989 static netdev_features_t veth_fix_features(struct net_device *dev,
990 					   netdev_features_t features)
991 {
992 	struct veth_priv *priv = netdev_priv(dev);
993 	struct net_device *peer;
994 
995 	peer = rtnl_dereference(priv->peer);
996 	if (peer) {
997 		struct veth_priv *peer_priv = netdev_priv(peer);
998 
999 		if (peer_priv->_xdp_prog)
1000 			features &= ~NETIF_F_GSO_SOFTWARE;
1001 	}
1002 
1003 	return features;
1004 }
1005 
1006 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1007 {
1008 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1009 	struct net_device *peer;
1010 
1011 	if (new_hr < 0)
1012 		new_hr = 0;
1013 
1014 	rcu_read_lock();
1015 	peer = rcu_dereference(priv->peer);
1016 	if (unlikely(!peer))
1017 		goto out;
1018 
1019 	peer_priv = netdev_priv(peer);
1020 	priv->requested_headroom = new_hr;
1021 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1022 	dev->needed_headroom = new_hr;
1023 	peer->needed_headroom = new_hr;
1024 
1025 out:
1026 	rcu_read_unlock();
1027 }
1028 
1029 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1030 			struct netlink_ext_ack *extack)
1031 {
1032 	struct veth_priv *priv = netdev_priv(dev);
1033 	struct bpf_prog *old_prog;
1034 	struct net_device *peer;
1035 	unsigned int max_mtu;
1036 	int err;
1037 
1038 	old_prog = priv->_xdp_prog;
1039 	priv->_xdp_prog = prog;
1040 	peer = rtnl_dereference(priv->peer);
1041 
1042 	if (prog) {
1043 		if (!peer) {
1044 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1045 			err = -ENOTCONN;
1046 			goto err;
1047 		}
1048 
1049 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1050 			  peer->hard_header_len -
1051 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1052 		if (peer->mtu > max_mtu) {
1053 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1054 			err = -ERANGE;
1055 			goto err;
1056 		}
1057 
1058 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1059 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1060 			err = -ENOSPC;
1061 			goto err;
1062 		}
1063 
1064 		if (dev->flags & IFF_UP) {
1065 			err = veth_enable_xdp(dev);
1066 			if (err) {
1067 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1068 				goto err;
1069 			}
1070 		}
1071 
1072 		if (!old_prog) {
1073 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1074 			peer->max_mtu = max_mtu;
1075 		}
1076 	}
1077 
1078 	if (old_prog) {
1079 		if (!prog) {
1080 			if (dev->flags & IFF_UP)
1081 				veth_disable_xdp(dev);
1082 
1083 			if (peer) {
1084 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1085 				peer->max_mtu = ETH_MAX_MTU;
1086 			}
1087 		}
1088 		bpf_prog_put(old_prog);
1089 	}
1090 
1091 	if ((!!old_prog ^ !!prog) && peer)
1092 		netdev_update_features(peer);
1093 
1094 	return 0;
1095 err:
1096 	priv->_xdp_prog = old_prog;
1097 
1098 	return err;
1099 }
1100 
1101 static u32 veth_xdp_query(struct net_device *dev)
1102 {
1103 	struct veth_priv *priv = netdev_priv(dev);
1104 	const struct bpf_prog *xdp_prog;
1105 
1106 	xdp_prog = priv->_xdp_prog;
1107 	if (xdp_prog)
1108 		return xdp_prog->aux->id;
1109 
1110 	return 0;
1111 }
1112 
1113 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1114 {
1115 	switch (xdp->command) {
1116 	case XDP_SETUP_PROG:
1117 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1118 	case XDP_QUERY_PROG:
1119 		xdp->prog_id = veth_xdp_query(dev);
1120 		return 0;
1121 	default:
1122 		return -EINVAL;
1123 	}
1124 }
1125 
1126 static const struct net_device_ops veth_netdev_ops = {
1127 	.ndo_init            = veth_dev_init,
1128 	.ndo_open            = veth_open,
1129 	.ndo_stop            = veth_close,
1130 	.ndo_start_xmit      = veth_xmit,
1131 	.ndo_get_stats64     = veth_get_stats64,
1132 	.ndo_set_rx_mode     = veth_set_multicast_list,
1133 	.ndo_set_mac_address = eth_mac_addr,
1134 #ifdef CONFIG_NET_POLL_CONTROLLER
1135 	.ndo_poll_controller	= veth_poll_controller,
1136 #endif
1137 	.ndo_get_iflink		= veth_get_iflink,
1138 	.ndo_fix_features	= veth_fix_features,
1139 	.ndo_features_check	= passthru_features_check,
1140 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1141 	.ndo_bpf		= veth_xdp,
1142 	.ndo_xdp_xmit		= veth_xdp_xmit,
1143 };
1144 
1145 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1146 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1147 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1148 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1149 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1150 
1151 static void veth_setup(struct net_device *dev)
1152 {
1153 	ether_setup(dev);
1154 
1155 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1156 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1157 	dev->priv_flags |= IFF_NO_QUEUE;
1158 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1159 
1160 	dev->netdev_ops = &veth_netdev_ops;
1161 	dev->ethtool_ops = &veth_ethtool_ops;
1162 	dev->features |= NETIF_F_LLTX;
1163 	dev->features |= VETH_FEATURES;
1164 	dev->vlan_features = dev->features &
1165 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1166 			       NETIF_F_HW_VLAN_STAG_TX |
1167 			       NETIF_F_HW_VLAN_CTAG_RX |
1168 			       NETIF_F_HW_VLAN_STAG_RX);
1169 	dev->needs_free_netdev = true;
1170 	dev->priv_destructor = veth_dev_free;
1171 	dev->max_mtu = ETH_MAX_MTU;
1172 
1173 	dev->hw_features = VETH_FEATURES;
1174 	dev->hw_enc_features = VETH_FEATURES;
1175 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1176 }
1177 
1178 /*
1179  * netlink interface
1180  */
1181 
1182 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1183 			 struct netlink_ext_ack *extack)
1184 {
1185 	if (tb[IFLA_ADDRESS]) {
1186 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1187 			return -EINVAL;
1188 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1189 			return -EADDRNOTAVAIL;
1190 	}
1191 	if (tb[IFLA_MTU]) {
1192 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1193 			return -EINVAL;
1194 	}
1195 	return 0;
1196 }
1197 
1198 static struct rtnl_link_ops veth_link_ops;
1199 
1200 static int veth_newlink(struct net *src_net, struct net_device *dev,
1201 			struct nlattr *tb[], struct nlattr *data[],
1202 			struct netlink_ext_ack *extack)
1203 {
1204 	int err;
1205 	struct net_device *peer;
1206 	struct veth_priv *priv;
1207 	char ifname[IFNAMSIZ];
1208 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1209 	unsigned char name_assign_type;
1210 	struct ifinfomsg *ifmp;
1211 	struct net *net;
1212 
1213 	/*
1214 	 * create and register peer first
1215 	 */
1216 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1217 		struct nlattr *nla_peer;
1218 
1219 		nla_peer = data[VETH_INFO_PEER];
1220 		ifmp = nla_data(nla_peer);
1221 		err = rtnl_nla_parse_ifla(peer_tb,
1222 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1223 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1224 					  NULL);
1225 		if (err < 0)
1226 			return err;
1227 
1228 		err = veth_validate(peer_tb, NULL, extack);
1229 		if (err < 0)
1230 			return err;
1231 
1232 		tbp = peer_tb;
1233 	} else {
1234 		ifmp = NULL;
1235 		tbp = tb;
1236 	}
1237 
1238 	if (ifmp && tbp[IFLA_IFNAME]) {
1239 		nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1240 		name_assign_type = NET_NAME_USER;
1241 	} else {
1242 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1243 		name_assign_type = NET_NAME_ENUM;
1244 	}
1245 
1246 	net = rtnl_link_get_net(src_net, tbp);
1247 	if (IS_ERR(net))
1248 		return PTR_ERR(net);
1249 
1250 	peer = rtnl_create_link(net, ifname, name_assign_type,
1251 				&veth_link_ops, tbp, extack);
1252 	if (IS_ERR(peer)) {
1253 		put_net(net);
1254 		return PTR_ERR(peer);
1255 	}
1256 
1257 	if (!ifmp || !tbp[IFLA_ADDRESS])
1258 		eth_hw_addr_random(peer);
1259 
1260 	if (ifmp && (dev->ifindex != 0))
1261 		peer->ifindex = ifmp->ifi_index;
1262 
1263 	peer->gso_max_size = dev->gso_max_size;
1264 	peer->gso_max_segs = dev->gso_max_segs;
1265 
1266 	err = register_netdevice(peer);
1267 	put_net(net);
1268 	net = NULL;
1269 	if (err < 0)
1270 		goto err_register_peer;
1271 
1272 	netif_carrier_off(peer);
1273 
1274 	err = rtnl_configure_link(peer, ifmp);
1275 	if (err < 0)
1276 		goto err_configure_peer;
1277 
1278 	/*
1279 	 * register dev last
1280 	 *
1281 	 * note, that since we've registered new device the dev's name
1282 	 * should be re-allocated
1283 	 */
1284 
1285 	if (tb[IFLA_ADDRESS] == NULL)
1286 		eth_hw_addr_random(dev);
1287 
1288 	if (tb[IFLA_IFNAME])
1289 		nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1290 	else
1291 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1292 
1293 	err = register_netdevice(dev);
1294 	if (err < 0)
1295 		goto err_register_dev;
1296 
1297 	netif_carrier_off(dev);
1298 
1299 	/*
1300 	 * tie the deviced together
1301 	 */
1302 
1303 	priv = netdev_priv(dev);
1304 	rcu_assign_pointer(priv->peer, peer);
1305 
1306 	priv = netdev_priv(peer);
1307 	rcu_assign_pointer(priv->peer, dev);
1308 
1309 	return 0;
1310 
1311 err_register_dev:
1312 	/* nothing to do */
1313 err_configure_peer:
1314 	unregister_netdevice(peer);
1315 	return err;
1316 
1317 err_register_peer:
1318 	free_netdev(peer);
1319 	return err;
1320 }
1321 
1322 static void veth_dellink(struct net_device *dev, struct list_head *head)
1323 {
1324 	struct veth_priv *priv;
1325 	struct net_device *peer;
1326 
1327 	priv = netdev_priv(dev);
1328 	peer = rtnl_dereference(priv->peer);
1329 
1330 	/* Note : dellink() is called from default_device_exit_batch(),
1331 	 * before a rcu_synchronize() point. The devices are guaranteed
1332 	 * not being freed before one RCU grace period.
1333 	 */
1334 	RCU_INIT_POINTER(priv->peer, NULL);
1335 	unregister_netdevice_queue(dev, head);
1336 
1337 	if (peer) {
1338 		priv = netdev_priv(peer);
1339 		RCU_INIT_POINTER(priv->peer, NULL);
1340 		unregister_netdevice_queue(peer, head);
1341 	}
1342 }
1343 
1344 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1345 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1346 };
1347 
1348 static struct net *veth_get_link_net(const struct net_device *dev)
1349 {
1350 	struct veth_priv *priv = netdev_priv(dev);
1351 	struct net_device *peer = rtnl_dereference(priv->peer);
1352 
1353 	return peer ? dev_net(peer) : dev_net(dev);
1354 }
1355 
1356 static struct rtnl_link_ops veth_link_ops = {
1357 	.kind		= DRV_NAME,
1358 	.priv_size	= sizeof(struct veth_priv),
1359 	.setup		= veth_setup,
1360 	.validate	= veth_validate,
1361 	.newlink	= veth_newlink,
1362 	.dellink	= veth_dellink,
1363 	.policy		= veth_policy,
1364 	.maxtype	= VETH_INFO_MAX,
1365 	.get_link_net	= veth_get_link_net,
1366 };
1367 
1368 /*
1369  * init/fini
1370  */
1371 
1372 static __init int veth_init(void)
1373 {
1374 	return rtnl_link_register(&veth_link_ops);
1375 }
1376 
1377 static __exit void veth_exit(void)
1378 {
1379 	rtnl_link_unregister(&veth_link_ops);
1380 }
1381 
1382 module_init(veth_init);
1383 module_exit(veth_exit);
1384 
1385 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1386 MODULE_LICENSE("GPL v2");
1387 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1388