xref: /linux/drivers/net/veth.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 
30 #define DRV_NAME	"veth"
31 #define DRV_VERSION	"1.0"
32 
33 #define VETH_XDP_FLAG		BIT(0)
34 #define VETH_RING_SIZE		256
35 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
36 
37 /* Separating two types of XDP xmit */
38 #define VETH_XDP_TX		BIT(0)
39 #define VETH_XDP_REDIR		BIT(1)
40 
41 struct veth_rq_stats {
42 	u64			xdp_packets;
43 	u64			xdp_bytes;
44 	u64			xdp_drops;
45 	struct u64_stats_sync	syncp;
46 };
47 
48 struct veth_rq {
49 	struct napi_struct	xdp_napi;
50 	struct net_device	*dev;
51 	struct bpf_prog __rcu	*xdp_prog;
52 	struct xdp_mem_info	xdp_mem;
53 	struct veth_rq_stats	stats;
54 	bool			rx_notify_masked;
55 	struct ptr_ring		xdp_ring;
56 	struct xdp_rxq_info	xdp_rxq;
57 };
58 
59 struct veth_priv {
60 	struct net_device __rcu	*peer;
61 	atomic64_t		dropped;
62 	struct bpf_prog		*_xdp_prog;
63 	struct veth_rq		*rq;
64 	unsigned int		requested_headroom;
65 };
66 
67 /*
68  * ethtool interface
69  */
70 
71 struct veth_q_stat_desc {
72 	char	desc[ETH_GSTRING_LEN];
73 	size_t	offset;
74 };
75 
76 #define VETH_RQ_STAT(m)	offsetof(struct veth_rq_stats, m)
77 
78 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
79 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
80 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
81 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
82 };
83 
84 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
85 
86 static struct {
87 	const char string[ETH_GSTRING_LEN];
88 } ethtool_stats_keys[] = {
89 	{ "peer_ifindex" },
90 };
91 
92 static int veth_get_link_ksettings(struct net_device *dev,
93 				   struct ethtool_link_ksettings *cmd)
94 {
95 	cmd->base.speed		= SPEED_10000;
96 	cmd->base.duplex	= DUPLEX_FULL;
97 	cmd->base.port		= PORT_TP;
98 	cmd->base.autoneg	= AUTONEG_DISABLE;
99 	return 0;
100 }
101 
102 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
103 {
104 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
105 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
106 }
107 
108 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
109 {
110 	char *p = (char *)buf;
111 	int i, j;
112 
113 	switch(stringset) {
114 	case ETH_SS_STATS:
115 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
116 		p += sizeof(ethtool_stats_keys);
117 		for (i = 0; i < dev->real_num_rx_queues; i++) {
118 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
119 				snprintf(p, ETH_GSTRING_LEN,
120 					 "rx_queue_%u_%.11s",
121 					 i, veth_rq_stats_desc[j].desc);
122 				p += ETH_GSTRING_LEN;
123 			}
124 		}
125 		break;
126 	}
127 }
128 
129 static int veth_get_sset_count(struct net_device *dev, int sset)
130 {
131 	switch (sset) {
132 	case ETH_SS_STATS:
133 		return ARRAY_SIZE(ethtool_stats_keys) +
134 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues;
135 	default:
136 		return -EOPNOTSUPP;
137 	}
138 }
139 
140 static void veth_get_ethtool_stats(struct net_device *dev,
141 		struct ethtool_stats *stats, u64 *data)
142 {
143 	struct veth_priv *priv = netdev_priv(dev);
144 	struct net_device *peer = rtnl_dereference(priv->peer);
145 	int i, j, idx;
146 
147 	data[0] = peer ? peer->ifindex : 0;
148 	idx = 1;
149 	for (i = 0; i < dev->real_num_rx_queues; i++) {
150 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
151 		const void *stats_base = (void *)rq_stats;
152 		unsigned int start;
153 		size_t offset;
154 
155 		do {
156 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
157 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
158 				offset = veth_rq_stats_desc[j].offset;
159 				data[idx + j] = *(u64 *)(stats_base + offset);
160 			}
161 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
162 		idx += VETH_RQ_STATS_LEN;
163 	}
164 }
165 
166 static const struct ethtool_ops veth_ethtool_ops = {
167 	.get_drvinfo		= veth_get_drvinfo,
168 	.get_link		= ethtool_op_get_link,
169 	.get_strings		= veth_get_strings,
170 	.get_sset_count		= veth_get_sset_count,
171 	.get_ethtool_stats	= veth_get_ethtool_stats,
172 	.get_link_ksettings	= veth_get_link_ksettings,
173 	.get_ts_info		= ethtool_op_get_ts_info,
174 };
175 
176 /* general routines */
177 
178 static bool veth_is_xdp_frame(void *ptr)
179 {
180 	return (unsigned long)ptr & VETH_XDP_FLAG;
181 }
182 
183 static void *veth_ptr_to_xdp(void *ptr)
184 {
185 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
186 }
187 
188 static void *veth_xdp_to_ptr(void *ptr)
189 {
190 	return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
191 }
192 
193 static void veth_ptr_free(void *ptr)
194 {
195 	if (veth_is_xdp_frame(ptr))
196 		xdp_return_frame(veth_ptr_to_xdp(ptr));
197 	else
198 		kfree_skb(ptr);
199 }
200 
201 static void __veth_xdp_flush(struct veth_rq *rq)
202 {
203 	/* Write ptr_ring before reading rx_notify_masked */
204 	smp_mb();
205 	if (!rq->rx_notify_masked) {
206 		rq->rx_notify_masked = true;
207 		napi_schedule(&rq->xdp_napi);
208 	}
209 }
210 
211 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
212 {
213 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
214 		dev_kfree_skb_any(skb);
215 		return NET_RX_DROP;
216 	}
217 
218 	return NET_RX_SUCCESS;
219 }
220 
221 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
222 			    struct veth_rq *rq, bool xdp)
223 {
224 	return __dev_forward_skb(dev, skb) ?: xdp ?
225 		veth_xdp_rx(rq, skb) :
226 		netif_rx(skb);
227 }
228 
229 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
230 {
231 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
232 	struct veth_rq *rq = NULL;
233 	struct net_device *rcv;
234 	int length = skb->len;
235 	bool rcv_xdp = false;
236 	int rxq;
237 
238 	rcu_read_lock();
239 	rcv = rcu_dereference(priv->peer);
240 	if (unlikely(!rcv)) {
241 		kfree_skb(skb);
242 		goto drop;
243 	}
244 
245 	rcv_priv = netdev_priv(rcv);
246 	rxq = skb_get_queue_mapping(skb);
247 	if (rxq < rcv->real_num_rx_queues) {
248 		rq = &rcv_priv->rq[rxq];
249 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
250 		if (rcv_xdp)
251 			skb_record_rx_queue(skb, rxq);
252 	}
253 
254 	skb_tx_timestamp(skb);
255 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
256 		if (!rcv_xdp) {
257 			struct pcpu_lstats *stats = this_cpu_ptr(dev->lstats);
258 
259 			u64_stats_update_begin(&stats->syncp);
260 			stats->bytes += length;
261 			stats->packets++;
262 			u64_stats_update_end(&stats->syncp);
263 		}
264 	} else {
265 drop:
266 		atomic64_inc(&priv->dropped);
267 	}
268 
269 	if (rcv_xdp)
270 		__veth_xdp_flush(rq);
271 
272 	rcu_read_unlock();
273 
274 	return NETDEV_TX_OK;
275 }
276 
277 static u64 veth_stats_tx(struct pcpu_lstats *result, struct net_device *dev)
278 {
279 	struct veth_priv *priv = netdev_priv(dev);
280 	int cpu;
281 
282 	result->packets = 0;
283 	result->bytes = 0;
284 	for_each_possible_cpu(cpu) {
285 		struct pcpu_lstats *stats = per_cpu_ptr(dev->lstats, cpu);
286 		u64 packets, bytes;
287 		unsigned int start;
288 
289 		do {
290 			start = u64_stats_fetch_begin_irq(&stats->syncp);
291 			packets = stats->packets;
292 			bytes = stats->bytes;
293 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
294 		result->packets += packets;
295 		result->bytes += bytes;
296 	}
297 	return atomic64_read(&priv->dropped);
298 }
299 
300 static void veth_stats_rx(struct veth_rq_stats *result, struct net_device *dev)
301 {
302 	struct veth_priv *priv = netdev_priv(dev);
303 	int i;
304 
305 	result->xdp_packets = 0;
306 	result->xdp_bytes = 0;
307 	result->xdp_drops = 0;
308 	for (i = 0; i < dev->num_rx_queues; i++) {
309 		struct veth_rq_stats *stats = &priv->rq[i].stats;
310 		u64 packets, bytes, drops;
311 		unsigned int start;
312 
313 		do {
314 			start = u64_stats_fetch_begin_irq(&stats->syncp);
315 			packets = stats->xdp_packets;
316 			bytes = stats->xdp_bytes;
317 			drops = stats->xdp_drops;
318 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
319 		result->xdp_packets += packets;
320 		result->xdp_bytes += bytes;
321 		result->xdp_drops += drops;
322 	}
323 }
324 
325 static void veth_get_stats64(struct net_device *dev,
326 			     struct rtnl_link_stats64 *tot)
327 {
328 	struct veth_priv *priv = netdev_priv(dev);
329 	struct net_device *peer;
330 	struct veth_rq_stats rx;
331 	struct pcpu_lstats tx;
332 
333 	tot->tx_dropped = veth_stats_tx(&tx, dev);
334 	tot->tx_bytes = tx.bytes;
335 	tot->tx_packets = tx.packets;
336 
337 	veth_stats_rx(&rx, dev);
338 	tot->rx_dropped = rx.xdp_drops;
339 	tot->rx_bytes = rx.xdp_bytes;
340 	tot->rx_packets = rx.xdp_packets;
341 
342 	rcu_read_lock();
343 	peer = rcu_dereference(priv->peer);
344 	if (peer) {
345 		tot->rx_dropped += veth_stats_tx(&tx, peer);
346 		tot->rx_bytes += tx.bytes;
347 		tot->rx_packets += tx.packets;
348 
349 		veth_stats_rx(&rx, peer);
350 		tot->tx_bytes += rx.xdp_bytes;
351 		tot->tx_packets += rx.xdp_packets;
352 	}
353 	rcu_read_unlock();
354 }
355 
356 /* fake multicast ability */
357 static void veth_set_multicast_list(struct net_device *dev)
358 {
359 }
360 
361 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
362 				      int buflen)
363 {
364 	struct sk_buff *skb;
365 
366 	if (!buflen) {
367 		buflen = SKB_DATA_ALIGN(headroom + len) +
368 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
369 	}
370 	skb = build_skb(head, buflen);
371 	if (!skb)
372 		return NULL;
373 
374 	skb_reserve(skb, headroom);
375 	skb_put(skb, len);
376 
377 	return skb;
378 }
379 
380 static int veth_select_rxq(struct net_device *dev)
381 {
382 	return smp_processor_id() % dev->real_num_rx_queues;
383 }
384 
385 static int veth_xdp_xmit(struct net_device *dev, int n,
386 			 struct xdp_frame **frames, u32 flags)
387 {
388 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
389 	struct net_device *rcv;
390 	int i, ret, drops = n;
391 	unsigned int max_len;
392 	struct veth_rq *rq;
393 
394 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) {
395 		ret = -EINVAL;
396 		goto drop;
397 	}
398 
399 	rcv = rcu_dereference(priv->peer);
400 	if (unlikely(!rcv)) {
401 		ret = -ENXIO;
402 		goto drop;
403 	}
404 
405 	rcv_priv = netdev_priv(rcv);
406 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
407 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
408 	 * side. This means an XDP program is loaded on the peer and the peer
409 	 * device is up.
410 	 */
411 	if (!rcu_access_pointer(rq->xdp_prog)) {
412 		ret = -ENXIO;
413 		goto drop;
414 	}
415 
416 	drops = 0;
417 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
418 
419 	spin_lock(&rq->xdp_ring.producer_lock);
420 	for (i = 0; i < n; i++) {
421 		struct xdp_frame *frame = frames[i];
422 		void *ptr = veth_xdp_to_ptr(frame);
423 
424 		if (unlikely(frame->len > max_len ||
425 			     __ptr_ring_produce(&rq->xdp_ring, ptr))) {
426 			xdp_return_frame_rx_napi(frame);
427 			drops++;
428 		}
429 	}
430 	spin_unlock(&rq->xdp_ring.producer_lock);
431 
432 	if (flags & XDP_XMIT_FLUSH)
433 		__veth_xdp_flush(rq);
434 
435 	if (likely(!drops))
436 		return n;
437 
438 	ret = n - drops;
439 drop:
440 	atomic64_add(drops, &priv->dropped);
441 
442 	return ret;
443 }
444 
445 static void veth_xdp_flush(struct net_device *dev)
446 {
447 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
448 	struct net_device *rcv;
449 	struct veth_rq *rq;
450 
451 	rcu_read_lock();
452 	rcv = rcu_dereference(priv->peer);
453 	if (unlikely(!rcv))
454 		goto out;
455 
456 	rcv_priv = netdev_priv(rcv);
457 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
458 	/* xdp_ring is initialized on receive side? */
459 	if (unlikely(!rcu_access_pointer(rq->xdp_prog)))
460 		goto out;
461 
462 	__veth_xdp_flush(rq);
463 out:
464 	rcu_read_unlock();
465 }
466 
467 static int veth_xdp_tx(struct net_device *dev, struct xdp_buff *xdp)
468 {
469 	struct xdp_frame *frame = convert_to_xdp_frame(xdp);
470 
471 	if (unlikely(!frame))
472 		return -EOVERFLOW;
473 
474 	return veth_xdp_xmit(dev, 1, &frame, 0);
475 }
476 
477 static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
478 					struct xdp_frame *frame,
479 					unsigned int *xdp_xmit)
480 {
481 	void *hard_start = frame->data - frame->headroom;
482 	void *head = hard_start - sizeof(struct xdp_frame);
483 	int len = frame->len, delta = 0;
484 	struct xdp_frame orig_frame;
485 	struct bpf_prog *xdp_prog;
486 	unsigned int headroom;
487 	struct sk_buff *skb;
488 
489 	rcu_read_lock();
490 	xdp_prog = rcu_dereference(rq->xdp_prog);
491 	if (likely(xdp_prog)) {
492 		struct xdp_buff xdp;
493 		u32 act;
494 
495 		xdp.data_hard_start = hard_start;
496 		xdp.data = frame->data;
497 		xdp.data_end = frame->data + frame->len;
498 		xdp.data_meta = frame->data - frame->metasize;
499 		xdp.rxq = &rq->xdp_rxq;
500 
501 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
502 
503 		switch (act) {
504 		case XDP_PASS:
505 			delta = frame->data - xdp.data;
506 			len = xdp.data_end - xdp.data;
507 			break;
508 		case XDP_TX:
509 			orig_frame = *frame;
510 			xdp.data_hard_start = head;
511 			xdp.rxq->mem = frame->mem;
512 			if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
513 				trace_xdp_exception(rq->dev, xdp_prog, act);
514 				frame = &orig_frame;
515 				goto err_xdp;
516 			}
517 			*xdp_xmit |= VETH_XDP_TX;
518 			rcu_read_unlock();
519 			goto xdp_xmit;
520 		case XDP_REDIRECT:
521 			orig_frame = *frame;
522 			xdp.data_hard_start = head;
523 			xdp.rxq->mem = frame->mem;
524 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
525 				frame = &orig_frame;
526 				goto err_xdp;
527 			}
528 			*xdp_xmit |= VETH_XDP_REDIR;
529 			rcu_read_unlock();
530 			goto xdp_xmit;
531 		default:
532 			bpf_warn_invalid_xdp_action(act);
533 			/* fall through */
534 		case XDP_ABORTED:
535 			trace_xdp_exception(rq->dev, xdp_prog, act);
536 			/* fall through */
537 		case XDP_DROP:
538 			goto err_xdp;
539 		}
540 	}
541 	rcu_read_unlock();
542 
543 	headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
544 	skb = veth_build_skb(head, headroom, len, 0);
545 	if (!skb) {
546 		xdp_return_frame(frame);
547 		goto err;
548 	}
549 
550 	xdp_scrub_frame(frame);
551 	skb->protocol = eth_type_trans(skb, rq->dev);
552 err:
553 	return skb;
554 err_xdp:
555 	rcu_read_unlock();
556 	xdp_return_frame(frame);
557 xdp_xmit:
558 	return NULL;
559 }
560 
561 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb,
562 					unsigned int *xdp_xmit)
563 {
564 	u32 pktlen, headroom, act, metalen;
565 	void *orig_data, *orig_data_end;
566 	struct bpf_prog *xdp_prog;
567 	int mac_len, delta, off;
568 	struct xdp_buff xdp;
569 
570 	skb_orphan(skb);
571 
572 	rcu_read_lock();
573 	xdp_prog = rcu_dereference(rq->xdp_prog);
574 	if (unlikely(!xdp_prog)) {
575 		rcu_read_unlock();
576 		goto out;
577 	}
578 
579 	mac_len = skb->data - skb_mac_header(skb);
580 	pktlen = skb->len + mac_len;
581 	headroom = skb_headroom(skb) - mac_len;
582 
583 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
584 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
585 		struct sk_buff *nskb;
586 		int size, head_off;
587 		void *head, *start;
588 		struct page *page;
589 
590 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
591 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
592 		if (size > PAGE_SIZE)
593 			goto drop;
594 
595 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
596 		if (!page)
597 			goto drop;
598 
599 		head = page_address(page);
600 		start = head + VETH_XDP_HEADROOM;
601 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
602 			page_frag_free(head);
603 			goto drop;
604 		}
605 
606 		nskb = veth_build_skb(head,
607 				      VETH_XDP_HEADROOM + mac_len, skb->len,
608 				      PAGE_SIZE);
609 		if (!nskb) {
610 			page_frag_free(head);
611 			goto drop;
612 		}
613 
614 		skb_copy_header(nskb, skb);
615 		head_off = skb_headroom(nskb) - skb_headroom(skb);
616 		skb_headers_offset_update(nskb, head_off);
617 		consume_skb(skb);
618 		skb = nskb;
619 	}
620 
621 	xdp.data_hard_start = skb->head;
622 	xdp.data = skb_mac_header(skb);
623 	xdp.data_end = xdp.data + pktlen;
624 	xdp.data_meta = xdp.data;
625 	xdp.rxq = &rq->xdp_rxq;
626 	orig_data = xdp.data;
627 	orig_data_end = xdp.data_end;
628 
629 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
630 
631 	switch (act) {
632 	case XDP_PASS:
633 		break;
634 	case XDP_TX:
635 		get_page(virt_to_page(xdp.data));
636 		consume_skb(skb);
637 		xdp.rxq->mem = rq->xdp_mem;
638 		if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
639 			trace_xdp_exception(rq->dev, xdp_prog, act);
640 			goto err_xdp;
641 		}
642 		*xdp_xmit |= VETH_XDP_TX;
643 		rcu_read_unlock();
644 		goto xdp_xmit;
645 	case XDP_REDIRECT:
646 		get_page(virt_to_page(xdp.data));
647 		consume_skb(skb);
648 		xdp.rxq->mem = rq->xdp_mem;
649 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog))
650 			goto err_xdp;
651 		*xdp_xmit |= VETH_XDP_REDIR;
652 		rcu_read_unlock();
653 		goto xdp_xmit;
654 	default:
655 		bpf_warn_invalid_xdp_action(act);
656 		/* fall through */
657 	case XDP_ABORTED:
658 		trace_xdp_exception(rq->dev, xdp_prog, act);
659 		/* fall through */
660 	case XDP_DROP:
661 		goto drop;
662 	}
663 	rcu_read_unlock();
664 
665 	delta = orig_data - xdp.data;
666 	off = mac_len + delta;
667 	if (off > 0)
668 		__skb_push(skb, off);
669 	else if (off < 0)
670 		__skb_pull(skb, -off);
671 	skb->mac_header -= delta;
672 	off = xdp.data_end - orig_data_end;
673 	if (off != 0)
674 		__skb_put(skb, off);
675 	skb->protocol = eth_type_trans(skb, rq->dev);
676 
677 	metalen = xdp.data - xdp.data_meta;
678 	if (metalen)
679 		skb_metadata_set(skb, metalen);
680 out:
681 	return skb;
682 drop:
683 	rcu_read_unlock();
684 	kfree_skb(skb);
685 	return NULL;
686 err_xdp:
687 	rcu_read_unlock();
688 	page_frag_free(xdp.data);
689 xdp_xmit:
690 	return NULL;
691 }
692 
693 static int veth_xdp_rcv(struct veth_rq *rq, int budget, unsigned int *xdp_xmit)
694 {
695 	int i, done = 0, drops = 0, bytes = 0;
696 
697 	for (i = 0; i < budget; i++) {
698 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
699 		unsigned int xdp_xmit_one = 0;
700 		struct sk_buff *skb;
701 
702 		if (!ptr)
703 			break;
704 
705 		if (veth_is_xdp_frame(ptr)) {
706 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
707 
708 			bytes += frame->len;
709 			skb = veth_xdp_rcv_one(rq, frame, &xdp_xmit_one);
710 		} else {
711 			skb = ptr;
712 			bytes += skb->len;
713 			skb = veth_xdp_rcv_skb(rq, skb, &xdp_xmit_one);
714 		}
715 		*xdp_xmit |= xdp_xmit_one;
716 
717 		if (skb)
718 			napi_gro_receive(&rq->xdp_napi, skb);
719 		else if (!xdp_xmit_one)
720 			drops++;
721 
722 		done++;
723 	}
724 
725 	u64_stats_update_begin(&rq->stats.syncp);
726 	rq->stats.xdp_packets += done;
727 	rq->stats.xdp_bytes += bytes;
728 	rq->stats.xdp_drops += drops;
729 	u64_stats_update_end(&rq->stats.syncp);
730 
731 	return done;
732 }
733 
734 static int veth_poll(struct napi_struct *napi, int budget)
735 {
736 	struct veth_rq *rq =
737 		container_of(napi, struct veth_rq, xdp_napi);
738 	unsigned int xdp_xmit = 0;
739 	int done;
740 
741 	xdp_set_return_frame_no_direct();
742 	done = veth_xdp_rcv(rq, budget, &xdp_xmit);
743 
744 	if (done < budget && napi_complete_done(napi, done)) {
745 		/* Write rx_notify_masked before reading ptr_ring */
746 		smp_store_mb(rq->rx_notify_masked, false);
747 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
748 			rq->rx_notify_masked = true;
749 			napi_schedule(&rq->xdp_napi);
750 		}
751 	}
752 
753 	if (xdp_xmit & VETH_XDP_TX)
754 		veth_xdp_flush(rq->dev);
755 	if (xdp_xmit & VETH_XDP_REDIR)
756 		xdp_do_flush_map();
757 	xdp_clear_return_frame_no_direct();
758 
759 	return done;
760 }
761 
762 static int veth_napi_add(struct net_device *dev)
763 {
764 	struct veth_priv *priv = netdev_priv(dev);
765 	int err, i;
766 
767 	for (i = 0; i < dev->real_num_rx_queues; i++) {
768 		struct veth_rq *rq = &priv->rq[i];
769 
770 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
771 		if (err)
772 			goto err_xdp_ring;
773 	}
774 
775 	for (i = 0; i < dev->real_num_rx_queues; i++) {
776 		struct veth_rq *rq = &priv->rq[i];
777 
778 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
779 		napi_enable(&rq->xdp_napi);
780 	}
781 
782 	return 0;
783 err_xdp_ring:
784 	for (i--; i >= 0; i--)
785 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
786 
787 	return err;
788 }
789 
790 static void veth_napi_del(struct net_device *dev)
791 {
792 	struct veth_priv *priv = netdev_priv(dev);
793 	int i;
794 
795 	for (i = 0; i < dev->real_num_rx_queues; i++) {
796 		struct veth_rq *rq = &priv->rq[i];
797 
798 		napi_disable(&rq->xdp_napi);
799 		napi_hash_del(&rq->xdp_napi);
800 	}
801 	synchronize_net();
802 
803 	for (i = 0; i < dev->real_num_rx_queues; i++) {
804 		struct veth_rq *rq = &priv->rq[i];
805 
806 		netif_napi_del(&rq->xdp_napi);
807 		rq->rx_notify_masked = false;
808 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
809 	}
810 }
811 
812 static int veth_enable_xdp(struct net_device *dev)
813 {
814 	struct veth_priv *priv = netdev_priv(dev);
815 	int err, i;
816 
817 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
818 		for (i = 0; i < dev->real_num_rx_queues; i++) {
819 			struct veth_rq *rq = &priv->rq[i];
820 
821 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
822 			if (err < 0)
823 				goto err_rxq_reg;
824 
825 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
826 							 MEM_TYPE_PAGE_SHARED,
827 							 NULL);
828 			if (err < 0)
829 				goto err_reg_mem;
830 
831 			/* Save original mem info as it can be overwritten */
832 			rq->xdp_mem = rq->xdp_rxq.mem;
833 		}
834 
835 		err = veth_napi_add(dev);
836 		if (err)
837 			goto err_rxq_reg;
838 	}
839 
840 	for (i = 0; i < dev->real_num_rx_queues; i++)
841 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
842 
843 	return 0;
844 err_reg_mem:
845 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
846 err_rxq_reg:
847 	for (i--; i >= 0; i--)
848 		xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
849 
850 	return err;
851 }
852 
853 static void veth_disable_xdp(struct net_device *dev)
854 {
855 	struct veth_priv *priv = netdev_priv(dev);
856 	int i;
857 
858 	for (i = 0; i < dev->real_num_rx_queues; i++)
859 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
860 	veth_napi_del(dev);
861 	for (i = 0; i < dev->real_num_rx_queues; i++) {
862 		struct veth_rq *rq = &priv->rq[i];
863 
864 		rq->xdp_rxq.mem = rq->xdp_mem;
865 		xdp_rxq_info_unreg(&rq->xdp_rxq);
866 	}
867 }
868 
869 static int veth_open(struct net_device *dev)
870 {
871 	struct veth_priv *priv = netdev_priv(dev);
872 	struct net_device *peer = rtnl_dereference(priv->peer);
873 	int err;
874 
875 	if (!peer)
876 		return -ENOTCONN;
877 
878 	if (priv->_xdp_prog) {
879 		err = veth_enable_xdp(dev);
880 		if (err)
881 			return err;
882 	}
883 
884 	if (peer->flags & IFF_UP) {
885 		netif_carrier_on(dev);
886 		netif_carrier_on(peer);
887 	}
888 
889 	return 0;
890 }
891 
892 static int veth_close(struct net_device *dev)
893 {
894 	struct veth_priv *priv = netdev_priv(dev);
895 	struct net_device *peer = rtnl_dereference(priv->peer);
896 
897 	netif_carrier_off(dev);
898 	if (peer)
899 		netif_carrier_off(peer);
900 
901 	if (priv->_xdp_prog)
902 		veth_disable_xdp(dev);
903 
904 	return 0;
905 }
906 
907 static int is_valid_veth_mtu(int mtu)
908 {
909 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
910 }
911 
912 static int veth_alloc_queues(struct net_device *dev)
913 {
914 	struct veth_priv *priv = netdev_priv(dev);
915 	int i;
916 
917 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
918 	if (!priv->rq)
919 		return -ENOMEM;
920 
921 	for (i = 0; i < dev->num_rx_queues; i++) {
922 		priv->rq[i].dev = dev;
923 		u64_stats_init(&priv->rq[i].stats.syncp);
924 	}
925 
926 	return 0;
927 }
928 
929 static void veth_free_queues(struct net_device *dev)
930 {
931 	struct veth_priv *priv = netdev_priv(dev);
932 
933 	kfree(priv->rq);
934 }
935 
936 static int veth_dev_init(struct net_device *dev)
937 {
938 	int err;
939 
940 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
941 	if (!dev->lstats)
942 		return -ENOMEM;
943 
944 	err = veth_alloc_queues(dev);
945 	if (err) {
946 		free_percpu(dev->lstats);
947 		return err;
948 	}
949 
950 	return 0;
951 }
952 
953 static void veth_dev_free(struct net_device *dev)
954 {
955 	veth_free_queues(dev);
956 	free_percpu(dev->lstats);
957 }
958 
959 #ifdef CONFIG_NET_POLL_CONTROLLER
960 static void veth_poll_controller(struct net_device *dev)
961 {
962 	/* veth only receives frames when its peer sends one
963 	 * Since it has nothing to do with disabling irqs, we are guaranteed
964 	 * never to have pending data when we poll for it so
965 	 * there is nothing to do here.
966 	 *
967 	 * We need this though so netpoll recognizes us as an interface that
968 	 * supports polling, which enables bridge devices in virt setups to
969 	 * still use netconsole
970 	 */
971 }
972 #endif	/* CONFIG_NET_POLL_CONTROLLER */
973 
974 static int veth_get_iflink(const struct net_device *dev)
975 {
976 	struct veth_priv *priv = netdev_priv(dev);
977 	struct net_device *peer;
978 	int iflink;
979 
980 	rcu_read_lock();
981 	peer = rcu_dereference(priv->peer);
982 	iflink = peer ? peer->ifindex : 0;
983 	rcu_read_unlock();
984 
985 	return iflink;
986 }
987 
988 static netdev_features_t veth_fix_features(struct net_device *dev,
989 					   netdev_features_t features)
990 {
991 	struct veth_priv *priv = netdev_priv(dev);
992 	struct net_device *peer;
993 
994 	peer = rtnl_dereference(priv->peer);
995 	if (peer) {
996 		struct veth_priv *peer_priv = netdev_priv(peer);
997 
998 		if (peer_priv->_xdp_prog)
999 			features &= ~NETIF_F_GSO_SOFTWARE;
1000 	}
1001 
1002 	return features;
1003 }
1004 
1005 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1006 {
1007 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1008 	struct net_device *peer;
1009 
1010 	if (new_hr < 0)
1011 		new_hr = 0;
1012 
1013 	rcu_read_lock();
1014 	peer = rcu_dereference(priv->peer);
1015 	if (unlikely(!peer))
1016 		goto out;
1017 
1018 	peer_priv = netdev_priv(peer);
1019 	priv->requested_headroom = new_hr;
1020 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1021 	dev->needed_headroom = new_hr;
1022 	peer->needed_headroom = new_hr;
1023 
1024 out:
1025 	rcu_read_unlock();
1026 }
1027 
1028 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1029 			struct netlink_ext_ack *extack)
1030 {
1031 	struct veth_priv *priv = netdev_priv(dev);
1032 	struct bpf_prog *old_prog;
1033 	struct net_device *peer;
1034 	unsigned int max_mtu;
1035 	int err;
1036 
1037 	old_prog = priv->_xdp_prog;
1038 	priv->_xdp_prog = prog;
1039 	peer = rtnl_dereference(priv->peer);
1040 
1041 	if (prog) {
1042 		if (!peer) {
1043 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1044 			err = -ENOTCONN;
1045 			goto err;
1046 		}
1047 
1048 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1049 			  peer->hard_header_len -
1050 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1051 		if (peer->mtu > max_mtu) {
1052 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1053 			err = -ERANGE;
1054 			goto err;
1055 		}
1056 
1057 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1058 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1059 			err = -ENOSPC;
1060 			goto err;
1061 		}
1062 
1063 		if (dev->flags & IFF_UP) {
1064 			err = veth_enable_xdp(dev);
1065 			if (err) {
1066 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1067 				goto err;
1068 			}
1069 		}
1070 
1071 		if (!old_prog) {
1072 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1073 			peer->max_mtu = max_mtu;
1074 		}
1075 	}
1076 
1077 	if (old_prog) {
1078 		if (!prog) {
1079 			if (dev->flags & IFF_UP)
1080 				veth_disable_xdp(dev);
1081 
1082 			if (peer) {
1083 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1084 				peer->max_mtu = ETH_MAX_MTU;
1085 			}
1086 		}
1087 		bpf_prog_put(old_prog);
1088 	}
1089 
1090 	if ((!!old_prog ^ !!prog) && peer)
1091 		netdev_update_features(peer);
1092 
1093 	return 0;
1094 err:
1095 	priv->_xdp_prog = old_prog;
1096 
1097 	return err;
1098 }
1099 
1100 static u32 veth_xdp_query(struct net_device *dev)
1101 {
1102 	struct veth_priv *priv = netdev_priv(dev);
1103 	const struct bpf_prog *xdp_prog;
1104 
1105 	xdp_prog = priv->_xdp_prog;
1106 	if (xdp_prog)
1107 		return xdp_prog->aux->id;
1108 
1109 	return 0;
1110 }
1111 
1112 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1113 {
1114 	switch (xdp->command) {
1115 	case XDP_SETUP_PROG:
1116 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1117 	case XDP_QUERY_PROG:
1118 		xdp->prog_id = veth_xdp_query(dev);
1119 		return 0;
1120 	default:
1121 		return -EINVAL;
1122 	}
1123 }
1124 
1125 static const struct net_device_ops veth_netdev_ops = {
1126 	.ndo_init            = veth_dev_init,
1127 	.ndo_open            = veth_open,
1128 	.ndo_stop            = veth_close,
1129 	.ndo_start_xmit      = veth_xmit,
1130 	.ndo_get_stats64     = veth_get_stats64,
1131 	.ndo_set_rx_mode     = veth_set_multicast_list,
1132 	.ndo_set_mac_address = eth_mac_addr,
1133 #ifdef CONFIG_NET_POLL_CONTROLLER
1134 	.ndo_poll_controller	= veth_poll_controller,
1135 #endif
1136 	.ndo_get_iflink		= veth_get_iflink,
1137 	.ndo_fix_features	= veth_fix_features,
1138 	.ndo_features_check	= passthru_features_check,
1139 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1140 	.ndo_bpf		= veth_xdp,
1141 	.ndo_xdp_xmit		= veth_xdp_xmit,
1142 };
1143 
1144 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1145 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1146 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1147 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1148 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1149 
1150 static void veth_setup(struct net_device *dev)
1151 {
1152 	ether_setup(dev);
1153 
1154 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1155 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1156 	dev->priv_flags |= IFF_NO_QUEUE;
1157 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1158 
1159 	dev->netdev_ops = &veth_netdev_ops;
1160 	dev->ethtool_ops = &veth_ethtool_ops;
1161 	dev->features |= NETIF_F_LLTX;
1162 	dev->features |= VETH_FEATURES;
1163 	dev->vlan_features = dev->features &
1164 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1165 			       NETIF_F_HW_VLAN_STAG_TX |
1166 			       NETIF_F_HW_VLAN_CTAG_RX |
1167 			       NETIF_F_HW_VLAN_STAG_RX);
1168 	dev->needs_free_netdev = true;
1169 	dev->priv_destructor = veth_dev_free;
1170 	dev->max_mtu = ETH_MAX_MTU;
1171 
1172 	dev->hw_features = VETH_FEATURES;
1173 	dev->hw_enc_features = VETH_FEATURES;
1174 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1175 }
1176 
1177 /*
1178  * netlink interface
1179  */
1180 
1181 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1182 			 struct netlink_ext_ack *extack)
1183 {
1184 	if (tb[IFLA_ADDRESS]) {
1185 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1186 			return -EINVAL;
1187 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1188 			return -EADDRNOTAVAIL;
1189 	}
1190 	if (tb[IFLA_MTU]) {
1191 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1192 			return -EINVAL;
1193 	}
1194 	return 0;
1195 }
1196 
1197 static struct rtnl_link_ops veth_link_ops;
1198 
1199 static int veth_newlink(struct net *src_net, struct net_device *dev,
1200 			struct nlattr *tb[], struct nlattr *data[],
1201 			struct netlink_ext_ack *extack)
1202 {
1203 	int err;
1204 	struct net_device *peer;
1205 	struct veth_priv *priv;
1206 	char ifname[IFNAMSIZ];
1207 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1208 	unsigned char name_assign_type;
1209 	struct ifinfomsg *ifmp;
1210 	struct net *net;
1211 
1212 	/*
1213 	 * create and register peer first
1214 	 */
1215 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1216 		struct nlattr *nla_peer;
1217 
1218 		nla_peer = data[VETH_INFO_PEER];
1219 		ifmp = nla_data(nla_peer);
1220 		err = rtnl_nla_parse_ifla(peer_tb,
1221 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1222 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1223 					  NULL);
1224 		if (err < 0)
1225 			return err;
1226 
1227 		err = veth_validate(peer_tb, NULL, extack);
1228 		if (err < 0)
1229 			return err;
1230 
1231 		tbp = peer_tb;
1232 	} else {
1233 		ifmp = NULL;
1234 		tbp = tb;
1235 	}
1236 
1237 	if (ifmp && tbp[IFLA_IFNAME]) {
1238 		nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1239 		name_assign_type = NET_NAME_USER;
1240 	} else {
1241 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1242 		name_assign_type = NET_NAME_ENUM;
1243 	}
1244 
1245 	net = rtnl_link_get_net(src_net, tbp);
1246 	if (IS_ERR(net))
1247 		return PTR_ERR(net);
1248 
1249 	peer = rtnl_create_link(net, ifname, name_assign_type,
1250 				&veth_link_ops, tbp, extack);
1251 	if (IS_ERR(peer)) {
1252 		put_net(net);
1253 		return PTR_ERR(peer);
1254 	}
1255 
1256 	if (!ifmp || !tbp[IFLA_ADDRESS])
1257 		eth_hw_addr_random(peer);
1258 
1259 	if (ifmp && (dev->ifindex != 0))
1260 		peer->ifindex = ifmp->ifi_index;
1261 
1262 	peer->gso_max_size = dev->gso_max_size;
1263 	peer->gso_max_segs = dev->gso_max_segs;
1264 
1265 	err = register_netdevice(peer);
1266 	put_net(net);
1267 	net = NULL;
1268 	if (err < 0)
1269 		goto err_register_peer;
1270 
1271 	netif_carrier_off(peer);
1272 
1273 	err = rtnl_configure_link(peer, ifmp);
1274 	if (err < 0)
1275 		goto err_configure_peer;
1276 
1277 	/*
1278 	 * register dev last
1279 	 *
1280 	 * note, that since we've registered new device the dev's name
1281 	 * should be re-allocated
1282 	 */
1283 
1284 	if (tb[IFLA_ADDRESS] == NULL)
1285 		eth_hw_addr_random(dev);
1286 
1287 	if (tb[IFLA_IFNAME])
1288 		nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1289 	else
1290 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1291 
1292 	err = register_netdevice(dev);
1293 	if (err < 0)
1294 		goto err_register_dev;
1295 
1296 	netif_carrier_off(dev);
1297 
1298 	/*
1299 	 * tie the deviced together
1300 	 */
1301 
1302 	priv = netdev_priv(dev);
1303 	rcu_assign_pointer(priv->peer, peer);
1304 
1305 	priv = netdev_priv(peer);
1306 	rcu_assign_pointer(priv->peer, dev);
1307 
1308 	return 0;
1309 
1310 err_register_dev:
1311 	/* nothing to do */
1312 err_configure_peer:
1313 	unregister_netdevice(peer);
1314 	return err;
1315 
1316 err_register_peer:
1317 	free_netdev(peer);
1318 	return err;
1319 }
1320 
1321 static void veth_dellink(struct net_device *dev, struct list_head *head)
1322 {
1323 	struct veth_priv *priv;
1324 	struct net_device *peer;
1325 
1326 	priv = netdev_priv(dev);
1327 	peer = rtnl_dereference(priv->peer);
1328 
1329 	/* Note : dellink() is called from default_device_exit_batch(),
1330 	 * before a rcu_synchronize() point. The devices are guaranteed
1331 	 * not being freed before one RCU grace period.
1332 	 */
1333 	RCU_INIT_POINTER(priv->peer, NULL);
1334 	unregister_netdevice_queue(dev, head);
1335 
1336 	if (peer) {
1337 		priv = netdev_priv(peer);
1338 		RCU_INIT_POINTER(priv->peer, NULL);
1339 		unregister_netdevice_queue(peer, head);
1340 	}
1341 }
1342 
1343 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1344 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1345 };
1346 
1347 static struct net *veth_get_link_net(const struct net_device *dev)
1348 {
1349 	struct veth_priv *priv = netdev_priv(dev);
1350 	struct net_device *peer = rtnl_dereference(priv->peer);
1351 
1352 	return peer ? dev_net(peer) : dev_net(dev);
1353 }
1354 
1355 static struct rtnl_link_ops veth_link_ops = {
1356 	.kind		= DRV_NAME,
1357 	.priv_size	= sizeof(struct veth_priv),
1358 	.setup		= veth_setup,
1359 	.validate	= veth_validate,
1360 	.newlink	= veth_newlink,
1361 	.dellink	= veth_dellink,
1362 	.policy		= veth_policy,
1363 	.maxtype	= VETH_INFO_MAX,
1364 	.get_link_net	= veth_get_link_net,
1365 };
1366 
1367 /*
1368  * init/fini
1369  */
1370 
1371 static __init int veth_init(void)
1372 {
1373 	return rtnl_link_register(&veth_link_ops);
1374 }
1375 
1376 static __exit void veth_exit(void)
1377 {
1378 	rtnl_link_unregister(&veth_link_ops);
1379 }
1380 
1381 module_init(veth_init);
1382 module_exit(veth_exit);
1383 
1384 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1385 MODULE_LICENSE("GPL v2");
1386 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1387