xref: /linux/drivers/net/veth.c (revision c41226654550b0a8aa75e91ce0a1cdb6ce2316ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 
30 #define DRV_NAME	"veth"
31 #define DRV_VERSION	"1.0"
32 
33 #define VETH_XDP_FLAG		BIT(0)
34 #define VETH_RING_SIZE		256
35 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
36 
37 #define VETH_XDP_TX_BULK_SIZE	16
38 #define VETH_XDP_BATCH		16
39 
40 struct veth_stats {
41 	u64	rx_drops;
42 	/* xdp */
43 	u64	xdp_packets;
44 	u64	xdp_bytes;
45 	u64	xdp_redirect;
46 	u64	xdp_drops;
47 	u64	xdp_tx;
48 	u64	xdp_tx_err;
49 	u64	peer_tq_xdp_xmit;
50 	u64	peer_tq_xdp_xmit_err;
51 };
52 
53 struct veth_rq_stats {
54 	struct veth_stats	vs;
55 	struct u64_stats_sync	syncp;
56 };
57 
58 struct veth_rq {
59 	struct napi_struct	xdp_napi;
60 	struct net_device	*dev;
61 	struct bpf_prog __rcu	*xdp_prog;
62 	struct xdp_mem_info	xdp_mem;
63 	struct veth_rq_stats	stats;
64 	bool			rx_notify_masked;
65 	struct ptr_ring		xdp_ring;
66 	struct xdp_rxq_info	xdp_rxq;
67 };
68 
69 struct veth_priv {
70 	struct net_device __rcu	*peer;
71 	atomic64_t		dropped;
72 	struct bpf_prog		*_xdp_prog;
73 	struct veth_rq		*rq;
74 	unsigned int		requested_headroom;
75 };
76 
77 struct veth_xdp_tx_bq {
78 	struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
79 	unsigned int count;
80 };
81 
82 /*
83  * ethtool interface
84  */
85 
86 struct veth_q_stat_desc {
87 	char	desc[ETH_GSTRING_LEN];
88 	size_t	offset;
89 };
90 
91 #define VETH_RQ_STAT(m)	offsetof(struct veth_stats, m)
92 
93 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
94 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
95 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
96 	{ "drops",		VETH_RQ_STAT(rx_drops) },
97 	{ "xdp_redirect",	VETH_RQ_STAT(xdp_redirect) },
98 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
99 	{ "xdp_tx",		VETH_RQ_STAT(xdp_tx) },
100 	{ "xdp_tx_errors",	VETH_RQ_STAT(xdp_tx_err) },
101 };
102 
103 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
104 
105 static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
106 	{ "xdp_xmit",		VETH_RQ_STAT(peer_tq_xdp_xmit) },
107 	{ "xdp_xmit_errors",	VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
108 };
109 
110 #define VETH_TQ_STATS_LEN	ARRAY_SIZE(veth_tq_stats_desc)
111 
112 static struct {
113 	const char string[ETH_GSTRING_LEN];
114 } ethtool_stats_keys[] = {
115 	{ "peer_ifindex" },
116 };
117 
118 static int veth_get_link_ksettings(struct net_device *dev,
119 				   struct ethtool_link_ksettings *cmd)
120 {
121 	cmd->base.speed		= SPEED_10000;
122 	cmd->base.duplex	= DUPLEX_FULL;
123 	cmd->base.port		= PORT_TP;
124 	cmd->base.autoneg	= AUTONEG_DISABLE;
125 	return 0;
126 }
127 
128 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
129 {
130 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
131 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
132 }
133 
134 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
135 {
136 	char *p = (char *)buf;
137 	int i, j;
138 
139 	switch(stringset) {
140 	case ETH_SS_STATS:
141 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
142 		p += sizeof(ethtool_stats_keys);
143 		for (i = 0; i < dev->real_num_rx_queues; i++) {
144 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
145 				snprintf(p, ETH_GSTRING_LEN,
146 					 "rx_queue_%u_%.18s",
147 					 i, veth_rq_stats_desc[j].desc);
148 				p += ETH_GSTRING_LEN;
149 			}
150 		}
151 		for (i = 0; i < dev->real_num_tx_queues; i++) {
152 			for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
153 				snprintf(p, ETH_GSTRING_LEN,
154 					 "tx_queue_%u_%.18s",
155 					 i, veth_tq_stats_desc[j].desc);
156 				p += ETH_GSTRING_LEN;
157 			}
158 		}
159 		break;
160 	}
161 }
162 
163 static int veth_get_sset_count(struct net_device *dev, int sset)
164 {
165 	switch (sset) {
166 	case ETH_SS_STATS:
167 		return ARRAY_SIZE(ethtool_stats_keys) +
168 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
169 		       VETH_TQ_STATS_LEN * dev->real_num_tx_queues;
170 	default:
171 		return -EOPNOTSUPP;
172 	}
173 }
174 
175 static void veth_get_ethtool_stats(struct net_device *dev,
176 		struct ethtool_stats *stats, u64 *data)
177 {
178 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
179 	struct net_device *peer = rtnl_dereference(priv->peer);
180 	int i, j, idx;
181 
182 	data[0] = peer ? peer->ifindex : 0;
183 	idx = 1;
184 	for (i = 0; i < dev->real_num_rx_queues; i++) {
185 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
186 		const void *stats_base = (void *)&rq_stats->vs;
187 		unsigned int start;
188 		size_t offset;
189 
190 		do {
191 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
192 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
193 				offset = veth_rq_stats_desc[j].offset;
194 				data[idx + j] = *(u64 *)(stats_base + offset);
195 			}
196 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
197 		idx += VETH_RQ_STATS_LEN;
198 	}
199 
200 	if (!peer)
201 		return;
202 
203 	rcv_priv = netdev_priv(peer);
204 	for (i = 0; i < peer->real_num_rx_queues; i++) {
205 		const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
206 		const void *base = (void *)&rq_stats->vs;
207 		unsigned int start, tx_idx = idx;
208 		size_t offset;
209 
210 		tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
211 		do {
212 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
213 			for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
214 				offset = veth_tq_stats_desc[j].offset;
215 				data[tx_idx + j] += *(u64 *)(base + offset);
216 			}
217 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
218 	}
219 }
220 
221 static const struct ethtool_ops veth_ethtool_ops = {
222 	.get_drvinfo		= veth_get_drvinfo,
223 	.get_link		= ethtool_op_get_link,
224 	.get_strings		= veth_get_strings,
225 	.get_sset_count		= veth_get_sset_count,
226 	.get_ethtool_stats	= veth_get_ethtool_stats,
227 	.get_link_ksettings	= veth_get_link_ksettings,
228 	.get_ts_info		= ethtool_op_get_ts_info,
229 };
230 
231 /* general routines */
232 
233 static bool veth_is_xdp_frame(void *ptr)
234 {
235 	return (unsigned long)ptr & VETH_XDP_FLAG;
236 }
237 
238 static struct xdp_frame *veth_ptr_to_xdp(void *ptr)
239 {
240 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
241 }
242 
243 static void *veth_xdp_to_ptr(struct xdp_frame *xdp)
244 {
245 	return (void *)((unsigned long)xdp | VETH_XDP_FLAG);
246 }
247 
248 static void veth_ptr_free(void *ptr)
249 {
250 	if (veth_is_xdp_frame(ptr))
251 		xdp_return_frame(veth_ptr_to_xdp(ptr));
252 	else
253 		kfree_skb(ptr);
254 }
255 
256 static void __veth_xdp_flush(struct veth_rq *rq)
257 {
258 	/* Write ptr_ring before reading rx_notify_masked */
259 	smp_mb();
260 	if (!rq->rx_notify_masked) {
261 		rq->rx_notify_masked = true;
262 		napi_schedule(&rq->xdp_napi);
263 	}
264 }
265 
266 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
267 {
268 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
269 		dev_kfree_skb_any(skb);
270 		return NET_RX_DROP;
271 	}
272 
273 	return NET_RX_SUCCESS;
274 }
275 
276 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
277 			    struct veth_rq *rq, bool xdp)
278 {
279 	return __dev_forward_skb(dev, skb) ?: xdp ?
280 		veth_xdp_rx(rq, skb) :
281 		netif_rx(skb);
282 }
283 
284 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
285 {
286 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
287 	struct veth_rq *rq = NULL;
288 	struct net_device *rcv;
289 	int length = skb->len;
290 	bool rcv_xdp = false;
291 	int rxq;
292 
293 	rcu_read_lock();
294 	rcv = rcu_dereference(priv->peer);
295 	if (unlikely(!rcv)) {
296 		kfree_skb(skb);
297 		goto drop;
298 	}
299 
300 	rcv_priv = netdev_priv(rcv);
301 	rxq = skb_get_queue_mapping(skb);
302 	if (rxq < rcv->real_num_rx_queues) {
303 		rq = &rcv_priv->rq[rxq];
304 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
305 		if (rcv_xdp)
306 			skb_record_rx_queue(skb, rxq);
307 	}
308 
309 	skb_tx_timestamp(skb);
310 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
311 		if (!rcv_xdp)
312 			dev_lstats_add(dev, length);
313 	} else {
314 drop:
315 		atomic64_inc(&priv->dropped);
316 	}
317 
318 	if (rcv_xdp)
319 		__veth_xdp_flush(rq);
320 
321 	rcu_read_unlock();
322 
323 	return NETDEV_TX_OK;
324 }
325 
326 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
327 {
328 	struct veth_priv *priv = netdev_priv(dev);
329 
330 	dev_lstats_read(dev, packets, bytes);
331 	return atomic64_read(&priv->dropped);
332 }
333 
334 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
335 {
336 	struct veth_priv *priv = netdev_priv(dev);
337 	int i;
338 
339 	result->peer_tq_xdp_xmit_err = 0;
340 	result->xdp_packets = 0;
341 	result->xdp_tx_err = 0;
342 	result->xdp_bytes = 0;
343 	result->rx_drops = 0;
344 	for (i = 0; i < dev->num_rx_queues; i++) {
345 		u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
346 		struct veth_rq_stats *stats = &priv->rq[i].stats;
347 		unsigned int start;
348 
349 		do {
350 			start = u64_stats_fetch_begin_irq(&stats->syncp);
351 			peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
352 			xdp_tx_err = stats->vs.xdp_tx_err;
353 			packets = stats->vs.xdp_packets;
354 			bytes = stats->vs.xdp_bytes;
355 			drops = stats->vs.rx_drops;
356 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
357 		result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
358 		result->xdp_tx_err += xdp_tx_err;
359 		result->xdp_packets += packets;
360 		result->xdp_bytes += bytes;
361 		result->rx_drops += drops;
362 	}
363 }
364 
365 static void veth_get_stats64(struct net_device *dev,
366 			     struct rtnl_link_stats64 *tot)
367 {
368 	struct veth_priv *priv = netdev_priv(dev);
369 	struct net_device *peer;
370 	struct veth_stats rx;
371 	u64 packets, bytes;
372 
373 	tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
374 	tot->tx_bytes = bytes;
375 	tot->tx_packets = packets;
376 
377 	veth_stats_rx(&rx, dev);
378 	tot->tx_dropped += rx.xdp_tx_err;
379 	tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
380 	tot->rx_bytes = rx.xdp_bytes;
381 	tot->rx_packets = rx.xdp_packets;
382 
383 	rcu_read_lock();
384 	peer = rcu_dereference(priv->peer);
385 	if (peer) {
386 		veth_stats_tx(peer, &packets, &bytes);
387 		tot->rx_bytes += bytes;
388 		tot->rx_packets += packets;
389 
390 		veth_stats_rx(&rx, peer);
391 		tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
392 		tot->rx_dropped += rx.xdp_tx_err;
393 		tot->tx_bytes += rx.xdp_bytes;
394 		tot->tx_packets += rx.xdp_packets;
395 	}
396 	rcu_read_unlock();
397 }
398 
399 /* fake multicast ability */
400 static void veth_set_multicast_list(struct net_device *dev)
401 {
402 }
403 
404 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
405 				      int buflen)
406 {
407 	struct sk_buff *skb;
408 
409 	skb = build_skb(head, buflen);
410 	if (!skb)
411 		return NULL;
412 
413 	skb_reserve(skb, headroom);
414 	skb_put(skb, len);
415 
416 	return skb;
417 }
418 
419 static int veth_select_rxq(struct net_device *dev)
420 {
421 	return smp_processor_id() % dev->real_num_rx_queues;
422 }
423 
424 static struct net_device *veth_peer_dev(struct net_device *dev)
425 {
426 	struct veth_priv *priv = netdev_priv(dev);
427 
428 	/* Callers must be under RCU read side. */
429 	return rcu_dereference(priv->peer);
430 }
431 
432 static int veth_xdp_xmit(struct net_device *dev, int n,
433 			 struct xdp_frame **frames,
434 			 u32 flags, bool ndo_xmit)
435 {
436 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
437 	int i, ret = -ENXIO, nxmit = 0;
438 	struct net_device *rcv;
439 	unsigned int max_len;
440 	struct veth_rq *rq;
441 
442 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
443 		return -EINVAL;
444 
445 	rcu_read_lock();
446 	rcv = rcu_dereference(priv->peer);
447 	if (unlikely(!rcv))
448 		goto out;
449 
450 	rcv_priv = netdev_priv(rcv);
451 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
452 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
453 	 * side. This means an XDP program is loaded on the peer and the peer
454 	 * device is up.
455 	 */
456 	if (!rcu_access_pointer(rq->xdp_prog))
457 		goto out;
458 
459 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
460 
461 	spin_lock(&rq->xdp_ring.producer_lock);
462 	for (i = 0; i < n; i++) {
463 		struct xdp_frame *frame = frames[i];
464 		void *ptr = veth_xdp_to_ptr(frame);
465 
466 		if (unlikely(frame->len > max_len ||
467 			     __ptr_ring_produce(&rq->xdp_ring, ptr)))
468 			break;
469 		nxmit++;
470 	}
471 	spin_unlock(&rq->xdp_ring.producer_lock);
472 
473 	if (flags & XDP_XMIT_FLUSH)
474 		__veth_xdp_flush(rq);
475 
476 	ret = nxmit;
477 	if (ndo_xmit) {
478 		u64_stats_update_begin(&rq->stats.syncp);
479 		rq->stats.vs.peer_tq_xdp_xmit += nxmit;
480 		rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit;
481 		u64_stats_update_end(&rq->stats.syncp);
482 	}
483 
484 out:
485 	rcu_read_unlock();
486 
487 	return ret;
488 }
489 
490 static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
491 			     struct xdp_frame **frames, u32 flags)
492 {
493 	int err;
494 
495 	err = veth_xdp_xmit(dev, n, frames, flags, true);
496 	if (err < 0) {
497 		struct veth_priv *priv = netdev_priv(dev);
498 
499 		atomic64_add(n, &priv->dropped);
500 	}
501 
502 	return err;
503 }
504 
505 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
506 {
507 	int sent, i, err = 0, drops;
508 
509 	sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
510 	if (sent < 0) {
511 		err = sent;
512 		sent = 0;
513 	}
514 
515 	for (i = sent; unlikely(i < bq->count); i++)
516 		xdp_return_frame(bq->q[i]);
517 
518 	drops = bq->count - sent;
519 	trace_xdp_bulk_tx(rq->dev, sent, drops, err);
520 
521 	u64_stats_update_begin(&rq->stats.syncp);
522 	rq->stats.vs.xdp_tx += sent;
523 	rq->stats.vs.xdp_tx_err += drops;
524 	u64_stats_update_end(&rq->stats.syncp);
525 
526 	bq->count = 0;
527 }
528 
529 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
530 {
531 	struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
532 	struct net_device *rcv;
533 	struct veth_rq *rcv_rq;
534 
535 	rcu_read_lock();
536 	veth_xdp_flush_bq(rq, bq);
537 	rcv = rcu_dereference(priv->peer);
538 	if (unlikely(!rcv))
539 		goto out;
540 
541 	rcv_priv = netdev_priv(rcv);
542 	rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
543 	/* xdp_ring is initialized on receive side? */
544 	if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
545 		goto out;
546 
547 	__veth_xdp_flush(rcv_rq);
548 out:
549 	rcu_read_unlock();
550 }
551 
552 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
553 		       struct veth_xdp_tx_bq *bq)
554 {
555 	struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
556 
557 	if (unlikely(!frame))
558 		return -EOVERFLOW;
559 
560 	if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
561 		veth_xdp_flush_bq(rq, bq);
562 
563 	bq->q[bq->count++] = frame;
564 
565 	return 0;
566 }
567 
568 static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq,
569 					  struct xdp_frame *frame,
570 					  struct veth_xdp_tx_bq *bq,
571 					  struct veth_stats *stats)
572 {
573 	struct xdp_frame orig_frame;
574 	struct bpf_prog *xdp_prog;
575 
576 	rcu_read_lock();
577 	xdp_prog = rcu_dereference(rq->xdp_prog);
578 	if (likely(xdp_prog)) {
579 		struct xdp_buff xdp;
580 		u32 act;
581 
582 		xdp_convert_frame_to_buff(frame, &xdp);
583 		xdp.rxq = &rq->xdp_rxq;
584 
585 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
586 
587 		switch (act) {
588 		case XDP_PASS:
589 			if (xdp_update_frame_from_buff(&xdp, frame))
590 				goto err_xdp;
591 			break;
592 		case XDP_TX:
593 			orig_frame = *frame;
594 			xdp.rxq->mem = frame->mem;
595 			if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
596 				trace_xdp_exception(rq->dev, xdp_prog, act);
597 				frame = &orig_frame;
598 				stats->rx_drops++;
599 				goto err_xdp;
600 			}
601 			stats->xdp_tx++;
602 			rcu_read_unlock();
603 			goto xdp_xmit;
604 		case XDP_REDIRECT:
605 			orig_frame = *frame;
606 			xdp.rxq->mem = frame->mem;
607 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
608 				frame = &orig_frame;
609 				stats->rx_drops++;
610 				goto err_xdp;
611 			}
612 			stats->xdp_redirect++;
613 			rcu_read_unlock();
614 			goto xdp_xmit;
615 		default:
616 			bpf_warn_invalid_xdp_action(act);
617 			fallthrough;
618 		case XDP_ABORTED:
619 			trace_xdp_exception(rq->dev, xdp_prog, act);
620 			fallthrough;
621 		case XDP_DROP:
622 			stats->xdp_drops++;
623 			goto err_xdp;
624 		}
625 	}
626 	rcu_read_unlock();
627 
628 	return frame;
629 err_xdp:
630 	rcu_read_unlock();
631 	xdp_return_frame(frame);
632 xdp_xmit:
633 	return NULL;
634 }
635 
636 /* frames array contains VETH_XDP_BATCH at most */
637 static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames,
638 				  int n_xdpf, struct veth_xdp_tx_bq *bq,
639 				  struct veth_stats *stats)
640 {
641 	void *skbs[VETH_XDP_BATCH];
642 	int i;
643 
644 	if (xdp_alloc_skb_bulk(skbs, n_xdpf,
645 			       GFP_ATOMIC | __GFP_ZERO) < 0) {
646 		for (i = 0; i < n_xdpf; i++)
647 			xdp_return_frame(frames[i]);
648 		stats->rx_drops += n_xdpf;
649 
650 		return;
651 	}
652 
653 	for (i = 0; i < n_xdpf; i++) {
654 		struct sk_buff *skb = skbs[i];
655 
656 		skb = __xdp_build_skb_from_frame(frames[i], skb,
657 						 rq->dev);
658 		if (!skb) {
659 			xdp_return_frame(frames[i]);
660 			stats->rx_drops++;
661 			continue;
662 		}
663 		napi_gro_receive(&rq->xdp_napi, skb);
664 	}
665 }
666 
667 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
668 					struct sk_buff *skb,
669 					struct veth_xdp_tx_bq *bq,
670 					struct veth_stats *stats)
671 {
672 	u32 pktlen, headroom, act, metalen, frame_sz;
673 	void *orig_data, *orig_data_end;
674 	struct bpf_prog *xdp_prog;
675 	int mac_len, delta, off;
676 	struct xdp_buff xdp;
677 
678 	skb_orphan(skb);
679 
680 	rcu_read_lock();
681 	xdp_prog = rcu_dereference(rq->xdp_prog);
682 	if (unlikely(!xdp_prog)) {
683 		rcu_read_unlock();
684 		goto out;
685 	}
686 
687 	mac_len = skb->data - skb_mac_header(skb);
688 	pktlen = skb->len + mac_len;
689 	headroom = skb_headroom(skb) - mac_len;
690 
691 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
692 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
693 		struct sk_buff *nskb;
694 		int size, head_off;
695 		void *head, *start;
696 		struct page *page;
697 
698 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
699 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
700 		if (size > PAGE_SIZE)
701 			goto drop;
702 
703 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
704 		if (!page)
705 			goto drop;
706 
707 		head = page_address(page);
708 		start = head + VETH_XDP_HEADROOM;
709 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
710 			page_frag_free(head);
711 			goto drop;
712 		}
713 
714 		nskb = veth_build_skb(head, VETH_XDP_HEADROOM + mac_len,
715 				      skb->len, PAGE_SIZE);
716 		if (!nskb) {
717 			page_frag_free(head);
718 			goto drop;
719 		}
720 
721 		skb_copy_header(nskb, skb);
722 		head_off = skb_headroom(nskb) - skb_headroom(skb);
723 		skb_headers_offset_update(nskb, head_off);
724 		consume_skb(skb);
725 		skb = nskb;
726 	}
727 
728 	/* SKB "head" area always have tailroom for skb_shared_info */
729 	frame_sz = skb_end_pointer(skb) - skb->head;
730 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
731 	xdp_init_buff(&xdp, frame_sz, &rq->xdp_rxq);
732 	xdp_prepare_buff(&xdp, skb->head, skb->mac_header, pktlen, true);
733 
734 	orig_data = xdp.data;
735 	orig_data_end = xdp.data_end;
736 
737 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
738 
739 	switch (act) {
740 	case XDP_PASS:
741 		break;
742 	case XDP_TX:
743 		get_page(virt_to_page(xdp.data));
744 		consume_skb(skb);
745 		xdp.rxq->mem = rq->xdp_mem;
746 		if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
747 			trace_xdp_exception(rq->dev, xdp_prog, act);
748 			stats->rx_drops++;
749 			goto err_xdp;
750 		}
751 		stats->xdp_tx++;
752 		rcu_read_unlock();
753 		goto xdp_xmit;
754 	case XDP_REDIRECT:
755 		get_page(virt_to_page(xdp.data));
756 		consume_skb(skb);
757 		xdp.rxq->mem = rq->xdp_mem;
758 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
759 			stats->rx_drops++;
760 			goto err_xdp;
761 		}
762 		stats->xdp_redirect++;
763 		rcu_read_unlock();
764 		goto xdp_xmit;
765 	default:
766 		bpf_warn_invalid_xdp_action(act);
767 		fallthrough;
768 	case XDP_ABORTED:
769 		trace_xdp_exception(rq->dev, xdp_prog, act);
770 		fallthrough;
771 	case XDP_DROP:
772 		stats->xdp_drops++;
773 		goto xdp_drop;
774 	}
775 	rcu_read_unlock();
776 
777 	/* check if bpf_xdp_adjust_head was used */
778 	delta = orig_data - xdp.data;
779 	off = mac_len + delta;
780 	if (off > 0)
781 		__skb_push(skb, off);
782 	else if (off < 0)
783 		__skb_pull(skb, -off);
784 	skb->mac_header -= delta;
785 
786 	/* check if bpf_xdp_adjust_tail was used */
787 	off = xdp.data_end - orig_data_end;
788 	if (off != 0)
789 		__skb_put(skb, off); /* positive on grow, negative on shrink */
790 	skb->protocol = eth_type_trans(skb, rq->dev);
791 
792 	metalen = xdp.data - xdp.data_meta;
793 	if (metalen)
794 		skb_metadata_set(skb, metalen);
795 out:
796 	return skb;
797 drop:
798 	stats->rx_drops++;
799 xdp_drop:
800 	rcu_read_unlock();
801 	kfree_skb(skb);
802 	return NULL;
803 err_xdp:
804 	rcu_read_unlock();
805 	page_frag_free(xdp.data);
806 xdp_xmit:
807 	return NULL;
808 }
809 
810 static int veth_xdp_rcv(struct veth_rq *rq, int budget,
811 			struct veth_xdp_tx_bq *bq,
812 			struct veth_stats *stats)
813 {
814 	int i, done = 0, n_xdpf = 0;
815 	void *xdpf[VETH_XDP_BATCH];
816 
817 	for (i = 0; i < budget; i++) {
818 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
819 
820 		if (!ptr)
821 			break;
822 
823 		if (veth_is_xdp_frame(ptr)) {
824 			/* ndo_xdp_xmit */
825 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
826 
827 			stats->xdp_bytes += frame->len;
828 			frame = veth_xdp_rcv_one(rq, frame, bq, stats);
829 			if (frame) {
830 				/* XDP_PASS */
831 				xdpf[n_xdpf++] = frame;
832 				if (n_xdpf == VETH_XDP_BATCH) {
833 					veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf,
834 							      bq, stats);
835 					n_xdpf = 0;
836 				}
837 			}
838 		} else {
839 			/* ndo_start_xmit */
840 			struct sk_buff *skb = ptr;
841 
842 			stats->xdp_bytes += skb->len;
843 			skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
844 			if (skb)
845 				napi_gro_receive(&rq->xdp_napi, skb);
846 		}
847 		done++;
848 	}
849 
850 	if (n_xdpf)
851 		veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats);
852 
853 	u64_stats_update_begin(&rq->stats.syncp);
854 	rq->stats.vs.xdp_redirect += stats->xdp_redirect;
855 	rq->stats.vs.xdp_bytes += stats->xdp_bytes;
856 	rq->stats.vs.xdp_drops += stats->xdp_drops;
857 	rq->stats.vs.rx_drops += stats->rx_drops;
858 	rq->stats.vs.xdp_packets += done;
859 	u64_stats_update_end(&rq->stats.syncp);
860 
861 	return done;
862 }
863 
864 static int veth_poll(struct napi_struct *napi, int budget)
865 {
866 	struct veth_rq *rq =
867 		container_of(napi, struct veth_rq, xdp_napi);
868 	struct veth_stats stats = {};
869 	struct veth_xdp_tx_bq bq;
870 	int done;
871 
872 	bq.count = 0;
873 
874 	xdp_set_return_frame_no_direct();
875 	done = veth_xdp_rcv(rq, budget, &bq, &stats);
876 
877 	if (done < budget && napi_complete_done(napi, done)) {
878 		/* Write rx_notify_masked before reading ptr_ring */
879 		smp_store_mb(rq->rx_notify_masked, false);
880 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
881 			rq->rx_notify_masked = true;
882 			napi_schedule(&rq->xdp_napi);
883 		}
884 	}
885 
886 	if (stats.xdp_tx > 0)
887 		veth_xdp_flush(rq, &bq);
888 	if (stats.xdp_redirect > 0)
889 		xdp_do_flush();
890 	xdp_clear_return_frame_no_direct();
891 
892 	return done;
893 }
894 
895 static int veth_napi_add(struct net_device *dev)
896 {
897 	struct veth_priv *priv = netdev_priv(dev);
898 	int err, i;
899 
900 	for (i = 0; i < dev->real_num_rx_queues; i++) {
901 		struct veth_rq *rq = &priv->rq[i];
902 
903 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
904 		if (err)
905 			goto err_xdp_ring;
906 	}
907 
908 	for (i = 0; i < dev->real_num_rx_queues; i++) {
909 		struct veth_rq *rq = &priv->rq[i];
910 
911 		napi_enable(&rq->xdp_napi);
912 	}
913 
914 	return 0;
915 err_xdp_ring:
916 	for (i--; i >= 0; i--)
917 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
918 
919 	return err;
920 }
921 
922 static void veth_napi_del(struct net_device *dev)
923 {
924 	struct veth_priv *priv = netdev_priv(dev);
925 	int i;
926 
927 	for (i = 0; i < dev->real_num_rx_queues; i++) {
928 		struct veth_rq *rq = &priv->rq[i];
929 
930 		napi_disable(&rq->xdp_napi);
931 		__netif_napi_del(&rq->xdp_napi);
932 	}
933 	synchronize_net();
934 
935 	for (i = 0; i < dev->real_num_rx_queues; i++) {
936 		struct veth_rq *rq = &priv->rq[i];
937 
938 		rq->rx_notify_masked = false;
939 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
940 	}
941 }
942 
943 static int veth_enable_xdp(struct net_device *dev)
944 {
945 	struct veth_priv *priv = netdev_priv(dev);
946 	int err, i;
947 
948 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
949 		for (i = 0; i < dev->real_num_rx_queues; i++) {
950 			struct veth_rq *rq = &priv->rq[i];
951 
952 			netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
953 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id);
954 			if (err < 0)
955 				goto err_rxq_reg;
956 
957 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
958 							 MEM_TYPE_PAGE_SHARED,
959 							 NULL);
960 			if (err < 0)
961 				goto err_reg_mem;
962 
963 			/* Save original mem info as it can be overwritten */
964 			rq->xdp_mem = rq->xdp_rxq.mem;
965 		}
966 
967 		err = veth_napi_add(dev);
968 		if (err)
969 			goto err_rxq_reg;
970 	}
971 
972 	for (i = 0; i < dev->real_num_rx_queues; i++)
973 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
974 
975 	return 0;
976 err_reg_mem:
977 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
978 err_rxq_reg:
979 	for (i--; i >= 0; i--) {
980 		struct veth_rq *rq = &priv->rq[i];
981 
982 		xdp_rxq_info_unreg(&rq->xdp_rxq);
983 		netif_napi_del(&rq->xdp_napi);
984 	}
985 
986 	return err;
987 }
988 
989 static void veth_disable_xdp(struct net_device *dev)
990 {
991 	struct veth_priv *priv = netdev_priv(dev);
992 	int i;
993 
994 	for (i = 0; i < dev->real_num_rx_queues; i++)
995 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
996 	veth_napi_del(dev);
997 	for (i = 0; i < dev->real_num_rx_queues; i++) {
998 		struct veth_rq *rq = &priv->rq[i];
999 
1000 		rq->xdp_rxq.mem = rq->xdp_mem;
1001 		xdp_rxq_info_unreg(&rq->xdp_rxq);
1002 	}
1003 }
1004 
1005 static int veth_open(struct net_device *dev)
1006 {
1007 	struct veth_priv *priv = netdev_priv(dev);
1008 	struct net_device *peer = rtnl_dereference(priv->peer);
1009 	int err;
1010 
1011 	if (!peer)
1012 		return -ENOTCONN;
1013 
1014 	if (priv->_xdp_prog) {
1015 		err = veth_enable_xdp(dev);
1016 		if (err)
1017 			return err;
1018 	}
1019 
1020 	if (peer->flags & IFF_UP) {
1021 		netif_carrier_on(dev);
1022 		netif_carrier_on(peer);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static int veth_close(struct net_device *dev)
1029 {
1030 	struct veth_priv *priv = netdev_priv(dev);
1031 	struct net_device *peer = rtnl_dereference(priv->peer);
1032 
1033 	netif_carrier_off(dev);
1034 	if (peer)
1035 		netif_carrier_off(peer);
1036 
1037 	if (priv->_xdp_prog)
1038 		veth_disable_xdp(dev);
1039 
1040 	return 0;
1041 }
1042 
1043 static int is_valid_veth_mtu(int mtu)
1044 {
1045 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
1046 }
1047 
1048 static int veth_alloc_queues(struct net_device *dev)
1049 {
1050 	struct veth_priv *priv = netdev_priv(dev);
1051 	int i;
1052 
1053 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
1054 	if (!priv->rq)
1055 		return -ENOMEM;
1056 
1057 	for (i = 0; i < dev->num_rx_queues; i++) {
1058 		priv->rq[i].dev = dev;
1059 		u64_stats_init(&priv->rq[i].stats.syncp);
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static void veth_free_queues(struct net_device *dev)
1066 {
1067 	struct veth_priv *priv = netdev_priv(dev);
1068 
1069 	kfree(priv->rq);
1070 }
1071 
1072 static int veth_dev_init(struct net_device *dev)
1073 {
1074 	int err;
1075 
1076 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
1077 	if (!dev->lstats)
1078 		return -ENOMEM;
1079 
1080 	err = veth_alloc_queues(dev);
1081 	if (err) {
1082 		free_percpu(dev->lstats);
1083 		return err;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static void veth_dev_free(struct net_device *dev)
1090 {
1091 	veth_free_queues(dev);
1092 	free_percpu(dev->lstats);
1093 }
1094 
1095 #ifdef CONFIG_NET_POLL_CONTROLLER
1096 static void veth_poll_controller(struct net_device *dev)
1097 {
1098 	/* veth only receives frames when its peer sends one
1099 	 * Since it has nothing to do with disabling irqs, we are guaranteed
1100 	 * never to have pending data when we poll for it so
1101 	 * there is nothing to do here.
1102 	 *
1103 	 * We need this though so netpoll recognizes us as an interface that
1104 	 * supports polling, which enables bridge devices in virt setups to
1105 	 * still use netconsole
1106 	 */
1107 }
1108 #endif	/* CONFIG_NET_POLL_CONTROLLER */
1109 
1110 static int veth_get_iflink(const struct net_device *dev)
1111 {
1112 	struct veth_priv *priv = netdev_priv(dev);
1113 	struct net_device *peer;
1114 	int iflink;
1115 
1116 	rcu_read_lock();
1117 	peer = rcu_dereference(priv->peer);
1118 	iflink = peer ? peer->ifindex : 0;
1119 	rcu_read_unlock();
1120 
1121 	return iflink;
1122 }
1123 
1124 static netdev_features_t veth_fix_features(struct net_device *dev,
1125 					   netdev_features_t features)
1126 {
1127 	struct veth_priv *priv = netdev_priv(dev);
1128 	struct net_device *peer;
1129 
1130 	peer = rtnl_dereference(priv->peer);
1131 	if (peer) {
1132 		struct veth_priv *peer_priv = netdev_priv(peer);
1133 
1134 		if (peer_priv->_xdp_prog)
1135 			features &= ~NETIF_F_GSO_SOFTWARE;
1136 	}
1137 
1138 	return features;
1139 }
1140 
1141 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1142 {
1143 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1144 	struct net_device *peer;
1145 
1146 	if (new_hr < 0)
1147 		new_hr = 0;
1148 
1149 	rcu_read_lock();
1150 	peer = rcu_dereference(priv->peer);
1151 	if (unlikely(!peer))
1152 		goto out;
1153 
1154 	peer_priv = netdev_priv(peer);
1155 	priv->requested_headroom = new_hr;
1156 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1157 	dev->needed_headroom = new_hr;
1158 	peer->needed_headroom = new_hr;
1159 
1160 out:
1161 	rcu_read_unlock();
1162 }
1163 
1164 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1165 			struct netlink_ext_ack *extack)
1166 {
1167 	struct veth_priv *priv = netdev_priv(dev);
1168 	struct bpf_prog *old_prog;
1169 	struct net_device *peer;
1170 	unsigned int max_mtu;
1171 	int err;
1172 
1173 	old_prog = priv->_xdp_prog;
1174 	priv->_xdp_prog = prog;
1175 	peer = rtnl_dereference(priv->peer);
1176 
1177 	if (prog) {
1178 		if (!peer) {
1179 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1180 			err = -ENOTCONN;
1181 			goto err;
1182 		}
1183 
1184 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1185 			  peer->hard_header_len -
1186 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1187 		if (peer->mtu > max_mtu) {
1188 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1189 			err = -ERANGE;
1190 			goto err;
1191 		}
1192 
1193 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1194 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1195 			err = -ENOSPC;
1196 			goto err;
1197 		}
1198 
1199 		if (dev->flags & IFF_UP) {
1200 			err = veth_enable_xdp(dev);
1201 			if (err) {
1202 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1203 				goto err;
1204 			}
1205 		}
1206 
1207 		if (!old_prog) {
1208 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1209 			peer->max_mtu = max_mtu;
1210 		}
1211 	}
1212 
1213 	if (old_prog) {
1214 		if (!prog) {
1215 			if (dev->flags & IFF_UP)
1216 				veth_disable_xdp(dev);
1217 
1218 			if (peer) {
1219 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1220 				peer->max_mtu = ETH_MAX_MTU;
1221 			}
1222 		}
1223 		bpf_prog_put(old_prog);
1224 	}
1225 
1226 	if ((!!old_prog ^ !!prog) && peer)
1227 		netdev_update_features(peer);
1228 
1229 	return 0;
1230 err:
1231 	priv->_xdp_prog = old_prog;
1232 
1233 	return err;
1234 }
1235 
1236 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1237 {
1238 	switch (xdp->command) {
1239 	case XDP_SETUP_PROG:
1240 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1241 	default:
1242 		return -EINVAL;
1243 	}
1244 }
1245 
1246 static const struct net_device_ops veth_netdev_ops = {
1247 	.ndo_init            = veth_dev_init,
1248 	.ndo_open            = veth_open,
1249 	.ndo_stop            = veth_close,
1250 	.ndo_start_xmit      = veth_xmit,
1251 	.ndo_get_stats64     = veth_get_stats64,
1252 	.ndo_set_rx_mode     = veth_set_multicast_list,
1253 	.ndo_set_mac_address = eth_mac_addr,
1254 #ifdef CONFIG_NET_POLL_CONTROLLER
1255 	.ndo_poll_controller	= veth_poll_controller,
1256 #endif
1257 	.ndo_get_iflink		= veth_get_iflink,
1258 	.ndo_fix_features	= veth_fix_features,
1259 	.ndo_features_check	= passthru_features_check,
1260 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1261 	.ndo_bpf		= veth_xdp,
1262 	.ndo_xdp_xmit		= veth_ndo_xdp_xmit,
1263 	.ndo_get_peer_dev	= veth_peer_dev,
1264 };
1265 
1266 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1267 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1268 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1269 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1270 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1271 
1272 static void veth_setup(struct net_device *dev)
1273 {
1274 	ether_setup(dev);
1275 
1276 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1277 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1278 	dev->priv_flags |= IFF_NO_QUEUE;
1279 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1280 
1281 	dev->netdev_ops = &veth_netdev_ops;
1282 	dev->ethtool_ops = &veth_ethtool_ops;
1283 	dev->features |= NETIF_F_LLTX;
1284 	dev->features |= VETH_FEATURES;
1285 	dev->vlan_features = dev->features &
1286 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1287 			       NETIF_F_HW_VLAN_STAG_TX |
1288 			       NETIF_F_HW_VLAN_CTAG_RX |
1289 			       NETIF_F_HW_VLAN_STAG_RX);
1290 	dev->needs_free_netdev = true;
1291 	dev->priv_destructor = veth_dev_free;
1292 	dev->max_mtu = ETH_MAX_MTU;
1293 
1294 	dev->hw_features = VETH_FEATURES;
1295 	dev->hw_enc_features = VETH_FEATURES;
1296 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1297 }
1298 
1299 /*
1300  * netlink interface
1301  */
1302 
1303 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1304 			 struct netlink_ext_ack *extack)
1305 {
1306 	if (tb[IFLA_ADDRESS]) {
1307 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1308 			return -EINVAL;
1309 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1310 			return -EADDRNOTAVAIL;
1311 	}
1312 	if (tb[IFLA_MTU]) {
1313 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1314 			return -EINVAL;
1315 	}
1316 	return 0;
1317 }
1318 
1319 static struct rtnl_link_ops veth_link_ops;
1320 
1321 static int veth_newlink(struct net *src_net, struct net_device *dev,
1322 			struct nlattr *tb[], struct nlattr *data[],
1323 			struct netlink_ext_ack *extack)
1324 {
1325 	int err;
1326 	struct net_device *peer;
1327 	struct veth_priv *priv;
1328 	char ifname[IFNAMSIZ];
1329 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1330 	unsigned char name_assign_type;
1331 	struct ifinfomsg *ifmp;
1332 	struct net *net;
1333 
1334 	/*
1335 	 * create and register peer first
1336 	 */
1337 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1338 		struct nlattr *nla_peer;
1339 
1340 		nla_peer = data[VETH_INFO_PEER];
1341 		ifmp = nla_data(nla_peer);
1342 		err = rtnl_nla_parse_ifla(peer_tb,
1343 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1344 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1345 					  NULL);
1346 		if (err < 0)
1347 			return err;
1348 
1349 		err = veth_validate(peer_tb, NULL, extack);
1350 		if (err < 0)
1351 			return err;
1352 
1353 		tbp = peer_tb;
1354 	} else {
1355 		ifmp = NULL;
1356 		tbp = tb;
1357 	}
1358 
1359 	if (ifmp && tbp[IFLA_IFNAME]) {
1360 		nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1361 		name_assign_type = NET_NAME_USER;
1362 	} else {
1363 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1364 		name_assign_type = NET_NAME_ENUM;
1365 	}
1366 
1367 	net = rtnl_link_get_net(src_net, tbp);
1368 	if (IS_ERR(net))
1369 		return PTR_ERR(net);
1370 
1371 	peer = rtnl_create_link(net, ifname, name_assign_type,
1372 				&veth_link_ops, tbp, extack);
1373 	if (IS_ERR(peer)) {
1374 		put_net(net);
1375 		return PTR_ERR(peer);
1376 	}
1377 
1378 	if (!ifmp || !tbp[IFLA_ADDRESS])
1379 		eth_hw_addr_random(peer);
1380 
1381 	if (ifmp && (dev->ifindex != 0))
1382 		peer->ifindex = ifmp->ifi_index;
1383 
1384 	peer->gso_max_size = dev->gso_max_size;
1385 	peer->gso_max_segs = dev->gso_max_segs;
1386 
1387 	err = register_netdevice(peer);
1388 	put_net(net);
1389 	net = NULL;
1390 	if (err < 0)
1391 		goto err_register_peer;
1392 
1393 	netif_carrier_off(peer);
1394 
1395 	err = rtnl_configure_link(peer, ifmp);
1396 	if (err < 0)
1397 		goto err_configure_peer;
1398 
1399 	/*
1400 	 * register dev last
1401 	 *
1402 	 * note, that since we've registered new device the dev's name
1403 	 * should be re-allocated
1404 	 */
1405 
1406 	if (tb[IFLA_ADDRESS] == NULL)
1407 		eth_hw_addr_random(dev);
1408 
1409 	if (tb[IFLA_IFNAME])
1410 		nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1411 	else
1412 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1413 
1414 	err = register_netdevice(dev);
1415 	if (err < 0)
1416 		goto err_register_dev;
1417 
1418 	netif_carrier_off(dev);
1419 
1420 	/*
1421 	 * tie the deviced together
1422 	 */
1423 
1424 	priv = netdev_priv(dev);
1425 	rcu_assign_pointer(priv->peer, peer);
1426 
1427 	priv = netdev_priv(peer);
1428 	rcu_assign_pointer(priv->peer, dev);
1429 
1430 	return 0;
1431 
1432 err_register_dev:
1433 	/* nothing to do */
1434 err_configure_peer:
1435 	unregister_netdevice(peer);
1436 	return err;
1437 
1438 err_register_peer:
1439 	free_netdev(peer);
1440 	return err;
1441 }
1442 
1443 static void veth_dellink(struct net_device *dev, struct list_head *head)
1444 {
1445 	struct veth_priv *priv;
1446 	struct net_device *peer;
1447 
1448 	priv = netdev_priv(dev);
1449 	peer = rtnl_dereference(priv->peer);
1450 
1451 	/* Note : dellink() is called from default_device_exit_batch(),
1452 	 * before a rcu_synchronize() point. The devices are guaranteed
1453 	 * not being freed before one RCU grace period.
1454 	 */
1455 	RCU_INIT_POINTER(priv->peer, NULL);
1456 	unregister_netdevice_queue(dev, head);
1457 
1458 	if (peer) {
1459 		priv = netdev_priv(peer);
1460 		RCU_INIT_POINTER(priv->peer, NULL);
1461 		unregister_netdevice_queue(peer, head);
1462 	}
1463 }
1464 
1465 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1466 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1467 };
1468 
1469 static struct net *veth_get_link_net(const struct net_device *dev)
1470 {
1471 	struct veth_priv *priv = netdev_priv(dev);
1472 	struct net_device *peer = rtnl_dereference(priv->peer);
1473 
1474 	return peer ? dev_net(peer) : dev_net(dev);
1475 }
1476 
1477 static struct rtnl_link_ops veth_link_ops = {
1478 	.kind		= DRV_NAME,
1479 	.priv_size	= sizeof(struct veth_priv),
1480 	.setup		= veth_setup,
1481 	.validate	= veth_validate,
1482 	.newlink	= veth_newlink,
1483 	.dellink	= veth_dellink,
1484 	.policy		= veth_policy,
1485 	.maxtype	= VETH_INFO_MAX,
1486 	.get_link_net	= veth_get_link_net,
1487 };
1488 
1489 /*
1490  * init/fini
1491  */
1492 
1493 static __init int veth_init(void)
1494 {
1495 	return rtnl_link_register(&veth_link_ops);
1496 }
1497 
1498 static __exit void veth_exit(void)
1499 {
1500 	rtnl_link_unregister(&veth_link_ops);
1501 }
1502 
1503 module_init(veth_init);
1504 module_exit(veth_exit);
1505 
1506 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1507 MODULE_LICENSE("GPL v2");
1508 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1509