xref: /linux/drivers/net/veth.c (revision 4eb7ae7a301d3586c3351e81d5c3cfe2304a1a6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 
30 #define DRV_NAME	"veth"
31 #define DRV_VERSION	"1.0"
32 
33 #define VETH_XDP_FLAG		BIT(0)
34 #define VETH_RING_SIZE		256
35 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
36 
37 /* Separating two types of XDP xmit */
38 #define VETH_XDP_TX		BIT(0)
39 #define VETH_XDP_REDIR		BIT(1)
40 
41 #define VETH_XDP_TX_BULK_SIZE	16
42 
43 struct veth_rq_stats {
44 	u64			xdp_packets;
45 	u64			xdp_bytes;
46 	u64			xdp_drops;
47 	struct u64_stats_sync	syncp;
48 };
49 
50 struct veth_rq {
51 	struct napi_struct	xdp_napi;
52 	struct net_device	*dev;
53 	struct bpf_prog __rcu	*xdp_prog;
54 	struct xdp_mem_info	xdp_mem;
55 	struct veth_rq_stats	stats;
56 	bool			rx_notify_masked;
57 	struct ptr_ring		xdp_ring;
58 	struct xdp_rxq_info	xdp_rxq;
59 };
60 
61 struct veth_priv {
62 	struct net_device __rcu	*peer;
63 	atomic64_t		dropped;
64 	struct bpf_prog		*_xdp_prog;
65 	struct veth_rq		*rq;
66 	unsigned int		requested_headroom;
67 };
68 
69 struct veth_xdp_tx_bq {
70 	struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
71 	unsigned int count;
72 };
73 
74 /*
75  * ethtool interface
76  */
77 
78 struct veth_q_stat_desc {
79 	char	desc[ETH_GSTRING_LEN];
80 	size_t	offset;
81 };
82 
83 #define VETH_RQ_STAT(m)	offsetof(struct veth_rq_stats, m)
84 
85 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
86 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
87 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
88 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
89 };
90 
91 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
92 
93 static struct {
94 	const char string[ETH_GSTRING_LEN];
95 } ethtool_stats_keys[] = {
96 	{ "peer_ifindex" },
97 };
98 
99 static int veth_get_link_ksettings(struct net_device *dev,
100 				   struct ethtool_link_ksettings *cmd)
101 {
102 	cmd->base.speed		= SPEED_10000;
103 	cmd->base.duplex	= DUPLEX_FULL;
104 	cmd->base.port		= PORT_TP;
105 	cmd->base.autoneg	= AUTONEG_DISABLE;
106 	return 0;
107 }
108 
109 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
110 {
111 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
112 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
113 }
114 
115 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
116 {
117 	char *p = (char *)buf;
118 	int i, j;
119 
120 	switch(stringset) {
121 	case ETH_SS_STATS:
122 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
123 		p += sizeof(ethtool_stats_keys);
124 		for (i = 0; i < dev->real_num_rx_queues; i++) {
125 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
126 				snprintf(p, ETH_GSTRING_LEN,
127 					 "rx_queue_%u_%.11s",
128 					 i, veth_rq_stats_desc[j].desc);
129 				p += ETH_GSTRING_LEN;
130 			}
131 		}
132 		break;
133 	}
134 }
135 
136 static int veth_get_sset_count(struct net_device *dev, int sset)
137 {
138 	switch (sset) {
139 	case ETH_SS_STATS:
140 		return ARRAY_SIZE(ethtool_stats_keys) +
141 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues;
142 	default:
143 		return -EOPNOTSUPP;
144 	}
145 }
146 
147 static void veth_get_ethtool_stats(struct net_device *dev,
148 		struct ethtool_stats *stats, u64 *data)
149 {
150 	struct veth_priv *priv = netdev_priv(dev);
151 	struct net_device *peer = rtnl_dereference(priv->peer);
152 	int i, j, idx;
153 
154 	data[0] = peer ? peer->ifindex : 0;
155 	idx = 1;
156 	for (i = 0; i < dev->real_num_rx_queues; i++) {
157 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
158 		const void *stats_base = (void *)rq_stats;
159 		unsigned int start;
160 		size_t offset;
161 
162 		do {
163 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
164 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
165 				offset = veth_rq_stats_desc[j].offset;
166 				data[idx + j] = *(u64 *)(stats_base + offset);
167 			}
168 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
169 		idx += VETH_RQ_STATS_LEN;
170 	}
171 }
172 
173 static const struct ethtool_ops veth_ethtool_ops = {
174 	.get_drvinfo		= veth_get_drvinfo,
175 	.get_link		= ethtool_op_get_link,
176 	.get_strings		= veth_get_strings,
177 	.get_sset_count		= veth_get_sset_count,
178 	.get_ethtool_stats	= veth_get_ethtool_stats,
179 	.get_link_ksettings	= veth_get_link_ksettings,
180 	.get_ts_info		= ethtool_op_get_ts_info,
181 };
182 
183 /* general routines */
184 
185 static bool veth_is_xdp_frame(void *ptr)
186 {
187 	return (unsigned long)ptr & VETH_XDP_FLAG;
188 }
189 
190 static void *veth_ptr_to_xdp(void *ptr)
191 {
192 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
193 }
194 
195 static void *veth_xdp_to_ptr(void *ptr)
196 {
197 	return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
198 }
199 
200 static void veth_ptr_free(void *ptr)
201 {
202 	if (veth_is_xdp_frame(ptr))
203 		xdp_return_frame(veth_ptr_to_xdp(ptr));
204 	else
205 		kfree_skb(ptr);
206 }
207 
208 static void __veth_xdp_flush(struct veth_rq *rq)
209 {
210 	/* Write ptr_ring before reading rx_notify_masked */
211 	smp_mb();
212 	if (!rq->rx_notify_masked) {
213 		rq->rx_notify_masked = true;
214 		napi_schedule(&rq->xdp_napi);
215 	}
216 }
217 
218 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
219 {
220 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
221 		dev_kfree_skb_any(skb);
222 		return NET_RX_DROP;
223 	}
224 
225 	return NET_RX_SUCCESS;
226 }
227 
228 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
229 			    struct veth_rq *rq, bool xdp)
230 {
231 	return __dev_forward_skb(dev, skb) ?: xdp ?
232 		veth_xdp_rx(rq, skb) :
233 		netif_rx(skb);
234 }
235 
236 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
237 {
238 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
239 	struct veth_rq *rq = NULL;
240 	struct net_device *rcv;
241 	int length = skb->len;
242 	bool rcv_xdp = false;
243 	int rxq;
244 
245 	rcu_read_lock();
246 	rcv = rcu_dereference(priv->peer);
247 	if (unlikely(!rcv)) {
248 		kfree_skb(skb);
249 		goto drop;
250 	}
251 
252 	rcv_priv = netdev_priv(rcv);
253 	rxq = skb_get_queue_mapping(skb);
254 	if (rxq < rcv->real_num_rx_queues) {
255 		rq = &rcv_priv->rq[rxq];
256 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
257 		if (rcv_xdp)
258 			skb_record_rx_queue(skb, rxq);
259 	}
260 
261 	skb_tx_timestamp(skb);
262 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
263 		if (!rcv_xdp)
264 			dev_lstats_add(dev, length);
265 	} else {
266 drop:
267 		atomic64_inc(&priv->dropped);
268 	}
269 
270 	if (rcv_xdp)
271 		__veth_xdp_flush(rq);
272 
273 	rcu_read_unlock();
274 
275 	return NETDEV_TX_OK;
276 }
277 
278 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
279 {
280 	struct veth_priv *priv = netdev_priv(dev);
281 
282 	dev_lstats_read(dev, packets, bytes);
283 	return atomic64_read(&priv->dropped);
284 }
285 
286 static void veth_stats_rx(struct veth_rq_stats *result, struct net_device *dev)
287 {
288 	struct veth_priv *priv = netdev_priv(dev);
289 	int i;
290 
291 	result->xdp_packets = 0;
292 	result->xdp_bytes = 0;
293 	result->xdp_drops = 0;
294 	for (i = 0; i < dev->num_rx_queues; i++) {
295 		struct veth_rq_stats *stats = &priv->rq[i].stats;
296 		u64 packets, bytes, drops;
297 		unsigned int start;
298 
299 		do {
300 			start = u64_stats_fetch_begin_irq(&stats->syncp);
301 			packets = stats->xdp_packets;
302 			bytes = stats->xdp_bytes;
303 			drops = stats->xdp_drops;
304 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
305 		result->xdp_packets += packets;
306 		result->xdp_bytes += bytes;
307 		result->xdp_drops += drops;
308 	}
309 }
310 
311 static void veth_get_stats64(struct net_device *dev,
312 			     struct rtnl_link_stats64 *tot)
313 {
314 	struct veth_priv *priv = netdev_priv(dev);
315 	struct net_device *peer;
316 	struct veth_rq_stats rx;
317 	u64 packets, bytes;
318 
319 	tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
320 	tot->tx_bytes = bytes;
321 	tot->tx_packets = packets;
322 
323 	veth_stats_rx(&rx, dev);
324 	tot->rx_dropped = rx.xdp_drops;
325 	tot->rx_bytes = rx.xdp_bytes;
326 	tot->rx_packets = rx.xdp_packets;
327 
328 	rcu_read_lock();
329 	peer = rcu_dereference(priv->peer);
330 	if (peer) {
331 		tot->rx_dropped += veth_stats_tx(peer, &packets, &bytes);
332 		tot->rx_bytes += bytes;
333 		tot->rx_packets += packets;
334 
335 		veth_stats_rx(&rx, peer);
336 		tot->tx_bytes += rx.xdp_bytes;
337 		tot->tx_packets += rx.xdp_packets;
338 	}
339 	rcu_read_unlock();
340 }
341 
342 /* fake multicast ability */
343 static void veth_set_multicast_list(struct net_device *dev)
344 {
345 }
346 
347 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
348 				      int buflen)
349 {
350 	struct sk_buff *skb;
351 
352 	if (!buflen) {
353 		buflen = SKB_DATA_ALIGN(headroom + len) +
354 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
355 	}
356 	skb = build_skb(head, buflen);
357 	if (!skb)
358 		return NULL;
359 
360 	skb_reserve(skb, headroom);
361 	skb_put(skb, len);
362 
363 	return skb;
364 }
365 
366 static int veth_select_rxq(struct net_device *dev)
367 {
368 	return smp_processor_id() % dev->real_num_rx_queues;
369 }
370 
371 static int veth_xdp_xmit(struct net_device *dev, int n,
372 			 struct xdp_frame **frames, u32 flags)
373 {
374 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
375 	struct net_device *rcv;
376 	int i, ret, drops = n;
377 	unsigned int max_len;
378 	struct veth_rq *rq;
379 
380 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) {
381 		ret = -EINVAL;
382 		goto drop;
383 	}
384 
385 	rcv = rcu_dereference(priv->peer);
386 	if (unlikely(!rcv)) {
387 		ret = -ENXIO;
388 		goto drop;
389 	}
390 
391 	rcv_priv = netdev_priv(rcv);
392 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
393 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
394 	 * side. This means an XDP program is loaded on the peer and the peer
395 	 * device is up.
396 	 */
397 	if (!rcu_access_pointer(rq->xdp_prog)) {
398 		ret = -ENXIO;
399 		goto drop;
400 	}
401 
402 	drops = 0;
403 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
404 
405 	spin_lock(&rq->xdp_ring.producer_lock);
406 	for (i = 0; i < n; i++) {
407 		struct xdp_frame *frame = frames[i];
408 		void *ptr = veth_xdp_to_ptr(frame);
409 
410 		if (unlikely(frame->len > max_len ||
411 			     __ptr_ring_produce(&rq->xdp_ring, ptr))) {
412 			xdp_return_frame_rx_napi(frame);
413 			drops++;
414 		}
415 	}
416 	spin_unlock(&rq->xdp_ring.producer_lock);
417 
418 	if (flags & XDP_XMIT_FLUSH)
419 		__veth_xdp_flush(rq);
420 
421 	if (likely(!drops))
422 		return n;
423 
424 	ret = n - drops;
425 drop:
426 	atomic64_add(drops, &priv->dropped);
427 
428 	return ret;
429 }
430 
431 static void veth_xdp_flush_bq(struct net_device *dev, struct veth_xdp_tx_bq *bq)
432 {
433 	int sent, i, err = 0;
434 
435 	sent = veth_xdp_xmit(dev, bq->count, bq->q, 0);
436 	if (sent < 0) {
437 		err = sent;
438 		sent = 0;
439 		for (i = 0; i < bq->count; i++)
440 			xdp_return_frame(bq->q[i]);
441 	}
442 	trace_xdp_bulk_tx(dev, sent, bq->count - sent, err);
443 
444 	bq->count = 0;
445 }
446 
447 static void veth_xdp_flush(struct net_device *dev, struct veth_xdp_tx_bq *bq)
448 {
449 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
450 	struct net_device *rcv;
451 	struct veth_rq *rq;
452 
453 	rcu_read_lock();
454 	veth_xdp_flush_bq(dev, bq);
455 	rcv = rcu_dereference(priv->peer);
456 	if (unlikely(!rcv))
457 		goto out;
458 
459 	rcv_priv = netdev_priv(rcv);
460 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
461 	/* xdp_ring is initialized on receive side? */
462 	if (unlikely(!rcu_access_pointer(rq->xdp_prog)))
463 		goto out;
464 
465 	__veth_xdp_flush(rq);
466 out:
467 	rcu_read_unlock();
468 }
469 
470 static int veth_xdp_tx(struct net_device *dev, struct xdp_buff *xdp,
471 		       struct veth_xdp_tx_bq *bq)
472 {
473 	struct xdp_frame *frame = convert_to_xdp_frame(xdp);
474 
475 	if (unlikely(!frame))
476 		return -EOVERFLOW;
477 
478 	if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
479 		veth_xdp_flush_bq(dev, bq);
480 
481 	bq->q[bq->count++] = frame;
482 
483 	return 0;
484 }
485 
486 static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
487 					struct xdp_frame *frame,
488 					unsigned int *xdp_xmit,
489 					struct veth_xdp_tx_bq *bq)
490 {
491 	void *hard_start = frame->data - frame->headroom;
492 	void *head = hard_start - sizeof(struct xdp_frame);
493 	int len = frame->len, delta = 0;
494 	struct xdp_frame orig_frame;
495 	struct bpf_prog *xdp_prog;
496 	unsigned int headroom;
497 	struct sk_buff *skb;
498 
499 	rcu_read_lock();
500 	xdp_prog = rcu_dereference(rq->xdp_prog);
501 	if (likely(xdp_prog)) {
502 		struct xdp_buff xdp;
503 		u32 act;
504 
505 		xdp.data_hard_start = hard_start;
506 		xdp.data = frame->data;
507 		xdp.data_end = frame->data + frame->len;
508 		xdp.data_meta = frame->data - frame->metasize;
509 		xdp.rxq = &rq->xdp_rxq;
510 
511 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
512 
513 		switch (act) {
514 		case XDP_PASS:
515 			delta = frame->data - xdp.data;
516 			len = xdp.data_end - xdp.data;
517 			break;
518 		case XDP_TX:
519 			orig_frame = *frame;
520 			xdp.data_hard_start = head;
521 			xdp.rxq->mem = frame->mem;
522 			if (unlikely(veth_xdp_tx(rq->dev, &xdp, bq) < 0)) {
523 				trace_xdp_exception(rq->dev, xdp_prog, act);
524 				frame = &orig_frame;
525 				goto err_xdp;
526 			}
527 			*xdp_xmit |= VETH_XDP_TX;
528 			rcu_read_unlock();
529 			goto xdp_xmit;
530 		case XDP_REDIRECT:
531 			orig_frame = *frame;
532 			xdp.data_hard_start = head;
533 			xdp.rxq->mem = frame->mem;
534 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
535 				frame = &orig_frame;
536 				goto err_xdp;
537 			}
538 			*xdp_xmit |= VETH_XDP_REDIR;
539 			rcu_read_unlock();
540 			goto xdp_xmit;
541 		default:
542 			bpf_warn_invalid_xdp_action(act);
543 			/* fall through */
544 		case XDP_ABORTED:
545 			trace_xdp_exception(rq->dev, xdp_prog, act);
546 			/* fall through */
547 		case XDP_DROP:
548 			goto err_xdp;
549 		}
550 	}
551 	rcu_read_unlock();
552 
553 	headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
554 	skb = veth_build_skb(head, headroom, len, 0);
555 	if (!skb) {
556 		xdp_return_frame(frame);
557 		goto err;
558 	}
559 
560 	xdp_release_frame(frame);
561 	xdp_scrub_frame(frame);
562 	skb->protocol = eth_type_trans(skb, rq->dev);
563 err:
564 	return skb;
565 err_xdp:
566 	rcu_read_unlock();
567 	xdp_return_frame(frame);
568 xdp_xmit:
569 	return NULL;
570 }
571 
572 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb,
573 					unsigned int *xdp_xmit,
574 					struct veth_xdp_tx_bq *bq)
575 {
576 	u32 pktlen, headroom, act, metalen;
577 	void *orig_data, *orig_data_end;
578 	struct bpf_prog *xdp_prog;
579 	int mac_len, delta, off;
580 	struct xdp_buff xdp;
581 
582 	skb_orphan(skb);
583 
584 	rcu_read_lock();
585 	xdp_prog = rcu_dereference(rq->xdp_prog);
586 	if (unlikely(!xdp_prog)) {
587 		rcu_read_unlock();
588 		goto out;
589 	}
590 
591 	mac_len = skb->data - skb_mac_header(skb);
592 	pktlen = skb->len + mac_len;
593 	headroom = skb_headroom(skb) - mac_len;
594 
595 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
596 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
597 		struct sk_buff *nskb;
598 		int size, head_off;
599 		void *head, *start;
600 		struct page *page;
601 
602 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
603 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
604 		if (size > PAGE_SIZE)
605 			goto drop;
606 
607 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
608 		if (!page)
609 			goto drop;
610 
611 		head = page_address(page);
612 		start = head + VETH_XDP_HEADROOM;
613 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
614 			page_frag_free(head);
615 			goto drop;
616 		}
617 
618 		nskb = veth_build_skb(head,
619 				      VETH_XDP_HEADROOM + mac_len, skb->len,
620 				      PAGE_SIZE);
621 		if (!nskb) {
622 			page_frag_free(head);
623 			goto drop;
624 		}
625 
626 		skb_copy_header(nskb, skb);
627 		head_off = skb_headroom(nskb) - skb_headroom(skb);
628 		skb_headers_offset_update(nskb, head_off);
629 		consume_skb(skb);
630 		skb = nskb;
631 	}
632 
633 	xdp.data_hard_start = skb->head;
634 	xdp.data = skb_mac_header(skb);
635 	xdp.data_end = xdp.data + pktlen;
636 	xdp.data_meta = xdp.data;
637 	xdp.rxq = &rq->xdp_rxq;
638 	orig_data = xdp.data;
639 	orig_data_end = xdp.data_end;
640 
641 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
642 
643 	switch (act) {
644 	case XDP_PASS:
645 		break;
646 	case XDP_TX:
647 		get_page(virt_to_page(xdp.data));
648 		consume_skb(skb);
649 		xdp.rxq->mem = rq->xdp_mem;
650 		if (unlikely(veth_xdp_tx(rq->dev, &xdp, bq) < 0)) {
651 			trace_xdp_exception(rq->dev, xdp_prog, act);
652 			goto err_xdp;
653 		}
654 		*xdp_xmit |= VETH_XDP_TX;
655 		rcu_read_unlock();
656 		goto xdp_xmit;
657 	case XDP_REDIRECT:
658 		get_page(virt_to_page(xdp.data));
659 		consume_skb(skb);
660 		xdp.rxq->mem = rq->xdp_mem;
661 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog))
662 			goto err_xdp;
663 		*xdp_xmit |= VETH_XDP_REDIR;
664 		rcu_read_unlock();
665 		goto xdp_xmit;
666 	default:
667 		bpf_warn_invalid_xdp_action(act);
668 		/* fall through */
669 	case XDP_ABORTED:
670 		trace_xdp_exception(rq->dev, xdp_prog, act);
671 		/* fall through */
672 	case XDP_DROP:
673 		goto drop;
674 	}
675 	rcu_read_unlock();
676 
677 	delta = orig_data - xdp.data;
678 	off = mac_len + delta;
679 	if (off > 0)
680 		__skb_push(skb, off);
681 	else if (off < 0)
682 		__skb_pull(skb, -off);
683 	skb->mac_header -= delta;
684 	off = xdp.data_end - orig_data_end;
685 	if (off != 0)
686 		__skb_put(skb, off);
687 	skb->protocol = eth_type_trans(skb, rq->dev);
688 
689 	metalen = xdp.data - xdp.data_meta;
690 	if (metalen)
691 		skb_metadata_set(skb, metalen);
692 out:
693 	return skb;
694 drop:
695 	rcu_read_unlock();
696 	kfree_skb(skb);
697 	return NULL;
698 err_xdp:
699 	rcu_read_unlock();
700 	page_frag_free(xdp.data);
701 xdp_xmit:
702 	return NULL;
703 }
704 
705 static int veth_xdp_rcv(struct veth_rq *rq, int budget, unsigned int *xdp_xmit,
706 			struct veth_xdp_tx_bq *bq)
707 {
708 	int i, done = 0, drops = 0, bytes = 0;
709 
710 	for (i = 0; i < budget; i++) {
711 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
712 		unsigned int xdp_xmit_one = 0;
713 		struct sk_buff *skb;
714 
715 		if (!ptr)
716 			break;
717 
718 		if (veth_is_xdp_frame(ptr)) {
719 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
720 
721 			bytes += frame->len;
722 			skb = veth_xdp_rcv_one(rq, frame, &xdp_xmit_one, bq);
723 		} else {
724 			skb = ptr;
725 			bytes += skb->len;
726 			skb = veth_xdp_rcv_skb(rq, skb, &xdp_xmit_one, bq);
727 		}
728 		*xdp_xmit |= xdp_xmit_one;
729 
730 		if (skb)
731 			napi_gro_receive(&rq->xdp_napi, skb);
732 		else if (!xdp_xmit_one)
733 			drops++;
734 
735 		done++;
736 	}
737 
738 	u64_stats_update_begin(&rq->stats.syncp);
739 	rq->stats.xdp_packets += done;
740 	rq->stats.xdp_bytes += bytes;
741 	rq->stats.xdp_drops += drops;
742 	u64_stats_update_end(&rq->stats.syncp);
743 
744 	return done;
745 }
746 
747 static int veth_poll(struct napi_struct *napi, int budget)
748 {
749 	struct veth_rq *rq =
750 		container_of(napi, struct veth_rq, xdp_napi);
751 	unsigned int xdp_xmit = 0;
752 	struct veth_xdp_tx_bq bq;
753 	int done;
754 
755 	bq.count = 0;
756 
757 	xdp_set_return_frame_no_direct();
758 	done = veth_xdp_rcv(rq, budget, &xdp_xmit, &bq);
759 
760 	if (done < budget && napi_complete_done(napi, done)) {
761 		/* Write rx_notify_masked before reading ptr_ring */
762 		smp_store_mb(rq->rx_notify_masked, false);
763 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
764 			rq->rx_notify_masked = true;
765 			napi_schedule(&rq->xdp_napi);
766 		}
767 	}
768 
769 	if (xdp_xmit & VETH_XDP_TX)
770 		veth_xdp_flush(rq->dev, &bq);
771 	if (xdp_xmit & VETH_XDP_REDIR)
772 		xdp_do_flush_map();
773 	xdp_clear_return_frame_no_direct();
774 
775 	return done;
776 }
777 
778 static int veth_napi_add(struct net_device *dev)
779 {
780 	struct veth_priv *priv = netdev_priv(dev);
781 	int err, i;
782 
783 	for (i = 0; i < dev->real_num_rx_queues; i++) {
784 		struct veth_rq *rq = &priv->rq[i];
785 
786 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
787 		if (err)
788 			goto err_xdp_ring;
789 	}
790 
791 	for (i = 0; i < dev->real_num_rx_queues; i++) {
792 		struct veth_rq *rq = &priv->rq[i];
793 
794 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
795 		napi_enable(&rq->xdp_napi);
796 	}
797 
798 	return 0;
799 err_xdp_ring:
800 	for (i--; i >= 0; i--)
801 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
802 
803 	return err;
804 }
805 
806 static void veth_napi_del(struct net_device *dev)
807 {
808 	struct veth_priv *priv = netdev_priv(dev);
809 	int i;
810 
811 	for (i = 0; i < dev->real_num_rx_queues; i++) {
812 		struct veth_rq *rq = &priv->rq[i];
813 
814 		napi_disable(&rq->xdp_napi);
815 		napi_hash_del(&rq->xdp_napi);
816 	}
817 	synchronize_net();
818 
819 	for (i = 0; i < dev->real_num_rx_queues; i++) {
820 		struct veth_rq *rq = &priv->rq[i];
821 
822 		netif_napi_del(&rq->xdp_napi);
823 		rq->rx_notify_masked = false;
824 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
825 	}
826 }
827 
828 static int veth_enable_xdp(struct net_device *dev)
829 {
830 	struct veth_priv *priv = netdev_priv(dev);
831 	int err, i;
832 
833 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
834 		for (i = 0; i < dev->real_num_rx_queues; i++) {
835 			struct veth_rq *rq = &priv->rq[i];
836 
837 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
838 			if (err < 0)
839 				goto err_rxq_reg;
840 
841 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
842 							 MEM_TYPE_PAGE_SHARED,
843 							 NULL);
844 			if (err < 0)
845 				goto err_reg_mem;
846 
847 			/* Save original mem info as it can be overwritten */
848 			rq->xdp_mem = rq->xdp_rxq.mem;
849 		}
850 
851 		err = veth_napi_add(dev);
852 		if (err)
853 			goto err_rxq_reg;
854 	}
855 
856 	for (i = 0; i < dev->real_num_rx_queues; i++)
857 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
858 
859 	return 0;
860 err_reg_mem:
861 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
862 err_rxq_reg:
863 	for (i--; i >= 0; i--)
864 		xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
865 
866 	return err;
867 }
868 
869 static void veth_disable_xdp(struct net_device *dev)
870 {
871 	struct veth_priv *priv = netdev_priv(dev);
872 	int i;
873 
874 	for (i = 0; i < dev->real_num_rx_queues; i++)
875 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
876 	veth_napi_del(dev);
877 	for (i = 0; i < dev->real_num_rx_queues; i++) {
878 		struct veth_rq *rq = &priv->rq[i];
879 
880 		rq->xdp_rxq.mem = rq->xdp_mem;
881 		xdp_rxq_info_unreg(&rq->xdp_rxq);
882 	}
883 }
884 
885 static int veth_open(struct net_device *dev)
886 {
887 	struct veth_priv *priv = netdev_priv(dev);
888 	struct net_device *peer = rtnl_dereference(priv->peer);
889 	int err;
890 
891 	if (!peer)
892 		return -ENOTCONN;
893 
894 	if (priv->_xdp_prog) {
895 		err = veth_enable_xdp(dev);
896 		if (err)
897 			return err;
898 	}
899 
900 	if (peer->flags & IFF_UP) {
901 		netif_carrier_on(dev);
902 		netif_carrier_on(peer);
903 	}
904 
905 	return 0;
906 }
907 
908 static int veth_close(struct net_device *dev)
909 {
910 	struct veth_priv *priv = netdev_priv(dev);
911 	struct net_device *peer = rtnl_dereference(priv->peer);
912 
913 	netif_carrier_off(dev);
914 	if (peer)
915 		netif_carrier_off(peer);
916 
917 	if (priv->_xdp_prog)
918 		veth_disable_xdp(dev);
919 
920 	return 0;
921 }
922 
923 static int is_valid_veth_mtu(int mtu)
924 {
925 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
926 }
927 
928 static int veth_alloc_queues(struct net_device *dev)
929 {
930 	struct veth_priv *priv = netdev_priv(dev);
931 	int i;
932 
933 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
934 	if (!priv->rq)
935 		return -ENOMEM;
936 
937 	for (i = 0; i < dev->num_rx_queues; i++) {
938 		priv->rq[i].dev = dev;
939 		u64_stats_init(&priv->rq[i].stats.syncp);
940 	}
941 
942 	return 0;
943 }
944 
945 static void veth_free_queues(struct net_device *dev)
946 {
947 	struct veth_priv *priv = netdev_priv(dev);
948 
949 	kfree(priv->rq);
950 }
951 
952 static int veth_dev_init(struct net_device *dev)
953 {
954 	int err;
955 
956 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
957 	if (!dev->lstats)
958 		return -ENOMEM;
959 
960 	err = veth_alloc_queues(dev);
961 	if (err) {
962 		free_percpu(dev->lstats);
963 		return err;
964 	}
965 
966 	return 0;
967 }
968 
969 static void veth_dev_free(struct net_device *dev)
970 {
971 	veth_free_queues(dev);
972 	free_percpu(dev->lstats);
973 }
974 
975 #ifdef CONFIG_NET_POLL_CONTROLLER
976 static void veth_poll_controller(struct net_device *dev)
977 {
978 	/* veth only receives frames when its peer sends one
979 	 * Since it has nothing to do with disabling irqs, we are guaranteed
980 	 * never to have pending data when we poll for it so
981 	 * there is nothing to do here.
982 	 *
983 	 * We need this though so netpoll recognizes us as an interface that
984 	 * supports polling, which enables bridge devices in virt setups to
985 	 * still use netconsole
986 	 */
987 }
988 #endif	/* CONFIG_NET_POLL_CONTROLLER */
989 
990 static int veth_get_iflink(const struct net_device *dev)
991 {
992 	struct veth_priv *priv = netdev_priv(dev);
993 	struct net_device *peer;
994 	int iflink;
995 
996 	rcu_read_lock();
997 	peer = rcu_dereference(priv->peer);
998 	iflink = peer ? peer->ifindex : 0;
999 	rcu_read_unlock();
1000 
1001 	return iflink;
1002 }
1003 
1004 static netdev_features_t veth_fix_features(struct net_device *dev,
1005 					   netdev_features_t features)
1006 {
1007 	struct veth_priv *priv = netdev_priv(dev);
1008 	struct net_device *peer;
1009 
1010 	peer = rtnl_dereference(priv->peer);
1011 	if (peer) {
1012 		struct veth_priv *peer_priv = netdev_priv(peer);
1013 
1014 		if (peer_priv->_xdp_prog)
1015 			features &= ~NETIF_F_GSO_SOFTWARE;
1016 	}
1017 
1018 	return features;
1019 }
1020 
1021 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1022 {
1023 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1024 	struct net_device *peer;
1025 
1026 	if (new_hr < 0)
1027 		new_hr = 0;
1028 
1029 	rcu_read_lock();
1030 	peer = rcu_dereference(priv->peer);
1031 	if (unlikely(!peer))
1032 		goto out;
1033 
1034 	peer_priv = netdev_priv(peer);
1035 	priv->requested_headroom = new_hr;
1036 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1037 	dev->needed_headroom = new_hr;
1038 	peer->needed_headroom = new_hr;
1039 
1040 out:
1041 	rcu_read_unlock();
1042 }
1043 
1044 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1045 			struct netlink_ext_ack *extack)
1046 {
1047 	struct veth_priv *priv = netdev_priv(dev);
1048 	struct bpf_prog *old_prog;
1049 	struct net_device *peer;
1050 	unsigned int max_mtu;
1051 	int err;
1052 
1053 	old_prog = priv->_xdp_prog;
1054 	priv->_xdp_prog = prog;
1055 	peer = rtnl_dereference(priv->peer);
1056 
1057 	if (prog) {
1058 		if (!peer) {
1059 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1060 			err = -ENOTCONN;
1061 			goto err;
1062 		}
1063 
1064 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1065 			  peer->hard_header_len -
1066 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1067 		if (peer->mtu > max_mtu) {
1068 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1069 			err = -ERANGE;
1070 			goto err;
1071 		}
1072 
1073 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1074 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1075 			err = -ENOSPC;
1076 			goto err;
1077 		}
1078 
1079 		if (dev->flags & IFF_UP) {
1080 			err = veth_enable_xdp(dev);
1081 			if (err) {
1082 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1083 				goto err;
1084 			}
1085 		}
1086 
1087 		if (!old_prog) {
1088 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1089 			peer->max_mtu = max_mtu;
1090 		}
1091 	}
1092 
1093 	if (old_prog) {
1094 		if (!prog) {
1095 			if (dev->flags & IFF_UP)
1096 				veth_disable_xdp(dev);
1097 
1098 			if (peer) {
1099 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1100 				peer->max_mtu = ETH_MAX_MTU;
1101 			}
1102 		}
1103 		bpf_prog_put(old_prog);
1104 	}
1105 
1106 	if ((!!old_prog ^ !!prog) && peer)
1107 		netdev_update_features(peer);
1108 
1109 	return 0;
1110 err:
1111 	priv->_xdp_prog = old_prog;
1112 
1113 	return err;
1114 }
1115 
1116 static u32 veth_xdp_query(struct net_device *dev)
1117 {
1118 	struct veth_priv *priv = netdev_priv(dev);
1119 	const struct bpf_prog *xdp_prog;
1120 
1121 	xdp_prog = priv->_xdp_prog;
1122 	if (xdp_prog)
1123 		return xdp_prog->aux->id;
1124 
1125 	return 0;
1126 }
1127 
1128 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1129 {
1130 	switch (xdp->command) {
1131 	case XDP_SETUP_PROG:
1132 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1133 	case XDP_QUERY_PROG:
1134 		xdp->prog_id = veth_xdp_query(dev);
1135 		return 0;
1136 	default:
1137 		return -EINVAL;
1138 	}
1139 }
1140 
1141 static const struct net_device_ops veth_netdev_ops = {
1142 	.ndo_init            = veth_dev_init,
1143 	.ndo_open            = veth_open,
1144 	.ndo_stop            = veth_close,
1145 	.ndo_start_xmit      = veth_xmit,
1146 	.ndo_get_stats64     = veth_get_stats64,
1147 	.ndo_set_rx_mode     = veth_set_multicast_list,
1148 	.ndo_set_mac_address = eth_mac_addr,
1149 #ifdef CONFIG_NET_POLL_CONTROLLER
1150 	.ndo_poll_controller	= veth_poll_controller,
1151 #endif
1152 	.ndo_get_iflink		= veth_get_iflink,
1153 	.ndo_fix_features	= veth_fix_features,
1154 	.ndo_features_check	= passthru_features_check,
1155 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1156 	.ndo_bpf		= veth_xdp,
1157 	.ndo_xdp_xmit		= veth_xdp_xmit,
1158 };
1159 
1160 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1161 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1162 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1163 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1164 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1165 
1166 static void veth_setup(struct net_device *dev)
1167 {
1168 	ether_setup(dev);
1169 
1170 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1171 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1172 	dev->priv_flags |= IFF_NO_QUEUE;
1173 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1174 
1175 	dev->netdev_ops = &veth_netdev_ops;
1176 	dev->ethtool_ops = &veth_ethtool_ops;
1177 	dev->features |= NETIF_F_LLTX;
1178 	dev->features |= VETH_FEATURES;
1179 	dev->vlan_features = dev->features &
1180 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1181 			       NETIF_F_HW_VLAN_STAG_TX |
1182 			       NETIF_F_HW_VLAN_CTAG_RX |
1183 			       NETIF_F_HW_VLAN_STAG_RX);
1184 	dev->needs_free_netdev = true;
1185 	dev->priv_destructor = veth_dev_free;
1186 	dev->max_mtu = ETH_MAX_MTU;
1187 
1188 	dev->hw_features = VETH_FEATURES;
1189 	dev->hw_enc_features = VETH_FEATURES;
1190 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1191 }
1192 
1193 /*
1194  * netlink interface
1195  */
1196 
1197 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1198 			 struct netlink_ext_ack *extack)
1199 {
1200 	if (tb[IFLA_ADDRESS]) {
1201 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1202 			return -EINVAL;
1203 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1204 			return -EADDRNOTAVAIL;
1205 	}
1206 	if (tb[IFLA_MTU]) {
1207 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1208 			return -EINVAL;
1209 	}
1210 	return 0;
1211 }
1212 
1213 static struct rtnl_link_ops veth_link_ops;
1214 
1215 static int veth_newlink(struct net *src_net, struct net_device *dev,
1216 			struct nlattr *tb[], struct nlattr *data[],
1217 			struct netlink_ext_ack *extack)
1218 {
1219 	int err;
1220 	struct net_device *peer;
1221 	struct veth_priv *priv;
1222 	char ifname[IFNAMSIZ];
1223 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1224 	unsigned char name_assign_type;
1225 	struct ifinfomsg *ifmp;
1226 	struct net *net;
1227 
1228 	/*
1229 	 * create and register peer first
1230 	 */
1231 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1232 		struct nlattr *nla_peer;
1233 
1234 		nla_peer = data[VETH_INFO_PEER];
1235 		ifmp = nla_data(nla_peer);
1236 		err = rtnl_nla_parse_ifla(peer_tb,
1237 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1238 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1239 					  NULL);
1240 		if (err < 0)
1241 			return err;
1242 
1243 		err = veth_validate(peer_tb, NULL, extack);
1244 		if (err < 0)
1245 			return err;
1246 
1247 		tbp = peer_tb;
1248 	} else {
1249 		ifmp = NULL;
1250 		tbp = tb;
1251 	}
1252 
1253 	if (ifmp && tbp[IFLA_IFNAME]) {
1254 		nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1255 		name_assign_type = NET_NAME_USER;
1256 	} else {
1257 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1258 		name_assign_type = NET_NAME_ENUM;
1259 	}
1260 
1261 	net = rtnl_link_get_net(src_net, tbp);
1262 	if (IS_ERR(net))
1263 		return PTR_ERR(net);
1264 
1265 	peer = rtnl_create_link(net, ifname, name_assign_type,
1266 				&veth_link_ops, tbp, extack);
1267 	if (IS_ERR(peer)) {
1268 		put_net(net);
1269 		return PTR_ERR(peer);
1270 	}
1271 
1272 	if (!ifmp || !tbp[IFLA_ADDRESS])
1273 		eth_hw_addr_random(peer);
1274 
1275 	if (ifmp && (dev->ifindex != 0))
1276 		peer->ifindex = ifmp->ifi_index;
1277 
1278 	peer->gso_max_size = dev->gso_max_size;
1279 	peer->gso_max_segs = dev->gso_max_segs;
1280 
1281 	err = register_netdevice(peer);
1282 	put_net(net);
1283 	net = NULL;
1284 	if (err < 0)
1285 		goto err_register_peer;
1286 
1287 	netif_carrier_off(peer);
1288 
1289 	err = rtnl_configure_link(peer, ifmp);
1290 	if (err < 0)
1291 		goto err_configure_peer;
1292 
1293 	/*
1294 	 * register dev last
1295 	 *
1296 	 * note, that since we've registered new device the dev's name
1297 	 * should be re-allocated
1298 	 */
1299 
1300 	if (tb[IFLA_ADDRESS] == NULL)
1301 		eth_hw_addr_random(dev);
1302 
1303 	if (tb[IFLA_IFNAME])
1304 		nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1305 	else
1306 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1307 
1308 	err = register_netdevice(dev);
1309 	if (err < 0)
1310 		goto err_register_dev;
1311 
1312 	netif_carrier_off(dev);
1313 
1314 	/*
1315 	 * tie the deviced together
1316 	 */
1317 
1318 	priv = netdev_priv(dev);
1319 	rcu_assign_pointer(priv->peer, peer);
1320 
1321 	priv = netdev_priv(peer);
1322 	rcu_assign_pointer(priv->peer, dev);
1323 
1324 	return 0;
1325 
1326 err_register_dev:
1327 	/* nothing to do */
1328 err_configure_peer:
1329 	unregister_netdevice(peer);
1330 	return err;
1331 
1332 err_register_peer:
1333 	free_netdev(peer);
1334 	return err;
1335 }
1336 
1337 static void veth_dellink(struct net_device *dev, struct list_head *head)
1338 {
1339 	struct veth_priv *priv;
1340 	struct net_device *peer;
1341 
1342 	priv = netdev_priv(dev);
1343 	peer = rtnl_dereference(priv->peer);
1344 
1345 	/* Note : dellink() is called from default_device_exit_batch(),
1346 	 * before a rcu_synchronize() point. The devices are guaranteed
1347 	 * not being freed before one RCU grace period.
1348 	 */
1349 	RCU_INIT_POINTER(priv->peer, NULL);
1350 	unregister_netdevice_queue(dev, head);
1351 
1352 	if (peer) {
1353 		priv = netdev_priv(peer);
1354 		RCU_INIT_POINTER(priv->peer, NULL);
1355 		unregister_netdevice_queue(peer, head);
1356 	}
1357 }
1358 
1359 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1360 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1361 };
1362 
1363 static struct net *veth_get_link_net(const struct net_device *dev)
1364 {
1365 	struct veth_priv *priv = netdev_priv(dev);
1366 	struct net_device *peer = rtnl_dereference(priv->peer);
1367 
1368 	return peer ? dev_net(peer) : dev_net(dev);
1369 }
1370 
1371 static struct rtnl_link_ops veth_link_ops = {
1372 	.kind		= DRV_NAME,
1373 	.priv_size	= sizeof(struct veth_priv),
1374 	.setup		= veth_setup,
1375 	.validate	= veth_validate,
1376 	.newlink	= veth_newlink,
1377 	.dellink	= veth_dellink,
1378 	.policy		= veth_policy,
1379 	.maxtype	= VETH_INFO_MAX,
1380 	.get_link_net	= veth_get_link_net,
1381 };
1382 
1383 /*
1384  * init/fini
1385  */
1386 
1387 static __init int veth_init(void)
1388 {
1389 	return rtnl_link_register(&veth_link_ops);
1390 }
1391 
1392 static __exit void veth_exit(void)
1393 {
1394 	rtnl_link_unregister(&veth_link_ops);
1395 }
1396 
1397 module_init(veth_init);
1398 module_exit(veth_exit);
1399 
1400 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1401 MODULE_LICENSE("GPL v2");
1402 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1403