xref: /linux/drivers/net/veth.c (revision 0a98bf52b15dfd66da2cf666495b3f7841c7b5ab)
1 /*
2  *  drivers/net/veth.c
3  *
4  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
5  *
6  * Author: Pavel Emelianov <xemul@openvz.org>
7  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
8  *
9  */
10 
11 #include <linux/netdevice.h>
12 #include <linux/slab.h>
13 #include <linux/ethtool.h>
14 #include <linux/etherdevice.h>
15 #include <linux/u64_stats_sync.h>
16 
17 #include <net/rtnetlink.h>
18 #include <net/dst.h>
19 #include <net/xfrm.h>
20 #include <net/xdp.h>
21 #include <linux/veth.h>
22 #include <linux/module.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <linux/bpf_trace.h>
27 #include <linux/net_tstamp.h>
28 
29 #define DRV_NAME	"veth"
30 #define DRV_VERSION	"1.0"
31 
32 #define VETH_XDP_FLAG		BIT(0)
33 #define VETH_RING_SIZE		256
34 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
35 
36 /* Separating two types of XDP xmit */
37 #define VETH_XDP_TX		BIT(0)
38 #define VETH_XDP_REDIR		BIT(1)
39 
40 struct veth_rq_stats {
41 	u64			xdp_packets;
42 	u64			xdp_bytes;
43 	u64			xdp_drops;
44 	struct u64_stats_sync	syncp;
45 };
46 
47 struct veth_rq {
48 	struct napi_struct	xdp_napi;
49 	struct net_device	*dev;
50 	struct bpf_prog __rcu	*xdp_prog;
51 	struct xdp_mem_info	xdp_mem;
52 	struct veth_rq_stats	stats;
53 	bool			rx_notify_masked;
54 	struct ptr_ring		xdp_ring;
55 	struct xdp_rxq_info	xdp_rxq;
56 };
57 
58 struct veth_priv {
59 	struct net_device __rcu	*peer;
60 	atomic64_t		dropped;
61 	struct bpf_prog		*_xdp_prog;
62 	struct veth_rq		*rq;
63 	unsigned int		requested_headroom;
64 };
65 
66 /*
67  * ethtool interface
68  */
69 
70 struct veth_q_stat_desc {
71 	char	desc[ETH_GSTRING_LEN];
72 	size_t	offset;
73 };
74 
75 #define VETH_RQ_STAT(m)	offsetof(struct veth_rq_stats, m)
76 
77 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
78 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
79 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
80 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
81 };
82 
83 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
84 
85 static struct {
86 	const char string[ETH_GSTRING_LEN];
87 } ethtool_stats_keys[] = {
88 	{ "peer_ifindex" },
89 };
90 
91 static int veth_get_link_ksettings(struct net_device *dev,
92 				   struct ethtool_link_ksettings *cmd)
93 {
94 	cmd->base.speed		= SPEED_10000;
95 	cmd->base.duplex	= DUPLEX_FULL;
96 	cmd->base.port		= PORT_TP;
97 	cmd->base.autoneg	= AUTONEG_DISABLE;
98 	return 0;
99 }
100 
101 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
102 {
103 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
104 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
105 }
106 
107 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
108 {
109 	char *p = (char *)buf;
110 	int i, j;
111 
112 	switch(stringset) {
113 	case ETH_SS_STATS:
114 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
115 		p += sizeof(ethtool_stats_keys);
116 		for (i = 0; i < dev->real_num_rx_queues; i++) {
117 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
118 				snprintf(p, ETH_GSTRING_LEN, "rx_queue_%u_%s",
119 					 i, veth_rq_stats_desc[j].desc);
120 				p += ETH_GSTRING_LEN;
121 			}
122 		}
123 		break;
124 	}
125 }
126 
127 static int veth_get_sset_count(struct net_device *dev, int sset)
128 {
129 	switch (sset) {
130 	case ETH_SS_STATS:
131 		return ARRAY_SIZE(ethtool_stats_keys) +
132 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues;
133 	default:
134 		return -EOPNOTSUPP;
135 	}
136 }
137 
138 static void veth_get_ethtool_stats(struct net_device *dev,
139 		struct ethtool_stats *stats, u64 *data)
140 {
141 	struct veth_priv *priv = netdev_priv(dev);
142 	struct net_device *peer = rtnl_dereference(priv->peer);
143 	int i, j, idx;
144 
145 	data[0] = peer ? peer->ifindex : 0;
146 	idx = 1;
147 	for (i = 0; i < dev->real_num_rx_queues; i++) {
148 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
149 		const void *stats_base = (void *)rq_stats;
150 		unsigned int start;
151 		size_t offset;
152 
153 		do {
154 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
155 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
156 				offset = veth_rq_stats_desc[j].offset;
157 				data[idx + j] = *(u64 *)(stats_base + offset);
158 			}
159 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
160 		idx += VETH_RQ_STATS_LEN;
161 	}
162 }
163 
164 static int veth_get_ts_info(struct net_device *dev,
165 			    struct ethtool_ts_info *info)
166 {
167 	info->so_timestamping =
168 		SOF_TIMESTAMPING_TX_SOFTWARE |
169 		SOF_TIMESTAMPING_RX_SOFTWARE |
170 		SOF_TIMESTAMPING_SOFTWARE;
171 	info->phc_index = -1;
172 
173 	return 0;
174 }
175 
176 static const struct ethtool_ops veth_ethtool_ops = {
177 	.get_drvinfo		= veth_get_drvinfo,
178 	.get_link		= ethtool_op_get_link,
179 	.get_strings		= veth_get_strings,
180 	.get_sset_count		= veth_get_sset_count,
181 	.get_ethtool_stats	= veth_get_ethtool_stats,
182 	.get_link_ksettings	= veth_get_link_ksettings,
183 	.get_ts_info		= veth_get_ts_info,
184 };
185 
186 /* general routines */
187 
188 static bool veth_is_xdp_frame(void *ptr)
189 {
190 	return (unsigned long)ptr & VETH_XDP_FLAG;
191 }
192 
193 static void *veth_ptr_to_xdp(void *ptr)
194 {
195 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
196 }
197 
198 static void *veth_xdp_to_ptr(void *ptr)
199 {
200 	return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
201 }
202 
203 static void veth_ptr_free(void *ptr)
204 {
205 	if (veth_is_xdp_frame(ptr))
206 		xdp_return_frame(veth_ptr_to_xdp(ptr));
207 	else
208 		kfree_skb(ptr);
209 }
210 
211 static void __veth_xdp_flush(struct veth_rq *rq)
212 {
213 	/* Write ptr_ring before reading rx_notify_masked */
214 	smp_mb();
215 	if (!rq->rx_notify_masked) {
216 		rq->rx_notify_masked = true;
217 		napi_schedule(&rq->xdp_napi);
218 	}
219 }
220 
221 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
222 {
223 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
224 		dev_kfree_skb_any(skb);
225 		return NET_RX_DROP;
226 	}
227 
228 	return NET_RX_SUCCESS;
229 }
230 
231 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
232 			    struct veth_rq *rq, bool xdp)
233 {
234 	return __dev_forward_skb(dev, skb) ?: xdp ?
235 		veth_xdp_rx(rq, skb) :
236 		netif_rx(skb);
237 }
238 
239 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
240 {
241 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
242 	struct veth_rq *rq = NULL;
243 	struct net_device *rcv;
244 	int length = skb->len;
245 	bool rcv_xdp = false;
246 	int rxq;
247 
248 	rcu_read_lock();
249 	rcv = rcu_dereference(priv->peer);
250 	if (unlikely(!rcv)) {
251 		kfree_skb(skb);
252 		goto drop;
253 	}
254 
255 	rcv_priv = netdev_priv(rcv);
256 	rxq = skb_get_queue_mapping(skb);
257 	if (rxq < rcv->real_num_rx_queues) {
258 		rq = &rcv_priv->rq[rxq];
259 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
260 		if (rcv_xdp)
261 			skb_record_rx_queue(skb, rxq);
262 	}
263 
264 	skb_tx_timestamp(skb);
265 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
266 		if (!rcv_xdp) {
267 			struct pcpu_lstats *stats = this_cpu_ptr(dev->lstats);
268 
269 			u64_stats_update_begin(&stats->syncp);
270 			stats->bytes += length;
271 			stats->packets++;
272 			u64_stats_update_end(&stats->syncp);
273 		}
274 	} else {
275 drop:
276 		atomic64_inc(&priv->dropped);
277 	}
278 
279 	if (rcv_xdp)
280 		__veth_xdp_flush(rq);
281 
282 	rcu_read_unlock();
283 
284 	return NETDEV_TX_OK;
285 }
286 
287 static u64 veth_stats_tx(struct pcpu_lstats *result, struct net_device *dev)
288 {
289 	struct veth_priv *priv = netdev_priv(dev);
290 	int cpu;
291 
292 	result->packets = 0;
293 	result->bytes = 0;
294 	for_each_possible_cpu(cpu) {
295 		struct pcpu_lstats *stats = per_cpu_ptr(dev->lstats, cpu);
296 		u64 packets, bytes;
297 		unsigned int start;
298 
299 		do {
300 			start = u64_stats_fetch_begin_irq(&stats->syncp);
301 			packets = stats->packets;
302 			bytes = stats->bytes;
303 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
304 		result->packets += packets;
305 		result->bytes += bytes;
306 	}
307 	return atomic64_read(&priv->dropped);
308 }
309 
310 static void veth_stats_rx(struct veth_rq_stats *result, struct net_device *dev)
311 {
312 	struct veth_priv *priv = netdev_priv(dev);
313 	int i;
314 
315 	result->xdp_packets = 0;
316 	result->xdp_bytes = 0;
317 	result->xdp_drops = 0;
318 	for (i = 0; i < dev->num_rx_queues; i++) {
319 		struct veth_rq_stats *stats = &priv->rq[i].stats;
320 		u64 packets, bytes, drops;
321 		unsigned int start;
322 
323 		do {
324 			start = u64_stats_fetch_begin_irq(&stats->syncp);
325 			packets = stats->xdp_packets;
326 			bytes = stats->xdp_bytes;
327 			drops = stats->xdp_drops;
328 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
329 		result->xdp_packets += packets;
330 		result->xdp_bytes += bytes;
331 		result->xdp_drops += drops;
332 	}
333 }
334 
335 static void veth_get_stats64(struct net_device *dev,
336 			     struct rtnl_link_stats64 *tot)
337 {
338 	struct veth_priv *priv = netdev_priv(dev);
339 	struct net_device *peer;
340 	struct veth_rq_stats rx;
341 	struct pcpu_lstats tx;
342 
343 	tot->tx_dropped = veth_stats_tx(&tx, dev);
344 	tot->tx_bytes = tx.bytes;
345 	tot->tx_packets = tx.packets;
346 
347 	veth_stats_rx(&rx, dev);
348 	tot->rx_dropped = rx.xdp_drops;
349 	tot->rx_bytes = rx.xdp_bytes;
350 	tot->rx_packets = rx.xdp_packets;
351 
352 	rcu_read_lock();
353 	peer = rcu_dereference(priv->peer);
354 	if (peer) {
355 		tot->rx_dropped += veth_stats_tx(&tx, peer);
356 		tot->rx_bytes += tx.bytes;
357 		tot->rx_packets += tx.packets;
358 
359 		veth_stats_rx(&rx, peer);
360 		tot->tx_bytes += rx.xdp_bytes;
361 		tot->tx_packets += rx.xdp_packets;
362 	}
363 	rcu_read_unlock();
364 }
365 
366 /* fake multicast ability */
367 static void veth_set_multicast_list(struct net_device *dev)
368 {
369 }
370 
371 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
372 				      int buflen)
373 {
374 	struct sk_buff *skb;
375 
376 	if (!buflen) {
377 		buflen = SKB_DATA_ALIGN(headroom + len) +
378 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
379 	}
380 	skb = build_skb(head, buflen);
381 	if (!skb)
382 		return NULL;
383 
384 	skb_reserve(skb, headroom);
385 	skb_put(skb, len);
386 
387 	return skb;
388 }
389 
390 static int veth_select_rxq(struct net_device *dev)
391 {
392 	return smp_processor_id() % dev->real_num_rx_queues;
393 }
394 
395 static int veth_xdp_xmit(struct net_device *dev, int n,
396 			 struct xdp_frame **frames, u32 flags)
397 {
398 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
399 	struct net_device *rcv;
400 	int i, ret, drops = n;
401 	unsigned int max_len;
402 	struct veth_rq *rq;
403 
404 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) {
405 		ret = -EINVAL;
406 		goto drop;
407 	}
408 
409 	rcv = rcu_dereference(priv->peer);
410 	if (unlikely(!rcv)) {
411 		ret = -ENXIO;
412 		goto drop;
413 	}
414 
415 	rcv_priv = netdev_priv(rcv);
416 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
417 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
418 	 * side. This means an XDP program is loaded on the peer and the peer
419 	 * device is up.
420 	 */
421 	if (!rcu_access_pointer(rq->xdp_prog)) {
422 		ret = -ENXIO;
423 		goto drop;
424 	}
425 
426 	drops = 0;
427 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
428 
429 	spin_lock(&rq->xdp_ring.producer_lock);
430 	for (i = 0; i < n; i++) {
431 		struct xdp_frame *frame = frames[i];
432 		void *ptr = veth_xdp_to_ptr(frame);
433 
434 		if (unlikely(frame->len > max_len ||
435 			     __ptr_ring_produce(&rq->xdp_ring, ptr))) {
436 			xdp_return_frame_rx_napi(frame);
437 			drops++;
438 		}
439 	}
440 	spin_unlock(&rq->xdp_ring.producer_lock);
441 
442 	if (flags & XDP_XMIT_FLUSH)
443 		__veth_xdp_flush(rq);
444 
445 	if (likely(!drops))
446 		return n;
447 
448 	ret = n - drops;
449 drop:
450 	atomic64_add(drops, &priv->dropped);
451 
452 	return ret;
453 }
454 
455 static void veth_xdp_flush(struct net_device *dev)
456 {
457 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
458 	struct net_device *rcv;
459 	struct veth_rq *rq;
460 
461 	rcu_read_lock();
462 	rcv = rcu_dereference(priv->peer);
463 	if (unlikely(!rcv))
464 		goto out;
465 
466 	rcv_priv = netdev_priv(rcv);
467 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
468 	/* xdp_ring is initialized on receive side? */
469 	if (unlikely(!rcu_access_pointer(rq->xdp_prog)))
470 		goto out;
471 
472 	__veth_xdp_flush(rq);
473 out:
474 	rcu_read_unlock();
475 }
476 
477 static int veth_xdp_tx(struct net_device *dev, struct xdp_buff *xdp)
478 {
479 	struct xdp_frame *frame = convert_to_xdp_frame(xdp);
480 
481 	if (unlikely(!frame))
482 		return -EOVERFLOW;
483 
484 	return veth_xdp_xmit(dev, 1, &frame, 0);
485 }
486 
487 static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
488 					struct xdp_frame *frame,
489 					unsigned int *xdp_xmit)
490 {
491 	void *hard_start = frame->data - frame->headroom;
492 	void *head = hard_start - sizeof(struct xdp_frame);
493 	int len = frame->len, delta = 0;
494 	struct xdp_frame orig_frame;
495 	struct bpf_prog *xdp_prog;
496 	unsigned int headroom;
497 	struct sk_buff *skb;
498 
499 	rcu_read_lock();
500 	xdp_prog = rcu_dereference(rq->xdp_prog);
501 	if (likely(xdp_prog)) {
502 		struct xdp_buff xdp;
503 		u32 act;
504 
505 		xdp.data_hard_start = hard_start;
506 		xdp.data = frame->data;
507 		xdp.data_end = frame->data + frame->len;
508 		xdp.data_meta = frame->data - frame->metasize;
509 		xdp.rxq = &rq->xdp_rxq;
510 
511 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
512 
513 		switch (act) {
514 		case XDP_PASS:
515 			delta = frame->data - xdp.data;
516 			len = xdp.data_end - xdp.data;
517 			break;
518 		case XDP_TX:
519 			orig_frame = *frame;
520 			xdp.data_hard_start = head;
521 			xdp.rxq->mem = frame->mem;
522 			if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
523 				trace_xdp_exception(rq->dev, xdp_prog, act);
524 				frame = &orig_frame;
525 				goto err_xdp;
526 			}
527 			*xdp_xmit |= VETH_XDP_TX;
528 			rcu_read_unlock();
529 			goto xdp_xmit;
530 		case XDP_REDIRECT:
531 			orig_frame = *frame;
532 			xdp.data_hard_start = head;
533 			xdp.rxq->mem = frame->mem;
534 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
535 				frame = &orig_frame;
536 				goto err_xdp;
537 			}
538 			*xdp_xmit |= VETH_XDP_REDIR;
539 			rcu_read_unlock();
540 			goto xdp_xmit;
541 		default:
542 			bpf_warn_invalid_xdp_action(act);
543 		case XDP_ABORTED:
544 			trace_xdp_exception(rq->dev, xdp_prog, act);
545 		case XDP_DROP:
546 			goto err_xdp;
547 		}
548 	}
549 	rcu_read_unlock();
550 
551 	headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
552 	skb = veth_build_skb(head, headroom, len, 0);
553 	if (!skb) {
554 		xdp_return_frame(frame);
555 		goto err;
556 	}
557 
558 	xdp_scrub_frame(frame);
559 	skb->protocol = eth_type_trans(skb, rq->dev);
560 err:
561 	return skb;
562 err_xdp:
563 	rcu_read_unlock();
564 	xdp_return_frame(frame);
565 xdp_xmit:
566 	return NULL;
567 }
568 
569 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb,
570 					unsigned int *xdp_xmit)
571 {
572 	u32 pktlen, headroom, act, metalen;
573 	void *orig_data, *orig_data_end;
574 	struct bpf_prog *xdp_prog;
575 	int mac_len, delta, off;
576 	struct xdp_buff xdp;
577 
578 	skb_orphan(skb);
579 
580 	rcu_read_lock();
581 	xdp_prog = rcu_dereference(rq->xdp_prog);
582 	if (unlikely(!xdp_prog)) {
583 		rcu_read_unlock();
584 		goto out;
585 	}
586 
587 	mac_len = skb->data - skb_mac_header(skb);
588 	pktlen = skb->len + mac_len;
589 	headroom = skb_headroom(skb) - mac_len;
590 
591 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
592 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
593 		struct sk_buff *nskb;
594 		int size, head_off;
595 		void *head, *start;
596 		struct page *page;
597 
598 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
599 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
600 		if (size > PAGE_SIZE)
601 			goto drop;
602 
603 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
604 		if (!page)
605 			goto drop;
606 
607 		head = page_address(page);
608 		start = head + VETH_XDP_HEADROOM;
609 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
610 			page_frag_free(head);
611 			goto drop;
612 		}
613 
614 		nskb = veth_build_skb(head,
615 				      VETH_XDP_HEADROOM + mac_len, skb->len,
616 				      PAGE_SIZE);
617 		if (!nskb) {
618 			page_frag_free(head);
619 			goto drop;
620 		}
621 
622 		skb_copy_header(nskb, skb);
623 		head_off = skb_headroom(nskb) - skb_headroom(skb);
624 		skb_headers_offset_update(nskb, head_off);
625 		consume_skb(skb);
626 		skb = nskb;
627 	}
628 
629 	xdp.data_hard_start = skb->head;
630 	xdp.data = skb_mac_header(skb);
631 	xdp.data_end = xdp.data + pktlen;
632 	xdp.data_meta = xdp.data;
633 	xdp.rxq = &rq->xdp_rxq;
634 	orig_data = xdp.data;
635 	orig_data_end = xdp.data_end;
636 
637 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
638 
639 	switch (act) {
640 	case XDP_PASS:
641 		break;
642 	case XDP_TX:
643 		get_page(virt_to_page(xdp.data));
644 		consume_skb(skb);
645 		xdp.rxq->mem = rq->xdp_mem;
646 		if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
647 			trace_xdp_exception(rq->dev, xdp_prog, act);
648 			goto err_xdp;
649 		}
650 		*xdp_xmit |= VETH_XDP_TX;
651 		rcu_read_unlock();
652 		goto xdp_xmit;
653 	case XDP_REDIRECT:
654 		get_page(virt_to_page(xdp.data));
655 		consume_skb(skb);
656 		xdp.rxq->mem = rq->xdp_mem;
657 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog))
658 			goto err_xdp;
659 		*xdp_xmit |= VETH_XDP_REDIR;
660 		rcu_read_unlock();
661 		goto xdp_xmit;
662 	default:
663 		bpf_warn_invalid_xdp_action(act);
664 	case XDP_ABORTED:
665 		trace_xdp_exception(rq->dev, xdp_prog, act);
666 	case XDP_DROP:
667 		goto drop;
668 	}
669 	rcu_read_unlock();
670 
671 	delta = orig_data - xdp.data;
672 	off = mac_len + delta;
673 	if (off > 0)
674 		__skb_push(skb, off);
675 	else if (off < 0)
676 		__skb_pull(skb, -off);
677 	skb->mac_header -= delta;
678 	off = xdp.data_end - orig_data_end;
679 	if (off != 0)
680 		__skb_put(skb, off);
681 	skb->protocol = eth_type_trans(skb, rq->dev);
682 
683 	metalen = xdp.data - xdp.data_meta;
684 	if (metalen)
685 		skb_metadata_set(skb, metalen);
686 out:
687 	return skb;
688 drop:
689 	rcu_read_unlock();
690 	kfree_skb(skb);
691 	return NULL;
692 err_xdp:
693 	rcu_read_unlock();
694 	page_frag_free(xdp.data);
695 xdp_xmit:
696 	return NULL;
697 }
698 
699 static int veth_xdp_rcv(struct veth_rq *rq, int budget, unsigned int *xdp_xmit)
700 {
701 	int i, done = 0, drops = 0, bytes = 0;
702 
703 	for (i = 0; i < budget; i++) {
704 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
705 		unsigned int xdp_xmit_one = 0;
706 		struct sk_buff *skb;
707 
708 		if (!ptr)
709 			break;
710 
711 		if (veth_is_xdp_frame(ptr)) {
712 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
713 
714 			bytes += frame->len;
715 			skb = veth_xdp_rcv_one(rq, frame, &xdp_xmit_one);
716 		} else {
717 			skb = ptr;
718 			bytes += skb->len;
719 			skb = veth_xdp_rcv_skb(rq, skb, &xdp_xmit_one);
720 		}
721 		*xdp_xmit |= xdp_xmit_one;
722 
723 		if (skb)
724 			napi_gro_receive(&rq->xdp_napi, skb);
725 		else if (!xdp_xmit_one)
726 			drops++;
727 
728 		done++;
729 	}
730 
731 	u64_stats_update_begin(&rq->stats.syncp);
732 	rq->stats.xdp_packets += done;
733 	rq->stats.xdp_bytes += bytes;
734 	rq->stats.xdp_drops += drops;
735 	u64_stats_update_end(&rq->stats.syncp);
736 
737 	return done;
738 }
739 
740 static int veth_poll(struct napi_struct *napi, int budget)
741 {
742 	struct veth_rq *rq =
743 		container_of(napi, struct veth_rq, xdp_napi);
744 	unsigned int xdp_xmit = 0;
745 	int done;
746 
747 	xdp_set_return_frame_no_direct();
748 	done = veth_xdp_rcv(rq, budget, &xdp_xmit);
749 
750 	if (done < budget && napi_complete_done(napi, done)) {
751 		/* Write rx_notify_masked before reading ptr_ring */
752 		smp_store_mb(rq->rx_notify_masked, false);
753 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
754 			rq->rx_notify_masked = true;
755 			napi_schedule(&rq->xdp_napi);
756 		}
757 	}
758 
759 	if (xdp_xmit & VETH_XDP_TX)
760 		veth_xdp_flush(rq->dev);
761 	if (xdp_xmit & VETH_XDP_REDIR)
762 		xdp_do_flush_map();
763 	xdp_clear_return_frame_no_direct();
764 
765 	return done;
766 }
767 
768 static int veth_napi_add(struct net_device *dev)
769 {
770 	struct veth_priv *priv = netdev_priv(dev);
771 	int err, i;
772 
773 	for (i = 0; i < dev->real_num_rx_queues; i++) {
774 		struct veth_rq *rq = &priv->rq[i];
775 
776 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
777 		if (err)
778 			goto err_xdp_ring;
779 	}
780 
781 	for (i = 0; i < dev->real_num_rx_queues; i++) {
782 		struct veth_rq *rq = &priv->rq[i];
783 
784 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
785 		napi_enable(&rq->xdp_napi);
786 	}
787 
788 	return 0;
789 err_xdp_ring:
790 	for (i--; i >= 0; i--)
791 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
792 
793 	return err;
794 }
795 
796 static void veth_napi_del(struct net_device *dev)
797 {
798 	struct veth_priv *priv = netdev_priv(dev);
799 	int i;
800 
801 	for (i = 0; i < dev->real_num_rx_queues; i++) {
802 		struct veth_rq *rq = &priv->rq[i];
803 
804 		napi_disable(&rq->xdp_napi);
805 		napi_hash_del(&rq->xdp_napi);
806 	}
807 	synchronize_net();
808 
809 	for (i = 0; i < dev->real_num_rx_queues; i++) {
810 		struct veth_rq *rq = &priv->rq[i];
811 
812 		netif_napi_del(&rq->xdp_napi);
813 		rq->rx_notify_masked = false;
814 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
815 	}
816 }
817 
818 static int veth_enable_xdp(struct net_device *dev)
819 {
820 	struct veth_priv *priv = netdev_priv(dev);
821 	int err, i;
822 
823 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
824 		for (i = 0; i < dev->real_num_rx_queues; i++) {
825 			struct veth_rq *rq = &priv->rq[i];
826 
827 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
828 			if (err < 0)
829 				goto err_rxq_reg;
830 
831 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
832 							 MEM_TYPE_PAGE_SHARED,
833 							 NULL);
834 			if (err < 0)
835 				goto err_reg_mem;
836 
837 			/* Save original mem info as it can be overwritten */
838 			rq->xdp_mem = rq->xdp_rxq.mem;
839 		}
840 
841 		err = veth_napi_add(dev);
842 		if (err)
843 			goto err_rxq_reg;
844 	}
845 
846 	for (i = 0; i < dev->real_num_rx_queues; i++)
847 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
848 
849 	return 0;
850 err_reg_mem:
851 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
852 err_rxq_reg:
853 	for (i--; i >= 0; i--)
854 		xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
855 
856 	return err;
857 }
858 
859 static void veth_disable_xdp(struct net_device *dev)
860 {
861 	struct veth_priv *priv = netdev_priv(dev);
862 	int i;
863 
864 	for (i = 0; i < dev->real_num_rx_queues; i++)
865 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
866 	veth_napi_del(dev);
867 	for (i = 0; i < dev->real_num_rx_queues; i++) {
868 		struct veth_rq *rq = &priv->rq[i];
869 
870 		rq->xdp_rxq.mem = rq->xdp_mem;
871 		xdp_rxq_info_unreg(&rq->xdp_rxq);
872 	}
873 }
874 
875 static int veth_open(struct net_device *dev)
876 {
877 	struct veth_priv *priv = netdev_priv(dev);
878 	struct net_device *peer = rtnl_dereference(priv->peer);
879 	int err;
880 
881 	if (!peer)
882 		return -ENOTCONN;
883 
884 	if (priv->_xdp_prog) {
885 		err = veth_enable_xdp(dev);
886 		if (err)
887 			return err;
888 	}
889 
890 	if (peer->flags & IFF_UP) {
891 		netif_carrier_on(dev);
892 		netif_carrier_on(peer);
893 	}
894 
895 	return 0;
896 }
897 
898 static int veth_close(struct net_device *dev)
899 {
900 	struct veth_priv *priv = netdev_priv(dev);
901 	struct net_device *peer = rtnl_dereference(priv->peer);
902 
903 	netif_carrier_off(dev);
904 	if (peer)
905 		netif_carrier_off(peer);
906 
907 	if (priv->_xdp_prog)
908 		veth_disable_xdp(dev);
909 
910 	return 0;
911 }
912 
913 static int is_valid_veth_mtu(int mtu)
914 {
915 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
916 }
917 
918 static int veth_alloc_queues(struct net_device *dev)
919 {
920 	struct veth_priv *priv = netdev_priv(dev);
921 	int i;
922 
923 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
924 	if (!priv->rq)
925 		return -ENOMEM;
926 
927 	for (i = 0; i < dev->num_rx_queues; i++) {
928 		priv->rq[i].dev = dev;
929 		u64_stats_init(&priv->rq[i].stats.syncp);
930 	}
931 
932 	return 0;
933 }
934 
935 static void veth_free_queues(struct net_device *dev)
936 {
937 	struct veth_priv *priv = netdev_priv(dev);
938 
939 	kfree(priv->rq);
940 }
941 
942 static int veth_dev_init(struct net_device *dev)
943 {
944 	int err;
945 
946 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
947 	if (!dev->lstats)
948 		return -ENOMEM;
949 
950 	err = veth_alloc_queues(dev);
951 	if (err) {
952 		free_percpu(dev->lstats);
953 		return err;
954 	}
955 
956 	return 0;
957 }
958 
959 static void veth_dev_free(struct net_device *dev)
960 {
961 	veth_free_queues(dev);
962 	free_percpu(dev->lstats);
963 }
964 
965 #ifdef CONFIG_NET_POLL_CONTROLLER
966 static void veth_poll_controller(struct net_device *dev)
967 {
968 	/* veth only receives frames when its peer sends one
969 	 * Since it has nothing to do with disabling irqs, we are guaranteed
970 	 * never to have pending data when we poll for it so
971 	 * there is nothing to do here.
972 	 *
973 	 * We need this though so netpoll recognizes us as an interface that
974 	 * supports polling, which enables bridge devices in virt setups to
975 	 * still use netconsole
976 	 */
977 }
978 #endif	/* CONFIG_NET_POLL_CONTROLLER */
979 
980 static int veth_get_iflink(const struct net_device *dev)
981 {
982 	struct veth_priv *priv = netdev_priv(dev);
983 	struct net_device *peer;
984 	int iflink;
985 
986 	rcu_read_lock();
987 	peer = rcu_dereference(priv->peer);
988 	iflink = peer ? peer->ifindex : 0;
989 	rcu_read_unlock();
990 
991 	return iflink;
992 }
993 
994 static netdev_features_t veth_fix_features(struct net_device *dev,
995 					   netdev_features_t features)
996 {
997 	struct veth_priv *priv = netdev_priv(dev);
998 	struct net_device *peer;
999 
1000 	peer = rtnl_dereference(priv->peer);
1001 	if (peer) {
1002 		struct veth_priv *peer_priv = netdev_priv(peer);
1003 
1004 		if (peer_priv->_xdp_prog)
1005 			features &= ~NETIF_F_GSO_SOFTWARE;
1006 	}
1007 
1008 	return features;
1009 }
1010 
1011 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1012 {
1013 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1014 	struct net_device *peer;
1015 
1016 	if (new_hr < 0)
1017 		new_hr = 0;
1018 
1019 	rcu_read_lock();
1020 	peer = rcu_dereference(priv->peer);
1021 	if (unlikely(!peer))
1022 		goto out;
1023 
1024 	peer_priv = netdev_priv(peer);
1025 	priv->requested_headroom = new_hr;
1026 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1027 	dev->needed_headroom = new_hr;
1028 	peer->needed_headroom = new_hr;
1029 
1030 out:
1031 	rcu_read_unlock();
1032 }
1033 
1034 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1035 			struct netlink_ext_ack *extack)
1036 {
1037 	struct veth_priv *priv = netdev_priv(dev);
1038 	struct bpf_prog *old_prog;
1039 	struct net_device *peer;
1040 	unsigned int max_mtu;
1041 	int err;
1042 
1043 	old_prog = priv->_xdp_prog;
1044 	priv->_xdp_prog = prog;
1045 	peer = rtnl_dereference(priv->peer);
1046 
1047 	if (prog) {
1048 		if (!peer) {
1049 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1050 			err = -ENOTCONN;
1051 			goto err;
1052 		}
1053 
1054 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1055 			  peer->hard_header_len -
1056 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1057 		if (peer->mtu > max_mtu) {
1058 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1059 			err = -ERANGE;
1060 			goto err;
1061 		}
1062 
1063 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1064 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1065 			err = -ENOSPC;
1066 			goto err;
1067 		}
1068 
1069 		if (dev->flags & IFF_UP) {
1070 			err = veth_enable_xdp(dev);
1071 			if (err) {
1072 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1073 				goto err;
1074 			}
1075 		}
1076 
1077 		if (!old_prog) {
1078 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1079 			peer->max_mtu = max_mtu;
1080 		}
1081 	}
1082 
1083 	if (old_prog) {
1084 		if (!prog) {
1085 			if (dev->flags & IFF_UP)
1086 				veth_disable_xdp(dev);
1087 
1088 			if (peer) {
1089 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1090 				peer->max_mtu = ETH_MAX_MTU;
1091 			}
1092 		}
1093 		bpf_prog_put(old_prog);
1094 	}
1095 
1096 	if ((!!old_prog ^ !!prog) && peer)
1097 		netdev_update_features(peer);
1098 
1099 	return 0;
1100 err:
1101 	priv->_xdp_prog = old_prog;
1102 
1103 	return err;
1104 }
1105 
1106 static u32 veth_xdp_query(struct net_device *dev)
1107 {
1108 	struct veth_priv *priv = netdev_priv(dev);
1109 	const struct bpf_prog *xdp_prog;
1110 
1111 	xdp_prog = priv->_xdp_prog;
1112 	if (xdp_prog)
1113 		return xdp_prog->aux->id;
1114 
1115 	return 0;
1116 }
1117 
1118 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1119 {
1120 	switch (xdp->command) {
1121 	case XDP_SETUP_PROG:
1122 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1123 	case XDP_QUERY_PROG:
1124 		xdp->prog_id = veth_xdp_query(dev);
1125 		return 0;
1126 	default:
1127 		return -EINVAL;
1128 	}
1129 }
1130 
1131 static const struct net_device_ops veth_netdev_ops = {
1132 	.ndo_init            = veth_dev_init,
1133 	.ndo_open            = veth_open,
1134 	.ndo_stop            = veth_close,
1135 	.ndo_start_xmit      = veth_xmit,
1136 	.ndo_get_stats64     = veth_get_stats64,
1137 	.ndo_set_rx_mode     = veth_set_multicast_list,
1138 	.ndo_set_mac_address = eth_mac_addr,
1139 #ifdef CONFIG_NET_POLL_CONTROLLER
1140 	.ndo_poll_controller	= veth_poll_controller,
1141 #endif
1142 	.ndo_get_iflink		= veth_get_iflink,
1143 	.ndo_fix_features	= veth_fix_features,
1144 	.ndo_features_check	= passthru_features_check,
1145 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1146 	.ndo_bpf		= veth_xdp,
1147 	.ndo_xdp_xmit		= veth_xdp_xmit,
1148 };
1149 
1150 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1151 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1152 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1153 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1154 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1155 
1156 static void veth_setup(struct net_device *dev)
1157 {
1158 	ether_setup(dev);
1159 
1160 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1161 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1162 	dev->priv_flags |= IFF_NO_QUEUE;
1163 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1164 
1165 	dev->netdev_ops = &veth_netdev_ops;
1166 	dev->ethtool_ops = &veth_ethtool_ops;
1167 	dev->features |= NETIF_F_LLTX;
1168 	dev->features |= VETH_FEATURES;
1169 	dev->vlan_features = dev->features &
1170 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1171 			       NETIF_F_HW_VLAN_STAG_TX |
1172 			       NETIF_F_HW_VLAN_CTAG_RX |
1173 			       NETIF_F_HW_VLAN_STAG_RX);
1174 	dev->needs_free_netdev = true;
1175 	dev->priv_destructor = veth_dev_free;
1176 	dev->max_mtu = ETH_MAX_MTU;
1177 
1178 	dev->hw_features = VETH_FEATURES;
1179 	dev->hw_enc_features = VETH_FEATURES;
1180 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1181 }
1182 
1183 /*
1184  * netlink interface
1185  */
1186 
1187 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1188 			 struct netlink_ext_ack *extack)
1189 {
1190 	if (tb[IFLA_ADDRESS]) {
1191 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1192 			return -EINVAL;
1193 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1194 			return -EADDRNOTAVAIL;
1195 	}
1196 	if (tb[IFLA_MTU]) {
1197 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1198 			return -EINVAL;
1199 	}
1200 	return 0;
1201 }
1202 
1203 static struct rtnl_link_ops veth_link_ops;
1204 
1205 static int veth_newlink(struct net *src_net, struct net_device *dev,
1206 			struct nlattr *tb[], struct nlattr *data[],
1207 			struct netlink_ext_ack *extack)
1208 {
1209 	int err;
1210 	struct net_device *peer;
1211 	struct veth_priv *priv;
1212 	char ifname[IFNAMSIZ];
1213 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1214 	unsigned char name_assign_type;
1215 	struct ifinfomsg *ifmp;
1216 	struct net *net;
1217 
1218 	/*
1219 	 * create and register peer first
1220 	 */
1221 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1222 		struct nlattr *nla_peer;
1223 
1224 		nla_peer = data[VETH_INFO_PEER];
1225 		ifmp = nla_data(nla_peer);
1226 		err = rtnl_nla_parse_ifla(peer_tb,
1227 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1228 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1229 					  NULL);
1230 		if (err < 0)
1231 			return err;
1232 
1233 		err = veth_validate(peer_tb, NULL, extack);
1234 		if (err < 0)
1235 			return err;
1236 
1237 		tbp = peer_tb;
1238 	} else {
1239 		ifmp = NULL;
1240 		tbp = tb;
1241 	}
1242 
1243 	if (ifmp && tbp[IFLA_IFNAME]) {
1244 		nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1245 		name_assign_type = NET_NAME_USER;
1246 	} else {
1247 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1248 		name_assign_type = NET_NAME_ENUM;
1249 	}
1250 
1251 	net = rtnl_link_get_net(src_net, tbp);
1252 	if (IS_ERR(net))
1253 		return PTR_ERR(net);
1254 
1255 	peer = rtnl_create_link(net, ifname, name_assign_type,
1256 				&veth_link_ops, tbp);
1257 	if (IS_ERR(peer)) {
1258 		put_net(net);
1259 		return PTR_ERR(peer);
1260 	}
1261 
1262 	if (!ifmp || !tbp[IFLA_ADDRESS])
1263 		eth_hw_addr_random(peer);
1264 
1265 	if (ifmp && (dev->ifindex != 0))
1266 		peer->ifindex = ifmp->ifi_index;
1267 
1268 	peer->gso_max_size = dev->gso_max_size;
1269 	peer->gso_max_segs = dev->gso_max_segs;
1270 
1271 	err = register_netdevice(peer);
1272 	put_net(net);
1273 	net = NULL;
1274 	if (err < 0)
1275 		goto err_register_peer;
1276 
1277 	netif_carrier_off(peer);
1278 
1279 	err = rtnl_configure_link(peer, ifmp);
1280 	if (err < 0)
1281 		goto err_configure_peer;
1282 
1283 	/*
1284 	 * register dev last
1285 	 *
1286 	 * note, that since we've registered new device the dev's name
1287 	 * should be re-allocated
1288 	 */
1289 
1290 	if (tb[IFLA_ADDRESS] == NULL)
1291 		eth_hw_addr_random(dev);
1292 
1293 	if (tb[IFLA_IFNAME])
1294 		nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1295 	else
1296 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1297 
1298 	err = register_netdevice(dev);
1299 	if (err < 0)
1300 		goto err_register_dev;
1301 
1302 	netif_carrier_off(dev);
1303 
1304 	/*
1305 	 * tie the deviced together
1306 	 */
1307 
1308 	priv = netdev_priv(dev);
1309 	rcu_assign_pointer(priv->peer, peer);
1310 
1311 	priv = netdev_priv(peer);
1312 	rcu_assign_pointer(priv->peer, dev);
1313 
1314 	return 0;
1315 
1316 err_register_dev:
1317 	/* nothing to do */
1318 err_configure_peer:
1319 	unregister_netdevice(peer);
1320 	return err;
1321 
1322 err_register_peer:
1323 	free_netdev(peer);
1324 	return err;
1325 }
1326 
1327 static void veth_dellink(struct net_device *dev, struct list_head *head)
1328 {
1329 	struct veth_priv *priv;
1330 	struct net_device *peer;
1331 
1332 	priv = netdev_priv(dev);
1333 	peer = rtnl_dereference(priv->peer);
1334 
1335 	/* Note : dellink() is called from default_device_exit_batch(),
1336 	 * before a rcu_synchronize() point. The devices are guaranteed
1337 	 * not being freed before one RCU grace period.
1338 	 */
1339 	RCU_INIT_POINTER(priv->peer, NULL);
1340 	unregister_netdevice_queue(dev, head);
1341 
1342 	if (peer) {
1343 		priv = netdev_priv(peer);
1344 		RCU_INIT_POINTER(priv->peer, NULL);
1345 		unregister_netdevice_queue(peer, head);
1346 	}
1347 }
1348 
1349 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1350 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1351 };
1352 
1353 static struct net *veth_get_link_net(const struct net_device *dev)
1354 {
1355 	struct veth_priv *priv = netdev_priv(dev);
1356 	struct net_device *peer = rtnl_dereference(priv->peer);
1357 
1358 	return peer ? dev_net(peer) : dev_net(dev);
1359 }
1360 
1361 static struct rtnl_link_ops veth_link_ops = {
1362 	.kind		= DRV_NAME,
1363 	.priv_size	= sizeof(struct veth_priv),
1364 	.setup		= veth_setup,
1365 	.validate	= veth_validate,
1366 	.newlink	= veth_newlink,
1367 	.dellink	= veth_dellink,
1368 	.policy		= veth_policy,
1369 	.maxtype	= VETH_INFO_MAX,
1370 	.get_link_net	= veth_get_link_net,
1371 };
1372 
1373 /*
1374  * init/fini
1375  */
1376 
1377 static __init int veth_init(void)
1378 {
1379 	return rtnl_link_register(&veth_link_ops);
1380 }
1381 
1382 static __exit void veth_exit(void)
1383 {
1384 	rtnl_link_unregister(&veth_link_ops);
1385 }
1386 
1387 module_init(veth_init);
1388 module_exit(veth_exit);
1389 
1390 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1391 MODULE_LICENSE("GPL v2");
1392 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1393