xref: /linux/drivers/net/veth.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 
30 #define DRV_NAME	"veth"
31 #define DRV_VERSION	"1.0"
32 
33 #define VETH_XDP_FLAG		BIT(0)
34 #define VETH_RING_SIZE		256
35 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
36 
37 /* Separating two types of XDP xmit */
38 #define VETH_XDP_TX		BIT(0)
39 #define VETH_XDP_REDIR		BIT(1)
40 
41 #define VETH_XDP_TX_BULK_SIZE	16
42 
43 struct veth_rq_stats {
44 	u64			xdp_packets;
45 	u64			xdp_bytes;
46 	u64			xdp_drops;
47 	struct u64_stats_sync	syncp;
48 };
49 
50 struct veth_rq {
51 	struct napi_struct	xdp_napi;
52 	struct net_device	*dev;
53 	struct bpf_prog __rcu	*xdp_prog;
54 	struct xdp_mem_info	xdp_mem;
55 	struct veth_rq_stats	stats;
56 	bool			rx_notify_masked;
57 	struct ptr_ring		xdp_ring;
58 	struct xdp_rxq_info	xdp_rxq;
59 };
60 
61 struct veth_priv {
62 	struct net_device __rcu	*peer;
63 	atomic64_t		dropped;
64 	struct bpf_prog		*_xdp_prog;
65 	struct veth_rq		*rq;
66 	unsigned int		requested_headroom;
67 };
68 
69 struct veth_xdp_tx_bq {
70 	struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
71 	unsigned int count;
72 };
73 
74 /*
75  * ethtool interface
76  */
77 
78 struct veth_q_stat_desc {
79 	char	desc[ETH_GSTRING_LEN];
80 	size_t	offset;
81 };
82 
83 #define VETH_RQ_STAT(m)	offsetof(struct veth_rq_stats, m)
84 
85 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
86 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
87 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
88 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
89 };
90 
91 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
92 
93 static struct {
94 	const char string[ETH_GSTRING_LEN];
95 } ethtool_stats_keys[] = {
96 	{ "peer_ifindex" },
97 };
98 
99 static int veth_get_link_ksettings(struct net_device *dev,
100 				   struct ethtool_link_ksettings *cmd)
101 {
102 	cmd->base.speed		= SPEED_10000;
103 	cmd->base.duplex	= DUPLEX_FULL;
104 	cmd->base.port		= PORT_TP;
105 	cmd->base.autoneg	= AUTONEG_DISABLE;
106 	return 0;
107 }
108 
109 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
110 {
111 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
112 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
113 }
114 
115 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
116 {
117 	char *p = (char *)buf;
118 	int i, j;
119 
120 	switch(stringset) {
121 	case ETH_SS_STATS:
122 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
123 		p += sizeof(ethtool_stats_keys);
124 		for (i = 0; i < dev->real_num_rx_queues; i++) {
125 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
126 				snprintf(p, ETH_GSTRING_LEN,
127 					 "rx_queue_%u_%.11s",
128 					 i, veth_rq_stats_desc[j].desc);
129 				p += ETH_GSTRING_LEN;
130 			}
131 		}
132 		break;
133 	}
134 }
135 
136 static int veth_get_sset_count(struct net_device *dev, int sset)
137 {
138 	switch (sset) {
139 	case ETH_SS_STATS:
140 		return ARRAY_SIZE(ethtool_stats_keys) +
141 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues;
142 	default:
143 		return -EOPNOTSUPP;
144 	}
145 }
146 
147 static void veth_get_ethtool_stats(struct net_device *dev,
148 		struct ethtool_stats *stats, u64 *data)
149 {
150 	struct veth_priv *priv = netdev_priv(dev);
151 	struct net_device *peer = rtnl_dereference(priv->peer);
152 	int i, j, idx;
153 
154 	data[0] = peer ? peer->ifindex : 0;
155 	idx = 1;
156 	for (i = 0; i < dev->real_num_rx_queues; i++) {
157 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
158 		const void *stats_base = (void *)rq_stats;
159 		unsigned int start;
160 		size_t offset;
161 
162 		do {
163 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
164 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
165 				offset = veth_rq_stats_desc[j].offset;
166 				data[idx + j] = *(u64 *)(stats_base + offset);
167 			}
168 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
169 		idx += VETH_RQ_STATS_LEN;
170 	}
171 }
172 
173 static const struct ethtool_ops veth_ethtool_ops = {
174 	.get_drvinfo		= veth_get_drvinfo,
175 	.get_link		= ethtool_op_get_link,
176 	.get_strings		= veth_get_strings,
177 	.get_sset_count		= veth_get_sset_count,
178 	.get_ethtool_stats	= veth_get_ethtool_stats,
179 	.get_link_ksettings	= veth_get_link_ksettings,
180 	.get_ts_info		= ethtool_op_get_ts_info,
181 };
182 
183 /* general routines */
184 
185 static bool veth_is_xdp_frame(void *ptr)
186 {
187 	return (unsigned long)ptr & VETH_XDP_FLAG;
188 }
189 
190 static void *veth_ptr_to_xdp(void *ptr)
191 {
192 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
193 }
194 
195 static void *veth_xdp_to_ptr(void *ptr)
196 {
197 	return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
198 }
199 
200 static void veth_ptr_free(void *ptr)
201 {
202 	if (veth_is_xdp_frame(ptr))
203 		xdp_return_frame(veth_ptr_to_xdp(ptr));
204 	else
205 		kfree_skb(ptr);
206 }
207 
208 static void __veth_xdp_flush(struct veth_rq *rq)
209 {
210 	/* Write ptr_ring before reading rx_notify_masked */
211 	smp_mb();
212 	if (!rq->rx_notify_masked) {
213 		rq->rx_notify_masked = true;
214 		napi_schedule(&rq->xdp_napi);
215 	}
216 }
217 
218 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
219 {
220 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
221 		dev_kfree_skb_any(skb);
222 		return NET_RX_DROP;
223 	}
224 
225 	return NET_RX_SUCCESS;
226 }
227 
228 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
229 			    struct veth_rq *rq, bool xdp)
230 {
231 	return __dev_forward_skb(dev, skb) ?: xdp ?
232 		veth_xdp_rx(rq, skb) :
233 		netif_rx(skb);
234 }
235 
236 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
237 {
238 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
239 	struct veth_rq *rq = NULL;
240 	struct net_device *rcv;
241 	int length = skb->len;
242 	bool rcv_xdp = false;
243 	int rxq;
244 
245 	rcu_read_lock();
246 	rcv = rcu_dereference(priv->peer);
247 	if (unlikely(!rcv)) {
248 		kfree_skb(skb);
249 		goto drop;
250 	}
251 
252 	rcv_priv = netdev_priv(rcv);
253 	rxq = skb_get_queue_mapping(skb);
254 	if (rxq < rcv->real_num_rx_queues) {
255 		rq = &rcv_priv->rq[rxq];
256 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
257 		if (rcv_xdp)
258 			skb_record_rx_queue(skb, rxq);
259 	}
260 
261 	skb_tx_timestamp(skb);
262 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
263 		if (!rcv_xdp) {
264 			struct pcpu_lstats *stats = this_cpu_ptr(dev->lstats);
265 
266 			u64_stats_update_begin(&stats->syncp);
267 			stats->bytes += length;
268 			stats->packets++;
269 			u64_stats_update_end(&stats->syncp);
270 		}
271 	} else {
272 drop:
273 		atomic64_inc(&priv->dropped);
274 	}
275 
276 	if (rcv_xdp)
277 		__veth_xdp_flush(rq);
278 
279 	rcu_read_unlock();
280 
281 	return NETDEV_TX_OK;
282 }
283 
284 static u64 veth_stats_tx(struct pcpu_lstats *result, struct net_device *dev)
285 {
286 	struct veth_priv *priv = netdev_priv(dev);
287 	int cpu;
288 
289 	result->packets = 0;
290 	result->bytes = 0;
291 	for_each_possible_cpu(cpu) {
292 		struct pcpu_lstats *stats = per_cpu_ptr(dev->lstats, cpu);
293 		u64 packets, bytes;
294 		unsigned int start;
295 
296 		do {
297 			start = u64_stats_fetch_begin_irq(&stats->syncp);
298 			packets = stats->packets;
299 			bytes = stats->bytes;
300 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
301 		result->packets += packets;
302 		result->bytes += bytes;
303 	}
304 	return atomic64_read(&priv->dropped);
305 }
306 
307 static void veth_stats_rx(struct veth_rq_stats *result, struct net_device *dev)
308 {
309 	struct veth_priv *priv = netdev_priv(dev);
310 	int i;
311 
312 	result->xdp_packets = 0;
313 	result->xdp_bytes = 0;
314 	result->xdp_drops = 0;
315 	for (i = 0; i < dev->num_rx_queues; i++) {
316 		struct veth_rq_stats *stats = &priv->rq[i].stats;
317 		u64 packets, bytes, drops;
318 		unsigned int start;
319 
320 		do {
321 			start = u64_stats_fetch_begin_irq(&stats->syncp);
322 			packets = stats->xdp_packets;
323 			bytes = stats->xdp_bytes;
324 			drops = stats->xdp_drops;
325 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
326 		result->xdp_packets += packets;
327 		result->xdp_bytes += bytes;
328 		result->xdp_drops += drops;
329 	}
330 }
331 
332 static void veth_get_stats64(struct net_device *dev,
333 			     struct rtnl_link_stats64 *tot)
334 {
335 	struct veth_priv *priv = netdev_priv(dev);
336 	struct net_device *peer;
337 	struct veth_rq_stats rx;
338 	struct pcpu_lstats tx;
339 
340 	tot->tx_dropped = veth_stats_tx(&tx, dev);
341 	tot->tx_bytes = tx.bytes;
342 	tot->tx_packets = tx.packets;
343 
344 	veth_stats_rx(&rx, dev);
345 	tot->rx_dropped = rx.xdp_drops;
346 	tot->rx_bytes = rx.xdp_bytes;
347 	tot->rx_packets = rx.xdp_packets;
348 
349 	rcu_read_lock();
350 	peer = rcu_dereference(priv->peer);
351 	if (peer) {
352 		tot->rx_dropped += veth_stats_tx(&tx, peer);
353 		tot->rx_bytes += tx.bytes;
354 		tot->rx_packets += tx.packets;
355 
356 		veth_stats_rx(&rx, peer);
357 		tot->tx_bytes += rx.xdp_bytes;
358 		tot->tx_packets += rx.xdp_packets;
359 	}
360 	rcu_read_unlock();
361 }
362 
363 /* fake multicast ability */
364 static void veth_set_multicast_list(struct net_device *dev)
365 {
366 }
367 
368 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
369 				      int buflen)
370 {
371 	struct sk_buff *skb;
372 
373 	if (!buflen) {
374 		buflen = SKB_DATA_ALIGN(headroom + len) +
375 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
376 	}
377 	skb = build_skb(head, buflen);
378 	if (!skb)
379 		return NULL;
380 
381 	skb_reserve(skb, headroom);
382 	skb_put(skb, len);
383 
384 	return skb;
385 }
386 
387 static int veth_select_rxq(struct net_device *dev)
388 {
389 	return smp_processor_id() % dev->real_num_rx_queues;
390 }
391 
392 static int veth_xdp_xmit(struct net_device *dev, int n,
393 			 struct xdp_frame **frames, u32 flags)
394 {
395 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
396 	struct net_device *rcv;
397 	int i, ret, drops = n;
398 	unsigned int max_len;
399 	struct veth_rq *rq;
400 
401 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) {
402 		ret = -EINVAL;
403 		goto drop;
404 	}
405 
406 	rcv = rcu_dereference(priv->peer);
407 	if (unlikely(!rcv)) {
408 		ret = -ENXIO;
409 		goto drop;
410 	}
411 
412 	rcv_priv = netdev_priv(rcv);
413 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
414 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
415 	 * side. This means an XDP program is loaded on the peer and the peer
416 	 * device is up.
417 	 */
418 	if (!rcu_access_pointer(rq->xdp_prog)) {
419 		ret = -ENXIO;
420 		goto drop;
421 	}
422 
423 	drops = 0;
424 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
425 
426 	spin_lock(&rq->xdp_ring.producer_lock);
427 	for (i = 0; i < n; i++) {
428 		struct xdp_frame *frame = frames[i];
429 		void *ptr = veth_xdp_to_ptr(frame);
430 
431 		if (unlikely(frame->len > max_len ||
432 			     __ptr_ring_produce(&rq->xdp_ring, ptr))) {
433 			xdp_return_frame_rx_napi(frame);
434 			drops++;
435 		}
436 	}
437 	spin_unlock(&rq->xdp_ring.producer_lock);
438 
439 	if (flags & XDP_XMIT_FLUSH)
440 		__veth_xdp_flush(rq);
441 
442 	if (likely(!drops))
443 		return n;
444 
445 	ret = n - drops;
446 drop:
447 	atomic64_add(drops, &priv->dropped);
448 
449 	return ret;
450 }
451 
452 static void veth_xdp_flush_bq(struct net_device *dev, struct veth_xdp_tx_bq *bq)
453 {
454 	int sent, i, err = 0;
455 
456 	sent = veth_xdp_xmit(dev, bq->count, bq->q, 0);
457 	if (sent < 0) {
458 		err = sent;
459 		sent = 0;
460 		for (i = 0; i < bq->count; i++)
461 			xdp_return_frame(bq->q[i]);
462 	}
463 	trace_xdp_bulk_tx(dev, sent, bq->count - sent, err);
464 
465 	bq->count = 0;
466 }
467 
468 static void veth_xdp_flush(struct net_device *dev, struct veth_xdp_tx_bq *bq)
469 {
470 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
471 	struct net_device *rcv;
472 	struct veth_rq *rq;
473 
474 	rcu_read_lock();
475 	veth_xdp_flush_bq(dev, bq);
476 	rcv = rcu_dereference(priv->peer);
477 	if (unlikely(!rcv))
478 		goto out;
479 
480 	rcv_priv = netdev_priv(rcv);
481 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
482 	/* xdp_ring is initialized on receive side? */
483 	if (unlikely(!rcu_access_pointer(rq->xdp_prog)))
484 		goto out;
485 
486 	__veth_xdp_flush(rq);
487 out:
488 	rcu_read_unlock();
489 }
490 
491 static int veth_xdp_tx(struct net_device *dev, struct xdp_buff *xdp,
492 		       struct veth_xdp_tx_bq *bq)
493 {
494 	struct xdp_frame *frame = convert_to_xdp_frame(xdp);
495 
496 	if (unlikely(!frame))
497 		return -EOVERFLOW;
498 
499 	if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
500 		veth_xdp_flush_bq(dev, bq);
501 
502 	bq->q[bq->count++] = frame;
503 
504 	return 0;
505 }
506 
507 static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
508 					struct xdp_frame *frame,
509 					unsigned int *xdp_xmit,
510 					struct veth_xdp_tx_bq *bq)
511 {
512 	void *hard_start = frame->data - frame->headroom;
513 	void *head = hard_start - sizeof(struct xdp_frame);
514 	int len = frame->len, delta = 0;
515 	struct xdp_frame orig_frame;
516 	struct bpf_prog *xdp_prog;
517 	unsigned int headroom;
518 	struct sk_buff *skb;
519 
520 	rcu_read_lock();
521 	xdp_prog = rcu_dereference(rq->xdp_prog);
522 	if (likely(xdp_prog)) {
523 		struct xdp_buff xdp;
524 		u32 act;
525 
526 		xdp.data_hard_start = hard_start;
527 		xdp.data = frame->data;
528 		xdp.data_end = frame->data + frame->len;
529 		xdp.data_meta = frame->data - frame->metasize;
530 		xdp.rxq = &rq->xdp_rxq;
531 
532 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
533 
534 		switch (act) {
535 		case XDP_PASS:
536 			delta = frame->data - xdp.data;
537 			len = xdp.data_end - xdp.data;
538 			break;
539 		case XDP_TX:
540 			orig_frame = *frame;
541 			xdp.data_hard_start = head;
542 			xdp.rxq->mem = frame->mem;
543 			if (unlikely(veth_xdp_tx(rq->dev, &xdp, bq) < 0)) {
544 				trace_xdp_exception(rq->dev, xdp_prog, act);
545 				frame = &orig_frame;
546 				goto err_xdp;
547 			}
548 			*xdp_xmit |= VETH_XDP_TX;
549 			rcu_read_unlock();
550 			goto xdp_xmit;
551 		case XDP_REDIRECT:
552 			orig_frame = *frame;
553 			xdp.data_hard_start = head;
554 			xdp.rxq->mem = frame->mem;
555 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
556 				frame = &orig_frame;
557 				goto err_xdp;
558 			}
559 			*xdp_xmit |= VETH_XDP_REDIR;
560 			rcu_read_unlock();
561 			goto xdp_xmit;
562 		default:
563 			bpf_warn_invalid_xdp_action(act);
564 			/* fall through */
565 		case XDP_ABORTED:
566 			trace_xdp_exception(rq->dev, xdp_prog, act);
567 			/* fall through */
568 		case XDP_DROP:
569 			goto err_xdp;
570 		}
571 	}
572 	rcu_read_unlock();
573 
574 	headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
575 	skb = veth_build_skb(head, headroom, len, 0);
576 	if (!skb) {
577 		xdp_return_frame(frame);
578 		goto err;
579 	}
580 
581 	xdp_release_frame(frame);
582 	xdp_scrub_frame(frame);
583 	skb->protocol = eth_type_trans(skb, rq->dev);
584 err:
585 	return skb;
586 err_xdp:
587 	rcu_read_unlock();
588 	xdp_return_frame(frame);
589 xdp_xmit:
590 	return NULL;
591 }
592 
593 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb,
594 					unsigned int *xdp_xmit,
595 					struct veth_xdp_tx_bq *bq)
596 {
597 	u32 pktlen, headroom, act, metalen;
598 	void *orig_data, *orig_data_end;
599 	struct bpf_prog *xdp_prog;
600 	int mac_len, delta, off;
601 	struct xdp_buff xdp;
602 
603 	skb_orphan(skb);
604 
605 	rcu_read_lock();
606 	xdp_prog = rcu_dereference(rq->xdp_prog);
607 	if (unlikely(!xdp_prog)) {
608 		rcu_read_unlock();
609 		goto out;
610 	}
611 
612 	mac_len = skb->data - skb_mac_header(skb);
613 	pktlen = skb->len + mac_len;
614 	headroom = skb_headroom(skb) - mac_len;
615 
616 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
617 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
618 		struct sk_buff *nskb;
619 		int size, head_off;
620 		void *head, *start;
621 		struct page *page;
622 
623 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
624 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
625 		if (size > PAGE_SIZE)
626 			goto drop;
627 
628 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
629 		if (!page)
630 			goto drop;
631 
632 		head = page_address(page);
633 		start = head + VETH_XDP_HEADROOM;
634 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
635 			page_frag_free(head);
636 			goto drop;
637 		}
638 
639 		nskb = veth_build_skb(head,
640 				      VETH_XDP_HEADROOM + mac_len, skb->len,
641 				      PAGE_SIZE);
642 		if (!nskb) {
643 			page_frag_free(head);
644 			goto drop;
645 		}
646 
647 		skb_copy_header(nskb, skb);
648 		head_off = skb_headroom(nskb) - skb_headroom(skb);
649 		skb_headers_offset_update(nskb, head_off);
650 		consume_skb(skb);
651 		skb = nskb;
652 	}
653 
654 	xdp.data_hard_start = skb->head;
655 	xdp.data = skb_mac_header(skb);
656 	xdp.data_end = xdp.data + pktlen;
657 	xdp.data_meta = xdp.data;
658 	xdp.rxq = &rq->xdp_rxq;
659 	orig_data = xdp.data;
660 	orig_data_end = xdp.data_end;
661 
662 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
663 
664 	switch (act) {
665 	case XDP_PASS:
666 		break;
667 	case XDP_TX:
668 		get_page(virt_to_page(xdp.data));
669 		consume_skb(skb);
670 		xdp.rxq->mem = rq->xdp_mem;
671 		if (unlikely(veth_xdp_tx(rq->dev, &xdp, bq) < 0)) {
672 			trace_xdp_exception(rq->dev, xdp_prog, act);
673 			goto err_xdp;
674 		}
675 		*xdp_xmit |= VETH_XDP_TX;
676 		rcu_read_unlock();
677 		goto xdp_xmit;
678 	case XDP_REDIRECT:
679 		get_page(virt_to_page(xdp.data));
680 		consume_skb(skb);
681 		xdp.rxq->mem = rq->xdp_mem;
682 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog))
683 			goto err_xdp;
684 		*xdp_xmit |= VETH_XDP_REDIR;
685 		rcu_read_unlock();
686 		goto xdp_xmit;
687 	default:
688 		bpf_warn_invalid_xdp_action(act);
689 		/* fall through */
690 	case XDP_ABORTED:
691 		trace_xdp_exception(rq->dev, xdp_prog, act);
692 		/* fall through */
693 	case XDP_DROP:
694 		goto drop;
695 	}
696 	rcu_read_unlock();
697 
698 	delta = orig_data - xdp.data;
699 	off = mac_len + delta;
700 	if (off > 0)
701 		__skb_push(skb, off);
702 	else if (off < 0)
703 		__skb_pull(skb, -off);
704 	skb->mac_header -= delta;
705 	off = xdp.data_end - orig_data_end;
706 	if (off != 0)
707 		__skb_put(skb, off);
708 	skb->protocol = eth_type_trans(skb, rq->dev);
709 
710 	metalen = xdp.data - xdp.data_meta;
711 	if (metalen)
712 		skb_metadata_set(skb, metalen);
713 out:
714 	return skb;
715 drop:
716 	rcu_read_unlock();
717 	kfree_skb(skb);
718 	return NULL;
719 err_xdp:
720 	rcu_read_unlock();
721 	page_frag_free(xdp.data);
722 xdp_xmit:
723 	return NULL;
724 }
725 
726 static int veth_xdp_rcv(struct veth_rq *rq, int budget, unsigned int *xdp_xmit,
727 			struct veth_xdp_tx_bq *bq)
728 {
729 	int i, done = 0, drops = 0, bytes = 0;
730 
731 	for (i = 0; i < budget; i++) {
732 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
733 		unsigned int xdp_xmit_one = 0;
734 		struct sk_buff *skb;
735 
736 		if (!ptr)
737 			break;
738 
739 		if (veth_is_xdp_frame(ptr)) {
740 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
741 
742 			bytes += frame->len;
743 			skb = veth_xdp_rcv_one(rq, frame, &xdp_xmit_one, bq);
744 		} else {
745 			skb = ptr;
746 			bytes += skb->len;
747 			skb = veth_xdp_rcv_skb(rq, skb, &xdp_xmit_one, bq);
748 		}
749 		*xdp_xmit |= xdp_xmit_one;
750 
751 		if (skb)
752 			napi_gro_receive(&rq->xdp_napi, skb);
753 		else if (!xdp_xmit_one)
754 			drops++;
755 
756 		done++;
757 	}
758 
759 	u64_stats_update_begin(&rq->stats.syncp);
760 	rq->stats.xdp_packets += done;
761 	rq->stats.xdp_bytes += bytes;
762 	rq->stats.xdp_drops += drops;
763 	u64_stats_update_end(&rq->stats.syncp);
764 
765 	return done;
766 }
767 
768 static int veth_poll(struct napi_struct *napi, int budget)
769 {
770 	struct veth_rq *rq =
771 		container_of(napi, struct veth_rq, xdp_napi);
772 	unsigned int xdp_xmit = 0;
773 	struct veth_xdp_tx_bq bq;
774 	int done;
775 
776 	bq.count = 0;
777 
778 	xdp_set_return_frame_no_direct();
779 	done = veth_xdp_rcv(rq, budget, &xdp_xmit, &bq);
780 
781 	if (done < budget && napi_complete_done(napi, done)) {
782 		/* Write rx_notify_masked before reading ptr_ring */
783 		smp_store_mb(rq->rx_notify_masked, false);
784 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
785 			rq->rx_notify_masked = true;
786 			napi_schedule(&rq->xdp_napi);
787 		}
788 	}
789 
790 	if (xdp_xmit & VETH_XDP_TX)
791 		veth_xdp_flush(rq->dev, &bq);
792 	if (xdp_xmit & VETH_XDP_REDIR)
793 		xdp_do_flush_map();
794 	xdp_clear_return_frame_no_direct();
795 
796 	return done;
797 }
798 
799 static int veth_napi_add(struct net_device *dev)
800 {
801 	struct veth_priv *priv = netdev_priv(dev);
802 	int err, i;
803 
804 	for (i = 0; i < dev->real_num_rx_queues; i++) {
805 		struct veth_rq *rq = &priv->rq[i];
806 
807 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
808 		if (err)
809 			goto err_xdp_ring;
810 	}
811 
812 	for (i = 0; i < dev->real_num_rx_queues; i++) {
813 		struct veth_rq *rq = &priv->rq[i];
814 
815 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
816 		napi_enable(&rq->xdp_napi);
817 	}
818 
819 	return 0;
820 err_xdp_ring:
821 	for (i--; i >= 0; i--)
822 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
823 
824 	return err;
825 }
826 
827 static void veth_napi_del(struct net_device *dev)
828 {
829 	struct veth_priv *priv = netdev_priv(dev);
830 	int i;
831 
832 	for (i = 0; i < dev->real_num_rx_queues; i++) {
833 		struct veth_rq *rq = &priv->rq[i];
834 
835 		napi_disable(&rq->xdp_napi);
836 		napi_hash_del(&rq->xdp_napi);
837 	}
838 	synchronize_net();
839 
840 	for (i = 0; i < dev->real_num_rx_queues; i++) {
841 		struct veth_rq *rq = &priv->rq[i];
842 
843 		netif_napi_del(&rq->xdp_napi);
844 		rq->rx_notify_masked = false;
845 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
846 	}
847 }
848 
849 static int veth_enable_xdp(struct net_device *dev)
850 {
851 	struct veth_priv *priv = netdev_priv(dev);
852 	int err, i;
853 
854 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
855 		for (i = 0; i < dev->real_num_rx_queues; i++) {
856 			struct veth_rq *rq = &priv->rq[i];
857 
858 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
859 			if (err < 0)
860 				goto err_rxq_reg;
861 
862 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
863 							 MEM_TYPE_PAGE_SHARED,
864 							 NULL);
865 			if (err < 0)
866 				goto err_reg_mem;
867 
868 			/* Save original mem info as it can be overwritten */
869 			rq->xdp_mem = rq->xdp_rxq.mem;
870 		}
871 
872 		err = veth_napi_add(dev);
873 		if (err)
874 			goto err_rxq_reg;
875 	}
876 
877 	for (i = 0; i < dev->real_num_rx_queues; i++)
878 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
879 
880 	return 0;
881 err_reg_mem:
882 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
883 err_rxq_reg:
884 	for (i--; i >= 0; i--)
885 		xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
886 
887 	return err;
888 }
889 
890 static void veth_disable_xdp(struct net_device *dev)
891 {
892 	struct veth_priv *priv = netdev_priv(dev);
893 	int i;
894 
895 	for (i = 0; i < dev->real_num_rx_queues; i++)
896 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
897 	veth_napi_del(dev);
898 	for (i = 0; i < dev->real_num_rx_queues; i++) {
899 		struct veth_rq *rq = &priv->rq[i];
900 
901 		rq->xdp_rxq.mem = rq->xdp_mem;
902 		xdp_rxq_info_unreg(&rq->xdp_rxq);
903 	}
904 }
905 
906 static int veth_open(struct net_device *dev)
907 {
908 	struct veth_priv *priv = netdev_priv(dev);
909 	struct net_device *peer = rtnl_dereference(priv->peer);
910 	int err;
911 
912 	if (!peer)
913 		return -ENOTCONN;
914 
915 	if (priv->_xdp_prog) {
916 		err = veth_enable_xdp(dev);
917 		if (err)
918 			return err;
919 	}
920 
921 	if (peer->flags & IFF_UP) {
922 		netif_carrier_on(dev);
923 		netif_carrier_on(peer);
924 	}
925 
926 	return 0;
927 }
928 
929 static int veth_close(struct net_device *dev)
930 {
931 	struct veth_priv *priv = netdev_priv(dev);
932 	struct net_device *peer = rtnl_dereference(priv->peer);
933 
934 	netif_carrier_off(dev);
935 	if (peer)
936 		netif_carrier_off(peer);
937 
938 	if (priv->_xdp_prog)
939 		veth_disable_xdp(dev);
940 
941 	return 0;
942 }
943 
944 static int is_valid_veth_mtu(int mtu)
945 {
946 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
947 }
948 
949 static int veth_alloc_queues(struct net_device *dev)
950 {
951 	struct veth_priv *priv = netdev_priv(dev);
952 	int i;
953 
954 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
955 	if (!priv->rq)
956 		return -ENOMEM;
957 
958 	for (i = 0; i < dev->num_rx_queues; i++) {
959 		priv->rq[i].dev = dev;
960 		u64_stats_init(&priv->rq[i].stats.syncp);
961 	}
962 
963 	return 0;
964 }
965 
966 static void veth_free_queues(struct net_device *dev)
967 {
968 	struct veth_priv *priv = netdev_priv(dev);
969 
970 	kfree(priv->rq);
971 }
972 
973 static int veth_dev_init(struct net_device *dev)
974 {
975 	int err;
976 
977 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
978 	if (!dev->lstats)
979 		return -ENOMEM;
980 
981 	err = veth_alloc_queues(dev);
982 	if (err) {
983 		free_percpu(dev->lstats);
984 		return err;
985 	}
986 
987 	return 0;
988 }
989 
990 static void veth_dev_free(struct net_device *dev)
991 {
992 	veth_free_queues(dev);
993 	free_percpu(dev->lstats);
994 }
995 
996 #ifdef CONFIG_NET_POLL_CONTROLLER
997 static void veth_poll_controller(struct net_device *dev)
998 {
999 	/* veth only receives frames when its peer sends one
1000 	 * Since it has nothing to do with disabling irqs, we are guaranteed
1001 	 * never to have pending data when we poll for it so
1002 	 * there is nothing to do here.
1003 	 *
1004 	 * We need this though so netpoll recognizes us as an interface that
1005 	 * supports polling, which enables bridge devices in virt setups to
1006 	 * still use netconsole
1007 	 */
1008 }
1009 #endif	/* CONFIG_NET_POLL_CONTROLLER */
1010 
1011 static int veth_get_iflink(const struct net_device *dev)
1012 {
1013 	struct veth_priv *priv = netdev_priv(dev);
1014 	struct net_device *peer;
1015 	int iflink;
1016 
1017 	rcu_read_lock();
1018 	peer = rcu_dereference(priv->peer);
1019 	iflink = peer ? peer->ifindex : 0;
1020 	rcu_read_unlock();
1021 
1022 	return iflink;
1023 }
1024 
1025 static netdev_features_t veth_fix_features(struct net_device *dev,
1026 					   netdev_features_t features)
1027 {
1028 	struct veth_priv *priv = netdev_priv(dev);
1029 	struct net_device *peer;
1030 
1031 	peer = rtnl_dereference(priv->peer);
1032 	if (peer) {
1033 		struct veth_priv *peer_priv = netdev_priv(peer);
1034 
1035 		if (peer_priv->_xdp_prog)
1036 			features &= ~NETIF_F_GSO_SOFTWARE;
1037 	}
1038 
1039 	return features;
1040 }
1041 
1042 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1043 {
1044 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1045 	struct net_device *peer;
1046 
1047 	if (new_hr < 0)
1048 		new_hr = 0;
1049 
1050 	rcu_read_lock();
1051 	peer = rcu_dereference(priv->peer);
1052 	if (unlikely(!peer))
1053 		goto out;
1054 
1055 	peer_priv = netdev_priv(peer);
1056 	priv->requested_headroom = new_hr;
1057 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1058 	dev->needed_headroom = new_hr;
1059 	peer->needed_headroom = new_hr;
1060 
1061 out:
1062 	rcu_read_unlock();
1063 }
1064 
1065 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1066 			struct netlink_ext_ack *extack)
1067 {
1068 	struct veth_priv *priv = netdev_priv(dev);
1069 	struct bpf_prog *old_prog;
1070 	struct net_device *peer;
1071 	unsigned int max_mtu;
1072 	int err;
1073 
1074 	old_prog = priv->_xdp_prog;
1075 	priv->_xdp_prog = prog;
1076 	peer = rtnl_dereference(priv->peer);
1077 
1078 	if (prog) {
1079 		if (!peer) {
1080 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1081 			err = -ENOTCONN;
1082 			goto err;
1083 		}
1084 
1085 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1086 			  peer->hard_header_len -
1087 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1088 		if (peer->mtu > max_mtu) {
1089 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1090 			err = -ERANGE;
1091 			goto err;
1092 		}
1093 
1094 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1095 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1096 			err = -ENOSPC;
1097 			goto err;
1098 		}
1099 
1100 		if (dev->flags & IFF_UP) {
1101 			err = veth_enable_xdp(dev);
1102 			if (err) {
1103 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1104 				goto err;
1105 			}
1106 		}
1107 
1108 		if (!old_prog) {
1109 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1110 			peer->max_mtu = max_mtu;
1111 		}
1112 	}
1113 
1114 	if (old_prog) {
1115 		if (!prog) {
1116 			if (dev->flags & IFF_UP)
1117 				veth_disable_xdp(dev);
1118 
1119 			if (peer) {
1120 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1121 				peer->max_mtu = ETH_MAX_MTU;
1122 			}
1123 		}
1124 		bpf_prog_put(old_prog);
1125 	}
1126 
1127 	if ((!!old_prog ^ !!prog) && peer)
1128 		netdev_update_features(peer);
1129 
1130 	return 0;
1131 err:
1132 	priv->_xdp_prog = old_prog;
1133 
1134 	return err;
1135 }
1136 
1137 static u32 veth_xdp_query(struct net_device *dev)
1138 {
1139 	struct veth_priv *priv = netdev_priv(dev);
1140 	const struct bpf_prog *xdp_prog;
1141 
1142 	xdp_prog = priv->_xdp_prog;
1143 	if (xdp_prog)
1144 		return xdp_prog->aux->id;
1145 
1146 	return 0;
1147 }
1148 
1149 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1150 {
1151 	switch (xdp->command) {
1152 	case XDP_SETUP_PROG:
1153 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1154 	case XDP_QUERY_PROG:
1155 		xdp->prog_id = veth_xdp_query(dev);
1156 		return 0;
1157 	default:
1158 		return -EINVAL;
1159 	}
1160 }
1161 
1162 static const struct net_device_ops veth_netdev_ops = {
1163 	.ndo_init            = veth_dev_init,
1164 	.ndo_open            = veth_open,
1165 	.ndo_stop            = veth_close,
1166 	.ndo_start_xmit      = veth_xmit,
1167 	.ndo_get_stats64     = veth_get_stats64,
1168 	.ndo_set_rx_mode     = veth_set_multicast_list,
1169 	.ndo_set_mac_address = eth_mac_addr,
1170 #ifdef CONFIG_NET_POLL_CONTROLLER
1171 	.ndo_poll_controller	= veth_poll_controller,
1172 #endif
1173 	.ndo_get_iflink		= veth_get_iflink,
1174 	.ndo_fix_features	= veth_fix_features,
1175 	.ndo_features_check	= passthru_features_check,
1176 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1177 	.ndo_bpf		= veth_xdp,
1178 	.ndo_xdp_xmit		= veth_xdp_xmit,
1179 };
1180 
1181 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1182 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1183 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1184 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1185 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1186 
1187 static void veth_setup(struct net_device *dev)
1188 {
1189 	ether_setup(dev);
1190 
1191 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1192 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1193 	dev->priv_flags |= IFF_NO_QUEUE;
1194 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1195 
1196 	dev->netdev_ops = &veth_netdev_ops;
1197 	dev->ethtool_ops = &veth_ethtool_ops;
1198 	dev->features |= NETIF_F_LLTX;
1199 	dev->features |= VETH_FEATURES;
1200 	dev->vlan_features = dev->features &
1201 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1202 			       NETIF_F_HW_VLAN_STAG_TX |
1203 			       NETIF_F_HW_VLAN_CTAG_RX |
1204 			       NETIF_F_HW_VLAN_STAG_RX);
1205 	dev->needs_free_netdev = true;
1206 	dev->priv_destructor = veth_dev_free;
1207 	dev->max_mtu = ETH_MAX_MTU;
1208 
1209 	dev->hw_features = VETH_FEATURES;
1210 	dev->hw_enc_features = VETH_FEATURES;
1211 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1212 }
1213 
1214 /*
1215  * netlink interface
1216  */
1217 
1218 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1219 			 struct netlink_ext_ack *extack)
1220 {
1221 	if (tb[IFLA_ADDRESS]) {
1222 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1223 			return -EINVAL;
1224 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1225 			return -EADDRNOTAVAIL;
1226 	}
1227 	if (tb[IFLA_MTU]) {
1228 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1229 			return -EINVAL;
1230 	}
1231 	return 0;
1232 }
1233 
1234 static struct rtnl_link_ops veth_link_ops;
1235 
1236 static int veth_newlink(struct net *src_net, struct net_device *dev,
1237 			struct nlattr *tb[], struct nlattr *data[],
1238 			struct netlink_ext_ack *extack)
1239 {
1240 	int err;
1241 	struct net_device *peer;
1242 	struct veth_priv *priv;
1243 	char ifname[IFNAMSIZ];
1244 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1245 	unsigned char name_assign_type;
1246 	struct ifinfomsg *ifmp;
1247 	struct net *net;
1248 
1249 	/*
1250 	 * create and register peer first
1251 	 */
1252 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1253 		struct nlattr *nla_peer;
1254 
1255 		nla_peer = data[VETH_INFO_PEER];
1256 		ifmp = nla_data(nla_peer);
1257 		err = rtnl_nla_parse_ifla(peer_tb,
1258 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1259 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1260 					  NULL);
1261 		if (err < 0)
1262 			return err;
1263 
1264 		err = veth_validate(peer_tb, NULL, extack);
1265 		if (err < 0)
1266 			return err;
1267 
1268 		tbp = peer_tb;
1269 	} else {
1270 		ifmp = NULL;
1271 		tbp = tb;
1272 	}
1273 
1274 	if (ifmp && tbp[IFLA_IFNAME]) {
1275 		nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1276 		name_assign_type = NET_NAME_USER;
1277 	} else {
1278 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1279 		name_assign_type = NET_NAME_ENUM;
1280 	}
1281 
1282 	net = rtnl_link_get_net(src_net, tbp);
1283 	if (IS_ERR(net))
1284 		return PTR_ERR(net);
1285 
1286 	peer = rtnl_create_link(net, ifname, name_assign_type,
1287 				&veth_link_ops, tbp, extack);
1288 	if (IS_ERR(peer)) {
1289 		put_net(net);
1290 		return PTR_ERR(peer);
1291 	}
1292 
1293 	if (!ifmp || !tbp[IFLA_ADDRESS])
1294 		eth_hw_addr_random(peer);
1295 
1296 	if (ifmp && (dev->ifindex != 0))
1297 		peer->ifindex = ifmp->ifi_index;
1298 
1299 	peer->gso_max_size = dev->gso_max_size;
1300 	peer->gso_max_segs = dev->gso_max_segs;
1301 
1302 	err = register_netdevice(peer);
1303 	put_net(net);
1304 	net = NULL;
1305 	if (err < 0)
1306 		goto err_register_peer;
1307 
1308 	netif_carrier_off(peer);
1309 
1310 	err = rtnl_configure_link(peer, ifmp);
1311 	if (err < 0)
1312 		goto err_configure_peer;
1313 
1314 	/*
1315 	 * register dev last
1316 	 *
1317 	 * note, that since we've registered new device the dev's name
1318 	 * should be re-allocated
1319 	 */
1320 
1321 	if (tb[IFLA_ADDRESS] == NULL)
1322 		eth_hw_addr_random(dev);
1323 
1324 	if (tb[IFLA_IFNAME])
1325 		nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1326 	else
1327 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1328 
1329 	err = register_netdevice(dev);
1330 	if (err < 0)
1331 		goto err_register_dev;
1332 
1333 	netif_carrier_off(dev);
1334 
1335 	/*
1336 	 * tie the deviced together
1337 	 */
1338 
1339 	priv = netdev_priv(dev);
1340 	rcu_assign_pointer(priv->peer, peer);
1341 
1342 	priv = netdev_priv(peer);
1343 	rcu_assign_pointer(priv->peer, dev);
1344 
1345 	return 0;
1346 
1347 err_register_dev:
1348 	/* nothing to do */
1349 err_configure_peer:
1350 	unregister_netdevice(peer);
1351 	return err;
1352 
1353 err_register_peer:
1354 	free_netdev(peer);
1355 	return err;
1356 }
1357 
1358 static void veth_dellink(struct net_device *dev, struct list_head *head)
1359 {
1360 	struct veth_priv *priv;
1361 	struct net_device *peer;
1362 
1363 	priv = netdev_priv(dev);
1364 	peer = rtnl_dereference(priv->peer);
1365 
1366 	/* Note : dellink() is called from default_device_exit_batch(),
1367 	 * before a rcu_synchronize() point. The devices are guaranteed
1368 	 * not being freed before one RCU grace period.
1369 	 */
1370 	RCU_INIT_POINTER(priv->peer, NULL);
1371 	unregister_netdevice_queue(dev, head);
1372 
1373 	if (peer) {
1374 		priv = netdev_priv(peer);
1375 		RCU_INIT_POINTER(priv->peer, NULL);
1376 		unregister_netdevice_queue(peer, head);
1377 	}
1378 }
1379 
1380 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1381 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1382 };
1383 
1384 static struct net *veth_get_link_net(const struct net_device *dev)
1385 {
1386 	struct veth_priv *priv = netdev_priv(dev);
1387 	struct net_device *peer = rtnl_dereference(priv->peer);
1388 
1389 	return peer ? dev_net(peer) : dev_net(dev);
1390 }
1391 
1392 static struct rtnl_link_ops veth_link_ops = {
1393 	.kind		= DRV_NAME,
1394 	.priv_size	= sizeof(struct veth_priv),
1395 	.setup		= veth_setup,
1396 	.validate	= veth_validate,
1397 	.newlink	= veth_newlink,
1398 	.dellink	= veth_dellink,
1399 	.policy		= veth_policy,
1400 	.maxtype	= VETH_INFO_MAX,
1401 	.get_link_net	= veth_get_link_net,
1402 };
1403 
1404 /*
1405  * init/fini
1406  */
1407 
1408 static __init int veth_init(void)
1409 {
1410 	return rtnl_link_register(&veth_link_ops);
1411 }
1412 
1413 static __exit void veth_exit(void)
1414 {
1415 	rtnl_link_unregister(&veth_link_ops);
1416 }
1417 
1418 module_init(veth_init);
1419 module_exit(veth_exit);
1420 
1421 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1422 MODULE_LICENSE("GPL v2");
1423 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1424