xref: /linux/drivers/net/veth.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 #include <net/page_pool.h>
30 
31 #define DRV_NAME	"veth"
32 #define DRV_VERSION	"1.0"
33 
34 #define VETH_XDP_FLAG		BIT(0)
35 #define VETH_RING_SIZE		256
36 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
37 
38 #define VETH_XDP_TX_BULK_SIZE	16
39 #define VETH_XDP_BATCH		16
40 
41 struct veth_stats {
42 	u64	rx_drops;
43 	/* xdp */
44 	u64	xdp_packets;
45 	u64	xdp_bytes;
46 	u64	xdp_redirect;
47 	u64	xdp_drops;
48 	u64	xdp_tx;
49 	u64	xdp_tx_err;
50 	u64	peer_tq_xdp_xmit;
51 	u64	peer_tq_xdp_xmit_err;
52 };
53 
54 struct veth_rq_stats {
55 	struct veth_stats	vs;
56 	struct u64_stats_sync	syncp;
57 };
58 
59 struct veth_rq {
60 	struct napi_struct	xdp_napi;
61 	struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */
62 	struct net_device	*dev;
63 	struct bpf_prog __rcu	*xdp_prog;
64 	struct xdp_mem_info	xdp_mem;
65 	struct veth_rq_stats	stats;
66 	bool			rx_notify_masked;
67 	struct ptr_ring		xdp_ring;
68 	struct xdp_rxq_info	xdp_rxq;
69 	struct page_pool	*page_pool;
70 };
71 
72 struct veth_priv {
73 	struct net_device __rcu	*peer;
74 	atomic64_t		dropped;
75 	struct bpf_prog		*_xdp_prog;
76 	struct veth_rq		*rq;
77 	unsigned int		requested_headroom;
78 };
79 
80 struct veth_xdp_tx_bq {
81 	struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
82 	unsigned int count;
83 };
84 
85 /*
86  * ethtool interface
87  */
88 
89 struct veth_q_stat_desc {
90 	char	desc[ETH_GSTRING_LEN];
91 	size_t	offset;
92 };
93 
94 #define VETH_RQ_STAT(m)	offsetof(struct veth_stats, m)
95 
96 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
97 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
98 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
99 	{ "drops",		VETH_RQ_STAT(rx_drops) },
100 	{ "xdp_redirect",	VETH_RQ_STAT(xdp_redirect) },
101 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
102 	{ "xdp_tx",		VETH_RQ_STAT(xdp_tx) },
103 	{ "xdp_tx_errors",	VETH_RQ_STAT(xdp_tx_err) },
104 };
105 
106 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
107 
108 static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
109 	{ "xdp_xmit",		VETH_RQ_STAT(peer_tq_xdp_xmit) },
110 	{ "xdp_xmit_errors",	VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
111 };
112 
113 #define VETH_TQ_STATS_LEN	ARRAY_SIZE(veth_tq_stats_desc)
114 
115 static struct {
116 	const char string[ETH_GSTRING_LEN];
117 } ethtool_stats_keys[] = {
118 	{ "peer_ifindex" },
119 };
120 
121 struct veth_xdp_buff {
122 	struct xdp_buff xdp;
123 	struct sk_buff *skb;
124 };
125 
126 static int veth_get_link_ksettings(struct net_device *dev,
127 				   struct ethtool_link_ksettings *cmd)
128 {
129 	cmd->base.speed		= SPEED_10000;
130 	cmd->base.duplex	= DUPLEX_FULL;
131 	cmd->base.port		= PORT_TP;
132 	cmd->base.autoneg	= AUTONEG_DISABLE;
133 	return 0;
134 }
135 
136 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
137 {
138 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
139 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
140 }
141 
142 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
143 {
144 	u8 *p = buf;
145 	int i, j;
146 
147 	switch(stringset) {
148 	case ETH_SS_STATS:
149 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
150 		p += sizeof(ethtool_stats_keys);
151 		for (i = 0; i < dev->real_num_rx_queues; i++)
152 			for (j = 0; j < VETH_RQ_STATS_LEN; j++)
153 				ethtool_sprintf(&p, "rx_queue_%u_%.18s",
154 						i, veth_rq_stats_desc[j].desc);
155 
156 		for (i = 0; i < dev->real_num_tx_queues; i++)
157 			for (j = 0; j < VETH_TQ_STATS_LEN; j++)
158 				ethtool_sprintf(&p, "tx_queue_%u_%.18s",
159 						i, veth_tq_stats_desc[j].desc);
160 
161 		page_pool_ethtool_stats_get_strings(p);
162 		break;
163 	}
164 }
165 
166 static int veth_get_sset_count(struct net_device *dev, int sset)
167 {
168 	switch (sset) {
169 	case ETH_SS_STATS:
170 		return ARRAY_SIZE(ethtool_stats_keys) +
171 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
172 		       VETH_TQ_STATS_LEN * dev->real_num_tx_queues +
173 		       page_pool_ethtool_stats_get_count();
174 	default:
175 		return -EOPNOTSUPP;
176 	}
177 }
178 
179 static void veth_get_ethtool_stats(struct net_device *dev,
180 		struct ethtool_stats *stats, u64 *data)
181 {
182 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
183 	struct net_device *peer = rtnl_dereference(priv->peer);
184 	struct page_pool_stats pp_stats = {};
185 	int i, j, idx, pp_idx;
186 
187 	data[0] = peer ? peer->ifindex : 0;
188 	idx = 1;
189 	for (i = 0; i < dev->real_num_rx_queues; i++) {
190 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
191 		const void *stats_base = (void *)&rq_stats->vs;
192 		unsigned int start;
193 		size_t offset;
194 
195 		do {
196 			start = u64_stats_fetch_begin(&rq_stats->syncp);
197 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
198 				offset = veth_rq_stats_desc[j].offset;
199 				data[idx + j] = *(u64 *)(stats_base + offset);
200 			}
201 		} while (u64_stats_fetch_retry(&rq_stats->syncp, start));
202 		idx += VETH_RQ_STATS_LEN;
203 	}
204 	pp_idx = idx;
205 
206 	if (!peer)
207 		goto page_pool_stats;
208 
209 	rcv_priv = netdev_priv(peer);
210 	for (i = 0; i < peer->real_num_rx_queues; i++) {
211 		const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
212 		const void *base = (void *)&rq_stats->vs;
213 		unsigned int start, tx_idx = idx;
214 		size_t offset;
215 
216 		tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
217 		do {
218 			start = u64_stats_fetch_begin(&rq_stats->syncp);
219 			for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
220 				offset = veth_tq_stats_desc[j].offset;
221 				data[tx_idx + j] += *(u64 *)(base + offset);
222 			}
223 		} while (u64_stats_fetch_retry(&rq_stats->syncp, start));
224 		pp_idx = tx_idx + VETH_TQ_STATS_LEN;
225 	}
226 
227 page_pool_stats:
228 	for (i = 0; i < dev->real_num_rx_queues; i++) {
229 		if (!priv->rq[i].page_pool)
230 			continue;
231 		page_pool_get_stats(priv->rq[i].page_pool, &pp_stats);
232 	}
233 	page_pool_ethtool_stats_get(&data[pp_idx], &pp_stats);
234 }
235 
236 static void veth_get_channels(struct net_device *dev,
237 			      struct ethtool_channels *channels)
238 {
239 	channels->tx_count = dev->real_num_tx_queues;
240 	channels->rx_count = dev->real_num_rx_queues;
241 	channels->max_tx = dev->num_tx_queues;
242 	channels->max_rx = dev->num_rx_queues;
243 }
244 
245 static int veth_set_channels(struct net_device *dev,
246 			     struct ethtool_channels *ch);
247 
248 static const struct ethtool_ops veth_ethtool_ops = {
249 	.get_drvinfo		= veth_get_drvinfo,
250 	.get_link		= ethtool_op_get_link,
251 	.get_strings		= veth_get_strings,
252 	.get_sset_count		= veth_get_sset_count,
253 	.get_ethtool_stats	= veth_get_ethtool_stats,
254 	.get_link_ksettings	= veth_get_link_ksettings,
255 	.get_ts_info		= ethtool_op_get_ts_info,
256 	.get_channels		= veth_get_channels,
257 	.set_channels		= veth_set_channels,
258 };
259 
260 /* general routines */
261 
262 static bool veth_is_xdp_frame(void *ptr)
263 {
264 	return (unsigned long)ptr & VETH_XDP_FLAG;
265 }
266 
267 static struct xdp_frame *veth_ptr_to_xdp(void *ptr)
268 {
269 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
270 }
271 
272 static void *veth_xdp_to_ptr(struct xdp_frame *xdp)
273 {
274 	return (void *)((unsigned long)xdp | VETH_XDP_FLAG);
275 }
276 
277 static void veth_ptr_free(void *ptr)
278 {
279 	if (veth_is_xdp_frame(ptr))
280 		xdp_return_frame(veth_ptr_to_xdp(ptr));
281 	else
282 		kfree_skb(ptr);
283 }
284 
285 static void __veth_xdp_flush(struct veth_rq *rq)
286 {
287 	/* Write ptr_ring before reading rx_notify_masked */
288 	smp_mb();
289 	if (!READ_ONCE(rq->rx_notify_masked) &&
290 	    napi_schedule_prep(&rq->xdp_napi)) {
291 		WRITE_ONCE(rq->rx_notify_masked, true);
292 		__napi_schedule(&rq->xdp_napi);
293 	}
294 }
295 
296 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
297 {
298 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
299 		dev_kfree_skb_any(skb);
300 		return NET_RX_DROP;
301 	}
302 
303 	return NET_RX_SUCCESS;
304 }
305 
306 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
307 			    struct veth_rq *rq, bool xdp)
308 {
309 	return __dev_forward_skb(dev, skb) ?: xdp ?
310 		veth_xdp_rx(rq, skb) :
311 		__netif_rx(skb);
312 }
313 
314 /* return true if the specified skb has chances of GRO aggregation
315  * Don't strive for accuracy, but try to avoid GRO overhead in the most
316  * common scenarios.
317  * When XDP is enabled, all traffic is considered eligible, as the xmit
318  * device has TSO off.
319  * When TSO is enabled on the xmit device, we are likely interested only
320  * in UDP aggregation, explicitly check for that if the skb is suspected
321  * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets -
322  * to belong to locally generated UDP traffic.
323  */
324 static bool veth_skb_is_eligible_for_gro(const struct net_device *dev,
325 					 const struct net_device *rcv,
326 					 const struct sk_buff *skb)
327 {
328 	return !(dev->features & NETIF_F_ALL_TSO) ||
329 		(skb->destructor == sock_wfree &&
330 		 rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD));
331 }
332 
333 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
334 {
335 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
336 	struct veth_rq *rq = NULL;
337 	struct net_device *rcv;
338 	int length = skb->len;
339 	bool use_napi = false;
340 	int rxq;
341 
342 	rcu_read_lock();
343 	rcv = rcu_dereference(priv->peer);
344 	if (unlikely(!rcv) || !pskb_may_pull(skb, ETH_HLEN)) {
345 		kfree_skb(skb);
346 		goto drop;
347 	}
348 
349 	rcv_priv = netdev_priv(rcv);
350 	rxq = skb_get_queue_mapping(skb);
351 	if (rxq < rcv->real_num_rx_queues) {
352 		rq = &rcv_priv->rq[rxq];
353 
354 		/* The napi pointer is available when an XDP program is
355 		 * attached or when GRO is enabled
356 		 * Don't bother with napi/GRO if the skb can't be aggregated
357 		 */
358 		use_napi = rcu_access_pointer(rq->napi) &&
359 			   veth_skb_is_eligible_for_gro(dev, rcv, skb);
360 	}
361 
362 	skb_tx_timestamp(skb);
363 	if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) {
364 		if (!use_napi)
365 			dev_lstats_add(dev, length);
366 	} else {
367 drop:
368 		atomic64_inc(&priv->dropped);
369 	}
370 
371 	if (use_napi)
372 		__veth_xdp_flush(rq);
373 
374 	rcu_read_unlock();
375 
376 	return NETDEV_TX_OK;
377 }
378 
379 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
380 {
381 	struct veth_priv *priv = netdev_priv(dev);
382 
383 	dev_lstats_read(dev, packets, bytes);
384 	return atomic64_read(&priv->dropped);
385 }
386 
387 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
388 {
389 	struct veth_priv *priv = netdev_priv(dev);
390 	int i;
391 
392 	result->peer_tq_xdp_xmit_err = 0;
393 	result->xdp_packets = 0;
394 	result->xdp_tx_err = 0;
395 	result->xdp_bytes = 0;
396 	result->rx_drops = 0;
397 	for (i = 0; i < dev->num_rx_queues; i++) {
398 		u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
399 		struct veth_rq_stats *stats = &priv->rq[i].stats;
400 		unsigned int start;
401 
402 		do {
403 			start = u64_stats_fetch_begin(&stats->syncp);
404 			peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
405 			xdp_tx_err = stats->vs.xdp_tx_err;
406 			packets = stats->vs.xdp_packets;
407 			bytes = stats->vs.xdp_bytes;
408 			drops = stats->vs.rx_drops;
409 		} while (u64_stats_fetch_retry(&stats->syncp, start));
410 		result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
411 		result->xdp_tx_err += xdp_tx_err;
412 		result->xdp_packets += packets;
413 		result->xdp_bytes += bytes;
414 		result->rx_drops += drops;
415 	}
416 }
417 
418 static void veth_get_stats64(struct net_device *dev,
419 			     struct rtnl_link_stats64 *tot)
420 {
421 	struct veth_priv *priv = netdev_priv(dev);
422 	struct net_device *peer;
423 	struct veth_stats rx;
424 	u64 packets, bytes;
425 
426 	tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
427 	tot->tx_bytes = bytes;
428 	tot->tx_packets = packets;
429 
430 	veth_stats_rx(&rx, dev);
431 	tot->tx_dropped += rx.xdp_tx_err;
432 	tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
433 	tot->rx_bytes = rx.xdp_bytes;
434 	tot->rx_packets = rx.xdp_packets;
435 
436 	rcu_read_lock();
437 	peer = rcu_dereference(priv->peer);
438 	if (peer) {
439 		veth_stats_tx(peer, &packets, &bytes);
440 		tot->rx_bytes += bytes;
441 		tot->rx_packets += packets;
442 
443 		veth_stats_rx(&rx, peer);
444 		tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
445 		tot->rx_dropped += rx.xdp_tx_err;
446 		tot->tx_bytes += rx.xdp_bytes;
447 		tot->tx_packets += rx.xdp_packets;
448 	}
449 	rcu_read_unlock();
450 }
451 
452 /* fake multicast ability */
453 static void veth_set_multicast_list(struct net_device *dev)
454 {
455 }
456 
457 static int veth_select_rxq(struct net_device *dev)
458 {
459 	return smp_processor_id() % dev->real_num_rx_queues;
460 }
461 
462 static struct net_device *veth_peer_dev(struct net_device *dev)
463 {
464 	struct veth_priv *priv = netdev_priv(dev);
465 
466 	/* Callers must be under RCU read side. */
467 	return rcu_dereference(priv->peer);
468 }
469 
470 static int veth_xdp_xmit(struct net_device *dev, int n,
471 			 struct xdp_frame **frames,
472 			 u32 flags, bool ndo_xmit)
473 {
474 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
475 	int i, ret = -ENXIO, nxmit = 0;
476 	struct net_device *rcv;
477 	unsigned int max_len;
478 	struct veth_rq *rq;
479 
480 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
481 		return -EINVAL;
482 
483 	rcu_read_lock();
484 	rcv = rcu_dereference(priv->peer);
485 	if (unlikely(!rcv))
486 		goto out;
487 
488 	rcv_priv = netdev_priv(rcv);
489 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
490 	/* The napi pointer is set if NAPI is enabled, which ensures that
491 	 * xdp_ring is initialized on receive side and the peer device is up.
492 	 */
493 	if (!rcu_access_pointer(rq->napi))
494 		goto out;
495 
496 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
497 
498 	spin_lock(&rq->xdp_ring.producer_lock);
499 	for (i = 0; i < n; i++) {
500 		struct xdp_frame *frame = frames[i];
501 		void *ptr = veth_xdp_to_ptr(frame);
502 
503 		if (unlikely(xdp_get_frame_len(frame) > max_len ||
504 			     __ptr_ring_produce(&rq->xdp_ring, ptr)))
505 			break;
506 		nxmit++;
507 	}
508 	spin_unlock(&rq->xdp_ring.producer_lock);
509 
510 	if (flags & XDP_XMIT_FLUSH)
511 		__veth_xdp_flush(rq);
512 
513 	ret = nxmit;
514 	if (ndo_xmit) {
515 		u64_stats_update_begin(&rq->stats.syncp);
516 		rq->stats.vs.peer_tq_xdp_xmit += nxmit;
517 		rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit;
518 		u64_stats_update_end(&rq->stats.syncp);
519 	}
520 
521 out:
522 	rcu_read_unlock();
523 
524 	return ret;
525 }
526 
527 static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
528 			     struct xdp_frame **frames, u32 flags)
529 {
530 	int err;
531 
532 	err = veth_xdp_xmit(dev, n, frames, flags, true);
533 	if (err < 0) {
534 		struct veth_priv *priv = netdev_priv(dev);
535 
536 		atomic64_add(n, &priv->dropped);
537 	}
538 
539 	return err;
540 }
541 
542 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
543 {
544 	int sent, i, err = 0, drops;
545 
546 	sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
547 	if (sent < 0) {
548 		err = sent;
549 		sent = 0;
550 	}
551 
552 	for (i = sent; unlikely(i < bq->count); i++)
553 		xdp_return_frame(bq->q[i]);
554 
555 	drops = bq->count - sent;
556 	trace_xdp_bulk_tx(rq->dev, sent, drops, err);
557 
558 	u64_stats_update_begin(&rq->stats.syncp);
559 	rq->stats.vs.xdp_tx += sent;
560 	rq->stats.vs.xdp_tx_err += drops;
561 	u64_stats_update_end(&rq->stats.syncp);
562 
563 	bq->count = 0;
564 }
565 
566 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
567 {
568 	struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
569 	struct net_device *rcv;
570 	struct veth_rq *rcv_rq;
571 
572 	rcu_read_lock();
573 	veth_xdp_flush_bq(rq, bq);
574 	rcv = rcu_dereference(priv->peer);
575 	if (unlikely(!rcv))
576 		goto out;
577 
578 	rcv_priv = netdev_priv(rcv);
579 	rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
580 	/* xdp_ring is initialized on receive side? */
581 	if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
582 		goto out;
583 
584 	__veth_xdp_flush(rcv_rq);
585 out:
586 	rcu_read_unlock();
587 }
588 
589 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
590 		       struct veth_xdp_tx_bq *bq)
591 {
592 	struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
593 
594 	if (unlikely(!frame))
595 		return -EOVERFLOW;
596 
597 	if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
598 		veth_xdp_flush_bq(rq, bq);
599 
600 	bq->q[bq->count++] = frame;
601 
602 	return 0;
603 }
604 
605 static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq,
606 					  struct xdp_frame *frame,
607 					  struct veth_xdp_tx_bq *bq,
608 					  struct veth_stats *stats)
609 {
610 	struct xdp_frame orig_frame;
611 	struct bpf_prog *xdp_prog;
612 
613 	rcu_read_lock();
614 	xdp_prog = rcu_dereference(rq->xdp_prog);
615 	if (likely(xdp_prog)) {
616 		struct veth_xdp_buff vxbuf;
617 		struct xdp_buff *xdp = &vxbuf.xdp;
618 		u32 act;
619 
620 		xdp_convert_frame_to_buff(frame, xdp);
621 		xdp->rxq = &rq->xdp_rxq;
622 		vxbuf.skb = NULL;
623 
624 		act = bpf_prog_run_xdp(xdp_prog, xdp);
625 
626 		switch (act) {
627 		case XDP_PASS:
628 			if (xdp_update_frame_from_buff(xdp, frame))
629 				goto err_xdp;
630 			break;
631 		case XDP_TX:
632 			orig_frame = *frame;
633 			xdp->rxq->mem = frame->mem;
634 			if (unlikely(veth_xdp_tx(rq, xdp, bq) < 0)) {
635 				trace_xdp_exception(rq->dev, xdp_prog, act);
636 				frame = &orig_frame;
637 				stats->rx_drops++;
638 				goto err_xdp;
639 			}
640 			stats->xdp_tx++;
641 			rcu_read_unlock();
642 			goto xdp_xmit;
643 		case XDP_REDIRECT:
644 			orig_frame = *frame;
645 			xdp->rxq->mem = frame->mem;
646 			if (xdp_do_redirect(rq->dev, xdp, xdp_prog)) {
647 				frame = &orig_frame;
648 				stats->rx_drops++;
649 				goto err_xdp;
650 			}
651 			stats->xdp_redirect++;
652 			rcu_read_unlock();
653 			goto xdp_xmit;
654 		default:
655 			bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
656 			fallthrough;
657 		case XDP_ABORTED:
658 			trace_xdp_exception(rq->dev, xdp_prog, act);
659 			fallthrough;
660 		case XDP_DROP:
661 			stats->xdp_drops++;
662 			goto err_xdp;
663 		}
664 	}
665 	rcu_read_unlock();
666 
667 	return frame;
668 err_xdp:
669 	rcu_read_unlock();
670 	xdp_return_frame(frame);
671 xdp_xmit:
672 	return NULL;
673 }
674 
675 /* frames array contains VETH_XDP_BATCH at most */
676 static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames,
677 				  int n_xdpf, struct veth_xdp_tx_bq *bq,
678 				  struct veth_stats *stats)
679 {
680 	void *skbs[VETH_XDP_BATCH];
681 	int i;
682 
683 	if (xdp_alloc_skb_bulk(skbs, n_xdpf,
684 			       GFP_ATOMIC | __GFP_ZERO) < 0) {
685 		for (i = 0; i < n_xdpf; i++)
686 			xdp_return_frame(frames[i]);
687 		stats->rx_drops += n_xdpf;
688 
689 		return;
690 	}
691 
692 	for (i = 0; i < n_xdpf; i++) {
693 		struct sk_buff *skb = skbs[i];
694 
695 		skb = __xdp_build_skb_from_frame(frames[i], skb,
696 						 rq->dev);
697 		if (!skb) {
698 			xdp_return_frame(frames[i]);
699 			stats->rx_drops++;
700 			continue;
701 		}
702 		napi_gro_receive(&rq->xdp_napi, skb);
703 	}
704 }
705 
706 static void veth_xdp_get(struct xdp_buff *xdp)
707 {
708 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
709 	int i;
710 
711 	get_page(virt_to_page(xdp->data));
712 	if (likely(!xdp_buff_has_frags(xdp)))
713 		return;
714 
715 	for (i = 0; i < sinfo->nr_frags; i++)
716 		__skb_frag_ref(&sinfo->frags[i]);
717 }
718 
719 static int veth_convert_skb_to_xdp_buff(struct veth_rq *rq,
720 					struct xdp_buff *xdp,
721 					struct sk_buff **pskb)
722 {
723 	struct sk_buff *skb = *pskb;
724 	u32 frame_sz;
725 
726 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
727 	    skb_shinfo(skb)->nr_frags ||
728 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
729 		u32 size, len, max_head_size, off;
730 		struct sk_buff *nskb;
731 		struct page *page;
732 		int i, head_off;
733 
734 		/* We need a private copy of the skb and data buffers since
735 		 * the ebpf program can modify it. We segment the original skb
736 		 * into order-0 pages without linearize it.
737 		 *
738 		 * Make sure we have enough space for linear and paged area
739 		 */
740 		max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE -
741 						  VETH_XDP_HEADROOM);
742 		if (skb->len > PAGE_SIZE * MAX_SKB_FRAGS + max_head_size)
743 			goto drop;
744 
745 		/* Allocate skb head */
746 		page = page_pool_dev_alloc_pages(rq->page_pool);
747 		if (!page)
748 			goto drop;
749 
750 		nskb = build_skb(page_address(page), PAGE_SIZE);
751 		if (!nskb) {
752 			page_pool_put_full_page(rq->page_pool, page, true);
753 			goto drop;
754 		}
755 
756 		skb_reserve(nskb, VETH_XDP_HEADROOM);
757 		skb_copy_header(nskb, skb);
758 		skb_mark_for_recycle(nskb);
759 
760 		size = min_t(u32, skb->len, max_head_size);
761 		if (skb_copy_bits(skb, 0, nskb->data, size)) {
762 			consume_skb(nskb);
763 			goto drop;
764 		}
765 		skb_put(nskb, size);
766 
767 		head_off = skb_headroom(nskb) - skb_headroom(skb);
768 		skb_headers_offset_update(nskb, head_off);
769 
770 		/* Allocate paged area of new skb */
771 		off = size;
772 		len = skb->len - off;
773 
774 		for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
775 			page = page_pool_dev_alloc_pages(rq->page_pool);
776 			if (!page) {
777 				consume_skb(nskb);
778 				goto drop;
779 			}
780 
781 			size = min_t(u32, len, PAGE_SIZE);
782 			skb_add_rx_frag(nskb, i, page, 0, size, PAGE_SIZE);
783 			if (skb_copy_bits(skb, off, page_address(page),
784 					  size)) {
785 				consume_skb(nskb);
786 				goto drop;
787 			}
788 
789 			len -= size;
790 			off += size;
791 		}
792 
793 		consume_skb(skb);
794 		skb = nskb;
795 	}
796 
797 	/* SKB "head" area always have tailroom for skb_shared_info */
798 	frame_sz = skb_end_pointer(skb) - skb->head;
799 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
800 	xdp_init_buff(xdp, frame_sz, &rq->xdp_rxq);
801 	xdp_prepare_buff(xdp, skb->head, skb_headroom(skb),
802 			 skb_headlen(skb), true);
803 
804 	if (skb_is_nonlinear(skb)) {
805 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
806 		xdp_buff_set_frags_flag(xdp);
807 	} else {
808 		xdp_buff_clear_frags_flag(xdp);
809 	}
810 	*pskb = skb;
811 
812 	return 0;
813 drop:
814 	consume_skb(skb);
815 	*pskb = NULL;
816 
817 	return -ENOMEM;
818 }
819 
820 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
821 					struct sk_buff *skb,
822 					struct veth_xdp_tx_bq *bq,
823 					struct veth_stats *stats)
824 {
825 	void *orig_data, *orig_data_end;
826 	struct bpf_prog *xdp_prog;
827 	struct veth_xdp_buff vxbuf;
828 	struct xdp_buff *xdp = &vxbuf.xdp;
829 	u32 act, metalen;
830 	int off;
831 
832 	skb_prepare_for_gro(skb);
833 
834 	rcu_read_lock();
835 	xdp_prog = rcu_dereference(rq->xdp_prog);
836 	if (unlikely(!xdp_prog)) {
837 		rcu_read_unlock();
838 		goto out;
839 	}
840 
841 	__skb_push(skb, skb->data - skb_mac_header(skb));
842 	if (veth_convert_skb_to_xdp_buff(rq, xdp, &skb))
843 		goto drop;
844 	vxbuf.skb = skb;
845 
846 	orig_data = xdp->data;
847 	orig_data_end = xdp->data_end;
848 
849 	act = bpf_prog_run_xdp(xdp_prog, xdp);
850 
851 	switch (act) {
852 	case XDP_PASS:
853 		break;
854 	case XDP_TX:
855 		veth_xdp_get(xdp);
856 		consume_skb(skb);
857 		xdp->rxq->mem = rq->xdp_mem;
858 		if (unlikely(veth_xdp_tx(rq, xdp, bq) < 0)) {
859 			trace_xdp_exception(rq->dev, xdp_prog, act);
860 			stats->rx_drops++;
861 			goto err_xdp;
862 		}
863 		stats->xdp_tx++;
864 		rcu_read_unlock();
865 		goto xdp_xmit;
866 	case XDP_REDIRECT:
867 		veth_xdp_get(xdp);
868 		consume_skb(skb);
869 		xdp->rxq->mem = rq->xdp_mem;
870 		if (xdp_do_redirect(rq->dev, xdp, xdp_prog)) {
871 			stats->rx_drops++;
872 			goto err_xdp;
873 		}
874 		stats->xdp_redirect++;
875 		rcu_read_unlock();
876 		goto xdp_xmit;
877 	default:
878 		bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
879 		fallthrough;
880 	case XDP_ABORTED:
881 		trace_xdp_exception(rq->dev, xdp_prog, act);
882 		fallthrough;
883 	case XDP_DROP:
884 		stats->xdp_drops++;
885 		goto xdp_drop;
886 	}
887 	rcu_read_unlock();
888 
889 	/* check if bpf_xdp_adjust_head was used */
890 	off = orig_data - xdp->data;
891 	if (off > 0)
892 		__skb_push(skb, off);
893 	else if (off < 0)
894 		__skb_pull(skb, -off);
895 
896 	skb_reset_mac_header(skb);
897 
898 	/* check if bpf_xdp_adjust_tail was used */
899 	off = xdp->data_end - orig_data_end;
900 	if (off != 0)
901 		__skb_put(skb, off); /* positive on grow, negative on shrink */
902 
903 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
904 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
905 	 */
906 	if (xdp_buff_has_frags(xdp))
907 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
908 	else
909 		skb->data_len = 0;
910 
911 	skb->protocol = eth_type_trans(skb, rq->dev);
912 
913 	metalen = xdp->data - xdp->data_meta;
914 	if (metalen)
915 		skb_metadata_set(skb, metalen);
916 out:
917 	return skb;
918 drop:
919 	stats->rx_drops++;
920 xdp_drop:
921 	rcu_read_unlock();
922 	kfree_skb(skb);
923 	return NULL;
924 err_xdp:
925 	rcu_read_unlock();
926 	xdp_return_buff(xdp);
927 xdp_xmit:
928 	return NULL;
929 }
930 
931 static int veth_xdp_rcv(struct veth_rq *rq, int budget,
932 			struct veth_xdp_tx_bq *bq,
933 			struct veth_stats *stats)
934 {
935 	int i, done = 0, n_xdpf = 0;
936 	void *xdpf[VETH_XDP_BATCH];
937 
938 	for (i = 0; i < budget; i++) {
939 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
940 
941 		if (!ptr)
942 			break;
943 
944 		if (veth_is_xdp_frame(ptr)) {
945 			/* ndo_xdp_xmit */
946 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
947 
948 			stats->xdp_bytes += xdp_get_frame_len(frame);
949 			frame = veth_xdp_rcv_one(rq, frame, bq, stats);
950 			if (frame) {
951 				/* XDP_PASS */
952 				xdpf[n_xdpf++] = frame;
953 				if (n_xdpf == VETH_XDP_BATCH) {
954 					veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf,
955 							      bq, stats);
956 					n_xdpf = 0;
957 				}
958 			}
959 		} else {
960 			/* ndo_start_xmit */
961 			struct sk_buff *skb = ptr;
962 
963 			stats->xdp_bytes += skb->len;
964 			skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
965 			if (skb) {
966 				if (skb_shared(skb) || skb_unclone(skb, GFP_ATOMIC))
967 					netif_receive_skb(skb);
968 				else
969 					napi_gro_receive(&rq->xdp_napi, skb);
970 			}
971 		}
972 		done++;
973 	}
974 
975 	if (n_xdpf)
976 		veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats);
977 
978 	u64_stats_update_begin(&rq->stats.syncp);
979 	rq->stats.vs.xdp_redirect += stats->xdp_redirect;
980 	rq->stats.vs.xdp_bytes += stats->xdp_bytes;
981 	rq->stats.vs.xdp_drops += stats->xdp_drops;
982 	rq->stats.vs.rx_drops += stats->rx_drops;
983 	rq->stats.vs.xdp_packets += done;
984 	u64_stats_update_end(&rq->stats.syncp);
985 
986 	return done;
987 }
988 
989 static int veth_poll(struct napi_struct *napi, int budget)
990 {
991 	struct veth_rq *rq =
992 		container_of(napi, struct veth_rq, xdp_napi);
993 	struct veth_stats stats = {};
994 	struct veth_xdp_tx_bq bq;
995 	int done;
996 
997 	bq.count = 0;
998 
999 	xdp_set_return_frame_no_direct();
1000 	done = veth_xdp_rcv(rq, budget, &bq, &stats);
1001 
1002 	if (stats.xdp_redirect > 0)
1003 		xdp_do_flush();
1004 
1005 	if (done < budget && napi_complete_done(napi, done)) {
1006 		/* Write rx_notify_masked before reading ptr_ring */
1007 		smp_store_mb(rq->rx_notify_masked, false);
1008 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
1009 			if (napi_schedule_prep(&rq->xdp_napi)) {
1010 				WRITE_ONCE(rq->rx_notify_masked, true);
1011 				__napi_schedule(&rq->xdp_napi);
1012 			}
1013 		}
1014 	}
1015 
1016 	if (stats.xdp_tx > 0)
1017 		veth_xdp_flush(rq, &bq);
1018 	xdp_clear_return_frame_no_direct();
1019 
1020 	return done;
1021 }
1022 
1023 static int veth_create_page_pool(struct veth_rq *rq)
1024 {
1025 	struct page_pool_params pp_params = {
1026 		.order = 0,
1027 		.pool_size = VETH_RING_SIZE,
1028 		.nid = NUMA_NO_NODE,
1029 		.dev = &rq->dev->dev,
1030 	};
1031 
1032 	rq->page_pool = page_pool_create(&pp_params);
1033 	if (IS_ERR(rq->page_pool)) {
1034 		int err = PTR_ERR(rq->page_pool);
1035 
1036 		rq->page_pool = NULL;
1037 		return err;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static int __veth_napi_enable_range(struct net_device *dev, int start, int end)
1044 {
1045 	struct veth_priv *priv = netdev_priv(dev);
1046 	int err, i;
1047 
1048 	for (i = start; i < end; i++) {
1049 		err = veth_create_page_pool(&priv->rq[i]);
1050 		if (err)
1051 			goto err_page_pool;
1052 	}
1053 
1054 	for (i = start; i < end; i++) {
1055 		struct veth_rq *rq = &priv->rq[i];
1056 
1057 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
1058 		if (err)
1059 			goto err_xdp_ring;
1060 	}
1061 
1062 	for (i = start; i < end; i++) {
1063 		struct veth_rq *rq = &priv->rq[i];
1064 
1065 		napi_enable(&rq->xdp_napi);
1066 		rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1067 	}
1068 
1069 	return 0;
1070 
1071 err_xdp_ring:
1072 	for (i--; i >= start; i--)
1073 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
1074 err_page_pool:
1075 	for (i = start; i < end; i++) {
1076 		page_pool_destroy(priv->rq[i].page_pool);
1077 		priv->rq[i].page_pool = NULL;
1078 	}
1079 
1080 	return err;
1081 }
1082 
1083 static int __veth_napi_enable(struct net_device *dev)
1084 {
1085 	return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1086 }
1087 
1088 static void veth_napi_del_range(struct net_device *dev, int start, int end)
1089 {
1090 	struct veth_priv *priv = netdev_priv(dev);
1091 	int i;
1092 
1093 	for (i = start; i < end; i++) {
1094 		struct veth_rq *rq = &priv->rq[i];
1095 
1096 		rcu_assign_pointer(priv->rq[i].napi, NULL);
1097 		napi_disable(&rq->xdp_napi);
1098 		__netif_napi_del(&rq->xdp_napi);
1099 	}
1100 	synchronize_net();
1101 
1102 	for (i = start; i < end; i++) {
1103 		struct veth_rq *rq = &priv->rq[i];
1104 
1105 		rq->rx_notify_masked = false;
1106 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
1107 	}
1108 
1109 	for (i = start; i < end; i++) {
1110 		page_pool_destroy(priv->rq[i].page_pool);
1111 		priv->rq[i].page_pool = NULL;
1112 	}
1113 }
1114 
1115 static void veth_napi_del(struct net_device *dev)
1116 {
1117 	veth_napi_del_range(dev, 0, dev->real_num_rx_queues);
1118 }
1119 
1120 static bool veth_gro_requested(const struct net_device *dev)
1121 {
1122 	return !!(dev->wanted_features & NETIF_F_GRO);
1123 }
1124 
1125 static int veth_enable_xdp_range(struct net_device *dev, int start, int end,
1126 				 bool napi_already_on)
1127 {
1128 	struct veth_priv *priv = netdev_priv(dev);
1129 	int err, i;
1130 
1131 	for (i = start; i < end; i++) {
1132 		struct veth_rq *rq = &priv->rq[i];
1133 
1134 		if (!napi_already_on)
1135 			netif_napi_add(dev, &rq->xdp_napi, veth_poll);
1136 		err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id);
1137 		if (err < 0)
1138 			goto err_rxq_reg;
1139 
1140 		err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
1141 						 MEM_TYPE_PAGE_SHARED,
1142 						 NULL);
1143 		if (err < 0)
1144 			goto err_reg_mem;
1145 
1146 		/* Save original mem info as it can be overwritten */
1147 		rq->xdp_mem = rq->xdp_rxq.mem;
1148 	}
1149 	return 0;
1150 
1151 err_reg_mem:
1152 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
1153 err_rxq_reg:
1154 	for (i--; i >= start; i--) {
1155 		struct veth_rq *rq = &priv->rq[i];
1156 
1157 		xdp_rxq_info_unreg(&rq->xdp_rxq);
1158 		if (!napi_already_on)
1159 			netif_napi_del(&rq->xdp_napi);
1160 	}
1161 
1162 	return err;
1163 }
1164 
1165 static void veth_disable_xdp_range(struct net_device *dev, int start, int end,
1166 				   bool delete_napi)
1167 {
1168 	struct veth_priv *priv = netdev_priv(dev);
1169 	int i;
1170 
1171 	for (i = start; i < end; i++) {
1172 		struct veth_rq *rq = &priv->rq[i];
1173 
1174 		rq->xdp_rxq.mem = rq->xdp_mem;
1175 		xdp_rxq_info_unreg(&rq->xdp_rxq);
1176 
1177 		if (delete_napi)
1178 			netif_napi_del(&rq->xdp_napi);
1179 	}
1180 }
1181 
1182 static int veth_enable_xdp(struct net_device *dev)
1183 {
1184 	bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP);
1185 	struct veth_priv *priv = netdev_priv(dev);
1186 	int err, i;
1187 
1188 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
1189 		err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on);
1190 		if (err)
1191 			return err;
1192 
1193 		if (!napi_already_on) {
1194 			err = __veth_napi_enable(dev);
1195 			if (err) {
1196 				veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true);
1197 				return err;
1198 			}
1199 
1200 			if (!veth_gro_requested(dev)) {
1201 				/* user-space did not require GRO, but adding XDP
1202 				 * is supposed to get GRO working
1203 				 */
1204 				dev->features |= NETIF_F_GRO;
1205 				netdev_features_change(dev);
1206 			}
1207 		}
1208 	}
1209 
1210 	for (i = 0; i < dev->real_num_rx_queues; i++) {
1211 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
1212 		rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 static void veth_disable_xdp(struct net_device *dev)
1219 {
1220 	struct veth_priv *priv = netdev_priv(dev);
1221 	int i;
1222 
1223 	for (i = 0; i < dev->real_num_rx_queues; i++)
1224 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
1225 
1226 	if (!netif_running(dev) || !veth_gro_requested(dev)) {
1227 		veth_napi_del(dev);
1228 
1229 		/* if user-space did not require GRO, since adding XDP
1230 		 * enabled it, clear it now
1231 		 */
1232 		if (!veth_gro_requested(dev) && netif_running(dev)) {
1233 			dev->features &= ~NETIF_F_GRO;
1234 			netdev_features_change(dev);
1235 		}
1236 	}
1237 
1238 	veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false);
1239 }
1240 
1241 static int veth_napi_enable_range(struct net_device *dev, int start, int end)
1242 {
1243 	struct veth_priv *priv = netdev_priv(dev);
1244 	int err, i;
1245 
1246 	for (i = start; i < end; i++) {
1247 		struct veth_rq *rq = &priv->rq[i];
1248 
1249 		netif_napi_add(dev, &rq->xdp_napi, veth_poll);
1250 	}
1251 
1252 	err = __veth_napi_enable_range(dev, start, end);
1253 	if (err) {
1254 		for (i = start; i < end; i++) {
1255 			struct veth_rq *rq = &priv->rq[i];
1256 
1257 			netif_napi_del(&rq->xdp_napi);
1258 		}
1259 		return err;
1260 	}
1261 	return err;
1262 }
1263 
1264 static int veth_napi_enable(struct net_device *dev)
1265 {
1266 	return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1267 }
1268 
1269 static void veth_disable_range_safe(struct net_device *dev, int start, int end)
1270 {
1271 	struct veth_priv *priv = netdev_priv(dev);
1272 
1273 	if (start >= end)
1274 		return;
1275 
1276 	if (priv->_xdp_prog) {
1277 		veth_napi_del_range(dev, start, end);
1278 		veth_disable_xdp_range(dev, start, end, false);
1279 	} else if (veth_gro_requested(dev)) {
1280 		veth_napi_del_range(dev, start, end);
1281 	}
1282 }
1283 
1284 static int veth_enable_range_safe(struct net_device *dev, int start, int end)
1285 {
1286 	struct veth_priv *priv = netdev_priv(dev);
1287 	int err;
1288 
1289 	if (start >= end)
1290 		return 0;
1291 
1292 	if (priv->_xdp_prog) {
1293 		/* these channels are freshly initialized, napi is not on there even
1294 		 * when GRO is requeste
1295 		 */
1296 		err = veth_enable_xdp_range(dev, start, end, false);
1297 		if (err)
1298 			return err;
1299 
1300 		err = __veth_napi_enable_range(dev, start, end);
1301 		if (err) {
1302 			/* on error always delete the newly added napis */
1303 			veth_disable_xdp_range(dev, start, end, true);
1304 			return err;
1305 		}
1306 	} else if (veth_gro_requested(dev)) {
1307 		return veth_napi_enable_range(dev, start, end);
1308 	}
1309 	return 0;
1310 }
1311 
1312 static void veth_set_xdp_features(struct net_device *dev)
1313 {
1314 	struct veth_priv *priv = netdev_priv(dev);
1315 	struct net_device *peer;
1316 
1317 	peer = rtnl_dereference(priv->peer);
1318 	if (peer && peer->real_num_tx_queues <= dev->real_num_rx_queues) {
1319 		struct veth_priv *priv_peer = netdev_priv(peer);
1320 		xdp_features_t val = NETDEV_XDP_ACT_BASIC |
1321 				     NETDEV_XDP_ACT_REDIRECT |
1322 				     NETDEV_XDP_ACT_RX_SG;
1323 
1324 		if (priv_peer->_xdp_prog || veth_gro_requested(peer))
1325 			val |= NETDEV_XDP_ACT_NDO_XMIT |
1326 			       NETDEV_XDP_ACT_NDO_XMIT_SG;
1327 		xdp_set_features_flag(dev, val);
1328 	} else {
1329 		xdp_clear_features_flag(dev);
1330 	}
1331 }
1332 
1333 static int veth_set_channels(struct net_device *dev,
1334 			     struct ethtool_channels *ch)
1335 {
1336 	struct veth_priv *priv = netdev_priv(dev);
1337 	unsigned int old_rx_count, new_rx_count;
1338 	struct veth_priv *peer_priv;
1339 	struct net_device *peer;
1340 	int err;
1341 
1342 	/* sanity check. Upper bounds are already enforced by the caller */
1343 	if (!ch->rx_count || !ch->tx_count)
1344 		return -EINVAL;
1345 
1346 	/* avoid braking XDP, if that is enabled */
1347 	peer = rtnl_dereference(priv->peer);
1348 	peer_priv = peer ? netdev_priv(peer) : NULL;
1349 	if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues)
1350 		return -EINVAL;
1351 
1352 	if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues)
1353 		return -EINVAL;
1354 
1355 	old_rx_count = dev->real_num_rx_queues;
1356 	new_rx_count = ch->rx_count;
1357 	if (netif_running(dev)) {
1358 		/* turn device off */
1359 		netif_carrier_off(dev);
1360 		if (peer)
1361 			netif_carrier_off(peer);
1362 
1363 		/* try to allocate new resurces, as needed*/
1364 		err = veth_enable_range_safe(dev, old_rx_count, new_rx_count);
1365 		if (err)
1366 			goto out;
1367 	}
1368 
1369 	err = netif_set_real_num_rx_queues(dev, ch->rx_count);
1370 	if (err)
1371 		goto revert;
1372 
1373 	err = netif_set_real_num_tx_queues(dev, ch->tx_count);
1374 	if (err) {
1375 		int err2 = netif_set_real_num_rx_queues(dev, old_rx_count);
1376 
1377 		/* this error condition could happen only if rx and tx change
1378 		 * in opposite directions (e.g. tx nr raises, rx nr decreases)
1379 		 * and we can't do anything to fully restore the original
1380 		 * status
1381 		 */
1382 		if (err2)
1383 			pr_warn("Can't restore rx queues config %d -> %d %d",
1384 				new_rx_count, old_rx_count, err2);
1385 		else
1386 			goto revert;
1387 	}
1388 
1389 out:
1390 	if (netif_running(dev)) {
1391 		/* note that we need to swap the arguments WRT the enable part
1392 		 * to identify the range we have to disable
1393 		 */
1394 		veth_disable_range_safe(dev, new_rx_count, old_rx_count);
1395 		netif_carrier_on(dev);
1396 		if (peer)
1397 			netif_carrier_on(peer);
1398 	}
1399 
1400 	/* update XDP supported features */
1401 	veth_set_xdp_features(dev);
1402 	if (peer)
1403 		veth_set_xdp_features(peer);
1404 
1405 	return err;
1406 
1407 revert:
1408 	new_rx_count = old_rx_count;
1409 	old_rx_count = ch->rx_count;
1410 	goto out;
1411 }
1412 
1413 static int veth_open(struct net_device *dev)
1414 {
1415 	struct veth_priv *priv = netdev_priv(dev);
1416 	struct net_device *peer = rtnl_dereference(priv->peer);
1417 	int err;
1418 
1419 	if (!peer)
1420 		return -ENOTCONN;
1421 
1422 	if (priv->_xdp_prog) {
1423 		err = veth_enable_xdp(dev);
1424 		if (err)
1425 			return err;
1426 	} else if (veth_gro_requested(dev)) {
1427 		err = veth_napi_enable(dev);
1428 		if (err)
1429 			return err;
1430 	}
1431 
1432 	if (peer->flags & IFF_UP) {
1433 		netif_carrier_on(dev);
1434 		netif_carrier_on(peer);
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static int veth_close(struct net_device *dev)
1441 {
1442 	struct veth_priv *priv = netdev_priv(dev);
1443 	struct net_device *peer = rtnl_dereference(priv->peer);
1444 
1445 	netif_carrier_off(dev);
1446 	if (peer)
1447 		netif_carrier_off(peer);
1448 
1449 	if (priv->_xdp_prog)
1450 		veth_disable_xdp(dev);
1451 	else if (veth_gro_requested(dev))
1452 		veth_napi_del(dev);
1453 
1454 	return 0;
1455 }
1456 
1457 static int is_valid_veth_mtu(int mtu)
1458 {
1459 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
1460 }
1461 
1462 static int veth_alloc_queues(struct net_device *dev)
1463 {
1464 	struct veth_priv *priv = netdev_priv(dev);
1465 	int i;
1466 
1467 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL_ACCOUNT);
1468 	if (!priv->rq)
1469 		return -ENOMEM;
1470 
1471 	for (i = 0; i < dev->num_rx_queues; i++) {
1472 		priv->rq[i].dev = dev;
1473 		u64_stats_init(&priv->rq[i].stats.syncp);
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 static void veth_free_queues(struct net_device *dev)
1480 {
1481 	struct veth_priv *priv = netdev_priv(dev);
1482 
1483 	kfree(priv->rq);
1484 }
1485 
1486 static int veth_dev_init(struct net_device *dev)
1487 {
1488 	int err;
1489 
1490 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
1491 	if (!dev->lstats)
1492 		return -ENOMEM;
1493 
1494 	err = veth_alloc_queues(dev);
1495 	if (err) {
1496 		free_percpu(dev->lstats);
1497 		return err;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 static void veth_dev_free(struct net_device *dev)
1504 {
1505 	veth_free_queues(dev);
1506 	free_percpu(dev->lstats);
1507 }
1508 
1509 #ifdef CONFIG_NET_POLL_CONTROLLER
1510 static void veth_poll_controller(struct net_device *dev)
1511 {
1512 	/* veth only receives frames when its peer sends one
1513 	 * Since it has nothing to do with disabling irqs, we are guaranteed
1514 	 * never to have pending data when we poll for it so
1515 	 * there is nothing to do here.
1516 	 *
1517 	 * We need this though so netpoll recognizes us as an interface that
1518 	 * supports polling, which enables bridge devices in virt setups to
1519 	 * still use netconsole
1520 	 */
1521 }
1522 #endif	/* CONFIG_NET_POLL_CONTROLLER */
1523 
1524 static int veth_get_iflink(const struct net_device *dev)
1525 {
1526 	struct veth_priv *priv = netdev_priv(dev);
1527 	struct net_device *peer;
1528 	int iflink;
1529 
1530 	rcu_read_lock();
1531 	peer = rcu_dereference(priv->peer);
1532 	iflink = peer ? peer->ifindex : 0;
1533 	rcu_read_unlock();
1534 
1535 	return iflink;
1536 }
1537 
1538 static netdev_features_t veth_fix_features(struct net_device *dev,
1539 					   netdev_features_t features)
1540 {
1541 	struct veth_priv *priv = netdev_priv(dev);
1542 	struct net_device *peer;
1543 
1544 	peer = rtnl_dereference(priv->peer);
1545 	if (peer) {
1546 		struct veth_priv *peer_priv = netdev_priv(peer);
1547 
1548 		if (peer_priv->_xdp_prog)
1549 			features &= ~NETIF_F_GSO_SOFTWARE;
1550 	}
1551 	if (priv->_xdp_prog)
1552 		features |= NETIF_F_GRO;
1553 
1554 	return features;
1555 }
1556 
1557 static int veth_set_features(struct net_device *dev,
1558 			     netdev_features_t features)
1559 {
1560 	netdev_features_t changed = features ^ dev->features;
1561 	struct veth_priv *priv = netdev_priv(dev);
1562 	struct net_device *peer;
1563 	int err;
1564 
1565 	if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog)
1566 		return 0;
1567 
1568 	peer = rtnl_dereference(priv->peer);
1569 	if (features & NETIF_F_GRO) {
1570 		err = veth_napi_enable(dev);
1571 		if (err)
1572 			return err;
1573 
1574 		if (peer)
1575 			xdp_features_set_redirect_target(peer, true);
1576 	} else {
1577 		if (peer)
1578 			xdp_features_clear_redirect_target(peer);
1579 		veth_napi_del(dev);
1580 	}
1581 	return 0;
1582 }
1583 
1584 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1585 {
1586 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1587 	struct net_device *peer;
1588 
1589 	if (new_hr < 0)
1590 		new_hr = 0;
1591 
1592 	rcu_read_lock();
1593 	peer = rcu_dereference(priv->peer);
1594 	if (unlikely(!peer))
1595 		goto out;
1596 
1597 	peer_priv = netdev_priv(peer);
1598 	priv->requested_headroom = new_hr;
1599 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1600 	dev->needed_headroom = new_hr;
1601 	peer->needed_headroom = new_hr;
1602 
1603 out:
1604 	rcu_read_unlock();
1605 }
1606 
1607 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1608 			struct netlink_ext_ack *extack)
1609 {
1610 	struct veth_priv *priv = netdev_priv(dev);
1611 	struct bpf_prog *old_prog;
1612 	struct net_device *peer;
1613 	unsigned int max_mtu;
1614 	int err;
1615 
1616 	old_prog = priv->_xdp_prog;
1617 	priv->_xdp_prog = prog;
1618 	peer = rtnl_dereference(priv->peer);
1619 
1620 	if (prog) {
1621 		if (!peer) {
1622 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1623 			err = -ENOTCONN;
1624 			goto err;
1625 		}
1626 
1627 		max_mtu = SKB_WITH_OVERHEAD(PAGE_SIZE - VETH_XDP_HEADROOM) -
1628 			  peer->hard_header_len;
1629 		/* Allow increasing the max_mtu if the program supports
1630 		 * XDP fragments.
1631 		 */
1632 		if (prog->aux->xdp_has_frags)
1633 			max_mtu += PAGE_SIZE * MAX_SKB_FRAGS;
1634 
1635 		if (peer->mtu > max_mtu) {
1636 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1637 			err = -ERANGE;
1638 			goto err;
1639 		}
1640 
1641 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1642 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1643 			err = -ENOSPC;
1644 			goto err;
1645 		}
1646 
1647 		if (dev->flags & IFF_UP) {
1648 			err = veth_enable_xdp(dev);
1649 			if (err) {
1650 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1651 				goto err;
1652 			}
1653 		}
1654 
1655 		if (!old_prog) {
1656 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1657 			peer->max_mtu = max_mtu;
1658 		}
1659 
1660 		xdp_features_set_redirect_target(peer, true);
1661 	}
1662 
1663 	if (old_prog) {
1664 		if (!prog) {
1665 			if (peer && !veth_gro_requested(dev))
1666 				xdp_features_clear_redirect_target(peer);
1667 
1668 			if (dev->flags & IFF_UP)
1669 				veth_disable_xdp(dev);
1670 
1671 			if (peer) {
1672 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1673 				peer->max_mtu = ETH_MAX_MTU;
1674 			}
1675 		}
1676 		bpf_prog_put(old_prog);
1677 	}
1678 
1679 	if ((!!old_prog ^ !!prog) && peer)
1680 		netdev_update_features(peer);
1681 
1682 	return 0;
1683 err:
1684 	priv->_xdp_prog = old_prog;
1685 
1686 	return err;
1687 }
1688 
1689 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1690 {
1691 	switch (xdp->command) {
1692 	case XDP_SETUP_PROG:
1693 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1694 	default:
1695 		return -EINVAL;
1696 	}
1697 }
1698 
1699 static int veth_xdp_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp)
1700 {
1701 	struct veth_xdp_buff *_ctx = (void *)ctx;
1702 
1703 	if (!_ctx->skb)
1704 		return -ENODATA;
1705 
1706 	*timestamp = skb_hwtstamps(_ctx->skb)->hwtstamp;
1707 	return 0;
1708 }
1709 
1710 static int veth_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash,
1711 			    enum xdp_rss_hash_type *rss_type)
1712 {
1713 	struct veth_xdp_buff *_ctx = (void *)ctx;
1714 	struct sk_buff *skb = _ctx->skb;
1715 
1716 	if (!skb)
1717 		return -ENODATA;
1718 
1719 	*hash = skb_get_hash(skb);
1720 	*rss_type = skb->l4_hash ? XDP_RSS_TYPE_L4_ANY : XDP_RSS_TYPE_NONE;
1721 
1722 	return 0;
1723 }
1724 
1725 static const struct net_device_ops veth_netdev_ops = {
1726 	.ndo_init            = veth_dev_init,
1727 	.ndo_open            = veth_open,
1728 	.ndo_stop            = veth_close,
1729 	.ndo_start_xmit      = veth_xmit,
1730 	.ndo_get_stats64     = veth_get_stats64,
1731 	.ndo_set_rx_mode     = veth_set_multicast_list,
1732 	.ndo_set_mac_address = eth_mac_addr,
1733 #ifdef CONFIG_NET_POLL_CONTROLLER
1734 	.ndo_poll_controller	= veth_poll_controller,
1735 #endif
1736 	.ndo_get_iflink		= veth_get_iflink,
1737 	.ndo_fix_features	= veth_fix_features,
1738 	.ndo_set_features	= veth_set_features,
1739 	.ndo_features_check	= passthru_features_check,
1740 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1741 	.ndo_bpf		= veth_xdp,
1742 	.ndo_xdp_xmit		= veth_ndo_xdp_xmit,
1743 	.ndo_get_peer_dev	= veth_peer_dev,
1744 };
1745 
1746 static const struct xdp_metadata_ops veth_xdp_metadata_ops = {
1747 	.xmo_rx_timestamp		= veth_xdp_rx_timestamp,
1748 	.xmo_rx_hash			= veth_xdp_rx_hash,
1749 };
1750 
1751 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1752 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1753 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1754 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1755 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1756 
1757 static void veth_setup(struct net_device *dev)
1758 {
1759 	ether_setup(dev);
1760 
1761 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1762 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1763 	dev->priv_flags |= IFF_NO_QUEUE;
1764 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1765 
1766 	dev->netdev_ops = &veth_netdev_ops;
1767 	dev->xdp_metadata_ops = &veth_xdp_metadata_ops;
1768 	dev->ethtool_ops = &veth_ethtool_ops;
1769 	dev->features |= NETIF_F_LLTX;
1770 	dev->features |= VETH_FEATURES;
1771 	dev->vlan_features = dev->features &
1772 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1773 			       NETIF_F_HW_VLAN_STAG_TX |
1774 			       NETIF_F_HW_VLAN_CTAG_RX |
1775 			       NETIF_F_HW_VLAN_STAG_RX);
1776 	dev->needs_free_netdev = true;
1777 	dev->priv_destructor = veth_dev_free;
1778 	dev->max_mtu = ETH_MAX_MTU;
1779 
1780 	dev->hw_features = VETH_FEATURES;
1781 	dev->hw_enc_features = VETH_FEATURES;
1782 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1783 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
1784 }
1785 
1786 /*
1787  * netlink interface
1788  */
1789 
1790 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1791 			 struct netlink_ext_ack *extack)
1792 {
1793 	if (tb[IFLA_ADDRESS]) {
1794 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1795 			return -EINVAL;
1796 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1797 			return -EADDRNOTAVAIL;
1798 	}
1799 	if (tb[IFLA_MTU]) {
1800 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1801 			return -EINVAL;
1802 	}
1803 	return 0;
1804 }
1805 
1806 static struct rtnl_link_ops veth_link_ops;
1807 
1808 static void veth_disable_gro(struct net_device *dev)
1809 {
1810 	dev->features &= ~NETIF_F_GRO;
1811 	dev->wanted_features &= ~NETIF_F_GRO;
1812 	netdev_update_features(dev);
1813 }
1814 
1815 static int veth_init_queues(struct net_device *dev, struct nlattr *tb[])
1816 {
1817 	int err;
1818 
1819 	if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) {
1820 		err = netif_set_real_num_tx_queues(dev, 1);
1821 		if (err)
1822 			return err;
1823 	}
1824 	if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) {
1825 		err = netif_set_real_num_rx_queues(dev, 1);
1826 		if (err)
1827 			return err;
1828 	}
1829 	return 0;
1830 }
1831 
1832 static int veth_newlink(struct net *src_net, struct net_device *dev,
1833 			struct nlattr *tb[], struct nlattr *data[],
1834 			struct netlink_ext_ack *extack)
1835 {
1836 	int err;
1837 	struct net_device *peer;
1838 	struct veth_priv *priv;
1839 	char ifname[IFNAMSIZ];
1840 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1841 	unsigned char name_assign_type;
1842 	struct ifinfomsg *ifmp;
1843 	struct net *net;
1844 
1845 	/*
1846 	 * create and register peer first
1847 	 */
1848 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1849 		struct nlattr *nla_peer;
1850 
1851 		nla_peer = data[VETH_INFO_PEER];
1852 		ifmp = nla_data(nla_peer);
1853 		err = rtnl_nla_parse_ifla(peer_tb,
1854 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1855 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1856 					  NULL);
1857 		if (err < 0)
1858 			return err;
1859 
1860 		err = veth_validate(peer_tb, NULL, extack);
1861 		if (err < 0)
1862 			return err;
1863 
1864 		tbp = peer_tb;
1865 	} else {
1866 		ifmp = NULL;
1867 		tbp = tb;
1868 	}
1869 
1870 	if (ifmp && tbp[IFLA_IFNAME]) {
1871 		nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1872 		name_assign_type = NET_NAME_USER;
1873 	} else {
1874 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1875 		name_assign_type = NET_NAME_ENUM;
1876 	}
1877 
1878 	net = rtnl_link_get_net(src_net, tbp);
1879 	if (IS_ERR(net))
1880 		return PTR_ERR(net);
1881 
1882 	peer = rtnl_create_link(net, ifname, name_assign_type,
1883 				&veth_link_ops, tbp, extack);
1884 	if (IS_ERR(peer)) {
1885 		put_net(net);
1886 		return PTR_ERR(peer);
1887 	}
1888 
1889 	if (!ifmp || !tbp[IFLA_ADDRESS])
1890 		eth_hw_addr_random(peer);
1891 
1892 	if (ifmp && (dev->ifindex != 0))
1893 		peer->ifindex = ifmp->ifi_index;
1894 
1895 	netif_inherit_tso_max(peer, dev);
1896 
1897 	err = register_netdevice(peer);
1898 	put_net(net);
1899 	net = NULL;
1900 	if (err < 0)
1901 		goto err_register_peer;
1902 
1903 	/* keep GRO disabled by default to be consistent with the established
1904 	 * veth behavior
1905 	 */
1906 	veth_disable_gro(peer);
1907 	netif_carrier_off(peer);
1908 
1909 	err = rtnl_configure_link(peer, ifmp, 0, NULL);
1910 	if (err < 0)
1911 		goto err_configure_peer;
1912 
1913 	/*
1914 	 * register dev last
1915 	 *
1916 	 * note, that since we've registered new device the dev's name
1917 	 * should be re-allocated
1918 	 */
1919 
1920 	if (tb[IFLA_ADDRESS] == NULL)
1921 		eth_hw_addr_random(dev);
1922 
1923 	if (tb[IFLA_IFNAME])
1924 		nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1925 	else
1926 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1927 
1928 	err = register_netdevice(dev);
1929 	if (err < 0)
1930 		goto err_register_dev;
1931 
1932 	netif_carrier_off(dev);
1933 
1934 	/*
1935 	 * tie the deviced together
1936 	 */
1937 
1938 	priv = netdev_priv(dev);
1939 	rcu_assign_pointer(priv->peer, peer);
1940 	err = veth_init_queues(dev, tb);
1941 	if (err)
1942 		goto err_queues;
1943 
1944 	priv = netdev_priv(peer);
1945 	rcu_assign_pointer(priv->peer, dev);
1946 	err = veth_init_queues(peer, tb);
1947 	if (err)
1948 		goto err_queues;
1949 
1950 	veth_disable_gro(dev);
1951 	/* update XDP supported features */
1952 	veth_set_xdp_features(dev);
1953 	veth_set_xdp_features(peer);
1954 
1955 	return 0;
1956 
1957 err_queues:
1958 	unregister_netdevice(dev);
1959 err_register_dev:
1960 	/* nothing to do */
1961 err_configure_peer:
1962 	unregister_netdevice(peer);
1963 	return err;
1964 
1965 err_register_peer:
1966 	free_netdev(peer);
1967 	return err;
1968 }
1969 
1970 static void veth_dellink(struct net_device *dev, struct list_head *head)
1971 {
1972 	struct veth_priv *priv;
1973 	struct net_device *peer;
1974 
1975 	priv = netdev_priv(dev);
1976 	peer = rtnl_dereference(priv->peer);
1977 
1978 	/* Note : dellink() is called from default_device_exit_batch(),
1979 	 * before a rcu_synchronize() point. The devices are guaranteed
1980 	 * not being freed before one RCU grace period.
1981 	 */
1982 	RCU_INIT_POINTER(priv->peer, NULL);
1983 	unregister_netdevice_queue(dev, head);
1984 
1985 	if (peer) {
1986 		priv = netdev_priv(peer);
1987 		RCU_INIT_POINTER(priv->peer, NULL);
1988 		unregister_netdevice_queue(peer, head);
1989 	}
1990 }
1991 
1992 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1993 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1994 };
1995 
1996 static struct net *veth_get_link_net(const struct net_device *dev)
1997 {
1998 	struct veth_priv *priv = netdev_priv(dev);
1999 	struct net_device *peer = rtnl_dereference(priv->peer);
2000 
2001 	return peer ? dev_net(peer) : dev_net(dev);
2002 }
2003 
2004 static unsigned int veth_get_num_queues(void)
2005 {
2006 	/* enforce the same queue limit as rtnl_create_link */
2007 	int queues = num_possible_cpus();
2008 
2009 	if (queues > 4096)
2010 		queues = 4096;
2011 	return queues;
2012 }
2013 
2014 static struct rtnl_link_ops veth_link_ops = {
2015 	.kind		= DRV_NAME,
2016 	.priv_size	= sizeof(struct veth_priv),
2017 	.setup		= veth_setup,
2018 	.validate	= veth_validate,
2019 	.newlink	= veth_newlink,
2020 	.dellink	= veth_dellink,
2021 	.policy		= veth_policy,
2022 	.maxtype	= VETH_INFO_MAX,
2023 	.get_link_net	= veth_get_link_net,
2024 	.get_num_tx_queues	= veth_get_num_queues,
2025 	.get_num_rx_queues	= veth_get_num_queues,
2026 };
2027 
2028 /*
2029  * init/fini
2030  */
2031 
2032 static __init int veth_init(void)
2033 {
2034 	return rtnl_link_register(&veth_link_ops);
2035 }
2036 
2037 static __exit void veth_exit(void)
2038 {
2039 	rtnl_link_unregister(&veth_link_ops);
2040 }
2041 
2042 module_init(veth_init);
2043 module_exit(veth_exit);
2044 
2045 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
2046 MODULE_LICENSE("GPL v2");
2047 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2048