1 /* CoreChip-sz SR9800 one chip USB 2.0 Ethernet Devices 2 * 3 * Author : Liu Junliang <liujunliang_ljl@163.com> 4 * 5 * Based on asix_common.c, asix_devices.c 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied.* 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kmod.h> 14 #include <linux/init.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/workqueue.h> 19 #include <linux/mii.h> 20 #include <linux/usb.h> 21 #include <linux/crc32.h> 22 #include <linux/usb/usbnet.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 26 #include "sr9800.h" 27 28 static int sr_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, 29 u16 size, void *data) 30 { 31 int err; 32 33 err = usbnet_read_cmd(dev, cmd, SR_REQ_RD_REG, value, index, 34 data, size); 35 if ((err != size) && (err >= 0)) 36 err = -EINVAL; 37 38 return err; 39 } 40 41 static int sr_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, 42 u16 size, void *data) 43 { 44 int err; 45 46 err = usbnet_write_cmd(dev, cmd, SR_REQ_WR_REG, value, index, 47 data, size); 48 if ((err != size) && (err >= 0)) 49 err = -EINVAL; 50 51 return err; 52 } 53 54 static void 55 sr_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index, 56 u16 size, void *data) 57 { 58 usbnet_write_cmd_async(dev, cmd, SR_REQ_WR_REG, value, index, data, 59 size); 60 } 61 62 static int sr_rx_fixup(struct usbnet *dev, struct sk_buff *skb) 63 { 64 int offset = 0; 65 66 /* This check is no longer done by usbnet */ 67 if (skb->len < dev->net->hard_header_len) 68 return 0; 69 70 while (offset + sizeof(u32) < skb->len) { 71 struct sk_buff *sr_skb; 72 u16 size; 73 u32 header = get_unaligned_le32(skb->data + offset); 74 75 offset += sizeof(u32); 76 /* get the packet length */ 77 size = (u16) (header & 0x7ff); 78 if (size != ((~header >> 16) & 0x07ff)) { 79 netdev_err(dev->net, "%s : Bad Header Length\n", 80 __func__); 81 return 0; 82 } 83 84 if ((size > dev->net->mtu + ETH_HLEN + VLAN_HLEN) || 85 (size + offset > skb->len)) { 86 netdev_err(dev->net, "%s : Bad RX Length %d\n", 87 __func__, size); 88 return 0; 89 } 90 sr_skb = netdev_alloc_skb_ip_align(dev->net, size); 91 if (!sr_skb) 92 return 0; 93 94 skb_put(sr_skb, size); 95 memcpy(sr_skb->data, skb->data + offset, size); 96 usbnet_skb_return(dev, sr_skb); 97 98 offset += (size + 1) & 0xfffe; 99 } 100 101 if (skb->len != offset) { 102 netdev_err(dev->net, "%s : Bad SKB Length %d\n", __func__, 103 skb->len); 104 return 0; 105 } 106 107 return 1; 108 } 109 110 static struct sk_buff *sr_tx_fixup(struct usbnet *dev, struct sk_buff *skb, 111 gfp_t flags) 112 { 113 int headroom = skb_headroom(skb); 114 int tailroom = skb_tailroom(skb); 115 u32 padbytes = 0xffff0000; 116 u32 packet_len; 117 int padlen; 118 119 padlen = ((skb->len + 4) % (dev->maxpacket - 1)) ? 0 : 4; 120 121 if ((!skb_cloned(skb)) && ((headroom + tailroom) >= (4 + padlen))) { 122 if ((headroom < 4) || (tailroom < padlen)) { 123 skb->data = memmove(skb->head + 4, skb->data, 124 skb->len); 125 skb_set_tail_pointer(skb, skb->len); 126 } 127 } else { 128 struct sk_buff *skb2; 129 skb2 = skb_copy_expand(skb, 4, padlen, flags); 130 dev_kfree_skb_any(skb); 131 skb = skb2; 132 if (!skb) 133 return NULL; 134 } 135 136 skb_push(skb, 4); 137 packet_len = (((skb->len - 4) ^ 0x0000ffff) << 16) + (skb->len - 4); 138 cpu_to_le32s(&packet_len); 139 skb_copy_to_linear_data(skb, &packet_len, sizeof(packet_len)); 140 141 if (padlen) { 142 cpu_to_le32s(&padbytes); 143 memcpy(skb_tail_pointer(skb), &padbytes, sizeof(padbytes)); 144 skb_put(skb, sizeof(padbytes)); 145 } 146 147 usbnet_set_skb_tx_stats(skb, 1, 0); 148 return skb; 149 } 150 151 static void sr_status(struct usbnet *dev, struct urb *urb) 152 { 153 struct sr9800_int_data *event; 154 int link; 155 156 if (urb->actual_length < 8) 157 return; 158 159 event = urb->transfer_buffer; 160 link = event->link & 0x01; 161 if (netif_carrier_ok(dev->net) != link) { 162 usbnet_link_change(dev, link, 1); 163 netdev_dbg(dev->net, "Link Status is: %d\n", link); 164 } 165 166 return; 167 } 168 169 static inline int sr_set_sw_mii(struct usbnet *dev) 170 { 171 int ret; 172 173 ret = sr_write_cmd(dev, SR_CMD_SET_SW_MII, 0x0000, 0, 0, NULL); 174 if (ret < 0) 175 netdev_err(dev->net, "Failed to enable software MII access\n"); 176 return ret; 177 } 178 179 static inline int sr_set_hw_mii(struct usbnet *dev) 180 { 181 int ret; 182 183 ret = sr_write_cmd(dev, SR_CMD_SET_HW_MII, 0x0000, 0, 0, NULL); 184 if (ret < 0) 185 netdev_err(dev->net, "Failed to enable hardware MII access\n"); 186 return ret; 187 } 188 189 static inline int sr_get_phy_addr(struct usbnet *dev) 190 { 191 u8 buf[2]; 192 int ret; 193 194 ret = sr_read_cmd(dev, SR_CMD_READ_PHY_ID, 0, 0, 2, buf); 195 if (ret < 0) { 196 netdev_err(dev->net, "%s : Error reading PHYID register:%02x\n", 197 __func__, ret); 198 goto out; 199 } 200 netdev_dbg(dev->net, "%s : returning 0x%04x\n", __func__, 201 *((__le16 *)buf)); 202 203 ret = buf[1]; 204 205 out: 206 return ret; 207 } 208 209 static int sr_sw_reset(struct usbnet *dev, u8 flags) 210 { 211 int ret; 212 213 ret = sr_write_cmd(dev, SR_CMD_SW_RESET, flags, 0, 0, NULL); 214 if (ret < 0) 215 netdev_err(dev->net, "Failed to send software reset:%02x\n", 216 ret); 217 218 return ret; 219 } 220 221 static u16 sr_read_rx_ctl(struct usbnet *dev) 222 { 223 __le16 v; 224 int ret; 225 226 ret = sr_read_cmd(dev, SR_CMD_READ_RX_CTL, 0, 0, 2, &v); 227 if (ret < 0) { 228 netdev_err(dev->net, "Error reading RX_CTL register:%02x\n", 229 ret); 230 goto out; 231 } 232 233 ret = le16_to_cpu(v); 234 out: 235 return ret; 236 } 237 238 static int sr_write_rx_ctl(struct usbnet *dev, u16 mode) 239 { 240 int ret; 241 242 netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode); 243 ret = sr_write_cmd(dev, SR_CMD_WRITE_RX_CTL, mode, 0, 0, NULL); 244 if (ret < 0) 245 netdev_err(dev->net, 246 "Failed to write RX_CTL mode to 0x%04x:%02x\n", 247 mode, ret); 248 249 return ret; 250 } 251 252 static u16 sr_read_medium_status(struct usbnet *dev) 253 { 254 __le16 v; 255 int ret; 256 257 ret = sr_read_cmd(dev, SR_CMD_READ_MEDIUM_STATUS, 0, 0, 2, &v); 258 if (ret < 0) { 259 netdev_err(dev->net, 260 "Error reading Medium Status register:%02x\n", ret); 261 return ret; /* TODO: callers not checking for error ret */ 262 } 263 264 return le16_to_cpu(v); 265 } 266 267 static int sr_write_medium_mode(struct usbnet *dev, u16 mode) 268 { 269 int ret; 270 271 netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode); 272 ret = sr_write_cmd(dev, SR_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL); 273 if (ret < 0) 274 netdev_err(dev->net, 275 "Failed to write Medium Mode mode to 0x%04x:%02x\n", 276 mode, ret); 277 return ret; 278 } 279 280 static int sr_write_gpio(struct usbnet *dev, u16 value, int sleep) 281 { 282 int ret; 283 284 netdev_dbg(dev->net, "%s : value = 0x%04x\n", __func__, value); 285 ret = sr_write_cmd(dev, SR_CMD_WRITE_GPIOS, value, 0, 0, NULL); 286 if (ret < 0) 287 netdev_err(dev->net, "Failed to write GPIO value 0x%04x:%02x\n", 288 value, ret); 289 if (sleep) 290 msleep(sleep); 291 292 return ret; 293 } 294 295 /* SR9800 have a 16-bit RX_CTL value */ 296 static void sr_set_multicast(struct net_device *net) 297 { 298 struct usbnet *dev = netdev_priv(net); 299 struct sr_data *data = (struct sr_data *)&dev->data; 300 u16 rx_ctl = SR_DEFAULT_RX_CTL; 301 302 if (net->flags & IFF_PROMISC) { 303 rx_ctl |= SR_RX_CTL_PRO; 304 } else if (net->flags & IFF_ALLMULTI || 305 netdev_mc_count(net) > SR_MAX_MCAST) { 306 rx_ctl |= SR_RX_CTL_AMALL; 307 } else if (netdev_mc_empty(net)) { 308 /* just broadcast and directed */ 309 } else { 310 /* We use the 20 byte dev->data 311 * for our 8 byte filter buffer 312 * to avoid allocating memory that 313 * is tricky to free later 314 */ 315 struct netdev_hw_addr *ha; 316 u32 crc_bits; 317 318 memset(data->multi_filter, 0, SR_MCAST_FILTER_SIZE); 319 320 /* Build the multicast hash filter. */ 321 netdev_for_each_mc_addr(ha, net) { 322 crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26; 323 data->multi_filter[crc_bits >> 3] |= 324 1 << (crc_bits & 7); 325 } 326 327 sr_write_cmd_async(dev, SR_CMD_WRITE_MULTI_FILTER, 0, 0, 328 SR_MCAST_FILTER_SIZE, data->multi_filter); 329 330 rx_ctl |= SR_RX_CTL_AM; 331 } 332 333 sr_write_cmd_async(dev, SR_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL); 334 } 335 336 static int sr_mdio_read(struct net_device *net, int phy_id, int loc) 337 { 338 struct usbnet *dev = netdev_priv(net); 339 __le16 res; 340 341 mutex_lock(&dev->phy_mutex); 342 sr_set_sw_mii(dev); 343 sr_read_cmd(dev, SR_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, &res); 344 sr_set_hw_mii(dev); 345 mutex_unlock(&dev->phy_mutex); 346 347 netdev_dbg(dev->net, 348 "%s : phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", __func__, 349 phy_id, loc, le16_to_cpu(res)); 350 351 return le16_to_cpu(res); 352 } 353 354 static void 355 sr_mdio_write(struct net_device *net, int phy_id, int loc, int val) 356 { 357 struct usbnet *dev = netdev_priv(net); 358 __le16 res = cpu_to_le16(val); 359 360 netdev_dbg(dev->net, 361 "%s : phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", __func__, 362 phy_id, loc, val); 363 mutex_lock(&dev->phy_mutex); 364 sr_set_sw_mii(dev); 365 sr_write_cmd(dev, SR_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res); 366 sr_set_hw_mii(dev); 367 mutex_unlock(&dev->phy_mutex); 368 } 369 370 /* Get the PHY Identifier from the PHYSID1 & PHYSID2 MII registers */ 371 static u32 sr_get_phyid(struct usbnet *dev) 372 { 373 int phy_reg; 374 u32 phy_id; 375 int i; 376 377 /* Poll for the rare case the FW or phy isn't ready yet. */ 378 for (i = 0; i < 100; i++) { 379 phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID1); 380 if (phy_reg != 0 && phy_reg != 0xFFFF) 381 break; 382 mdelay(1); 383 } 384 385 if (phy_reg <= 0 || phy_reg == 0xFFFF) 386 return 0; 387 388 phy_id = (phy_reg & 0xffff) << 16; 389 390 phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID2); 391 if (phy_reg < 0) 392 return 0; 393 394 phy_id |= (phy_reg & 0xffff); 395 396 return phy_id; 397 } 398 399 static void 400 sr_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) 401 { 402 struct usbnet *dev = netdev_priv(net); 403 u8 opt; 404 405 if (sr_read_cmd(dev, SR_CMD_READ_MONITOR_MODE, 0, 0, 1, &opt) < 0) { 406 wolinfo->supported = 0; 407 wolinfo->wolopts = 0; 408 return; 409 } 410 wolinfo->supported = WAKE_PHY | WAKE_MAGIC; 411 wolinfo->wolopts = 0; 412 if (opt & SR_MONITOR_LINK) 413 wolinfo->wolopts |= WAKE_PHY; 414 if (opt & SR_MONITOR_MAGIC) 415 wolinfo->wolopts |= WAKE_MAGIC; 416 } 417 418 static int 419 sr_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) 420 { 421 struct usbnet *dev = netdev_priv(net); 422 u8 opt = 0; 423 424 if (wolinfo->wolopts & WAKE_PHY) 425 opt |= SR_MONITOR_LINK; 426 if (wolinfo->wolopts & WAKE_MAGIC) 427 opt |= SR_MONITOR_MAGIC; 428 429 if (sr_write_cmd(dev, SR_CMD_WRITE_MONITOR_MODE, 430 opt, 0, 0, NULL) < 0) 431 return -EINVAL; 432 433 return 0; 434 } 435 436 static int sr_get_eeprom_len(struct net_device *net) 437 { 438 struct usbnet *dev = netdev_priv(net); 439 struct sr_data *data = (struct sr_data *)&dev->data; 440 441 return data->eeprom_len; 442 } 443 444 static int sr_get_eeprom(struct net_device *net, 445 struct ethtool_eeprom *eeprom, u8 *data) 446 { 447 struct usbnet *dev = netdev_priv(net); 448 __le16 *ebuf = (__le16 *)data; 449 int ret; 450 int i; 451 452 /* Crude hack to ensure that we don't overwrite memory 453 * if an odd length is supplied 454 */ 455 if (eeprom->len % 2) 456 return -EINVAL; 457 458 eeprom->magic = SR_EEPROM_MAGIC; 459 460 /* sr9800 returns 2 bytes from eeprom on read */ 461 for (i = 0; i < eeprom->len / 2; i++) { 462 ret = sr_read_cmd(dev, SR_CMD_READ_EEPROM, eeprom->offset + i, 463 0, 2, &ebuf[i]); 464 if (ret < 0) 465 return -EINVAL; 466 } 467 return 0; 468 } 469 470 static void sr_get_drvinfo(struct net_device *net, 471 struct ethtool_drvinfo *info) 472 { 473 struct usbnet *dev = netdev_priv(net); 474 struct sr_data *data = (struct sr_data *)&dev->data; 475 476 /* Inherit standard device info */ 477 usbnet_get_drvinfo(net, info); 478 strncpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 479 strncpy(info->version, DRIVER_VERSION, sizeof(info->version)); 480 info->eedump_len = data->eeprom_len; 481 } 482 483 static u32 sr_get_link(struct net_device *net) 484 { 485 struct usbnet *dev = netdev_priv(net); 486 487 return mii_link_ok(&dev->mii); 488 } 489 490 static int sr_ioctl(struct net_device *net, struct ifreq *rq, int cmd) 491 { 492 struct usbnet *dev = netdev_priv(net); 493 494 return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); 495 } 496 497 static int sr_set_mac_address(struct net_device *net, void *p) 498 { 499 struct usbnet *dev = netdev_priv(net); 500 struct sr_data *data = (struct sr_data *)&dev->data; 501 struct sockaddr *addr = p; 502 503 if (netif_running(net)) 504 return -EBUSY; 505 if (!is_valid_ether_addr(addr->sa_data)) 506 return -EADDRNOTAVAIL; 507 508 memcpy(net->dev_addr, addr->sa_data, ETH_ALEN); 509 510 /* We use the 20 byte dev->data 511 * for our 6 byte mac buffer 512 * to avoid allocating memory that 513 * is tricky to free later 514 */ 515 memcpy(data->mac_addr, addr->sa_data, ETH_ALEN); 516 sr_write_cmd_async(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, 517 data->mac_addr); 518 519 return 0; 520 } 521 522 static const struct ethtool_ops sr9800_ethtool_ops = { 523 .get_drvinfo = sr_get_drvinfo, 524 .get_link = sr_get_link, 525 .get_msglevel = usbnet_get_msglevel, 526 .set_msglevel = usbnet_set_msglevel, 527 .get_wol = sr_get_wol, 528 .set_wol = sr_set_wol, 529 .get_eeprom_len = sr_get_eeprom_len, 530 .get_eeprom = sr_get_eeprom, 531 .get_settings = usbnet_get_settings, 532 .set_settings = usbnet_set_settings, 533 .nway_reset = usbnet_nway_reset, 534 }; 535 536 static int sr9800_link_reset(struct usbnet *dev) 537 { 538 struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET }; 539 u16 mode; 540 541 mii_check_media(&dev->mii, 1, 1); 542 mii_ethtool_gset(&dev->mii, &ecmd); 543 mode = SR9800_MEDIUM_DEFAULT; 544 545 if (ethtool_cmd_speed(&ecmd) != SPEED_100) 546 mode &= ~SR_MEDIUM_PS; 547 548 if (ecmd.duplex != DUPLEX_FULL) 549 mode &= ~SR_MEDIUM_FD; 550 551 netdev_dbg(dev->net, "%s : speed: %u duplex: %d mode: 0x%04x\n", 552 __func__, ethtool_cmd_speed(&ecmd), ecmd.duplex, mode); 553 554 sr_write_medium_mode(dev, mode); 555 556 return 0; 557 } 558 559 560 static int sr9800_set_default_mode(struct usbnet *dev) 561 { 562 u16 rx_ctl; 563 int ret; 564 565 sr_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET); 566 sr_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE, 567 ADVERTISE_ALL | ADVERTISE_CSMA); 568 mii_nway_restart(&dev->mii); 569 570 ret = sr_write_medium_mode(dev, SR9800_MEDIUM_DEFAULT); 571 if (ret < 0) 572 goto out; 573 574 ret = sr_write_cmd(dev, SR_CMD_WRITE_IPG012, 575 SR9800_IPG0_DEFAULT | SR9800_IPG1_DEFAULT, 576 SR9800_IPG2_DEFAULT, 0, NULL); 577 if (ret < 0) { 578 netdev_dbg(dev->net, "Write IPG,IPG1,IPG2 failed: %d\n", ret); 579 goto out; 580 } 581 582 /* Set RX_CTL to default values with 2k buffer, and enable cactus */ 583 ret = sr_write_rx_ctl(dev, SR_DEFAULT_RX_CTL); 584 if (ret < 0) 585 goto out; 586 587 rx_ctl = sr_read_rx_ctl(dev); 588 netdev_dbg(dev->net, "RX_CTL is 0x%04x after all initializations\n", 589 rx_ctl); 590 591 rx_ctl = sr_read_medium_status(dev); 592 netdev_dbg(dev->net, "Medium Status:0x%04x after all initializations\n", 593 rx_ctl); 594 595 return 0; 596 out: 597 return ret; 598 } 599 600 static int sr9800_reset(struct usbnet *dev) 601 { 602 struct sr_data *data = (struct sr_data *)&dev->data; 603 int ret, embd_phy; 604 u16 rx_ctl; 605 606 ret = sr_write_gpio(dev, 607 SR_GPIO_RSE | SR_GPIO_GPO_2 | SR_GPIO_GPO2EN, 5); 608 if (ret < 0) 609 goto out; 610 611 embd_phy = ((sr_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0); 612 613 ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL); 614 if (ret < 0) { 615 netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret); 616 goto out; 617 } 618 619 ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_PRL); 620 if (ret < 0) 621 goto out; 622 623 msleep(150); 624 625 ret = sr_sw_reset(dev, SR_SWRESET_CLEAR); 626 if (ret < 0) 627 goto out; 628 629 msleep(150); 630 631 if (embd_phy) { 632 ret = sr_sw_reset(dev, SR_SWRESET_IPRL); 633 if (ret < 0) 634 goto out; 635 } else { 636 ret = sr_sw_reset(dev, SR_SWRESET_PRTE); 637 if (ret < 0) 638 goto out; 639 } 640 641 msleep(150); 642 rx_ctl = sr_read_rx_ctl(dev); 643 netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl); 644 ret = sr_write_rx_ctl(dev, 0x0000); 645 if (ret < 0) 646 goto out; 647 648 rx_ctl = sr_read_rx_ctl(dev); 649 netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl); 650 651 ret = sr_sw_reset(dev, SR_SWRESET_PRL); 652 if (ret < 0) 653 goto out; 654 655 msleep(150); 656 657 ret = sr_sw_reset(dev, SR_SWRESET_IPRL | SR_SWRESET_PRL); 658 if (ret < 0) 659 goto out; 660 661 msleep(150); 662 663 ret = sr9800_set_default_mode(dev); 664 if (ret < 0) 665 goto out; 666 667 /* Rewrite MAC address */ 668 memcpy(data->mac_addr, dev->net->dev_addr, ETH_ALEN); 669 ret = sr_write_cmd(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, 670 data->mac_addr); 671 if (ret < 0) 672 goto out; 673 674 return 0; 675 676 out: 677 return ret; 678 } 679 680 static const struct net_device_ops sr9800_netdev_ops = { 681 .ndo_open = usbnet_open, 682 .ndo_stop = usbnet_stop, 683 .ndo_start_xmit = usbnet_start_xmit, 684 .ndo_tx_timeout = usbnet_tx_timeout, 685 .ndo_change_mtu = usbnet_change_mtu, 686 .ndo_set_mac_address = sr_set_mac_address, 687 .ndo_validate_addr = eth_validate_addr, 688 .ndo_do_ioctl = sr_ioctl, 689 .ndo_set_rx_mode = sr_set_multicast, 690 }; 691 692 static int sr9800_phy_powerup(struct usbnet *dev) 693 { 694 int ret; 695 696 /* set the embedded Ethernet PHY in power-down state */ 697 ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_IPRL); 698 if (ret < 0) { 699 netdev_err(dev->net, "Failed to power down PHY : %d\n", ret); 700 return ret; 701 } 702 msleep(20); 703 704 /* set the embedded Ethernet PHY in power-up state */ 705 ret = sr_sw_reset(dev, SR_SWRESET_IPRL); 706 if (ret < 0) { 707 netdev_err(dev->net, "Failed to reset PHY: %d\n", ret); 708 return ret; 709 } 710 msleep(600); 711 712 /* set the embedded Ethernet PHY in reset state */ 713 ret = sr_sw_reset(dev, SR_SWRESET_CLEAR); 714 if (ret < 0) { 715 netdev_err(dev->net, "Failed to power up PHY: %d\n", ret); 716 return ret; 717 } 718 msleep(20); 719 720 /* set the embedded Ethernet PHY in power-up state */ 721 ret = sr_sw_reset(dev, SR_SWRESET_IPRL); 722 if (ret < 0) { 723 netdev_err(dev->net, "Failed to reset PHY: %d\n", ret); 724 return ret; 725 } 726 727 return 0; 728 } 729 730 static int sr9800_bind(struct usbnet *dev, struct usb_interface *intf) 731 { 732 struct sr_data *data = (struct sr_data *)&dev->data; 733 u16 led01_mux, led23_mux; 734 int ret, embd_phy; 735 u32 phyid; 736 u16 rx_ctl; 737 738 data->eeprom_len = SR9800_EEPROM_LEN; 739 740 usbnet_get_endpoints(dev, intf); 741 742 /* LED Setting Rule : 743 * AABB:CCDD 744 * AA : MFA0(LED0) 745 * BB : MFA1(LED1) 746 * CC : MFA2(LED2), Reserved for SR9800 747 * DD : MFA3(LED3), Reserved for SR9800 748 */ 749 led01_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_LINK; 750 led23_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_TX_ACTIVE; 751 ret = sr_write_cmd(dev, SR_CMD_LED_MUX, led01_mux, led23_mux, 0, NULL); 752 if (ret < 0) { 753 netdev_err(dev->net, "set LINK LED failed : %d\n", ret); 754 goto out; 755 } 756 757 /* Get the MAC address */ 758 ret = sr_read_cmd(dev, SR_CMD_READ_NODE_ID, 0, 0, ETH_ALEN, 759 dev->net->dev_addr); 760 if (ret < 0) { 761 netdev_dbg(dev->net, "Failed to read MAC address: %d\n", ret); 762 return ret; 763 } 764 netdev_dbg(dev->net, "mac addr : %pM\n", dev->net->dev_addr); 765 766 /* Initialize MII structure */ 767 dev->mii.dev = dev->net; 768 dev->mii.mdio_read = sr_mdio_read; 769 dev->mii.mdio_write = sr_mdio_write; 770 dev->mii.phy_id_mask = 0x1f; 771 dev->mii.reg_num_mask = 0x1f; 772 dev->mii.phy_id = sr_get_phy_addr(dev); 773 774 dev->net->netdev_ops = &sr9800_netdev_ops; 775 dev->net->ethtool_ops = &sr9800_ethtool_ops; 776 777 embd_phy = ((dev->mii.phy_id & 0x1f) == 0x10 ? 1 : 0); 778 /* Reset the PHY to normal operation mode */ 779 ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL); 780 if (ret < 0) { 781 netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret); 782 return ret; 783 } 784 785 /* Init PHY routine */ 786 ret = sr9800_phy_powerup(dev); 787 if (ret < 0) 788 goto out; 789 790 rx_ctl = sr_read_rx_ctl(dev); 791 netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl); 792 ret = sr_write_rx_ctl(dev, 0x0000); 793 if (ret < 0) 794 goto out; 795 796 rx_ctl = sr_read_rx_ctl(dev); 797 netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl); 798 799 /* Read PHYID register *AFTER* the PHY was reset properly */ 800 phyid = sr_get_phyid(dev); 801 netdev_dbg(dev->net, "PHYID=0x%08x\n", phyid); 802 803 /* medium mode setting */ 804 ret = sr9800_set_default_mode(dev); 805 if (ret < 0) 806 goto out; 807 808 if (dev->udev->speed == USB_SPEED_HIGH) { 809 ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE, 810 SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].byte_cnt, 811 SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].threshold, 812 0, NULL); 813 if (ret < 0) { 814 netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret); 815 goto out; 816 } 817 dev->rx_urb_size = 818 SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].size; 819 } else { 820 ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE, 821 SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].byte_cnt, 822 SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].threshold, 823 0, NULL); 824 if (ret < 0) { 825 netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret); 826 goto out; 827 } 828 dev->rx_urb_size = 829 SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].size; 830 } 831 netdev_dbg(dev->net, "%s : setting rx_urb_size with : %zu\n", __func__, 832 dev->rx_urb_size); 833 return 0; 834 835 out: 836 return ret; 837 } 838 839 static const struct driver_info sr9800_driver_info = { 840 .description = "CoreChip SR9800 USB 2.0 Ethernet", 841 .bind = sr9800_bind, 842 .status = sr_status, 843 .link_reset = sr9800_link_reset, 844 .reset = sr9800_reset, 845 .flags = DRIVER_FLAG, 846 .rx_fixup = sr_rx_fixup, 847 .tx_fixup = sr_tx_fixup, 848 }; 849 850 static const struct usb_device_id products[] = { 851 { 852 USB_DEVICE(0x0fe6, 0x9800), /* SR9800 Device */ 853 .driver_info = (unsigned long) &sr9800_driver_info, 854 }, 855 {}, /* END */ 856 }; 857 858 MODULE_DEVICE_TABLE(usb, products); 859 860 static struct usb_driver sr_driver = { 861 .name = DRIVER_NAME, 862 .id_table = products, 863 .probe = usbnet_probe, 864 .suspend = usbnet_suspend, 865 .resume = usbnet_resume, 866 .disconnect = usbnet_disconnect, 867 .supports_autosuspend = 1, 868 }; 869 870 module_usb_driver(sr_driver); 871 872 MODULE_AUTHOR("Liu Junliang <liujunliang_ljl@163.com"); 873 MODULE_VERSION(DRIVER_VERSION); 874 MODULE_DESCRIPTION("SR9800 USB 2.0 USB2NET Dev : http://www.corechip-sz.com"); 875 MODULE_LICENSE("GPL"); 876