xref: /linux/drivers/net/sungem_phy.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  * PHY drivers for the sungem ethernet driver.
3  *
4  * This file could be shared with other drivers.
5  *
6  * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
7  *
8  * TODO:
9  *  - Add support for PHYs that provide an IRQ line
10  *  - Eventually moved the entire polling state machine in
11  *    there (out of the eth driver), so that it can easily be
12  *    skipped on PHYs that implement it in hardware.
13  *  - On LXT971 & BCM5201, Apple uses some chip specific regs
14  *    to read the link status. Figure out why and if it makes
15  *    sense to do the same (magic aneg ?)
16  *  - Apple has some additional power management code for some
17  *    Broadcom PHYs that they "hide" from the OpenSource version
18  *    of darwin, still need to reverse engineer that
19  */
20 
21 
22 #include <linux/module.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/types.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/delay.h>
32 
33 #ifdef CONFIG_PPC_PMAC
34 #include <asm/prom.h>
35 #endif
36 
37 #include "sungem_phy.h"
38 
39 /* Link modes of the BCM5400 PHY */
40 static const int phy_BCM5400_link_table[8][3] = {
41 	{ 0, 0, 0 },	/* No link */
42 	{ 0, 0, 0 },	/* 10BT Half Duplex */
43 	{ 1, 0, 0 },	/* 10BT Full Duplex */
44 	{ 0, 1, 0 },	/* 100BT Half Duplex */
45 	{ 0, 1, 0 },	/* 100BT Half Duplex */
46 	{ 1, 1, 0 },	/* 100BT Full Duplex*/
47 	{ 1, 0, 1 },	/* 1000BT */
48 	{ 1, 0, 1 },	/* 1000BT */
49 };
50 
51 static inline int __phy_read(struct mii_phy* phy, int id, int reg)
52 {
53 	return phy->mdio_read(phy->dev, id, reg);
54 }
55 
56 static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
57 {
58 	phy->mdio_write(phy->dev, id, reg, val);
59 }
60 
61 static inline int phy_read(struct mii_phy* phy, int reg)
62 {
63 	return phy->mdio_read(phy->dev, phy->mii_id, reg);
64 }
65 
66 static inline void phy_write(struct mii_phy* phy, int reg, int val)
67 {
68 	phy->mdio_write(phy->dev, phy->mii_id, reg, val);
69 }
70 
71 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
72 {
73 	u16 val;
74 	int limit = 10000;
75 
76 	val = __phy_read(phy, phy_id, MII_BMCR);
77 	val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
78 	val |= BMCR_RESET;
79 	__phy_write(phy, phy_id, MII_BMCR, val);
80 
81 	udelay(100);
82 
83 	while (limit--) {
84 		val = __phy_read(phy, phy_id, MII_BMCR);
85 		if ((val & BMCR_RESET) == 0)
86 			break;
87 		udelay(10);
88 	}
89 	if ((val & BMCR_ISOLATE) && limit > 0)
90 		__phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
91 
92 	return (limit <= 0);
93 }
94 
95 static int bcm5201_init(struct mii_phy* phy)
96 {
97 	u16 data;
98 
99 	data = phy_read(phy, MII_BCM5201_MULTIPHY);
100 	data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
101 	phy_write(phy, MII_BCM5201_MULTIPHY, data);
102 
103 	phy_write(phy, MII_BCM5201_INTERRUPT, 0);
104 
105 	return 0;
106 }
107 
108 static int bcm5201_suspend(struct mii_phy* phy)
109 {
110 	phy_write(phy, MII_BCM5201_INTERRUPT, 0);
111 	phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
112 
113 	return 0;
114 }
115 
116 static int bcm5221_init(struct mii_phy* phy)
117 {
118 	u16 data;
119 
120 	data = phy_read(phy, MII_BCM5221_TEST);
121 	phy_write(phy, MII_BCM5221_TEST,
122 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
123 
124 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
125 	phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
126 		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
127 
128 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
129 	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
130 		data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
131 
132 	data = phy_read(phy, MII_BCM5221_TEST);
133 	phy_write(phy, MII_BCM5221_TEST,
134 		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
135 
136 	return 0;
137 }
138 
139 static int bcm5221_suspend(struct mii_phy* phy)
140 {
141 	u16 data;
142 
143 	data = phy_read(phy, MII_BCM5221_TEST);
144 	phy_write(phy, MII_BCM5221_TEST,
145 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
146 
147 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
148 	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
149 		  data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
150 
151 	return 0;
152 }
153 
154 static int bcm5241_init(struct mii_phy* phy)
155 {
156 	u16 data;
157 
158 	data = phy_read(phy, MII_BCM5221_TEST);
159 	phy_write(phy, MII_BCM5221_TEST,
160 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
161 
162 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
163 	phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
164 		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
165 
166 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
167 	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
168 		data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
169 
170 	data = phy_read(phy, MII_BCM5221_TEST);
171 	phy_write(phy, MII_BCM5221_TEST,
172 		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
173 
174 	return 0;
175 }
176 
177 static int bcm5241_suspend(struct mii_phy* phy)
178 {
179 	u16 data;
180 
181 	data = phy_read(phy, MII_BCM5221_TEST);
182 	phy_write(phy, MII_BCM5221_TEST,
183 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
184 
185 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
186 	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
187 		  data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
188 
189 	return 0;
190 }
191 
192 static int bcm5400_init(struct mii_phy* phy)
193 {
194 	u16 data;
195 
196 	/* Configure for gigabit full duplex */
197 	data = phy_read(phy, MII_BCM5400_AUXCONTROL);
198 	data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
199 	phy_write(phy, MII_BCM5400_AUXCONTROL, data);
200 
201 	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
202 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
203 	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
204 
205 	udelay(100);
206 
207 	/* Reset and configure cascaded 10/100 PHY */
208 	(void)reset_one_mii_phy(phy, 0x1f);
209 
210 	data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
211 	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
212 	__phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
213 
214 	data = phy_read(phy, MII_BCM5400_AUXCONTROL);
215 	data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
216 	phy_write(phy, MII_BCM5400_AUXCONTROL, data);
217 
218 	return 0;
219 }
220 
221 static int bcm5400_suspend(struct mii_phy* phy)
222 {
223 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
224 	phy_write(phy, MII_BMCR, BMCR_PDOWN);
225 #endif
226 	return 0;
227 }
228 
229 static int bcm5401_init(struct mii_phy* phy)
230 {
231 	u16 data;
232 	int rev;
233 
234 	rev = phy_read(phy, MII_PHYSID2) & 0x000f;
235 	if (rev == 0 || rev == 3) {
236 		/* Some revisions of 5401 appear to need this
237 		 * initialisation sequence to disable, according
238 		 * to OF, "tap power management"
239 		 *
240 		 * WARNING ! OF and Darwin don't agree on the
241 		 * register addresses. OF seem to interpret the
242 		 * register numbers below as decimal
243 		 *
244 		 * Note: This should (and does) match tg3_init_5401phy_dsp
245 		 *       in the tg3.c driver. -DaveM
246 		 */
247 		phy_write(phy, 0x18, 0x0c20);
248 		phy_write(phy, 0x17, 0x0012);
249 		phy_write(phy, 0x15, 0x1804);
250 		phy_write(phy, 0x17, 0x0013);
251 		phy_write(phy, 0x15, 0x1204);
252 		phy_write(phy, 0x17, 0x8006);
253 		phy_write(phy, 0x15, 0x0132);
254 		phy_write(phy, 0x17, 0x8006);
255 		phy_write(phy, 0x15, 0x0232);
256 		phy_write(phy, 0x17, 0x201f);
257 		phy_write(phy, 0x15, 0x0a20);
258 	}
259 
260 	/* Configure for gigabit full duplex */
261 	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
262 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
263 	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
264 
265 	udelay(10);
266 
267 	/* Reset and configure cascaded 10/100 PHY */
268 	(void)reset_one_mii_phy(phy, 0x1f);
269 
270 	data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
271 	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
272 	__phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
273 
274 	return 0;
275 }
276 
277 static int bcm5401_suspend(struct mii_phy* phy)
278 {
279 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
280 	phy_write(phy, MII_BMCR, BMCR_PDOWN);
281 #endif
282 	return 0;
283 }
284 
285 static int bcm5411_init(struct mii_phy* phy)
286 {
287 	u16 data;
288 
289 	/* Here's some more Apple black magic to setup
290 	 * some voltage stuffs.
291 	 */
292 	phy_write(phy, 0x1c, 0x8c23);
293 	phy_write(phy, 0x1c, 0x8ca3);
294 	phy_write(phy, 0x1c, 0x8c23);
295 
296 	/* Here, Apple seems to want to reset it, do
297 	 * it as well
298 	 */
299 	phy_write(phy, MII_BMCR, BMCR_RESET);
300 	phy_write(phy, MII_BMCR, 0x1340);
301 
302 	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
303 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
304 	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
305 
306 	udelay(10);
307 
308 	/* Reset and configure cascaded 10/100 PHY */
309 	(void)reset_one_mii_phy(phy, 0x1f);
310 
311 	return 0;
312 }
313 
314 static int generic_suspend(struct mii_phy* phy)
315 {
316 	phy_write(phy, MII_BMCR, BMCR_PDOWN);
317 
318 	return 0;
319 }
320 
321 static int bcm5421_init(struct mii_phy* phy)
322 {
323 	u16 data;
324 	unsigned int id;
325 
326 	id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
327 
328 	/* Revision 0 of 5421 needs some fixups */
329 	if (id == 0x002060e0) {
330 		/* This is borrowed from MacOS
331 		 */
332 		phy_write(phy, 0x18, 0x1007);
333 		data = phy_read(phy, 0x18);
334 		phy_write(phy, 0x18, data | 0x0400);
335 		phy_write(phy, 0x18, 0x0007);
336 		data = phy_read(phy, 0x18);
337 		phy_write(phy, 0x18, data | 0x0800);
338 		phy_write(phy, 0x17, 0x000a);
339 		data = phy_read(phy, 0x15);
340 		phy_write(phy, 0x15, data | 0x0200);
341 	}
342 
343 	/* Pick up some init code from OF for K2 version */
344 	if ((id & 0xfffffff0) == 0x002062e0) {
345 		phy_write(phy, 4, 0x01e1);
346 		phy_write(phy, 9, 0x0300);
347 	}
348 
349 	/* Check if we can enable automatic low power */
350 #ifdef CONFIG_PPC_PMAC
351 	if (phy->platform_data) {
352 		struct device_node *np = of_get_parent(phy->platform_data);
353 		int can_low_power = 1;
354 		if (np == NULL || get_property(np, "no-autolowpower", NULL))
355 			can_low_power = 0;
356 		if (can_low_power) {
357 			/* Enable automatic low-power */
358 			phy_write(phy, 0x1c, 0x9002);
359 			phy_write(phy, 0x1c, 0xa821);
360 			phy_write(phy, 0x1c, 0x941d);
361 		}
362 	}
363 #endif /* CONFIG_PPC_PMAC */
364 
365 	return 0;
366 }
367 
368 static int bcm5421_enable_fiber(struct mii_phy* phy)
369 {
370 	/* enable fiber mode */
371 	phy_write(phy, MII_NCONFIG, 0x9020);
372 	/* LEDs active in both modes, autosense prio = fiber */
373 	phy_write(phy, MII_NCONFIG, 0x945f);
374 
375 	/* switch off fibre autoneg */
376 	phy_write(phy, MII_NCONFIG, 0xfc01);
377 	phy_write(phy, 0x0b, 0x0004);
378 
379 	return 0;
380 }
381 
382 static int bcm5461_enable_fiber(struct mii_phy* phy)
383 {
384 	phy_write(phy, MII_NCONFIG, 0xfc0c);
385 	phy_write(phy, MII_BMCR, 0x4140);
386 	phy_write(phy, MII_NCONFIG, 0xfc0b);
387 	phy_write(phy, MII_BMCR, 0x0140);
388 
389 	return 0;
390 }
391 
392 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
393 {
394 	u16 ctl, adv;
395 
396 	phy->autoneg = 1;
397 	phy->speed = SPEED_10;
398 	phy->duplex = DUPLEX_HALF;
399 	phy->pause = 0;
400 	phy->advertising = advertise;
401 
402 	/* Setup standard advertise */
403 	adv = phy_read(phy, MII_ADVERTISE);
404 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
405 	if (advertise & ADVERTISED_10baseT_Half)
406 		adv |= ADVERTISE_10HALF;
407 	if (advertise & ADVERTISED_10baseT_Full)
408 		adv |= ADVERTISE_10FULL;
409 	if (advertise & ADVERTISED_100baseT_Half)
410 		adv |= ADVERTISE_100HALF;
411 	if (advertise & ADVERTISED_100baseT_Full)
412 		adv |= ADVERTISE_100FULL;
413 	if (advertise & ADVERTISED_Pause)
414 		adv |= ADVERTISE_PAUSE_CAP;
415 	if (advertise & ADVERTISED_Asym_Pause)
416 		adv |= ADVERTISE_PAUSE_ASYM;
417 	phy_write(phy, MII_ADVERTISE, adv);
418 
419 	/* Setup 1000BT advertise */
420 	adv = phy_read(phy, MII_1000BASETCONTROL);
421 	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
422 	if (advertise & SUPPORTED_1000baseT_Half)
423 		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
424 	if (advertise & SUPPORTED_1000baseT_Full)
425 		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
426 	phy_write(phy, MII_1000BASETCONTROL, adv);
427 
428 	/* Start/Restart aneg */
429 	ctl = phy_read(phy, MII_BMCR);
430 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
431 	phy_write(phy, MII_BMCR, ctl);
432 
433 	return 0;
434 }
435 
436 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
437 {
438 	u16 ctl;
439 
440 	phy->autoneg = 0;
441 	phy->speed = speed;
442 	phy->duplex = fd;
443 	phy->pause = 0;
444 
445 	ctl = phy_read(phy, MII_BMCR);
446 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
447 
448 	/* First reset the PHY */
449 	phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
450 
451 	/* Select speed & duplex */
452 	switch(speed) {
453 	case SPEED_10:
454 		break;
455 	case SPEED_100:
456 		ctl |= BMCR_SPEED100;
457 		break;
458 	case SPEED_1000:
459 		ctl |= BMCR_SPD2;
460 	}
461 	if (fd == DUPLEX_FULL)
462 		ctl |= BMCR_FULLDPLX;
463 
464 	// XXX Should we set the sungem to GII now on 1000BT ?
465 
466 	phy_write(phy, MII_BMCR, ctl);
467 
468 	return 0;
469 }
470 
471 static int bcm54xx_read_link(struct mii_phy *phy)
472 {
473 	int link_mode;
474 	u16 val;
475 
476 	if (phy->autoneg) {
477 	    	val = phy_read(phy, MII_BCM5400_AUXSTATUS);
478 		link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
479 			     MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
480 		phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
481 			DUPLEX_FULL : DUPLEX_HALF;
482 		phy->speed = phy_BCM5400_link_table[link_mode][2] ?
483 				SPEED_1000 :
484 				(phy_BCM5400_link_table[link_mode][1] ?
485 				 SPEED_100 : SPEED_10);
486 		val = phy_read(phy, MII_LPA);
487 		phy->pause = (phy->duplex == DUPLEX_FULL) &&
488 			((val & LPA_PAUSE) != 0);
489 	}
490 	/* On non-aneg, we assume what we put in BMCR is the speed,
491 	 * though magic-aneg shouldn't prevent this case from occurring
492 	 */
493 
494 	return 0;
495 }
496 
497 static int marvell88e1111_init(struct mii_phy* phy)
498 {
499 	u16 rev;
500 
501 	/* magic init sequence for rev 0 */
502 	rev = phy_read(phy, MII_PHYSID2) & 0x000f;
503 	if (rev == 0) {
504 		phy_write(phy, 0x1d, 0x000a);
505 		phy_write(phy, 0x1e, 0x0821);
506 
507 		phy_write(phy, 0x1d, 0x0006);
508 		phy_write(phy, 0x1e, 0x8600);
509 
510 		phy_write(phy, 0x1d, 0x000b);
511 		phy_write(phy, 0x1e, 0x0100);
512 
513 		phy_write(phy, 0x1d, 0x0004);
514 		phy_write(phy, 0x1e, 0x4850);
515 	}
516 	return 0;
517 }
518 
519 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
520 {
521 	u16 ctl, adv;
522 
523 	phy->autoneg = 1;
524 	phy->speed = SPEED_10;
525 	phy->duplex = DUPLEX_HALF;
526 	phy->pause = 0;
527 	phy->advertising = advertise;
528 
529 	/* Setup standard advertise */
530 	adv = phy_read(phy, MII_ADVERTISE);
531 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
532 	if (advertise & ADVERTISED_10baseT_Half)
533 		adv |= ADVERTISE_10HALF;
534 	if (advertise & ADVERTISED_10baseT_Full)
535 		adv |= ADVERTISE_10FULL;
536 	if (advertise & ADVERTISED_100baseT_Half)
537 		adv |= ADVERTISE_100HALF;
538 	if (advertise & ADVERTISED_100baseT_Full)
539 		adv |= ADVERTISE_100FULL;
540 	if (advertise & ADVERTISED_Pause)
541 		adv |= ADVERTISE_PAUSE_CAP;
542 	if (advertise & ADVERTISED_Asym_Pause)
543 		adv |= ADVERTISE_PAUSE_ASYM;
544 	phy_write(phy, MII_ADVERTISE, adv);
545 
546 	/* Setup 1000BT advertise & enable crossover detect
547 	 * XXX How do we advertise 1000BT ? Darwin source is
548 	 * confusing here, they read from specific control and
549 	 * write to control... Someone has specs for those
550 	 * beasts ?
551 	 */
552 	adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
553 	adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
554 	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
555 			MII_1000BASETCONTROL_HALFDUPLEXCAP);
556 	if (advertise & SUPPORTED_1000baseT_Half)
557 		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
558 	if (advertise & SUPPORTED_1000baseT_Full)
559 		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
560 	phy_write(phy, MII_1000BASETCONTROL, adv);
561 
562 	/* Start/Restart aneg */
563 	ctl = phy_read(phy, MII_BMCR);
564 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
565 	phy_write(phy, MII_BMCR, ctl);
566 
567 	return 0;
568 }
569 
570 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
571 {
572 	u16 ctl, ctl2;
573 
574 	phy->autoneg = 0;
575 	phy->speed = speed;
576 	phy->duplex = fd;
577 	phy->pause = 0;
578 
579 	ctl = phy_read(phy, MII_BMCR);
580 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
581 	ctl |= BMCR_RESET;
582 
583 	/* Select speed & duplex */
584 	switch(speed) {
585 	case SPEED_10:
586 		break;
587 	case SPEED_100:
588 		ctl |= BMCR_SPEED100;
589 		break;
590 	/* I'm not sure about the one below, again, Darwin source is
591 	 * quite confusing and I lack chip specs
592 	 */
593 	case SPEED_1000:
594 		ctl |= BMCR_SPD2;
595 	}
596 	if (fd == DUPLEX_FULL)
597 		ctl |= BMCR_FULLDPLX;
598 
599 	/* Disable crossover. Again, the way Apple does it is strange,
600 	 * though I don't assume they are wrong ;)
601 	 */
602 	ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
603 	ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
604 		MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
605 		MII_1000BASETCONTROL_FULLDUPLEXCAP |
606 		MII_1000BASETCONTROL_HALFDUPLEXCAP);
607 	if (speed == SPEED_1000)
608 		ctl2 |= (fd == DUPLEX_FULL) ?
609 			MII_1000BASETCONTROL_FULLDUPLEXCAP :
610 			MII_1000BASETCONTROL_HALFDUPLEXCAP;
611 	phy_write(phy, MII_1000BASETCONTROL, ctl2);
612 
613 	// XXX Should we set the sungem to GII now on 1000BT ?
614 
615 	phy_write(phy, MII_BMCR, ctl);
616 
617 	return 0;
618 }
619 
620 static int marvell_read_link(struct mii_phy *phy)
621 {
622 	u16 status, pmask;
623 
624 	if (phy->autoneg) {
625 		status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
626 		if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
627 			return -EAGAIN;
628 		if (status & MII_M1011_PHY_SPEC_STATUS_1000)
629 			phy->speed = SPEED_1000;
630 		else if (status & MII_M1011_PHY_SPEC_STATUS_100)
631 			phy->speed = SPEED_100;
632 		else
633 			phy->speed = SPEED_10;
634 		if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
635 			phy->duplex = DUPLEX_FULL;
636 		else
637 			phy->duplex = DUPLEX_HALF;
638 		pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
639 			MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
640 		phy->pause = (status & pmask) == pmask;
641 	}
642 	/* On non-aneg, we assume what we put in BMCR is the speed,
643 	 * though magic-aneg shouldn't prevent this case from occurring
644 	 */
645 
646 	return 0;
647 }
648 
649 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
650 {
651 	u16 ctl, adv;
652 
653 	phy->autoneg = 1;
654 	phy->speed = SPEED_10;
655 	phy->duplex = DUPLEX_HALF;
656 	phy->pause = 0;
657 	phy->advertising = advertise;
658 
659 	/* Setup standard advertise */
660 	adv = phy_read(phy, MII_ADVERTISE);
661 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
662 	if (advertise & ADVERTISED_10baseT_Half)
663 		adv |= ADVERTISE_10HALF;
664 	if (advertise & ADVERTISED_10baseT_Full)
665 		adv |= ADVERTISE_10FULL;
666 	if (advertise & ADVERTISED_100baseT_Half)
667 		adv |= ADVERTISE_100HALF;
668 	if (advertise & ADVERTISED_100baseT_Full)
669 		adv |= ADVERTISE_100FULL;
670 	if (advertise & ADVERTISED_Pause)
671 		adv |= ADVERTISE_PAUSE_CAP;
672 	if (advertise & ADVERTISED_Asym_Pause)
673 		adv |= ADVERTISE_PAUSE_ASYM;
674 	phy_write(phy, MII_ADVERTISE, adv);
675 
676 	/* Start/Restart aneg */
677 	ctl = phy_read(phy, MII_BMCR);
678 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
679 	phy_write(phy, MII_BMCR, ctl);
680 
681 	return 0;
682 }
683 
684 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
685 {
686 	u16 ctl;
687 
688 	phy->autoneg = 0;
689 	phy->speed = speed;
690 	phy->duplex = fd;
691 	phy->pause = 0;
692 
693 	ctl = phy_read(phy, MII_BMCR);
694 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
695 
696 	/* First reset the PHY */
697 	phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
698 
699 	/* Select speed & duplex */
700 	switch(speed) {
701 	case SPEED_10:
702 		break;
703 	case SPEED_100:
704 		ctl |= BMCR_SPEED100;
705 		break;
706 	case SPEED_1000:
707 	default:
708 		return -EINVAL;
709 	}
710 	if (fd == DUPLEX_FULL)
711 		ctl |= BMCR_FULLDPLX;
712 	phy_write(phy, MII_BMCR, ctl);
713 
714 	return 0;
715 }
716 
717 static int genmii_poll_link(struct mii_phy *phy)
718 {
719 	u16 status;
720 
721 	(void)phy_read(phy, MII_BMSR);
722 	status = phy_read(phy, MII_BMSR);
723 	if ((status & BMSR_LSTATUS) == 0)
724 		return 0;
725 	if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
726 		return 0;
727 	return 1;
728 }
729 
730 static int genmii_read_link(struct mii_phy *phy)
731 {
732 	u16 lpa;
733 
734 	if (phy->autoneg) {
735 		lpa = phy_read(phy, MII_LPA);
736 
737 		if (lpa & (LPA_10FULL | LPA_100FULL))
738 			phy->duplex = DUPLEX_FULL;
739 		else
740 			phy->duplex = DUPLEX_HALF;
741 		if (lpa & (LPA_100FULL | LPA_100HALF))
742 			phy->speed = SPEED_100;
743 		else
744 			phy->speed = SPEED_10;
745 		phy->pause = (phy->duplex == DUPLEX_FULL) &&
746 			((lpa & LPA_PAUSE) != 0);
747 	}
748 	/* On non-aneg, we assume what we put in BMCR is the speed,
749 	 * though magic-aneg shouldn't prevent this case from occurring
750 	 */
751 
752 	 return 0;
753 }
754 
755 
756 #define MII_BASIC_FEATURES \
757 	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |	\
758 	 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |	\
759 	 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |	\
760 	 SUPPORTED_Pause)
761 
762 /* On gigabit capable PHYs, we advertise Pause support but not asym pause
763  * support for now as I'm not sure it's supported and Darwin doesn't do
764  * it neither. --BenH.
765  */
766 #define MII_GBIT_FEATURES \
767 	(MII_BASIC_FEATURES |	\
768 	 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
769 
770 /* Broadcom BCM 5201 */
771 static struct mii_phy_ops bcm5201_phy_ops = {
772 	.init		= bcm5201_init,
773 	.suspend	= bcm5201_suspend,
774 	.setup_aneg	= genmii_setup_aneg,
775 	.setup_forced	= genmii_setup_forced,
776 	.poll_link	= genmii_poll_link,
777 	.read_link	= genmii_read_link,
778 };
779 
780 static struct mii_phy_def bcm5201_phy_def = {
781 	.phy_id		= 0x00406210,
782 	.phy_id_mask	= 0xfffffff0,
783 	.name		= "BCM5201",
784 	.features	= MII_BASIC_FEATURES,
785 	.magic_aneg	= 1,
786 	.ops		= &bcm5201_phy_ops
787 };
788 
789 /* Broadcom BCM 5221 */
790 static struct mii_phy_ops bcm5221_phy_ops = {
791 	.suspend	= bcm5221_suspend,
792 	.init		= bcm5221_init,
793 	.setup_aneg	= genmii_setup_aneg,
794 	.setup_forced	= genmii_setup_forced,
795 	.poll_link	= genmii_poll_link,
796 	.read_link	= genmii_read_link,
797 };
798 
799 static struct mii_phy_def bcm5221_phy_def = {
800 	.phy_id		= 0x004061e0,
801 	.phy_id_mask	= 0xfffffff0,
802 	.name		= "BCM5221",
803 	.features	= MII_BASIC_FEATURES,
804 	.magic_aneg	= 1,
805 	.ops		= &bcm5221_phy_ops
806 };
807 
808 /* Broadcom BCM 5241 */
809 static struct mii_phy_ops bcm5241_phy_ops = {
810 	.suspend	= bcm5241_suspend,
811 	.init		= bcm5241_init,
812 	.setup_aneg	= genmii_setup_aneg,
813 	.setup_forced	= genmii_setup_forced,
814 	.poll_link	= genmii_poll_link,
815 	.read_link	= genmii_read_link,
816 };
817 static struct mii_phy_def bcm5241_phy_def = {
818 	.phy_id		= 0x0143bc30,
819 	.phy_id_mask	= 0xfffffff0,
820 	.name		= "BCM5241",
821 	.features	= MII_BASIC_FEATURES,
822 	.magic_aneg	= 1,
823 	.ops		= &bcm5241_phy_ops
824 };
825 
826 /* Broadcom BCM 5400 */
827 static struct mii_phy_ops bcm5400_phy_ops = {
828 	.init		= bcm5400_init,
829 	.suspend	= bcm5400_suspend,
830 	.setup_aneg	= bcm54xx_setup_aneg,
831 	.setup_forced	= bcm54xx_setup_forced,
832 	.poll_link	= genmii_poll_link,
833 	.read_link	= bcm54xx_read_link,
834 };
835 
836 static struct mii_phy_def bcm5400_phy_def = {
837 	.phy_id		= 0x00206040,
838 	.phy_id_mask	= 0xfffffff0,
839 	.name		= "BCM5400",
840 	.features	= MII_GBIT_FEATURES,
841 	.magic_aneg	= 1,
842 	.ops		= &bcm5400_phy_ops
843 };
844 
845 /* Broadcom BCM 5401 */
846 static struct mii_phy_ops bcm5401_phy_ops = {
847 	.init		= bcm5401_init,
848 	.suspend	= bcm5401_suspend,
849 	.setup_aneg	= bcm54xx_setup_aneg,
850 	.setup_forced	= bcm54xx_setup_forced,
851 	.poll_link	= genmii_poll_link,
852 	.read_link	= bcm54xx_read_link,
853 };
854 
855 static struct mii_phy_def bcm5401_phy_def = {
856 	.phy_id		= 0x00206050,
857 	.phy_id_mask	= 0xfffffff0,
858 	.name		= "BCM5401",
859 	.features	= MII_GBIT_FEATURES,
860 	.magic_aneg	= 1,
861 	.ops		= &bcm5401_phy_ops
862 };
863 
864 /* Broadcom BCM 5411 */
865 static struct mii_phy_ops bcm5411_phy_ops = {
866 	.init		= bcm5411_init,
867 	.suspend	= generic_suspend,
868 	.setup_aneg	= bcm54xx_setup_aneg,
869 	.setup_forced	= bcm54xx_setup_forced,
870 	.poll_link	= genmii_poll_link,
871 	.read_link	= bcm54xx_read_link,
872 };
873 
874 static struct mii_phy_def bcm5411_phy_def = {
875 	.phy_id		= 0x00206070,
876 	.phy_id_mask	= 0xfffffff0,
877 	.name		= "BCM5411",
878 	.features	= MII_GBIT_FEATURES,
879 	.magic_aneg	= 1,
880 	.ops		= &bcm5411_phy_ops
881 };
882 
883 /* Broadcom BCM 5421 */
884 static struct mii_phy_ops bcm5421_phy_ops = {
885 	.init		= bcm5421_init,
886 	.suspend	= generic_suspend,
887 	.setup_aneg	= bcm54xx_setup_aneg,
888 	.setup_forced	= bcm54xx_setup_forced,
889 	.poll_link	= genmii_poll_link,
890 	.read_link	= bcm54xx_read_link,
891 	.enable_fiber   = bcm5421_enable_fiber,
892 };
893 
894 static struct mii_phy_def bcm5421_phy_def = {
895 	.phy_id		= 0x002060e0,
896 	.phy_id_mask	= 0xfffffff0,
897 	.name		= "BCM5421",
898 	.features	= MII_GBIT_FEATURES,
899 	.magic_aneg	= 1,
900 	.ops		= &bcm5421_phy_ops
901 };
902 
903 /* Broadcom BCM 5421 built-in K2 */
904 static struct mii_phy_ops bcm5421k2_phy_ops = {
905 	.init		= bcm5421_init,
906 	.suspend	= generic_suspend,
907 	.setup_aneg	= bcm54xx_setup_aneg,
908 	.setup_forced	= bcm54xx_setup_forced,
909 	.poll_link	= genmii_poll_link,
910 	.read_link	= bcm54xx_read_link,
911 };
912 
913 static struct mii_phy_def bcm5421k2_phy_def = {
914 	.phy_id		= 0x002062e0,
915 	.phy_id_mask	= 0xfffffff0,
916 	.name		= "BCM5421-K2",
917 	.features	= MII_GBIT_FEATURES,
918 	.magic_aneg	= 1,
919 	.ops		= &bcm5421k2_phy_ops
920 };
921 
922 static struct mii_phy_ops bcm5461_phy_ops = {
923 	.init		= bcm5421_init,
924 	.suspend	= generic_suspend,
925 	.setup_aneg	= bcm54xx_setup_aneg,
926 	.setup_forced	= bcm54xx_setup_forced,
927 	.poll_link	= genmii_poll_link,
928 	.read_link	= bcm54xx_read_link,
929 	.enable_fiber   = bcm5461_enable_fiber,
930 };
931 
932 static struct mii_phy_def bcm5461_phy_def = {
933 	.phy_id		= 0x002060c0,
934 	.phy_id_mask	= 0xfffffff0,
935 	.name		= "BCM5461",
936 	.features	= MII_GBIT_FEATURES,
937 	.magic_aneg	= 1,
938 	.ops		= &bcm5461_phy_ops
939 };
940 
941 /* Broadcom BCM 5462 built-in Vesta */
942 static struct mii_phy_ops bcm5462V_phy_ops = {
943 	.init		= bcm5421_init,
944 	.suspend	= generic_suspend,
945 	.setup_aneg	= bcm54xx_setup_aneg,
946 	.setup_forced	= bcm54xx_setup_forced,
947 	.poll_link	= genmii_poll_link,
948 	.read_link	= bcm54xx_read_link,
949 };
950 
951 static struct mii_phy_def bcm5462V_phy_def = {
952 	.phy_id		= 0x002060d0,
953 	.phy_id_mask	= 0xfffffff0,
954 	.name		= "BCM5462-Vesta",
955 	.features	= MII_GBIT_FEATURES,
956 	.magic_aneg	= 1,
957 	.ops		= &bcm5462V_phy_ops
958 };
959 
960 /* Marvell 88E1101 amd 88E1111 */
961 static struct mii_phy_ops marvell88e1101_phy_ops = {
962 	.suspend	= generic_suspend,
963 	.setup_aneg	= marvell_setup_aneg,
964 	.setup_forced	= marvell_setup_forced,
965 	.poll_link	= genmii_poll_link,
966 	.read_link	= marvell_read_link
967 };
968 
969 static struct mii_phy_ops marvell88e1111_phy_ops = {
970 	.init		= marvell88e1111_init,
971 	.suspend	= generic_suspend,
972 	.setup_aneg	= marvell_setup_aneg,
973 	.setup_forced	= marvell_setup_forced,
974 	.poll_link	= genmii_poll_link,
975 	.read_link	= marvell_read_link
976 };
977 
978 /* two revs in darwin for the 88e1101 ... I could use a datasheet
979  * to get the proper names...
980  */
981 static struct mii_phy_def marvell88e1101v1_phy_def = {
982 	.phy_id		= 0x01410c20,
983 	.phy_id_mask	= 0xfffffff0,
984 	.name		= "Marvell 88E1101v1",
985 	.features	= MII_GBIT_FEATURES,
986 	.magic_aneg	= 1,
987 	.ops		= &marvell88e1101_phy_ops
988 };
989 static struct mii_phy_def marvell88e1101v2_phy_def = {
990 	.phy_id		= 0x01410c60,
991 	.phy_id_mask	= 0xfffffff0,
992 	.name		= "Marvell 88E1101v2",
993 	.features	= MII_GBIT_FEATURES,
994 	.magic_aneg	= 1,
995 	.ops		= &marvell88e1101_phy_ops
996 };
997 static struct mii_phy_def marvell88e1111_phy_def = {
998 	.phy_id		= 0x01410cc0,
999 	.phy_id_mask	= 0xfffffff0,
1000 	.name		= "Marvell 88E1111",
1001 	.features	= MII_GBIT_FEATURES,
1002 	.magic_aneg	= 1,
1003 	.ops		= &marvell88e1111_phy_ops
1004 };
1005 
1006 /* Generic implementation for most 10/100 PHYs */
1007 static struct mii_phy_ops generic_phy_ops = {
1008 	.setup_aneg	= genmii_setup_aneg,
1009 	.setup_forced	= genmii_setup_forced,
1010 	.poll_link	= genmii_poll_link,
1011 	.read_link	= genmii_read_link
1012 };
1013 
1014 static struct mii_phy_def genmii_phy_def = {
1015 	.phy_id		= 0x00000000,
1016 	.phy_id_mask	= 0x00000000,
1017 	.name		= "Generic MII",
1018 	.features	= MII_BASIC_FEATURES,
1019 	.magic_aneg	= 0,
1020 	.ops		= &generic_phy_ops
1021 };
1022 
1023 static struct mii_phy_def* mii_phy_table[] = {
1024 	&bcm5201_phy_def,
1025 	&bcm5221_phy_def,
1026 	&bcm5241_phy_def,
1027 	&bcm5400_phy_def,
1028 	&bcm5401_phy_def,
1029 	&bcm5411_phy_def,
1030 	&bcm5421_phy_def,
1031 	&bcm5421k2_phy_def,
1032 	&bcm5461_phy_def,
1033 	&bcm5462V_phy_def,
1034 	&marvell88e1101v1_phy_def,
1035 	&marvell88e1101v2_phy_def,
1036 	&marvell88e1111_phy_def,
1037 	&genmii_phy_def,
1038 	NULL
1039 };
1040 
1041 int mii_phy_probe(struct mii_phy *phy, int mii_id)
1042 {
1043 	int rc;
1044 	u32 id;
1045 	struct mii_phy_def* def;
1046 	int i;
1047 
1048 	/* We do not reset the mii_phy structure as the driver
1049 	 * may re-probe the PHY regulary
1050 	 */
1051 	phy->mii_id = mii_id;
1052 
1053 	/* Take PHY out of isloate mode and reset it. */
1054 	rc = reset_one_mii_phy(phy, mii_id);
1055 	if (rc)
1056 		goto fail;
1057 
1058 	/* Read ID and find matching entry */
1059 	id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
1060 	printk(KERN_DEBUG "PHY ID: %x, addr: %x\n", id, mii_id);
1061 	for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1062 		if ((id & def->phy_id_mask) == def->phy_id)
1063 			break;
1064 	/* Should never be NULL (we have a generic entry), but... */
1065 	if (def == NULL)
1066 		goto fail;
1067 
1068 	phy->def = def;
1069 
1070 	return 0;
1071 fail:
1072 	phy->speed = 0;
1073 	phy->duplex = 0;
1074 	phy->pause = 0;
1075 	phy->advertising = 0;
1076 	return -ENODEV;
1077 }
1078 
1079 EXPORT_SYMBOL(mii_phy_probe);
1080 MODULE_LICENSE("GPL");
1081 
1082