xref: /linux/drivers/net/sb1000.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* sb1000.c: A General Instruments SB1000 driver for linux. */
3 /*
4 	Written 1998 by Franco Venturi.
5 
6 	Copyright 1998 by Franco Venturi.
7 	Copyright 1994,1995 by Donald Becker.
8 	Copyright 1993 United States Government as represented by the
9 	Director, National Security Agency.
10 
11 	This driver is for the General Instruments SB1000 (internal SURFboard)
12 
13 	The author may be reached as fventuri@mediaone.net
14 
15 
16 	Changes:
17 
18 	981115 Steven Hirsch <shirsch@adelphia.net>
19 
20 	Linus changed the timer interface.  Should work on all recent
21 	development kernels.
22 
23 	980608 Steven Hirsch <shirsch@adelphia.net>
24 
25 	Small changes to make it work with 2.1.x kernels. Hopefully,
26 	nothing major will change before official release of Linux 2.2.
27 
28 	Merged with 2.2 - Alan Cox
29 */
30 
31 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/string.h>
37 #include <linux/interrupt.h>
38 #include <linux/errno.h>
39 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
40 #include <linux/in.h>
41 #include <linux/ioport.h>
42 #include <linux/netdevice.h>
43 #include <linux/if_arp.h>
44 #include <linux/skbuff.h>
45 #include <linux/delay.h>	/* for udelay() */
46 #include <linux/etherdevice.h>
47 #include <linux/pnp.h>
48 #include <linux/init.h>
49 #include <linux/bitops.h>
50 #include <linux/gfp.h>
51 
52 #include <asm/io.h>
53 #include <asm/processor.h>
54 #include <linux/uaccess.h>
55 
56 #ifdef SB1000_DEBUG
57 static int sb1000_debug = SB1000_DEBUG;
58 #else
59 static const int sb1000_debug = 1;
60 #endif
61 
62 static const int SB1000_IO_EXTENT = 8;
63 /* SB1000 Maximum Receive Unit */
64 static const int SB1000_MRU = 1500; /* octects */
65 
66 #define NPIDS 4
67 struct sb1000_private {
68 	struct sk_buff *rx_skb[NPIDS];
69 	short rx_dlen[NPIDS];
70 	unsigned int rx_frames;
71 	short rx_error_count;
72 	short rx_error_dpc_count;
73 	unsigned char rx_session_id[NPIDS];
74 	unsigned char rx_frame_id[NPIDS];
75 	unsigned char rx_pkt_type[NPIDS];
76 };
77 
78 /* prototypes for Linux interface */
79 extern int sb1000_probe(struct net_device *dev);
80 static int sb1000_open(struct net_device *dev);
81 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
82 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb,
83 				     struct net_device *dev);
84 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
85 static int sb1000_close(struct net_device *dev);
86 
87 
88 /* SB1000 hardware routines to be used during open/configuration phases */
89 static int card_wait_for_busy_clear(const int ioaddr[],
90 	const char* name);
91 static int card_wait_for_ready(const int ioaddr[], const char* name,
92 	unsigned char in[]);
93 static int card_send_command(const int ioaddr[], const char* name,
94 	const unsigned char out[], unsigned char in[]);
95 
96 /* SB1000 hardware routines to be used during frame rx interrupt */
97 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
98 static int sb1000_wait_for_ready_clear(const int ioaddr[],
99 	const char* name);
100 static void sb1000_send_command(const int ioaddr[], const char* name,
101 	const unsigned char out[]);
102 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
103 static void sb1000_issue_read_command(const int ioaddr[],
104 	const char* name);
105 
106 /* SB1000 commands for open/configuration */
107 static int sb1000_reset(const int ioaddr[], const char* name);
108 static int sb1000_check_CRC(const int ioaddr[], const char* name);
109 static inline int sb1000_start_get_set_command(const int ioaddr[],
110 	const char* name);
111 static int sb1000_end_get_set_command(const int ioaddr[],
112 	const char* name);
113 static int sb1000_activate(const int ioaddr[], const char* name);
114 static int sb1000_get_firmware_version(const int ioaddr[],
115 	const char* name, unsigned char version[], int do_end);
116 static int sb1000_get_frequency(const int ioaddr[], const char* name,
117 	int* frequency);
118 static int sb1000_set_frequency(const int ioaddr[], const char* name,
119 	int frequency);
120 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
121 	short PID[]);
122 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
123 	const short PID[]);
124 
125 /* SB1000 commands for frame rx interrupt */
126 static int sb1000_rx(struct net_device *dev);
127 static void sb1000_error_dpc(struct net_device *dev);
128 
129 static const struct pnp_device_id sb1000_pnp_ids[] = {
130 	{ "GIC1000", 0 },
131 	{ "", 0 }
132 };
133 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
134 
135 static const struct net_device_ops sb1000_netdev_ops = {
136 	.ndo_open		= sb1000_open,
137 	.ndo_start_xmit		= sb1000_start_xmit,
138 	.ndo_do_ioctl		= sb1000_dev_ioctl,
139 	.ndo_stop		= sb1000_close,
140 	.ndo_set_mac_address 	= eth_mac_addr,
141 	.ndo_validate_addr	= eth_validate_addr,
142 };
143 
144 static int
145 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
146 {
147 	struct net_device *dev;
148 	unsigned short ioaddr[2], irq;
149 	unsigned int serial_number;
150 	int error = -ENODEV;
151 
152 	if (pnp_device_attach(pdev) < 0)
153 		return -ENODEV;
154 	if (pnp_activate_dev(pdev) < 0)
155 		goto out_detach;
156 
157 	if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
158 		goto out_disable;
159 	if (!pnp_irq_valid(pdev, 0))
160 		goto out_disable;
161 
162 	serial_number = pdev->card->serial;
163 
164 	ioaddr[0] = pnp_port_start(pdev, 0);
165 	ioaddr[1] = pnp_port_start(pdev, 0);
166 
167 	irq = pnp_irq(pdev, 0);
168 
169 	if (!request_region(ioaddr[0], 16, "sb1000"))
170 		goto out_disable;
171 	if (!request_region(ioaddr[1], 16, "sb1000"))
172 		goto out_release_region0;
173 
174 	dev = alloc_etherdev(sizeof(struct sb1000_private));
175 	if (!dev) {
176 		error = -ENOMEM;
177 		goto out_release_regions;
178 	}
179 
180 
181 	dev->base_addr = ioaddr[0];
182 	/* mem_start holds the second I/O address */
183 	dev->mem_start = ioaddr[1];
184 	dev->irq = irq;
185 
186 	if (sb1000_debug > 0)
187 		printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
188 			"S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
189 			dev->mem_start, serial_number, dev->irq);
190 
191 	/*
192 	 * The SB1000 is an rx-only cable modem device.  The uplink is a modem
193 	 * and we do not want to arp on it.
194 	 */
195 	dev->flags = IFF_POINTOPOINT|IFF_NOARP;
196 
197 	SET_NETDEV_DEV(dev, &pdev->dev);
198 
199 	if (sb1000_debug > 0)
200 		printk(KERN_NOTICE "%s", version);
201 
202 	dev->netdev_ops	= &sb1000_netdev_ops;
203 
204 	/* hardware address is 0:0:serial_number */
205 	dev->dev_addr[2]	= serial_number >> 24 & 0xff;
206 	dev->dev_addr[3]	= serial_number >> 16 & 0xff;
207 	dev->dev_addr[4]	= serial_number >>  8 & 0xff;
208 	dev->dev_addr[5]	= serial_number >>  0 & 0xff;
209 
210 	pnp_set_drvdata(pdev, dev);
211 
212 	error = register_netdev(dev);
213 	if (error)
214 		goto out_free_netdev;
215 	return 0;
216 
217  out_free_netdev:
218 	free_netdev(dev);
219  out_release_regions:
220 	release_region(ioaddr[1], 16);
221  out_release_region0:
222 	release_region(ioaddr[0], 16);
223  out_disable:
224 	pnp_disable_dev(pdev);
225  out_detach:
226 	pnp_device_detach(pdev);
227 	return error;
228 }
229 
230 static void
231 sb1000_remove_one(struct pnp_dev *pdev)
232 {
233 	struct net_device *dev = pnp_get_drvdata(pdev);
234 
235 	unregister_netdev(dev);
236 	release_region(dev->base_addr, 16);
237 	release_region(dev->mem_start, 16);
238 	free_netdev(dev);
239 }
240 
241 static struct pnp_driver sb1000_driver = {
242 	.name		= "sb1000",
243 	.id_table	= sb1000_pnp_ids,
244 	.probe		= sb1000_probe_one,
245 	.remove		= sb1000_remove_one,
246 };
247 
248 
249 /*
250  * SB1000 hardware routines to be used during open/configuration phases
251  */
252 
253 static const int TimeOutJiffies = (875 * HZ) / 100;
254 
255 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
256 static int
257 card_wait_for_busy_clear(const int ioaddr[], const char* name)
258 {
259 	unsigned char a;
260 	unsigned long timeout;
261 
262 	a = inb(ioaddr[0] + 7);
263 	timeout = jiffies + TimeOutJiffies;
264 	while (a & 0x80 || a & 0x40) {
265 		/* a little sleep */
266 		yield();
267 
268 		a = inb(ioaddr[0] + 7);
269 		if (time_after_eq(jiffies, timeout)) {
270 			printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
271 				name);
272 			return -ETIME;
273 		}
274 	}
275 
276 	return 0;
277 }
278 
279 /* Card Wait For Ready (cannot be used during an interrupt) */
280 static int
281 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
282 {
283 	unsigned char a;
284 	unsigned long timeout;
285 
286 	a = inb(ioaddr[1] + 6);
287 	timeout = jiffies + TimeOutJiffies;
288 	while (a & 0x80 || !(a & 0x40)) {
289 		/* a little sleep */
290 		yield();
291 
292 		a = inb(ioaddr[1] + 6);
293 		if (time_after_eq(jiffies, timeout)) {
294 			printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
295 				name);
296 			return -ETIME;
297 		}
298 	}
299 
300 	in[1] = inb(ioaddr[0] + 1);
301 	in[2] = inb(ioaddr[0] + 2);
302 	in[3] = inb(ioaddr[0] + 3);
303 	in[4] = inb(ioaddr[0] + 4);
304 	in[0] = inb(ioaddr[0] + 5);
305 	in[6] = inb(ioaddr[0] + 6);
306 	in[5] = inb(ioaddr[1] + 6);
307 	return 0;
308 }
309 
310 /* Card Send Command (cannot be used during an interrupt) */
311 static int
312 card_send_command(const int ioaddr[], const char* name,
313 	const unsigned char out[], unsigned char in[])
314 {
315 	int status;
316 
317 	if ((status = card_wait_for_busy_clear(ioaddr, name)))
318 		return status;
319 	outb(0xa0, ioaddr[0] + 6);
320 	outb(out[2], ioaddr[0] + 1);
321 	outb(out[3], ioaddr[0] + 2);
322 	outb(out[4], ioaddr[0] + 3);
323 	outb(out[5], ioaddr[0] + 4);
324 	outb(out[1], ioaddr[0] + 5);
325 	outb(0xa0, ioaddr[0] + 6);
326 	outb(out[0], ioaddr[0] + 7);
327 	if (out[0] != 0x20 && out[0] != 0x30) {
328 		if ((status = card_wait_for_ready(ioaddr, name, in)))
329 			return status;
330 		inb(ioaddr[0] + 7);
331 		if (sb1000_debug > 3)
332 			printk(KERN_DEBUG "%s: card_send_command "
333 				"out: %02x%02x%02x%02x%02x%02x  "
334 				"in: %02x%02x%02x%02x%02x%02x%02x\n", name,
335 				out[0], out[1], out[2], out[3], out[4], out[5],
336 				in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
337 	} else {
338 		if (sb1000_debug > 3)
339 			printk(KERN_DEBUG "%s: card_send_command "
340 				"out: %02x%02x%02x%02x%02x%02x\n", name,
341 				out[0], out[1], out[2], out[3], out[4], out[5]);
342 	}
343 
344 	if (out[1] != 0x1b) {
345 		if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
346 			return -EIO;
347 	}
348 	return 0;
349 }
350 
351 
352 /*
353  * SB1000 hardware routines to be used during frame rx interrupt
354  */
355 static const int Sb1000TimeOutJiffies = 7 * HZ;
356 
357 /* Card Wait For Ready (to be used during frame rx) */
358 static int
359 sb1000_wait_for_ready(const int ioaddr[], const char* name)
360 {
361 	unsigned long timeout;
362 
363 	timeout = jiffies + Sb1000TimeOutJiffies;
364 	while (inb(ioaddr[1] + 6) & 0x80) {
365 		if (time_after_eq(jiffies, timeout)) {
366 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
367 				name);
368 			return -ETIME;
369 		}
370 	}
371 	timeout = jiffies + Sb1000TimeOutJiffies;
372 	while (!(inb(ioaddr[1] + 6) & 0x40)) {
373 		if (time_after_eq(jiffies, timeout)) {
374 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
375 				name);
376 			return -ETIME;
377 		}
378 	}
379 	inb(ioaddr[0] + 7);
380 	return 0;
381 }
382 
383 /* Card Wait For Ready Clear (to be used during frame rx) */
384 static int
385 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
386 {
387 	unsigned long timeout;
388 
389 	timeout = jiffies + Sb1000TimeOutJiffies;
390 	while (inb(ioaddr[1] + 6) & 0x80) {
391 		if (time_after_eq(jiffies, timeout)) {
392 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
393 				name);
394 			return -ETIME;
395 		}
396 	}
397 	timeout = jiffies + Sb1000TimeOutJiffies;
398 	while (inb(ioaddr[1] + 6) & 0x40) {
399 		if (time_after_eq(jiffies, timeout)) {
400 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
401 				name);
402 			return -ETIME;
403 		}
404 	}
405 	return 0;
406 }
407 
408 /* Card Send Command (to be used during frame rx) */
409 static void
410 sb1000_send_command(const int ioaddr[], const char* name,
411 	const unsigned char out[])
412 {
413 	outb(out[2], ioaddr[0] + 1);
414 	outb(out[3], ioaddr[0] + 2);
415 	outb(out[4], ioaddr[0] + 3);
416 	outb(out[5], ioaddr[0] + 4);
417 	outb(out[1], ioaddr[0] + 5);
418 	outb(out[0], ioaddr[0] + 7);
419 	if (sb1000_debug > 3)
420 		printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
421 			"%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
422 }
423 
424 /* Card Read Status (to be used during frame rx) */
425 static void
426 sb1000_read_status(const int ioaddr[], unsigned char in[])
427 {
428 	in[1] = inb(ioaddr[0] + 1);
429 	in[2] = inb(ioaddr[0] + 2);
430 	in[3] = inb(ioaddr[0] + 3);
431 	in[4] = inb(ioaddr[0] + 4);
432 	in[0] = inb(ioaddr[0] + 5);
433 }
434 
435 /* Issue Read Command (to be used during frame rx) */
436 static void
437 sb1000_issue_read_command(const int ioaddr[], const char* name)
438 {
439 	static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
440 
441 	sb1000_wait_for_ready_clear(ioaddr, name);
442 	outb(0xa0, ioaddr[0] + 6);
443 	sb1000_send_command(ioaddr, name, Command0);
444 }
445 
446 
447 /*
448  * SB1000 commands for open/configuration
449  */
450 /* reset SB1000 card */
451 static int
452 sb1000_reset(const int ioaddr[], const char* name)
453 {
454 	static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
455 
456 	unsigned char st[7];
457 	int port, status;
458 
459 	port = ioaddr[1] + 6;
460 	outb(0x4, port);
461 	inb(port);
462 	udelay(1000);
463 	outb(0x0, port);
464 	inb(port);
465 	ssleep(1);
466 	outb(0x4, port);
467 	inb(port);
468 	udelay(1000);
469 	outb(0x0, port);
470 	inb(port);
471 	udelay(0);
472 
473 	if ((status = card_send_command(ioaddr, name, Command0, st)))
474 		return status;
475 	if (st[3] != 0xf0)
476 		return -EIO;
477 	return 0;
478 }
479 
480 /* check SB1000 firmware CRC */
481 static int
482 sb1000_check_CRC(const int ioaddr[], const char* name)
483 {
484 	static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
485 
486 	unsigned char st[7];
487 	int status;
488 
489 	/* check CRC */
490 	if ((status = card_send_command(ioaddr, name, Command0, st)))
491 		return status;
492 	if (st[1] != st[3] || st[2] != st[4])
493 		return -EIO;
494 	return 0;
495 }
496 
497 static inline int
498 sb1000_start_get_set_command(const int ioaddr[], const char* name)
499 {
500 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
501 
502 	unsigned char st[7];
503 
504 	return card_send_command(ioaddr, name, Command0, st);
505 }
506 
507 static int
508 sb1000_end_get_set_command(const int ioaddr[], const char* name)
509 {
510 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
511 	static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
512 
513 	unsigned char st[7];
514 	int status;
515 
516 	if ((status = card_send_command(ioaddr, name, Command0, st)))
517 		return status;
518 	return card_send_command(ioaddr, name, Command1, st);
519 }
520 
521 static int
522 sb1000_activate(const int ioaddr[], const char* name)
523 {
524 	static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
525 	static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
526 
527 	unsigned char st[7];
528 	int status;
529 
530 	ssleep(1);
531 	status = card_send_command(ioaddr, name, Command0, st);
532 	if (status)
533 		return status;
534 	status = card_send_command(ioaddr, name, Command1, st);
535 	if (status)
536 		return status;
537 	if (st[3] != 0xf1) {
538 		status = sb1000_start_get_set_command(ioaddr, name);
539 		if (status)
540 			return status;
541 		return -EIO;
542 	}
543 	udelay(1000);
544 	return sb1000_start_get_set_command(ioaddr, name);
545 }
546 
547 /* get SB1000 firmware version */
548 static int
549 sb1000_get_firmware_version(const int ioaddr[], const char* name,
550 	unsigned char version[], int do_end)
551 {
552 	static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
553 
554 	unsigned char st[7];
555 	int status;
556 
557 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
558 		return status;
559 	if ((status = card_send_command(ioaddr, name, Command0, st)))
560 		return status;
561 	if (st[0] != 0xa3)
562 		return -EIO;
563 	version[0] = st[1];
564 	version[1] = st[2];
565 	if (do_end)
566 		return sb1000_end_get_set_command(ioaddr, name);
567 	else
568 		return 0;
569 }
570 
571 /* get SB1000 frequency */
572 static int
573 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
574 {
575 	static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
576 
577 	unsigned char st[7];
578 	int status;
579 
580 	udelay(1000);
581 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
582 		return status;
583 	if ((status = card_send_command(ioaddr, name, Command0, st)))
584 		return status;
585 	*frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
586 	return sb1000_end_get_set_command(ioaddr, name);
587 }
588 
589 /* set SB1000 frequency */
590 static int
591 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
592 {
593 	unsigned char st[7];
594 	int status;
595 	unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
596 
597 	const int FrequencyLowerLimit = 57000;
598 	const int FrequencyUpperLimit = 804000;
599 
600 	if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
601 		printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
602 			"[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
603 			FrequencyUpperLimit);
604 		return -EINVAL;
605 	}
606 	udelay(1000);
607 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
608 		return status;
609 	Command0[5] = frequency & 0xff;
610 	frequency >>= 8;
611 	Command0[4] = frequency & 0xff;
612 	frequency >>= 8;
613 	Command0[3] = frequency & 0xff;
614 	frequency >>= 8;
615 	Command0[2] = frequency & 0xff;
616 	return card_send_command(ioaddr, name, Command0, st);
617 }
618 
619 /* get SB1000 PIDs */
620 static int
621 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
622 {
623 	static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
624 	static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
625 	static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
626 	static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
627 
628 	unsigned char st[7];
629 	int status;
630 
631 	udelay(1000);
632 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
633 		return status;
634 
635 	if ((status = card_send_command(ioaddr, name, Command0, st)))
636 		return status;
637 	PID[0] = st[1] << 8 | st[2];
638 
639 	if ((status = card_send_command(ioaddr, name, Command1, st)))
640 		return status;
641 	PID[1] = st[1] << 8 | st[2];
642 
643 	if ((status = card_send_command(ioaddr, name, Command2, st)))
644 		return status;
645 	PID[2] = st[1] << 8 | st[2];
646 
647 	if ((status = card_send_command(ioaddr, name, Command3, st)))
648 		return status;
649 	PID[3] = st[1] << 8 | st[2];
650 
651 	return sb1000_end_get_set_command(ioaddr, name);
652 }
653 
654 /* set SB1000 PIDs */
655 static int
656 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
657 {
658 	static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
659 
660 	unsigned char st[7];
661 	short p;
662 	int status;
663 	unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
664 	unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
665 	unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
666 	unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
667 
668 	udelay(1000);
669 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
670 		return status;
671 
672 	p = PID[0];
673 	Command0[3] = p & 0xff;
674 	p >>= 8;
675 	Command0[2] = p & 0xff;
676 	if ((status = card_send_command(ioaddr, name, Command0, st)))
677 		return status;
678 
679 	p = PID[1];
680 	Command1[3] = p & 0xff;
681 	p >>= 8;
682 	Command1[2] = p & 0xff;
683 	if ((status = card_send_command(ioaddr, name, Command1, st)))
684 		return status;
685 
686 	p = PID[2];
687 	Command2[3] = p & 0xff;
688 	p >>= 8;
689 	Command2[2] = p & 0xff;
690 	if ((status = card_send_command(ioaddr, name, Command2, st)))
691 		return status;
692 
693 	p = PID[3];
694 	Command3[3] = p & 0xff;
695 	p >>= 8;
696 	Command3[2] = p & 0xff;
697 	if ((status = card_send_command(ioaddr, name, Command3, st)))
698 		return status;
699 
700 	if ((status = card_send_command(ioaddr, name, Command4, st)))
701 		return status;
702 	return sb1000_end_get_set_command(ioaddr, name);
703 }
704 
705 
706 static void
707 sb1000_print_status_buffer(const char* name, unsigned char st[],
708 	unsigned char buffer[], int size)
709 {
710 	int i, j, k;
711 
712 	printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
713 	if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
714 		printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
715 			"to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
716 			buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
717             buffer[46] << 8 | buffer[47],
718 			buffer[42], buffer[43], buffer[44], buffer[45],
719             buffer[48] << 8 | buffer[49]);
720 	} else {
721 		for (i = 0, k = 0; i < (size + 7) / 8; i++) {
722 			printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
723 			for (j = 0; j < 8 && k < size; j++, k++)
724 				printk(" %02x", buffer[k]);
725 			printk("\n");
726 		}
727 	}
728 }
729 
730 /*
731  * SB1000 commands for frame rx interrupt
732  */
733 /* receive a single frame and assemble datagram
734  * (this is the heart of the interrupt routine)
735  */
736 static int
737 sb1000_rx(struct net_device *dev)
738 {
739 
740 #define FRAMESIZE 184
741 	unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
742 	short dlen;
743 	int ioaddr, ns;
744 	unsigned int skbsize;
745 	struct sk_buff *skb;
746 	struct sb1000_private *lp = netdev_priv(dev);
747 	struct net_device_stats *stats = &dev->stats;
748 
749 	/* SB1000 frame constants */
750 	const int FrameSize = FRAMESIZE;
751 	const int NewDatagramHeaderSkip = 8;
752 	const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
753 	const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
754 	const int ContDatagramHeaderSkip = 7;
755 	const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
756 	const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
757 	const int TrailerSize = 4;
758 
759 	ioaddr = dev->base_addr;
760 
761 	insw(ioaddr, (unsigned short*) st, 1);
762 #ifdef XXXDEBUG
763 printk("cm0: received: %02x %02x\n", st[0], st[1]);
764 #endif /* XXXDEBUG */
765 	lp->rx_frames++;
766 
767 	/* decide if it is a good or bad frame */
768 	for (ns = 0; ns < NPIDS; ns++) {
769 		session_id = lp->rx_session_id[ns];
770 		frame_id = lp->rx_frame_id[ns];
771 		if (st[0] == session_id) {
772 			if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
773 				goto good_frame;
774 			} else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
775 				goto skipped_frame;
776 			} else {
777 				goto bad_frame;
778 			}
779 		} else if (st[0] == (session_id | 0x40)) {
780 			if ((st[1] & 0xf0) == 0x30) {
781 				goto skipped_frame;
782 			} else {
783 				goto bad_frame;
784 			}
785 		}
786 	}
787 	goto bad_frame;
788 
789 skipped_frame:
790 	stats->rx_frame_errors++;
791 	skb = lp->rx_skb[ns];
792 	if (sb1000_debug > 1)
793 		printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
794 			"expecting %02x %02x\n", dev->name, st[0], st[1],
795 			skb ? session_id : session_id | 0x40, frame_id);
796 	if (skb) {
797 		dev_kfree_skb(skb);
798 		skb = NULL;
799 	}
800 
801 good_frame:
802 	lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
803 	/* new datagram */
804 	if (st[0] & 0x40) {
805 		/* get data length */
806 		insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
807 #ifdef XXXDEBUG
808 printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
809 #endif /* XXXDEBUG */
810 		if (buffer[0] != NewDatagramHeaderSkip) {
811 			if (sb1000_debug > 1)
812 				printk(KERN_WARNING "%s: new datagram header skip error: "
813 					"got %02x expecting %02x\n", dev->name, buffer[0],
814 					NewDatagramHeaderSkip);
815 			stats->rx_length_errors++;
816 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
817 			goto bad_frame_next;
818 		}
819 		dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
820 			buffer[NewDatagramHeaderSkip + 4]) - 17;
821 		if (dlen > SB1000_MRU) {
822 			if (sb1000_debug > 1)
823 				printk(KERN_WARNING "%s: datagram length (%d) greater "
824 					"than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
825 			stats->rx_length_errors++;
826 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
827 			goto bad_frame_next;
828 		}
829 		lp->rx_dlen[ns] = dlen;
830 		/* compute size to allocate for datagram */
831 		skbsize = dlen + FrameSize;
832 		if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
833 			if (sb1000_debug > 1)
834 				printk(KERN_WARNING "%s: can't allocate %d bytes long "
835 					"skbuff\n", dev->name, skbsize);
836 			stats->rx_dropped++;
837 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
838 			goto dropped_frame;
839 		}
840 		skb->dev = dev;
841 		skb_reset_mac_header(skb);
842 		skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
843 		insw(ioaddr, skb_put(skb, NewDatagramDataSize),
844 			NewDatagramDataSize / 2);
845 		lp->rx_skb[ns] = skb;
846 	} else {
847 		/* continuation of previous datagram */
848 		insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
849 		if (buffer[0] != ContDatagramHeaderSkip) {
850 			if (sb1000_debug > 1)
851 				printk(KERN_WARNING "%s: cont datagram header skip error: "
852 					"got %02x expecting %02x\n", dev->name, buffer[0],
853 					ContDatagramHeaderSkip);
854 			stats->rx_length_errors++;
855 			insw(ioaddr, buffer, ContDatagramDataSize / 2);
856 			goto bad_frame_next;
857 		}
858 		skb = lp->rx_skb[ns];
859 		insw(ioaddr, skb_put(skb, ContDatagramDataSize),
860 			ContDatagramDataSize / 2);
861 		dlen = lp->rx_dlen[ns];
862 	}
863 	if (skb->len < dlen + TrailerSize) {
864 		lp->rx_session_id[ns] &= ~0x40;
865 		return 0;
866 	}
867 
868 	/* datagram completed: send to upper level */
869 	skb_trim(skb, dlen);
870 	netif_rx(skb);
871 	stats->rx_bytes+=dlen;
872 	stats->rx_packets++;
873 	lp->rx_skb[ns] = NULL;
874 	lp->rx_session_id[ns] |= 0x40;
875 	return 0;
876 
877 bad_frame:
878 	insw(ioaddr, buffer, FrameSize / 2);
879 	if (sb1000_debug > 1)
880 		printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
881 			dev->name, st[0], st[1]);
882 	stats->rx_frame_errors++;
883 bad_frame_next:
884 	if (sb1000_debug > 2)
885 		sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
886 dropped_frame:
887 	stats->rx_errors++;
888 	if (ns < NPIDS) {
889 		if ((skb = lp->rx_skb[ns])) {
890 			dev_kfree_skb(skb);
891 			lp->rx_skb[ns] = NULL;
892 		}
893 		lp->rx_session_id[ns] |= 0x40;
894 	}
895 	return -1;
896 }
897 
898 static void
899 sb1000_error_dpc(struct net_device *dev)
900 {
901 	static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
902 
903 	char *name;
904 	unsigned char st[5];
905 	int ioaddr[2];
906 	struct sb1000_private *lp = netdev_priv(dev);
907 	const int ErrorDpcCounterInitialize = 200;
908 
909 	ioaddr[0] = dev->base_addr;
910 	/* mem_start holds the second I/O address */
911 	ioaddr[1] = dev->mem_start;
912 	name = dev->name;
913 
914 	sb1000_wait_for_ready_clear(ioaddr, name);
915 	sb1000_send_command(ioaddr, name, Command0);
916 	sb1000_wait_for_ready(ioaddr, name);
917 	sb1000_read_status(ioaddr, st);
918 	if (st[1] & 0x10)
919 		lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
920 }
921 
922 
923 /*
924  * Linux interface functions
925  */
926 static int
927 sb1000_open(struct net_device *dev)
928 {
929 	char *name;
930 	int ioaddr[2], status;
931 	struct sb1000_private *lp = netdev_priv(dev);
932 	const unsigned short FirmwareVersion[] = {0x01, 0x01};
933 
934 	ioaddr[0] = dev->base_addr;
935 	/* mem_start holds the second I/O address */
936 	ioaddr[1] = dev->mem_start;
937 	name = dev->name;
938 
939 	/* initialize sb1000 */
940 	if ((status = sb1000_reset(ioaddr, name)))
941 		return status;
942 	ssleep(1);
943 	if ((status = sb1000_check_CRC(ioaddr, name)))
944 		return status;
945 
946 	/* initialize private data before board can catch interrupts */
947 	lp->rx_skb[0] = NULL;
948 	lp->rx_skb[1] = NULL;
949 	lp->rx_skb[2] = NULL;
950 	lp->rx_skb[3] = NULL;
951 	lp->rx_dlen[0] = 0;
952 	lp->rx_dlen[1] = 0;
953 	lp->rx_dlen[2] = 0;
954 	lp->rx_dlen[3] = 0;
955 	lp->rx_frames = 0;
956 	lp->rx_error_count = 0;
957 	lp->rx_error_dpc_count = 0;
958 	lp->rx_session_id[0] = 0x50;
959 	lp->rx_session_id[1] = 0x48;
960 	lp->rx_session_id[2] = 0x44;
961 	lp->rx_session_id[3] = 0x42;
962 	lp->rx_frame_id[0] = 0;
963 	lp->rx_frame_id[1] = 0;
964 	lp->rx_frame_id[2] = 0;
965 	lp->rx_frame_id[3] = 0;
966 	if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) {
967 		return -EAGAIN;
968 	}
969 
970 	if (sb1000_debug > 2)
971 		printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
972 
973 	/* Activate board and check firmware version */
974 	udelay(1000);
975 	if ((status = sb1000_activate(ioaddr, name)))
976 		return status;
977 	udelay(0);
978 	if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
979 		return status;
980 	if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
981 		printk(KERN_WARNING "%s: found firmware version %x.%02x "
982 			"(should be %x.%02x)\n", name, version[0], version[1],
983 			FirmwareVersion[0], FirmwareVersion[1]);
984 
985 
986 	netif_start_queue(dev);
987 	return 0;					/* Always succeed */
988 }
989 
990 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
991 {
992 	char* name;
993 	unsigned char version[2];
994 	short PID[4];
995 	int ioaddr[2], status, frequency;
996 	unsigned int stats[5];
997 	struct sb1000_private *lp = netdev_priv(dev);
998 
999 	if (!(dev && dev->flags & IFF_UP))
1000 		return -ENODEV;
1001 
1002 	ioaddr[0] = dev->base_addr;
1003 	/* mem_start holds the second I/O address */
1004 	ioaddr[1] = dev->mem_start;
1005 	name = dev->name;
1006 
1007 	switch (cmd) {
1008 	case SIOCGCMSTATS:		/* get statistics */
1009 		stats[0] = dev->stats.rx_bytes;
1010 		stats[1] = lp->rx_frames;
1011 		stats[2] = dev->stats.rx_packets;
1012 		stats[3] = dev->stats.rx_errors;
1013 		stats[4] = dev->stats.rx_dropped;
1014 		if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1015 			return -EFAULT;
1016 		status = 0;
1017 		break;
1018 
1019 	case SIOCGCMFIRMWARE:		/* get firmware version */
1020 		if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1021 			return status;
1022 		if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1023 			return -EFAULT;
1024 		break;
1025 
1026 	case SIOCGCMFREQUENCY:		/* get frequency */
1027 		if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1028 			return status;
1029 		if(put_user(frequency, (int __user *) ifr->ifr_data))
1030 			return -EFAULT;
1031 		break;
1032 
1033 	case SIOCSCMFREQUENCY:		/* set frequency */
1034 		if (!capable(CAP_NET_ADMIN))
1035 			return -EPERM;
1036 		if(get_user(frequency, (int __user *) ifr->ifr_data))
1037 			return -EFAULT;
1038 		if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1039 			return status;
1040 		break;
1041 
1042 	case SIOCGCMPIDS:			/* get PIDs */
1043 		if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1044 			return status;
1045 		if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1046 			return -EFAULT;
1047 		break;
1048 
1049 	case SIOCSCMPIDS:			/* set PIDs */
1050 		if (!capable(CAP_NET_ADMIN))
1051 			return -EPERM;
1052 		if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1053 			return -EFAULT;
1054 		if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1055 			return status;
1056 		/* set session_id, frame_id and pkt_type too */
1057 		lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1058 		lp->rx_session_id[1] = 0x48;
1059 		lp->rx_session_id[2] = 0x44;
1060 		lp->rx_session_id[3] = 0x42;
1061 		lp->rx_frame_id[0] = 0;
1062 		lp->rx_frame_id[1] = 0;
1063 		lp->rx_frame_id[2] = 0;
1064 		lp->rx_frame_id[3] = 0;
1065 		break;
1066 
1067 	default:
1068 		status = -EINVAL;
1069 		break;
1070 	}
1071 	return status;
1072 }
1073 
1074 /* transmit function: do nothing since SB1000 can't send anything out */
1075 static netdev_tx_t
1076 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1077 {
1078 	printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1079 	/* sb1000 can't xmit datagrams */
1080 	dev_kfree_skb(skb);
1081 	return NETDEV_TX_OK;
1082 }
1083 
1084 /* SB1000 interrupt handler. */
1085 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1086 {
1087 	static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1088 	static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1089 
1090 	char *name;
1091 	unsigned char st;
1092 	int ioaddr[2];
1093 	struct net_device *dev = dev_id;
1094 	struct sb1000_private *lp = netdev_priv(dev);
1095 
1096 	const int MaxRxErrorCount = 6;
1097 
1098 	ioaddr[0] = dev->base_addr;
1099 	/* mem_start holds the second I/O address */
1100 	ioaddr[1] = dev->mem_start;
1101 	name = dev->name;
1102 
1103 	/* is it a good interrupt? */
1104 	st = inb(ioaddr[1] + 6);
1105 	if (!(st & 0x08 && st & 0x20)) {
1106 		return IRQ_NONE;
1107 	}
1108 
1109 	if (sb1000_debug > 3)
1110 		printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1111 
1112 	st = inb(ioaddr[0] + 7);
1113 	if (sb1000_rx(dev))
1114 		lp->rx_error_count++;
1115 #ifdef SB1000_DELAY
1116 	udelay(SB1000_DELAY);
1117 #endif /* SB1000_DELAY */
1118 	sb1000_issue_read_command(ioaddr, name);
1119 	if (st & 0x01) {
1120 		sb1000_error_dpc(dev);
1121 		sb1000_issue_read_command(ioaddr, name);
1122 	}
1123 	if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1124 		sb1000_wait_for_ready_clear(ioaddr, name);
1125 		sb1000_send_command(ioaddr, name, Command0);
1126 		sb1000_wait_for_ready(ioaddr, name);
1127 		sb1000_issue_read_command(ioaddr, name);
1128 	}
1129 	if (lp->rx_error_count >= MaxRxErrorCount) {
1130 		sb1000_wait_for_ready_clear(ioaddr, name);
1131 		sb1000_send_command(ioaddr, name, Command1);
1132 		sb1000_wait_for_ready(ioaddr, name);
1133 		sb1000_issue_read_command(ioaddr, name);
1134 		lp->rx_error_count = 0;
1135 	}
1136 
1137 	return IRQ_HANDLED;
1138 }
1139 
1140 static int sb1000_close(struct net_device *dev)
1141 {
1142 	int i;
1143 	int ioaddr[2];
1144 	struct sb1000_private *lp = netdev_priv(dev);
1145 
1146 	if (sb1000_debug > 2)
1147 		printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1148 
1149 	netif_stop_queue(dev);
1150 
1151 	ioaddr[0] = dev->base_addr;
1152 	/* mem_start holds the second I/O address */
1153 	ioaddr[1] = dev->mem_start;
1154 
1155 	free_irq(dev->irq, dev);
1156 	/* If we don't do this, we can't re-insmod it later. */
1157 	release_region(ioaddr[1], SB1000_IO_EXTENT);
1158 	release_region(ioaddr[0], SB1000_IO_EXTENT);
1159 
1160 	/* free rx_skb's if needed */
1161 	for (i=0; i<4; i++) {
1162 		if (lp->rx_skb[i]) {
1163 			dev_kfree_skb(lp->rx_skb[i]);
1164 		}
1165 	}
1166 	return 0;
1167 }
1168 
1169 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1170 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1171 MODULE_LICENSE("GPL");
1172 
1173 module_pnp_driver(sb1000_driver);
1174