xref: /linux/drivers/net/sb1000.c (revision 2a2dfc869d3345ccdd91322b023f4b0da84acbe7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* sb1000.c: A General Instruments SB1000 driver for linux. */
3 /*
4 	Written 1998 by Franco Venturi.
5 
6 	Copyright 1998 by Franco Venturi.
7 	Copyright 1994,1995 by Donald Becker.
8 	Copyright 1993 United States Government as represented by the
9 	Director, National Security Agency.
10 
11 	This driver is for the General Instruments SB1000 (internal SURFboard)
12 
13 	The author may be reached as fventuri@mediaone.net
14 
15 
16 	Changes:
17 
18 	981115 Steven Hirsch <shirsch@adelphia.net>
19 
20 	Linus changed the timer interface.  Should work on all recent
21 	development kernels.
22 
23 	980608 Steven Hirsch <shirsch@adelphia.net>
24 
25 	Small changes to make it work with 2.1.x kernels. Hopefully,
26 	nothing major will change before official release of Linux 2.2.
27 
28 	Merged with 2.2 - Alan Cox
29 */
30 
31 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/string.h>
37 #include <linux/interrupt.h>
38 #include <linux/errno.h>
39 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
40 #include <linux/in.h>
41 #include <linux/ioport.h>
42 #include <linux/netdevice.h>
43 #include <linux/if_arp.h>
44 #include <linux/skbuff.h>
45 #include <linux/delay.h>	/* for udelay() */
46 #include <linux/etherdevice.h>
47 #include <linux/pnp.h>
48 #include <linux/init.h>
49 #include <linux/bitops.h>
50 #include <linux/gfp.h>
51 
52 #include <asm/io.h>
53 #include <asm/processor.h>
54 #include <linux/uaccess.h>
55 
56 #ifdef SB1000_DEBUG
57 static int sb1000_debug = SB1000_DEBUG;
58 #else
59 static const int sb1000_debug = 1;
60 #endif
61 
62 static const int SB1000_IO_EXTENT = 8;
63 /* SB1000 Maximum Receive Unit */
64 static const int SB1000_MRU = 1500; /* octects */
65 
66 #define NPIDS 4
67 struct sb1000_private {
68 	struct sk_buff *rx_skb[NPIDS];
69 	short rx_dlen[NPIDS];
70 	unsigned int rx_frames;
71 	short rx_error_count;
72 	short rx_error_dpc_count;
73 	unsigned char rx_session_id[NPIDS];
74 	unsigned char rx_frame_id[NPIDS];
75 	unsigned char rx_pkt_type[NPIDS];
76 };
77 
78 /* prototypes for Linux interface */
79 extern int sb1000_probe(struct net_device *dev);
80 static int sb1000_open(struct net_device *dev);
81 static int sb1000_siocdevprivate(struct net_device *dev, struct ifreq *ifr,
82 				 void __user *data, int cmd);
83 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb,
84 				     struct net_device *dev);
85 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
86 static int sb1000_close(struct net_device *dev);
87 
88 
89 /* SB1000 hardware routines to be used during open/configuration phases */
90 static int card_wait_for_busy_clear(const int ioaddr[],
91 	const char* name);
92 static int card_wait_for_ready(const int ioaddr[], const char* name,
93 	unsigned char in[]);
94 static int card_send_command(const int ioaddr[], const char* name,
95 	const unsigned char out[], unsigned char in[]);
96 
97 /* SB1000 hardware routines to be used during frame rx interrupt */
98 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
99 static int sb1000_wait_for_ready_clear(const int ioaddr[],
100 	const char* name);
101 static void sb1000_send_command(const int ioaddr[], const char* name,
102 	const unsigned char out[]);
103 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
104 static void sb1000_issue_read_command(const int ioaddr[],
105 	const char* name);
106 
107 /* SB1000 commands for open/configuration */
108 static int sb1000_reset(const int ioaddr[], const char* name);
109 static int sb1000_check_CRC(const int ioaddr[], const char* name);
110 static inline int sb1000_start_get_set_command(const int ioaddr[],
111 	const char* name);
112 static int sb1000_end_get_set_command(const int ioaddr[],
113 	const char* name);
114 static int sb1000_activate(const int ioaddr[], const char* name);
115 static int sb1000_get_firmware_version(const int ioaddr[],
116 	const char* name, unsigned char version[], int do_end);
117 static int sb1000_get_frequency(const int ioaddr[], const char* name,
118 	int* frequency);
119 static int sb1000_set_frequency(const int ioaddr[], const char* name,
120 	int frequency);
121 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
122 	short PID[]);
123 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
124 	const short PID[]);
125 
126 /* SB1000 commands for frame rx interrupt */
127 static int sb1000_rx(struct net_device *dev);
128 static void sb1000_error_dpc(struct net_device *dev);
129 
130 static const struct pnp_device_id sb1000_pnp_ids[] = {
131 	{ "GIC1000", 0 },
132 	{ "", 0 }
133 };
134 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
135 
136 static const struct net_device_ops sb1000_netdev_ops = {
137 	.ndo_open		= sb1000_open,
138 	.ndo_start_xmit		= sb1000_start_xmit,
139 	.ndo_siocdevprivate	= sb1000_siocdevprivate,
140 	.ndo_stop		= sb1000_close,
141 	.ndo_set_mac_address 	= eth_mac_addr,
142 	.ndo_validate_addr	= eth_validate_addr,
143 };
144 
145 static int
146 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
147 {
148 	struct net_device *dev;
149 	unsigned short ioaddr[2], irq;
150 	unsigned int serial_number;
151 	int error = -ENODEV;
152 	u8 addr[ETH_ALEN];
153 
154 	if (pnp_device_attach(pdev) < 0)
155 		return -ENODEV;
156 	if (pnp_activate_dev(pdev) < 0)
157 		goto out_detach;
158 
159 	if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
160 		goto out_disable;
161 	if (!pnp_irq_valid(pdev, 0))
162 		goto out_disable;
163 
164 	serial_number = pdev->card->serial;
165 
166 	ioaddr[0] = pnp_port_start(pdev, 0);
167 	ioaddr[1] = pnp_port_start(pdev, 0);
168 
169 	irq = pnp_irq(pdev, 0);
170 
171 	if (!request_region(ioaddr[0], 16, "sb1000"))
172 		goto out_disable;
173 	if (!request_region(ioaddr[1], 16, "sb1000"))
174 		goto out_release_region0;
175 
176 	dev = alloc_etherdev(sizeof(struct sb1000_private));
177 	if (!dev) {
178 		error = -ENOMEM;
179 		goto out_release_regions;
180 	}
181 
182 
183 	dev->base_addr = ioaddr[0];
184 	/* mem_start holds the second I/O address */
185 	dev->mem_start = ioaddr[1];
186 	dev->irq = irq;
187 
188 	if (sb1000_debug > 0)
189 		printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
190 			"S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
191 			dev->mem_start, serial_number, dev->irq);
192 
193 	/*
194 	 * The SB1000 is an rx-only cable modem device.  The uplink is a modem
195 	 * and we do not want to arp on it.
196 	 */
197 	dev->flags = IFF_POINTOPOINT|IFF_NOARP;
198 
199 	SET_NETDEV_DEV(dev, &pdev->dev);
200 
201 	if (sb1000_debug > 0)
202 		printk(KERN_NOTICE "%s", version);
203 
204 	dev->netdev_ops	= &sb1000_netdev_ops;
205 
206 	/* hardware address is 0:0:serial_number */
207 	addr[0] = 0;
208 	addr[1] = 0;
209 	addr[2]	= serial_number >> 24 & 0xff;
210 	addr[3]	= serial_number >> 16 & 0xff;
211 	addr[4]	= serial_number >>  8 & 0xff;
212 	addr[5]	= serial_number >>  0 & 0xff;
213 	eth_hw_addr_set(dev, addr);
214 
215 	pnp_set_drvdata(pdev, dev);
216 
217 	error = register_netdev(dev);
218 	if (error)
219 		goto out_free_netdev;
220 	return 0;
221 
222  out_free_netdev:
223 	free_netdev(dev);
224  out_release_regions:
225 	release_region(ioaddr[1], 16);
226  out_release_region0:
227 	release_region(ioaddr[0], 16);
228  out_disable:
229 	pnp_disable_dev(pdev);
230  out_detach:
231 	pnp_device_detach(pdev);
232 	return error;
233 }
234 
235 static void
236 sb1000_remove_one(struct pnp_dev *pdev)
237 {
238 	struct net_device *dev = pnp_get_drvdata(pdev);
239 
240 	unregister_netdev(dev);
241 	release_region(dev->base_addr, 16);
242 	release_region(dev->mem_start, 16);
243 	free_netdev(dev);
244 }
245 
246 static struct pnp_driver sb1000_driver = {
247 	.name		= "sb1000",
248 	.id_table	= sb1000_pnp_ids,
249 	.probe		= sb1000_probe_one,
250 	.remove		= sb1000_remove_one,
251 };
252 
253 
254 /*
255  * SB1000 hardware routines to be used during open/configuration phases
256  */
257 
258 static const int TimeOutJiffies = (875 * HZ) / 100;
259 
260 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
261 static int
262 card_wait_for_busy_clear(const int ioaddr[], const char* name)
263 {
264 	unsigned char a;
265 	unsigned long timeout;
266 
267 	a = inb(ioaddr[0] + 7);
268 	timeout = jiffies + TimeOutJiffies;
269 	while (a & 0x80 || a & 0x40) {
270 		/* a little sleep */
271 		yield();
272 
273 		a = inb(ioaddr[0] + 7);
274 		if (time_after_eq(jiffies, timeout)) {
275 			printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
276 				name);
277 			return -ETIME;
278 		}
279 	}
280 
281 	return 0;
282 }
283 
284 /* Card Wait For Ready (cannot be used during an interrupt) */
285 static int
286 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
287 {
288 	unsigned char a;
289 	unsigned long timeout;
290 
291 	a = inb(ioaddr[1] + 6);
292 	timeout = jiffies + TimeOutJiffies;
293 	while (a & 0x80 || !(a & 0x40)) {
294 		/* a little sleep */
295 		yield();
296 
297 		a = inb(ioaddr[1] + 6);
298 		if (time_after_eq(jiffies, timeout)) {
299 			printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
300 				name);
301 			return -ETIME;
302 		}
303 	}
304 
305 	in[1] = inb(ioaddr[0] + 1);
306 	in[2] = inb(ioaddr[0] + 2);
307 	in[3] = inb(ioaddr[0] + 3);
308 	in[4] = inb(ioaddr[0] + 4);
309 	in[0] = inb(ioaddr[0] + 5);
310 	in[6] = inb(ioaddr[0] + 6);
311 	in[5] = inb(ioaddr[1] + 6);
312 	return 0;
313 }
314 
315 /* Card Send Command (cannot be used during an interrupt) */
316 static int
317 card_send_command(const int ioaddr[], const char* name,
318 	const unsigned char out[], unsigned char in[])
319 {
320 	int status;
321 
322 	if ((status = card_wait_for_busy_clear(ioaddr, name)))
323 		return status;
324 	outb(0xa0, ioaddr[0] + 6);
325 	outb(out[2], ioaddr[0] + 1);
326 	outb(out[3], ioaddr[0] + 2);
327 	outb(out[4], ioaddr[0] + 3);
328 	outb(out[5], ioaddr[0] + 4);
329 	outb(out[1], ioaddr[0] + 5);
330 	outb(0xa0, ioaddr[0] + 6);
331 	outb(out[0], ioaddr[0] + 7);
332 	if (out[0] != 0x20 && out[0] != 0x30) {
333 		if ((status = card_wait_for_ready(ioaddr, name, in)))
334 			return status;
335 		inb(ioaddr[0] + 7);
336 		if (sb1000_debug > 3)
337 			printk(KERN_DEBUG "%s: card_send_command "
338 				"out: %02x%02x%02x%02x%02x%02x  "
339 				"in: %02x%02x%02x%02x%02x%02x%02x\n", name,
340 				out[0], out[1], out[2], out[3], out[4], out[5],
341 				in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
342 	} else {
343 		if (sb1000_debug > 3)
344 			printk(KERN_DEBUG "%s: card_send_command "
345 				"out: %02x%02x%02x%02x%02x%02x\n", name,
346 				out[0], out[1], out[2], out[3], out[4], out[5]);
347 	}
348 
349 	if (out[1] != 0x1b) {
350 		if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
351 			return -EIO;
352 	}
353 	return 0;
354 }
355 
356 
357 /*
358  * SB1000 hardware routines to be used during frame rx interrupt
359  */
360 static const int Sb1000TimeOutJiffies = 7 * HZ;
361 
362 /* Card Wait For Ready (to be used during frame rx) */
363 static int
364 sb1000_wait_for_ready(const int ioaddr[], const char* name)
365 {
366 	unsigned long timeout;
367 
368 	timeout = jiffies + Sb1000TimeOutJiffies;
369 	while (inb(ioaddr[1] + 6) & 0x80) {
370 		if (time_after_eq(jiffies, timeout)) {
371 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
372 				name);
373 			return -ETIME;
374 		}
375 	}
376 	timeout = jiffies + Sb1000TimeOutJiffies;
377 	while (!(inb(ioaddr[1] + 6) & 0x40)) {
378 		if (time_after_eq(jiffies, timeout)) {
379 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
380 				name);
381 			return -ETIME;
382 		}
383 	}
384 	inb(ioaddr[0] + 7);
385 	return 0;
386 }
387 
388 /* Card Wait For Ready Clear (to be used during frame rx) */
389 static int
390 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
391 {
392 	unsigned long timeout;
393 
394 	timeout = jiffies + Sb1000TimeOutJiffies;
395 	while (inb(ioaddr[1] + 6) & 0x80) {
396 		if (time_after_eq(jiffies, timeout)) {
397 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
398 				name);
399 			return -ETIME;
400 		}
401 	}
402 	timeout = jiffies + Sb1000TimeOutJiffies;
403 	while (inb(ioaddr[1] + 6) & 0x40) {
404 		if (time_after_eq(jiffies, timeout)) {
405 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
406 				name);
407 			return -ETIME;
408 		}
409 	}
410 	return 0;
411 }
412 
413 /* Card Send Command (to be used during frame rx) */
414 static void
415 sb1000_send_command(const int ioaddr[], const char* name,
416 	const unsigned char out[])
417 {
418 	outb(out[2], ioaddr[0] + 1);
419 	outb(out[3], ioaddr[0] + 2);
420 	outb(out[4], ioaddr[0] + 3);
421 	outb(out[5], ioaddr[0] + 4);
422 	outb(out[1], ioaddr[0] + 5);
423 	outb(out[0], ioaddr[0] + 7);
424 	if (sb1000_debug > 3)
425 		printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
426 			"%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
427 }
428 
429 /* Card Read Status (to be used during frame rx) */
430 static void
431 sb1000_read_status(const int ioaddr[], unsigned char in[])
432 {
433 	in[1] = inb(ioaddr[0] + 1);
434 	in[2] = inb(ioaddr[0] + 2);
435 	in[3] = inb(ioaddr[0] + 3);
436 	in[4] = inb(ioaddr[0] + 4);
437 	in[0] = inb(ioaddr[0] + 5);
438 }
439 
440 /* Issue Read Command (to be used during frame rx) */
441 static void
442 sb1000_issue_read_command(const int ioaddr[], const char* name)
443 {
444 	static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
445 
446 	sb1000_wait_for_ready_clear(ioaddr, name);
447 	outb(0xa0, ioaddr[0] + 6);
448 	sb1000_send_command(ioaddr, name, Command0);
449 }
450 
451 
452 /*
453  * SB1000 commands for open/configuration
454  */
455 /* reset SB1000 card */
456 static int
457 sb1000_reset(const int ioaddr[], const char* name)
458 {
459 	static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
460 
461 	unsigned char st[7];
462 	int port, status;
463 
464 	port = ioaddr[1] + 6;
465 	outb(0x4, port);
466 	inb(port);
467 	udelay(1000);
468 	outb(0x0, port);
469 	inb(port);
470 	ssleep(1);
471 	outb(0x4, port);
472 	inb(port);
473 	udelay(1000);
474 	outb(0x0, port);
475 	inb(port);
476 	udelay(0);
477 
478 	if ((status = card_send_command(ioaddr, name, Command0, st)))
479 		return status;
480 	if (st[3] != 0xf0)
481 		return -EIO;
482 	return 0;
483 }
484 
485 /* check SB1000 firmware CRC */
486 static int
487 sb1000_check_CRC(const int ioaddr[], const char* name)
488 {
489 	static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
490 
491 	unsigned char st[7];
492 	int status;
493 
494 	/* check CRC */
495 	if ((status = card_send_command(ioaddr, name, Command0, st)))
496 		return status;
497 	if (st[1] != st[3] || st[2] != st[4])
498 		return -EIO;
499 	return 0;
500 }
501 
502 static inline int
503 sb1000_start_get_set_command(const int ioaddr[], const char* name)
504 {
505 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
506 
507 	unsigned char st[7];
508 
509 	return card_send_command(ioaddr, name, Command0, st);
510 }
511 
512 static int
513 sb1000_end_get_set_command(const int ioaddr[], const char* name)
514 {
515 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
516 	static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
517 
518 	unsigned char st[7];
519 	int status;
520 
521 	if ((status = card_send_command(ioaddr, name, Command0, st)))
522 		return status;
523 	return card_send_command(ioaddr, name, Command1, st);
524 }
525 
526 static int
527 sb1000_activate(const int ioaddr[], const char* name)
528 {
529 	static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
530 	static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
531 
532 	unsigned char st[7];
533 	int status;
534 
535 	ssleep(1);
536 	status = card_send_command(ioaddr, name, Command0, st);
537 	if (status)
538 		return status;
539 	status = card_send_command(ioaddr, name, Command1, st);
540 	if (status)
541 		return status;
542 	if (st[3] != 0xf1) {
543 		status = sb1000_start_get_set_command(ioaddr, name);
544 		if (status)
545 			return status;
546 		return -EIO;
547 	}
548 	udelay(1000);
549 	return sb1000_start_get_set_command(ioaddr, name);
550 }
551 
552 /* get SB1000 firmware version */
553 static int
554 sb1000_get_firmware_version(const int ioaddr[], const char* name,
555 	unsigned char version[], int do_end)
556 {
557 	static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
558 
559 	unsigned char st[7];
560 	int status;
561 
562 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
563 		return status;
564 	if ((status = card_send_command(ioaddr, name, Command0, st)))
565 		return status;
566 	if (st[0] != 0xa3)
567 		return -EIO;
568 	version[0] = st[1];
569 	version[1] = st[2];
570 	if (do_end)
571 		return sb1000_end_get_set_command(ioaddr, name);
572 	else
573 		return 0;
574 }
575 
576 /* get SB1000 frequency */
577 static int
578 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
579 {
580 	static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
581 
582 	unsigned char st[7];
583 	int status;
584 
585 	udelay(1000);
586 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
587 		return status;
588 	if ((status = card_send_command(ioaddr, name, Command0, st)))
589 		return status;
590 	*frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
591 	return sb1000_end_get_set_command(ioaddr, name);
592 }
593 
594 /* set SB1000 frequency */
595 static int
596 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
597 {
598 	unsigned char st[7];
599 	int status;
600 	unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
601 
602 	const int FrequencyLowerLimit = 57000;
603 	const int FrequencyUpperLimit = 804000;
604 
605 	if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
606 		printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
607 			"[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
608 			FrequencyUpperLimit);
609 		return -EINVAL;
610 	}
611 	udelay(1000);
612 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
613 		return status;
614 	Command0[5] = frequency & 0xff;
615 	frequency >>= 8;
616 	Command0[4] = frequency & 0xff;
617 	frequency >>= 8;
618 	Command0[3] = frequency & 0xff;
619 	frequency >>= 8;
620 	Command0[2] = frequency & 0xff;
621 	return card_send_command(ioaddr, name, Command0, st);
622 }
623 
624 /* get SB1000 PIDs */
625 static int
626 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
627 {
628 	static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
629 	static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
630 	static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
631 	static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
632 
633 	unsigned char st[7];
634 	int status;
635 
636 	udelay(1000);
637 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
638 		return status;
639 
640 	if ((status = card_send_command(ioaddr, name, Command0, st)))
641 		return status;
642 	PID[0] = st[1] << 8 | st[2];
643 
644 	if ((status = card_send_command(ioaddr, name, Command1, st)))
645 		return status;
646 	PID[1] = st[1] << 8 | st[2];
647 
648 	if ((status = card_send_command(ioaddr, name, Command2, st)))
649 		return status;
650 	PID[2] = st[1] << 8 | st[2];
651 
652 	if ((status = card_send_command(ioaddr, name, Command3, st)))
653 		return status;
654 	PID[3] = st[1] << 8 | st[2];
655 
656 	return sb1000_end_get_set_command(ioaddr, name);
657 }
658 
659 /* set SB1000 PIDs */
660 static int
661 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
662 {
663 	static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
664 
665 	unsigned char st[7];
666 	short p;
667 	int status;
668 	unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
669 	unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
670 	unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
671 	unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
672 
673 	udelay(1000);
674 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
675 		return status;
676 
677 	p = PID[0];
678 	Command0[3] = p & 0xff;
679 	p >>= 8;
680 	Command0[2] = p & 0xff;
681 	if ((status = card_send_command(ioaddr, name, Command0, st)))
682 		return status;
683 
684 	p = PID[1];
685 	Command1[3] = p & 0xff;
686 	p >>= 8;
687 	Command1[2] = p & 0xff;
688 	if ((status = card_send_command(ioaddr, name, Command1, st)))
689 		return status;
690 
691 	p = PID[2];
692 	Command2[3] = p & 0xff;
693 	p >>= 8;
694 	Command2[2] = p & 0xff;
695 	if ((status = card_send_command(ioaddr, name, Command2, st)))
696 		return status;
697 
698 	p = PID[3];
699 	Command3[3] = p & 0xff;
700 	p >>= 8;
701 	Command3[2] = p & 0xff;
702 	if ((status = card_send_command(ioaddr, name, Command3, st)))
703 		return status;
704 
705 	if ((status = card_send_command(ioaddr, name, Command4, st)))
706 		return status;
707 	return sb1000_end_get_set_command(ioaddr, name);
708 }
709 
710 
711 static void
712 sb1000_print_status_buffer(const char* name, unsigned char st[],
713 	unsigned char buffer[], int size)
714 {
715 	int i, j, k;
716 
717 	printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
718 	if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
719 		printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
720 			"to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
721 			buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
722             buffer[46] << 8 | buffer[47],
723 			buffer[42], buffer[43], buffer[44], buffer[45],
724             buffer[48] << 8 | buffer[49]);
725 	} else {
726 		for (i = 0, k = 0; i < (size + 7) / 8; i++) {
727 			printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
728 			for (j = 0; j < 8 && k < size; j++, k++)
729 				printk(" %02x", buffer[k]);
730 			printk("\n");
731 		}
732 	}
733 }
734 
735 /*
736  * SB1000 commands for frame rx interrupt
737  */
738 /* receive a single frame and assemble datagram
739  * (this is the heart of the interrupt routine)
740  */
741 static int
742 sb1000_rx(struct net_device *dev)
743 {
744 
745 #define FRAMESIZE 184
746 	unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
747 	short dlen;
748 	int ioaddr, ns;
749 	unsigned int skbsize;
750 	struct sk_buff *skb;
751 	struct sb1000_private *lp = netdev_priv(dev);
752 	struct net_device_stats *stats = &dev->stats;
753 
754 	/* SB1000 frame constants */
755 	const int FrameSize = FRAMESIZE;
756 	const int NewDatagramHeaderSkip = 8;
757 	const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
758 	const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
759 	const int ContDatagramHeaderSkip = 7;
760 	const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
761 	const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
762 	const int TrailerSize = 4;
763 
764 	ioaddr = dev->base_addr;
765 
766 	insw(ioaddr, (unsigned short*) st, 1);
767 #ifdef XXXDEBUG
768 printk("cm0: received: %02x %02x\n", st[0], st[1]);
769 #endif /* XXXDEBUG */
770 	lp->rx_frames++;
771 
772 	/* decide if it is a good or bad frame */
773 	for (ns = 0; ns < NPIDS; ns++) {
774 		session_id = lp->rx_session_id[ns];
775 		frame_id = lp->rx_frame_id[ns];
776 		if (st[0] == session_id) {
777 			if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
778 				goto good_frame;
779 			} else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
780 				goto skipped_frame;
781 			} else {
782 				goto bad_frame;
783 			}
784 		} else if (st[0] == (session_id | 0x40)) {
785 			if ((st[1] & 0xf0) == 0x30) {
786 				goto skipped_frame;
787 			} else {
788 				goto bad_frame;
789 			}
790 		}
791 	}
792 	goto bad_frame;
793 
794 skipped_frame:
795 	stats->rx_frame_errors++;
796 	skb = lp->rx_skb[ns];
797 	if (sb1000_debug > 1)
798 		printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
799 			"expecting %02x %02x\n", dev->name, st[0], st[1],
800 			skb ? session_id : session_id | 0x40, frame_id);
801 	if (skb) {
802 		dev_kfree_skb(skb);
803 		skb = NULL;
804 	}
805 
806 good_frame:
807 	lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
808 	/* new datagram */
809 	if (st[0] & 0x40) {
810 		/* get data length */
811 		insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
812 #ifdef XXXDEBUG
813 printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
814 #endif /* XXXDEBUG */
815 		if (buffer[0] != NewDatagramHeaderSkip) {
816 			if (sb1000_debug > 1)
817 				printk(KERN_WARNING "%s: new datagram header skip error: "
818 					"got %02x expecting %02x\n", dev->name, buffer[0],
819 					NewDatagramHeaderSkip);
820 			stats->rx_length_errors++;
821 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
822 			goto bad_frame_next;
823 		}
824 		dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
825 			buffer[NewDatagramHeaderSkip + 4]) - 17;
826 		if (dlen > SB1000_MRU) {
827 			if (sb1000_debug > 1)
828 				printk(KERN_WARNING "%s: datagram length (%d) greater "
829 					"than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
830 			stats->rx_length_errors++;
831 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
832 			goto bad_frame_next;
833 		}
834 		lp->rx_dlen[ns] = dlen;
835 		/* compute size to allocate for datagram */
836 		skbsize = dlen + FrameSize;
837 		if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
838 			if (sb1000_debug > 1)
839 				printk(KERN_WARNING "%s: can't allocate %d bytes long "
840 					"skbuff\n", dev->name, skbsize);
841 			stats->rx_dropped++;
842 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
843 			goto dropped_frame;
844 		}
845 		skb->dev = dev;
846 		skb_reset_mac_header(skb);
847 		skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
848 		insw(ioaddr, skb_put(skb, NewDatagramDataSize),
849 			NewDatagramDataSize / 2);
850 		lp->rx_skb[ns] = skb;
851 	} else {
852 		/* continuation of previous datagram */
853 		insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
854 		if (buffer[0] != ContDatagramHeaderSkip) {
855 			if (sb1000_debug > 1)
856 				printk(KERN_WARNING "%s: cont datagram header skip error: "
857 					"got %02x expecting %02x\n", dev->name, buffer[0],
858 					ContDatagramHeaderSkip);
859 			stats->rx_length_errors++;
860 			insw(ioaddr, buffer, ContDatagramDataSize / 2);
861 			goto bad_frame_next;
862 		}
863 		skb = lp->rx_skb[ns];
864 		insw(ioaddr, skb_put(skb, ContDatagramDataSize),
865 			ContDatagramDataSize / 2);
866 		dlen = lp->rx_dlen[ns];
867 	}
868 	if (skb->len < dlen + TrailerSize) {
869 		lp->rx_session_id[ns] &= ~0x40;
870 		return 0;
871 	}
872 
873 	/* datagram completed: send to upper level */
874 	skb_trim(skb, dlen);
875 	__netif_rx(skb);
876 	stats->rx_bytes+=dlen;
877 	stats->rx_packets++;
878 	lp->rx_skb[ns] = NULL;
879 	lp->rx_session_id[ns] |= 0x40;
880 	return 0;
881 
882 bad_frame:
883 	insw(ioaddr, buffer, FrameSize / 2);
884 	if (sb1000_debug > 1)
885 		printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
886 			dev->name, st[0], st[1]);
887 	stats->rx_frame_errors++;
888 bad_frame_next:
889 	if (sb1000_debug > 2)
890 		sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
891 dropped_frame:
892 	stats->rx_errors++;
893 	if (ns < NPIDS) {
894 		if ((skb = lp->rx_skb[ns])) {
895 			dev_kfree_skb(skb);
896 			lp->rx_skb[ns] = NULL;
897 		}
898 		lp->rx_session_id[ns] |= 0x40;
899 	}
900 	return -1;
901 }
902 
903 static void
904 sb1000_error_dpc(struct net_device *dev)
905 {
906 	static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
907 
908 	char *name;
909 	unsigned char st[5];
910 	int ioaddr[2];
911 	struct sb1000_private *lp = netdev_priv(dev);
912 	const int ErrorDpcCounterInitialize = 200;
913 
914 	ioaddr[0] = dev->base_addr;
915 	/* mem_start holds the second I/O address */
916 	ioaddr[1] = dev->mem_start;
917 	name = dev->name;
918 
919 	sb1000_wait_for_ready_clear(ioaddr, name);
920 	sb1000_send_command(ioaddr, name, Command0);
921 	sb1000_wait_for_ready(ioaddr, name);
922 	sb1000_read_status(ioaddr, st);
923 	if (st[1] & 0x10)
924 		lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
925 }
926 
927 
928 /*
929  * Linux interface functions
930  */
931 static int
932 sb1000_open(struct net_device *dev)
933 {
934 	char *name;
935 	int ioaddr[2], status;
936 	struct sb1000_private *lp = netdev_priv(dev);
937 	const unsigned short FirmwareVersion[] = {0x01, 0x01};
938 
939 	ioaddr[0] = dev->base_addr;
940 	/* mem_start holds the second I/O address */
941 	ioaddr[1] = dev->mem_start;
942 	name = dev->name;
943 
944 	/* initialize sb1000 */
945 	if ((status = sb1000_reset(ioaddr, name)))
946 		return status;
947 	ssleep(1);
948 	if ((status = sb1000_check_CRC(ioaddr, name)))
949 		return status;
950 
951 	/* initialize private data before board can catch interrupts */
952 	lp->rx_skb[0] = NULL;
953 	lp->rx_skb[1] = NULL;
954 	lp->rx_skb[2] = NULL;
955 	lp->rx_skb[3] = NULL;
956 	lp->rx_dlen[0] = 0;
957 	lp->rx_dlen[1] = 0;
958 	lp->rx_dlen[2] = 0;
959 	lp->rx_dlen[3] = 0;
960 	lp->rx_frames = 0;
961 	lp->rx_error_count = 0;
962 	lp->rx_error_dpc_count = 0;
963 	lp->rx_session_id[0] = 0x50;
964 	lp->rx_session_id[1] = 0x48;
965 	lp->rx_session_id[2] = 0x44;
966 	lp->rx_session_id[3] = 0x42;
967 	lp->rx_frame_id[0] = 0;
968 	lp->rx_frame_id[1] = 0;
969 	lp->rx_frame_id[2] = 0;
970 	lp->rx_frame_id[3] = 0;
971 	if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) {
972 		return -EAGAIN;
973 	}
974 
975 	if (sb1000_debug > 2)
976 		printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
977 
978 	/* Activate board and check firmware version */
979 	udelay(1000);
980 	if ((status = sb1000_activate(ioaddr, name)))
981 		return status;
982 	udelay(0);
983 	if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
984 		return status;
985 	if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
986 		printk(KERN_WARNING "%s: found firmware version %x.%02x "
987 			"(should be %x.%02x)\n", name, version[0], version[1],
988 			FirmwareVersion[0], FirmwareVersion[1]);
989 
990 
991 	netif_start_queue(dev);
992 	return 0;					/* Always succeed */
993 }
994 
995 static int sb1000_siocdevprivate(struct net_device *dev, struct ifreq *ifr,
996 				 void __user *data, int cmd)
997 {
998 	char* name;
999 	unsigned char version[2];
1000 	short PID[4];
1001 	int ioaddr[2], status, frequency;
1002 	unsigned int stats[5];
1003 	struct sb1000_private *lp = netdev_priv(dev);
1004 
1005 	if (!(dev && dev->flags & IFF_UP))
1006 		return -ENODEV;
1007 
1008 	ioaddr[0] = dev->base_addr;
1009 	/* mem_start holds the second I/O address */
1010 	ioaddr[1] = dev->mem_start;
1011 	name = dev->name;
1012 
1013 	switch (cmd) {
1014 	case SIOCGCMSTATS:		/* get statistics */
1015 		stats[0] = dev->stats.rx_bytes;
1016 		stats[1] = lp->rx_frames;
1017 		stats[2] = dev->stats.rx_packets;
1018 		stats[3] = dev->stats.rx_errors;
1019 		stats[4] = dev->stats.rx_dropped;
1020 		if (copy_to_user(data, stats, sizeof(stats)))
1021 			return -EFAULT;
1022 		status = 0;
1023 		break;
1024 
1025 	case SIOCGCMFIRMWARE:		/* get firmware version */
1026 		if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1027 			return status;
1028 		if (copy_to_user(data, version, sizeof(version)))
1029 			return -EFAULT;
1030 		break;
1031 
1032 	case SIOCGCMFREQUENCY:		/* get frequency */
1033 		if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1034 			return status;
1035 		if (put_user(frequency, (int __user *)data))
1036 			return -EFAULT;
1037 		break;
1038 
1039 	case SIOCSCMFREQUENCY:		/* set frequency */
1040 		if (!capable(CAP_NET_ADMIN))
1041 			return -EPERM;
1042 		if (get_user(frequency, (int __user *)data))
1043 			return -EFAULT;
1044 		if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1045 			return status;
1046 		break;
1047 
1048 	case SIOCGCMPIDS:			/* get PIDs */
1049 		if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1050 			return status;
1051 		if (copy_to_user(data, PID, sizeof(PID)))
1052 			return -EFAULT;
1053 		break;
1054 
1055 	case SIOCSCMPIDS:			/* set PIDs */
1056 		if (!capable(CAP_NET_ADMIN))
1057 			return -EPERM;
1058 		if (copy_from_user(PID, data, sizeof(PID)))
1059 			return -EFAULT;
1060 		if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1061 			return status;
1062 		/* set session_id, frame_id and pkt_type too */
1063 		lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1064 		lp->rx_session_id[1] = 0x48;
1065 		lp->rx_session_id[2] = 0x44;
1066 		lp->rx_session_id[3] = 0x42;
1067 		lp->rx_frame_id[0] = 0;
1068 		lp->rx_frame_id[1] = 0;
1069 		lp->rx_frame_id[2] = 0;
1070 		lp->rx_frame_id[3] = 0;
1071 		break;
1072 
1073 	default:
1074 		status = -EINVAL;
1075 		break;
1076 	}
1077 	return status;
1078 }
1079 
1080 /* transmit function: do nothing since SB1000 can't send anything out */
1081 static netdev_tx_t
1082 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1083 {
1084 	printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1085 	/* sb1000 can't xmit datagrams */
1086 	dev_kfree_skb(skb);
1087 	return NETDEV_TX_OK;
1088 }
1089 
1090 /* SB1000 interrupt handler. */
1091 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1092 {
1093 	static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1094 	static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1095 
1096 	char *name;
1097 	unsigned char st;
1098 	int ioaddr[2];
1099 	struct net_device *dev = dev_id;
1100 	struct sb1000_private *lp = netdev_priv(dev);
1101 
1102 	const int MaxRxErrorCount = 6;
1103 
1104 	ioaddr[0] = dev->base_addr;
1105 	/* mem_start holds the second I/O address */
1106 	ioaddr[1] = dev->mem_start;
1107 	name = dev->name;
1108 
1109 	/* is it a good interrupt? */
1110 	st = inb(ioaddr[1] + 6);
1111 	if (!(st & 0x08 && st & 0x20)) {
1112 		return IRQ_NONE;
1113 	}
1114 
1115 	if (sb1000_debug > 3)
1116 		printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1117 
1118 	st = inb(ioaddr[0] + 7);
1119 	if (sb1000_rx(dev))
1120 		lp->rx_error_count++;
1121 #ifdef SB1000_DELAY
1122 	udelay(SB1000_DELAY);
1123 #endif /* SB1000_DELAY */
1124 	sb1000_issue_read_command(ioaddr, name);
1125 	if (st & 0x01) {
1126 		sb1000_error_dpc(dev);
1127 		sb1000_issue_read_command(ioaddr, name);
1128 	}
1129 	if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1130 		sb1000_wait_for_ready_clear(ioaddr, name);
1131 		sb1000_send_command(ioaddr, name, Command0);
1132 		sb1000_wait_for_ready(ioaddr, name);
1133 		sb1000_issue_read_command(ioaddr, name);
1134 	}
1135 	if (lp->rx_error_count >= MaxRxErrorCount) {
1136 		sb1000_wait_for_ready_clear(ioaddr, name);
1137 		sb1000_send_command(ioaddr, name, Command1);
1138 		sb1000_wait_for_ready(ioaddr, name);
1139 		sb1000_issue_read_command(ioaddr, name);
1140 		lp->rx_error_count = 0;
1141 	}
1142 
1143 	return IRQ_HANDLED;
1144 }
1145 
1146 static int sb1000_close(struct net_device *dev)
1147 {
1148 	int i;
1149 	int ioaddr[2];
1150 	struct sb1000_private *lp = netdev_priv(dev);
1151 
1152 	if (sb1000_debug > 2)
1153 		printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1154 
1155 	netif_stop_queue(dev);
1156 
1157 	ioaddr[0] = dev->base_addr;
1158 	/* mem_start holds the second I/O address */
1159 	ioaddr[1] = dev->mem_start;
1160 
1161 	free_irq(dev->irq, dev);
1162 	/* If we don't do this, we can't re-insmod it later. */
1163 	release_region(ioaddr[1], SB1000_IO_EXTENT);
1164 	release_region(ioaddr[0], SB1000_IO_EXTENT);
1165 
1166 	/* free rx_skb's if needed */
1167 	for (i=0; i<4; i++) {
1168 		if (lp->rx_skb[i]) {
1169 			dev_kfree_skb(lp->rx_skb[i]);
1170 		}
1171 	}
1172 	return 0;
1173 }
1174 
1175 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1176 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1177 MODULE_LICENSE("GPL");
1178 
1179 module_pnp_driver(sb1000_driver);
1180