1 /* sb1000.c: A General Instruments SB1000 driver for linux. */ 2 /* 3 Written 1998 by Franco Venturi. 4 5 Copyright 1998 by Franco Venturi. 6 Copyright 1994,1995 by Donald Becker. 7 Copyright 1993 United States Government as represented by the 8 Director, National Security Agency. 9 10 This driver is for the General Instruments SB1000 (internal SURFboard) 11 12 The author may be reached as fventuri@mediaone.net 13 14 This program is free software; you can redistribute it 15 and/or modify it under the terms of the GNU General 16 Public License as published by the Free Software 17 Foundation; either version 2 of the License, or (at 18 your option) any later version. 19 20 Changes: 21 22 981115 Steven Hirsch <shirsch@adelphia.net> 23 24 Linus changed the timer interface. Should work on all recent 25 development kernels. 26 27 980608 Steven Hirsch <shirsch@adelphia.net> 28 29 Small changes to make it work with 2.1.x kernels. Hopefully, 30 nothing major will change before official release of Linux 2.2. 31 32 Merged with 2.2 - Alan Cox 33 */ 34 35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n"; 36 37 #include <linux/module.h> 38 #include <linux/kernel.h> 39 #include <linux/sched.h> 40 #include <linux/string.h> 41 #include <linux/interrupt.h> 42 #include <linux/errno.h> 43 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */ 44 #include <linux/in.h> 45 #include <linux/ioport.h> 46 #include <linux/netdevice.h> 47 #include <linux/if_arp.h> 48 #include <linux/skbuff.h> 49 #include <linux/delay.h> /* for udelay() */ 50 #include <linux/etherdevice.h> 51 #include <linux/pnp.h> 52 #include <linux/init.h> 53 #include <linux/bitops.h> 54 #include <linux/gfp.h> 55 56 #include <asm/io.h> 57 #include <asm/processor.h> 58 #include <linux/uaccess.h> 59 60 #ifdef SB1000_DEBUG 61 static int sb1000_debug = SB1000_DEBUG; 62 #else 63 static const int sb1000_debug = 1; 64 #endif 65 66 static const int SB1000_IO_EXTENT = 8; 67 /* SB1000 Maximum Receive Unit */ 68 static const int SB1000_MRU = 1500; /* octects */ 69 70 #define NPIDS 4 71 struct sb1000_private { 72 struct sk_buff *rx_skb[NPIDS]; 73 short rx_dlen[NPIDS]; 74 unsigned int rx_frames; 75 short rx_error_count; 76 short rx_error_dpc_count; 77 unsigned char rx_session_id[NPIDS]; 78 unsigned char rx_frame_id[NPIDS]; 79 unsigned char rx_pkt_type[NPIDS]; 80 }; 81 82 /* prototypes for Linux interface */ 83 extern int sb1000_probe(struct net_device *dev); 84 static int sb1000_open(struct net_device *dev); 85 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd); 86 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb, 87 struct net_device *dev); 88 static irqreturn_t sb1000_interrupt(int irq, void *dev_id); 89 static int sb1000_close(struct net_device *dev); 90 91 92 /* SB1000 hardware routines to be used during open/configuration phases */ 93 static int card_wait_for_busy_clear(const int ioaddr[], 94 const char* name); 95 static int card_wait_for_ready(const int ioaddr[], const char* name, 96 unsigned char in[]); 97 static int card_send_command(const int ioaddr[], const char* name, 98 const unsigned char out[], unsigned char in[]); 99 100 /* SB1000 hardware routines to be used during frame rx interrupt */ 101 static int sb1000_wait_for_ready(const int ioaddr[], const char* name); 102 static int sb1000_wait_for_ready_clear(const int ioaddr[], 103 const char* name); 104 static void sb1000_send_command(const int ioaddr[], const char* name, 105 const unsigned char out[]); 106 static void sb1000_read_status(const int ioaddr[], unsigned char in[]); 107 static void sb1000_issue_read_command(const int ioaddr[], 108 const char* name); 109 110 /* SB1000 commands for open/configuration */ 111 static int sb1000_reset(const int ioaddr[], const char* name); 112 static int sb1000_check_CRC(const int ioaddr[], const char* name); 113 static inline int sb1000_start_get_set_command(const int ioaddr[], 114 const char* name); 115 static int sb1000_end_get_set_command(const int ioaddr[], 116 const char* name); 117 static int sb1000_activate(const int ioaddr[], const char* name); 118 static int sb1000_get_firmware_version(const int ioaddr[], 119 const char* name, unsigned char version[], int do_end); 120 static int sb1000_get_frequency(const int ioaddr[], const char* name, 121 int* frequency); 122 static int sb1000_set_frequency(const int ioaddr[], const char* name, 123 int frequency); 124 static int sb1000_get_PIDs(const int ioaddr[], const char* name, 125 short PID[]); 126 static int sb1000_set_PIDs(const int ioaddr[], const char* name, 127 const short PID[]); 128 129 /* SB1000 commands for frame rx interrupt */ 130 static int sb1000_rx(struct net_device *dev); 131 static void sb1000_error_dpc(struct net_device *dev); 132 133 static const struct pnp_device_id sb1000_pnp_ids[] = { 134 { "GIC1000", 0 }, 135 { "", 0 } 136 }; 137 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids); 138 139 static const struct net_device_ops sb1000_netdev_ops = { 140 .ndo_open = sb1000_open, 141 .ndo_start_xmit = sb1000_start_xmit, 142 .ndo_do_ioctl = sb1000_dev_ioctl, 143 .ndo_stop = sb1000_close, 144 .ndo_set_mac_address = eth_mac_addr, 145 .ndo_validate_addr = eth_validate_addr, 146 }; 147 148 static int 149 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id) 150 { 151 struct net_device *dev; 152 unsigned short ioaddr[2], irq; 153 unsigned int serial_number; 154 int error = -ENODEV; 155 156 if (pnp_device_attach(pdev) < 0) 157 return -ENODEV; 158 if (pnp_activate_dev(pdev) < 0) 159 goto out_detach; 160 161 if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1)) 162 goto out_disable; 163 if (!pnp_irq_valid(pdev, 0)) 164 goto out_disable; 165 166 serial_number = pdev->card->serial; 167 168 ioaddr[0] = pnp_port_start(pdev, 0); 169 ioaddr[1] = pnp_port_start(pdev, 0); 170 171 irq = pnp_irq(pdev, 0); 172 173 if (!request_region(ioaddr[0], 16, "sb1000")) 174 goto out_disable; 175 if (!request_region(ioaddr[1], 16, "sb1000")) 176 goto out_release_region0; 177 178 dev = alloc_etherdev(sizeof(struct sb1000_private)); 179 if (!dev) { 180 error = -ENOMEM; 181 goto out_release_regions; 182 } 183 184 185 dev->base_addr = ioaddr[0]; 186 /* mem_start holds the second I/O address */ 187 dev->mem_start = ioaddr[1]; 188 dev->irq = irq; 189 190 if (sb1000_debug > 0) 191 printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), " 192 "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr, 193 dev->mem_start, serial_number, dev->irq); 194 195 /* 196 * The SB1000 is an rx-only cable modem device. The uplink is a modem 197 * and we do not want to arp on it. 198 */ 199 dev->flags = IFF_POINTOPOINT|IFF_NOARP; 200 201 SET_NETDEV_DEV(dev, &pdev->dev); 202 203 if (sb1000_debug > 0) 204 printk(KERN_NOTICE "%s", version); 205 206 dev->netdev_ops = &sb1000_netdev_ops; 207 208 /* hardware address is 0:0:serial_number */ 209 dev->dev_addr[2] = serial_number >> 24 & 0xff; 210 dev->dev_addr[3] = serial_number >> 16 & 0xff; 211 dev->dev_addr[4] = serial_number >> 8 & 0xff; 212 dev->dev_addr[5] = serial_number >> 0 & 0xff; 213 214 pnp_set_drvdata(pdev, dev); 215 216 error = register_netdev(dev); 217 if (error) 218 goto out_free_netdev; 219 return 0; 220 221 out_free_netdev: 222 free_netdev(dev); 223 out_release_regions: 224 release_region(ioaddr[1], 16); 225 out_release_region0: 226 release_region(ioaddr[0], 16); 227 out_disable: 228 pnp_disable_dev(pdev); 229 out_detach: 230 pnp_device_detach(pdev); 231 return error; 232 } 233 234 static void 235 sb1000_remove_one(struct pnp_dev *pdev) 236 { 237 struct net_device *dev = pnp_get_drvdata(pdev); 238 239 unregister_netdev(dev); 240 release_region(dev->base_addr, 16); 241 release_region(dev->mem_start, 16); 242 free_netdev(dev); 243 } 244 245 static struct pnp_driver sb1000_driver = { 246 .name = "sb1000", 247 .id_table = sb1000_pnp_ids, 248 .probe = sb1000_probe_one, 249 .remove = sb1000_remove_one, 250 }; 251 252 253 /* 254 * SB1000 hardware routines to be used during open/configuration phases 255 */ 256 257 static const int TimeOutJiffies = (875 * HZ) / 100; 258 259 /* Card Wait For Busy Clear (cannot be used during an interrupt) */ 260 static int 261 card_wait_for_busy_clear(const int ioaddr[], const char* name) 262 { 263 unsigned char a; 264 unsigned long timeout; 265 266 a = inb(ioaddr[0] + 7); 267 timeout = jiffies + TimeOutJiffies; 268 while (a & 0x80 || a & 0x40) { 269 /* a little sleep */ 270 yield(); 271 272 a = inb(ioaddr[0] + 7); 273 if (time_after_eq(jiffies, timeout)) { 274 printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n", 275 name); 276 return -ETIME; 277 } 278 } 279 280 return 0; 281 } 282 283 /* Card Wait For Ready (cannot be used during an interrupt) */ 284 static int 285 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[]) 286 { 287 unsigned char a; 288 unsigned long timeout; 289 290 a = inb(ioaddr[1] + 6); 291 timeout = jiffies + TimeOutJiffies; 292 while (a & 0x80 || !(a & 0x40)) { 293 /* a little sleep */ 294 yield(); 295 296 a = inb(ioaddr[1] + 6); 297 if (time_after_eq(jiffies, timeout)) { 298 printk(KERN_WARNING "%s: card_wait_for_ready timeout\n", 299 name); 300 return -ETIME; 301 } 302 } 303 304 in[1] = inb(ioaddr[0] + 1); 305 in[2] = inb(ioaddr[0] + 2); 306 in[3] = inb(ioaddr[0] + 3); 307 in[4] = inb(ioaddr[0] + 4); 308 in[0] = inb(ioaddr[0] + 5); 309 in[6] = inb(ioaddr[0] + 6); 310 in[5] = inb(ioaddr[1] + 6); 311 return 0; 312 } 313 314 /* Card Send Command (cannot be used during an interrupt) */ 315 static int 316 card_send_command(const int ioaddr[], const char* name, 317 const unsigned char out[], unsigned char in[]) 318 { 319 int status, x; 320 321 if ((status = card_wait_for_busy_clear(ioaddr, name))) 322 return status; 323 outb(0xa0, ioaddr[0] + 6); 324 outb(out[2], ioaddr[0] + 1); 325 outb(out[3], ioaddr[0] + 2); 326 outb(out[4], ioaddr[0] + 3); 327 outb(out[5], ioaddr[0] + 4); 328 outb(out[1], ioaddr[0] + 5); 329 outb(0xa0, ioaddr[0] + 6); 330 outb(out[0], ioaddr[0] + 7); 331 if (out[0] != 0x20 && out[0] != 0x30) { 332 if ((status = card_wait_for_ready(ioaddr, name, in))) 333 return status; 334 inb(ioaddr[0] + 7); 335 if (sb1000_debug > 3) 336 printk(KERN_DEBUG "%s: card_send_command " 337 "out: %02x%02x%02x%02x%02x%02x " 338 "in: %02x%02x%02x%02x%02x%02x%02x\n", name, 339 out[0], out[1], out[2], out[3], out[4], out[5], 340 in[0], in[1], in[2], in[3], in[4], in[5], in[6]); 341 } else { 342 if (sb1000_debug > 3) 343 printk(KERN_DEBUG "%s: card_send_command " 344 "out: %02x%02x%02x%02x%02x%02x\n", name, 345 out[0], out[1], out[2], out[3], out[4], out[5]); 346 } 347 348 if (out[1] == 0x1b) { 349 x = (out[2] == 0x02); 350 } else { 351 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80)) 352 return -EIO; 353 } 354 return 0; 355 } 356 357 358 /* 359 * SB1000 hardware routines to be used during frame rx interrupt 360 */ 361 static const int Sb1000TimeOutJiffies = 7 * HZ; 362 363 /* Card Wait For Ready (to be used during frame rx) */ 364 static int 365 sb1000_wait_for_ready(const int ioaddr[], const char* name) 366 { 367 unsigned long timeout; 368 369 timeout = jiffies + Sb1000TimeOutJiffies; 370 while (inb(ioaddr[1] + 6) & 0x80) { 371 if (time_after_eq(jiffies, timeout)) { 372 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 373 name); 374 return -ETIME; 375 } 376 } 377 timeout = jiffies + Sb1000TimeOutJiffies; 378 while (!(inb(ioaddr[1] + 6) & 0x40)) { 379 if (time_after_eq(jiffies, timeout)) { 380 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 381 name); 382 return -ETIME; 383 } 384 } 385 inb(ioaddr[0] + 7); 386 return 0; 387 } 388 389 /* Card Wait For Ready Clear (to be used during frame rx) */ 390 static int 391 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name) 392 { 393 unsigned long timeout; 394 395 timeout = jiffies + Sb1000TimeOutJiffies; 396 while (inb(ioaddr[1] + 6) & 0x80) { 397 if (time_after_eq(jiffies, timeout)) { 398 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 399 name); 400 return -ETIME; 401 } 402 } 403 timeout = jiffies + Sb1000TimeOutJiffies; 404 while (inb(ioaddr[1] + 6) & 0x40) { 405 if (time_after_eq(jiffies, timeout)) { 406 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 407 name); 408 return -ETIME; 409 } 410 } 411 return 0; 412 } 413 414 /* Card Send Command (to be used during frame rx) */ 415 static void 416 sb1000_send_command(const int ioaddr[], const char* name, 417 const unsigned char out[]) 418 { 419 outb(out[2], ioaddr[0] + 1); 420 outb(out[3], ioaddr[0] + 2); 421 outb(out[4], ioaddr[0] + 3); 422 outb(out[5], ioaddr[0] + 4); 423 outb(out[1], ioaddr[0] + 5); 424 outb(out[0], ioaddr[0] + 7); 425 if (sb1000_debug > 3) 426 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x" 427 "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]); 428 } 429 430 /* Card Read Status (to be used during frame rx) */ 431 static void 432 sb1000_read_status(const int ioaddr[], unsigned char in[]) 433 { 434 in[1] = inb(ioaddr[0] + 1); 435 in[2] = inb(ioaddr[0] + 2); 436 in[3] = inb(ioaddr[0] + 3); 437 in[4] = inb(ioaddr[0] + 4); 438 in[0] = inb(ioaddr[0] + 5); 439 } 440 441 /* Issue Read Command (to be used during frame rx) */ 442 static void 443 sb1000_issue_read_command(const int ioaddr[], const char* name) 444 { 445 static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00}; 446 447 sb1000_wait_for_ready_clear(ioaddr, name); 448 outb(0xa0, ioaddr[0] + 6); 449 sb1000_send_command(ioaddr, name, Command0); 450 } 451 452 453 /* 454 * SB1000 commands for open/configuration 455 */ 456 /* reset SB1000 card */ 457 static int 458 sb1000_reset(const int ioaddr[], const char* name) 459 { 460 static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 461 462 unsigned char st[7]; 463 int port, status; 464 465 port = ioaddr[1] + 6; 466 outb(0x4, port); 467 inb(port); 468 udelay(1000); 469 outb(0x0, port); 470 inb(port); 471 ssleep(1); 472 outb(0x4, port); 473 inb(port); 474 udelay(1000); 475 outb(0x0, port); 476 inb(port); 477 udelay(0); 478 479 if ((status = card_send_command(ioaddr, name, Command0, st))) 480 return status; 481 if (st[3] != 0xf0) 482 return -EIO; 483 return 0; 484 } 485 486 /* check SB1000 firmware CRC */ 487 static int 488 sb1000_check_CRC(const int ioaddr[], const char* name) 489 { 490 static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00}; 491 492 unsigned char st[7]; 493 int crc, status; 494 495 /* check CRC */ 496 if ((status = card_send_command(ioaddr, name, Command0, st))) 497 return status; 498 if (st[1] != st[3] || st[2] != st[4]) 499 return -EIO; 500 crc = st[1] << 8 | st[2]; 501 return 0; 502 } 503 504 static inline int 505 sb1000_start_get_set_command(const int ioaddr[], const char* name) 506 { 507 static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00}; 508 509 unsigned char st[7]; 510 511 return card_send_command(ioaddr, name, Command0, st); 512 } 513 514 static int 515 sb1000_end_get_set_command(const int ioaddr[], const char* name) 516 { 517 static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00}; 518 static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00}; 519 520 unsigned char st[7]; 521 int status; 522 523 if ((status = card_send_command(ioaddr, name, Command0, st))) 524 return status; 525 return card_send_command(ioaddr, name, Command1, st); 526 } 527 528 static int 529 sb1000_activate(const int ioaddr[], const char* name) 530 { 531 static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00}; 532 static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 533 534 unsigned char st[7]; 535 int status; 536 537 ssleep(1); 538 status = card_send_command(ioaddr, name, Command0, st); 539 if (status) 540 return status; 541 status = card_send_command(ioaddr, name, Command1, st); 542 if (status) 543 return status; 544 if (st[3] != 0xf1) { 545 status = sb1000_start_get_set_command(ioaddr, name); 546 if (status) 547 return status; 548 return -EIO; 549 } 550 udelay(1000); 551 return sb1000_start_get_set_command(ioaddr, name); 552 } 553 554 /* get SB1000 firmware version */ 555 static int 556 sb1000_get_firmware_version(const int ioaddr[], const char* name, 557 unsigned char version[], int do_end) 558 { 559 static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00}; 560 561 unsigned char st[7]; 562 int status; 563 564 if ((status = sb1000_start_get_set_command(ioaddr, name))) 565 return status; 566 if ((status = card_send_command(ioaddr, name, Command0, st))) 567 return status; 568 if (st[0] != 0xa3) 569 return -EIO; 570 version[0] = st[1]; 571 version[1] = st[2]; 572 if (do_end) 573 return sb1000_end_get_set_command(ioaddr, name); 574 else 575 return 0; 576 } 577 578 /* get SB1000 frequency */ 579 static int 580 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency) 581 { 582 static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00}; 583 584 unsigned char st[7]; 585 int status; 586 587 udelay(1000); 588 if ((status = sb1000_start_get_set_command(ioaddr, name))) 589 return status; 590 if ((status = card_send_command(ioaddr, name, Command0, st))) 591 return status; 592 *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4]; 593 return sb1000_end_get_set_command(ioaddr, name); 594 } 595 596 /* set SB1000 frequency */ 597 static int 598 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency) 599 { 600 unsigned char st[7]; 601 int status; 602 unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00}; 603 604 const int FrequencyLowerLimit = 57000; 605 const int FrequencyUpperLimit = 804000; 606 607 if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) { 608 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range " 609 "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit, 610 FrequencyUpperLimit); 611 return -EINVAL; 612 } 613 udelay(1000); 614 if ((status = sb1000_start_get_set_command(ioaddr, name))) 615 return status; 616 Command0[5] = frequency & 0xff; 617 frequency >>= 8; 618 Command0[4] = frequency & 0xff; 619 frequency >>= 8; 620 Command0[3] = frequency & 0xff; 621 frequency >>= 8; 622 Command0[2] = frequency & 0xff; 623 return card_send_command(ioaddr, name, Command0, st); 624 } 625 626 /* get SB1000 PIDs */ 627 static int 628 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[]) 629 { 630 static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00}; 631 static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00}; 632 static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00}; 633 static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00}; 634 635 unsigned char st[7]; 636 int status; 637 638 udelay(1000); 639 if ((status = sb1000_start_get_set_command(ioaddr, name))) 640 return status; 641 642 if ((status = card_send_command(ioaddr, name, Command0, st))) 643 return status; 644 PID[0] = st[1] << 8 | st[2]; 645 646 if ((status = card_send_command(ioaddr, name, Command1, st))) 647 return status; 648 PID[1] = st[1] << 8 | st[2]; 649 650 if ((status = card_send_command(ioaddr, name, Command2, st))) 651 return status; 652 PID[2] = st[1] << 8 | st[2]; 653 654 if ((status = card_send_command(ioaddr, name, Command3, st))) 655 return status; 656 PID[3] = st[1] << 8 | st[2]; 657 658 return sb1000_end_get_set_command(ioaddr, name); 659 } 660 661 /* set SB1000 PIDs */ 662 static int 663 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[]) 664 { 665 static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 666 667 unsigned char st[7]; 668 short p; 669 int status; 670 unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00}; 671 unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00}; 672 unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00}; 673 unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00}; 674 675 udelay(1000); 676 if ((status = sb1000_start_get_set_command(ioaddr, name))) 677 return status; 678 679 p = PID[0]; 680 Command0[3] = p & 0xff; 681 p >>= 8; 682 Command0[2] = p & 0xff; 683 if ((status = card_send_command(ioaddr, name, Command0, st))) 684 return status; 685 686 p = PID[1]; 687 Command1[3] = p & 0xff; 688 p >>= 8; 689 Command1[2] = p & 0xff; 690 if ((status = card_send_command(ioaddr, name, Command1, st))) 691 return status; 692 693 p = PID[2]; 694 Command2[3] = p & 0xff; 695 p >>= 8; 696 Command2[2] = p & 0xff; 697 if ((status = card_send_command(ioaddr, name, Command2, st))) 698 return status; 699 700 p = PID[3]; 701 Command3[3] = p & 0xff; 702 p >>= 8; 703 Command3[2] = p & 0xff; 704 if ((status = card_send_command(ioaddr, name, Command3, st))) 705 return status; 706 707 if ((status = card_send_command(ioaddr, name, Command4, st))) 708 return status; 709 return sb1000_end_get_set_command(ioaddr, name); 710 } 711 712 713 static void 714 sb1000_print_status_buffer(const char* name, unsigned char st[], 715 unsigned char buffer[], int size) 716 { 717 int i, j, k; 718 719 printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]); 720 if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) { 721 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d " 722 "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29], 723 buffer[35], buffer[38], buffer[39], buffer[40], buffer[41], 724 buffer[46] << 8 | buffer[47], 725 buffer[42], buffer[43], buffer[44], buffer[45], 726 buffer[48] << 8 | buffer[49]); 727 } else { 728 for (i = 0, k = 0; i < (size + 7) / 8; i++) { 729 printk(KERN_DEBUG "%s: %s", name, i ? " " : "buffer:"); 730 for (j = 0; j < 8 && k < size; j++, k++) 731 printk(" %02x", buffer[k]); 732 printk("\n"); 733 } 734 } 735 } 736 737 /* 738 * SB1000 commands for frame rx interrupt 739 */ 740 /* receive a single frame and assemble datagram 741 * (this is the heart of the interrupt routine) 742 */ 743 static int 744 sb1000_rx(struct net_device *dev) 745 { 746 747 #define FRAMESIZE 184 748 unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id; 749 short dlen; 750 int ioaddr, ns; 751 unsigned int skbsize; 752 struct sk_buff *skb; 753 struct sb1000_private *lp = netdev_priv(dev); 754 struct net_device_stats *stats = &dev->stats; 755 756 /* SB1000 frame constants */ 757 const int FrameSize = FRAMESIZE; 758 const int NewDatagramHeaderSkip = 8; 759 const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18; 760 const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize; 761 const int ContDatagramHeaderSkip = 7; 762 const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1; 763 const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize; 764 const int TrailerSize = 4; 765 766 ioaddr = dev->base_addr; 767 768 insw(ioaddr, (unsigned short*) st, 1); 769 #ifdef XXXDEBUG 770 printk("cm0: received: %02x %02x\n", st[0], st[1]); 771 #endif /* XXXDEBUG */ 772 lp->rx_frames++; 773 774 /* decide if it is a good or bad frame */ 775 for (ns = 0; ns < NPIDS; ns++) { 776 session_id = lp->rx_session_id[ns]; 777 frame_id = lp->rx_frame_id[ns]; 778 if (st[0] == session_id) { 779 if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) { 780 goto good_frame; 781 } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) { 782 goto skipped_frame; 783 } else { 784 goto bad_frame; 785 } 786 } else if (st[0] == (session_id | 0x40)) { 787 if ((st[1] & 0xf0) == 0x30) { 788 goto skipped_frame; 789 } else { 790 goto bad_frame; 791 } 792 } 793 } 794 goto bad_frame; 795 796 skipped_frame: 797 stats->rx_frame_errors++; 798 skb = lp->rx_skb[ns]; 799 if (sb1000_debug > 1) 800 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x " 801 "expecting %02x %02x\n", dev->name, st[0], st[1], 802 skb ? session_id : session_id | 0x40, frame_id); 803 if (skb) { 804 dev_kfree_skb(skb); 805 skb = NULL; 806 } 807 808 good_frame: 809 lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f); 810 /* new datagram */ 811 if (st[0] & 0x40) { 812 /* get data length */ 813 insw(ioaddr, buffer, NewDatagramHeaderSize / 2); 814 #ifdef XXXDEBUG 815 printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]); 816 #endif /* XXXDEBUG */ 817 if (buffer[0] != NewDatagramHeaderSkip) { 818 if (sb1000_debug > 1) 819 printk(KERN_WARNING "%s: new datagram header skip error: " 820 "got %02x expecting %02x\n", dev->name, buffer[0], 821 NewDatagramHeaderSkip); 822 stats->rx_length_errors++; 823 insw(ioaddr, buffer, NewDatagramDataSize / 2); 824 goto bad_frame_next; 825 } 826 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 | 827 buffer[NewDatagramHeaderSkip + 4]) - 17; 828 if (dlen > SB1000_MRU) { 829 if (sb1000_debug > 1) 830 printk(KERN_WARNING "%s: datagram length (%d) greater " 831 "than MRU (%d)\n", dev->name, dlen, SB1000_MRU); 832 stats->rx_length_errors++; 833 insw(ioaddr, buffer, NewDatagramDataSize / 2); 834 goto bad_frame_next; 835 } 836 lp->rx_dlen[ns] = dlen; 837 /* compute size to allocate for datagram */ 838 skbsize = dlen + FrameSize; 839 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) { 840 if (sb1000_debug > 1) 841 printk(KERN_WARNING "%s: can't allocate %d bytes long " 842 "skbuff\n", dev->name, skbsize); 843 stats->rx_dropped++; 844 insw(ioaddr, buffer, NewDatagramDataSize / 2); 845 goto dropped_frame; 846 } 847 skb->dev = dev; 848 skb_reset_mac_header(skb); 849 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16]; 850 insw(ioaddr, skb_put(skb, NewDatagramDataSize), 851 NewDatagramDataSize / 2); 852 lp->rx_skb[ns] = skb; 853 } else { 854 /* continuation of previous datagram */ 855 insw(ioaddr, buffer, ContDatagramHeaderSize / 2); 856 if (buffer[0] != ContDatagramHeaderSkip) { 857 if (sb1000_debug > 1) 858 printk(KERN_WARNING "%s: cont datagram header skip error: " 859 "got %02x expecting %02x\n", dev->name, buffer[0], 860 ContDatagramHeaderSkip); 861 stats->rx_length_errors++; 862 insw(ioaddr, buffer, ContDatagramDataSize / 2); 863 goto bad_frame_next; 864 } 865 skb = lp->rx_skb[ns]; 866 insw(ioaddr, skb_put(skb, ContDatagramDataSize), 867 ContDatagramDataSize / 2); 868 dlen = lp->rx_dlen[ns]; 869 } 870 if (skb->len < dlen + TrailerSize) { 871 lp->rx_session_id[ns] &= ~0x40; 872 return 0; 873 } 874 875 /* datagram completed: send to upper level */ 876 skb_trim(skb, dlen); 877 netif_rx(skb); 878 stats->rx_bytes+=dlen; 879 stats->rx_packets++; 880 lp->rx_skb[ns] = NULL; 881 lp->rx_session_id[ns] |= 0x40; 882 return 0; 883 884 bad_frame: 885 insw(ioaddr, buffer, FrameSize / 2); 886 if (sb1000_debug > 1) 887 printk(KERN_WARNING "%s: frame error: got %02x %02x\n", 888 dev->name, st[0], st[1]); 889 stats->rx_frame_errors++; 890 bad_frame_next: 891 if (sb1000_debug > 2) 892 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize); 893 dropped_frame: 894 stats->rx_errors++; 895 if (ns < NPIDS) { 896 if ((skb = lp->rx_skb[ns])) { 897 dev_kfree_skb(skb); 898 lp->rx_skb[ns] = NULL; 899 } 900 lp->rx_session_id[ns] |= 0x40; 901 } 902 return -1; 903 } 904 905 static void 906 sb1000_error_dpc(struct net_device *dev) 907 { 908 static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00}; 909 910 char *name; 911 unsigned char st[5]; 912 int ioaddr[2]; 913 struct sb1000_private *lp = netdev_priv(dev); 914 const int ErrorDpcCounterInitialize = 200; 915 916 ioaddr[0] = dev->base_addr; 917 /* mem_start holds the second I/O address */ 918 ioaddr[1] = dev->mem_start; 919 name = dev->name; 920 921 sb1000_wait_for_ready_clear(ioaddr, name); 922 sb1000_send_command(ioaddr, name, Command0); 923 sb1000_wait_for_ready(ioaddr, name); 924 sb1000_read_status(ioaddr, st); 925 if (st[1] & 0x10) 926 lp->rx_error_dpc_count = ErrorDpcCounterInitialize; 927 } 928 929 930 /* 931 * Linux interface functions 932 */ 933 static int 934 sb1000_open(struct net_device *dev) 935 { 936 char *name; 937 int ioaddr[2], status; 938 struct sb1000_private *lp = netdev_priv(dev); 939 const unsigned short FirmwareVersion[] = {0x01, 0x01}; 940 941 ioaddr[0] = dev->base_addr; 942 /* mem_start holds the second I/O address */ 943 ioaddr[1] = dev->mem_start; 944 name = dev->name; 945 946 /* initialize sb1000 */ 947 if ((status = sb1000_reset(ioaddr, name))) 948 return status; 949 ssleep(1); 950 if ((status = sb1000_check_CRC(ioaddr, name))) 951 return status; 952 953 /* initialize private data before board can catch interrupts */ 954 lp->rx_skb[0] = NULL; 955 lp->rx_skb[1] = NULL; 956 lp->rx_skb[2] = NULL; 957 lp->rx_skb[3] = NULL; 958 lp->rx_dlen[0] = 0; 959 lp->rx_dlen[1] = 0; 960 lp->rx_dlen[2] = 0; 961 lp->rx_dlen[3] = 0; 962 lp->rx_frames = 0; 963 lp->rx_error_count = 0; 964 lp->rx_error_dpc_count = 0; 965 lp->rx_session_id[0] = 0x50; 966 lp->rx_session_id[1] = 0x48; 967 lp->rx_session_id[2] = 0x44; 968 lp->rx_session_id[3] = 0x42; 969 lp->rx_frame_id[0] = 0; 970 lp->rx_frame_id[1] = 0; 971 lp->rx_frame_id[2] = 0; 972 lp->rx_frame_id[3] = 0; 973 if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) { 974 return -EAGAIN; 975 } 976 977 if (sb1000_debug > 2) 978 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq); 979 980 /* Activate board and check firmware version */ 981 udelay(1000); 982 if ((status = sb1000_activate(ioaddr, name))) 983 return status; 984 udelay(0); 985 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0))) 986 return status; 987 if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1]) 988 printk(KERN_WARNING "%s: found firmware version %x.%02x " 989 "(should be %x.%02x)\n", name, version[0], version[1], 990 FirmwareVersion[0], FirmwareVersion[1]); 991 992 993 netif_start_queue(dev); 994 return 0; /* Always succeed */ 995 } 996 997 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 998 { 999 char* name; 1000 unsigned char version[2]; 1001 short PID[4]; 1002 int ioaddr[2], status, frequency; 1003 unsigned int stats[5]; 1004 struct sb1000_private *lp = netdev_priv(dev); 1005 1006 if (!(dev && dev->flags & IFF_UP)) 1007 return -ENODEV; 1008 1009 ioaddr[0] = dev->base_addr; 1010 /* mem_start holds the second I/O address */ 1011 ioaddr[1] = dev->mem_start; 1012 name = dev->name; 1013 1014 switch (cmd) { 1015 case SIOCGCMSTATS: /* get statistics */ 1016 stats[0] = dev->stats.rx_bytes; 1017 stats[1] = lp->rx_frames; 1018 stats[2] = dev->stats.rx_packets; 1019 stats[3] = dev->stats.rx_errors; 1020 stats[4] = dev->stats.rx_dropped; 1021 if(copy_to_user(ifr->ifr_data, stats, sizeof(stats))) 1022 return -EFAULT; 1023 status = 0; 1024 break; 1025 1026 case SIOCGCMFIRMWARE: /* get firmware version */ 1027 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1))) 1028 return status; 1029 if(copy_to_user(ifr->ifr_data, version, sizeof(version))) 1030 return -EFAULT; 1031 break; 1032 1033 case SIOCGCMFREQUENCY: /* get frequency */ 1034 if ((status = sb1000_get_frequency(ioaddr, name, &frequency))) 1035 return status; 1036 if(put_user(frequency, (int __user *) ifr->ifr_data)) 1037 return -EFAULT; 1038 break; 1039 1040 case SIOCSCMFREQUENCY: /* set frequency */ 1041 if (!capable(CAP_NET_ADMIN)) 1042 return -EPERM; 1043 if(get_user(frequency, (int __user *) ifr->ifr_data)) 1044 return -EFAULT; 1045 if ((status = sb1000_set_frequency(ioaddr, name, frequency))) 1046 return status; 1047 break; 1048 1049 case SIOCGCMPIDS: /* get PIDs */ 1050 if ((status = sb1000_get_PIDs(ioaddr, name, PID))) 1051 return status; 1052 if(copy_to_user(ifr->ifr_data, PID, sizeof(PID))) 1053 return -EFAULT; 1054 break; 1055 1056 case SIOCSCMPIDS: /* set PIDs */ 1057 if (!capable(CAP_NET_ADMIN)) 1058 return -EPERM; 1059 if(copy_from_user(PID, ifr->ifr_data, sizeof(PID))) 1060 return -EFAULT; 1061 if ((status = sb1000_set_PIDs(ioaddr, name, PID))) 1062 return status; 1063 /* set session_id, frame_id and pkt_type too */ 1064 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f); 1065 lp->rx_session_id[1] = 0x48; 1066 lp->rx_session_id[2] = 0x44; 1067 lp->rx_session_id[3] = 0x42; 1068 lp->rx_frame_id[0] = 0; 1069 lp->rx_frame_id[1] = 0; 1070 lp->rx_frame_id[2] = 0; 1071 lp->rx_frame_id[3] = 0; 1072 break; 1073 1074 default: 1075 status = -EINVAL; 1076 break; 1077 } 1078 return status; 1079 } 1080 1081 /* transmit function: do nothing since SB1000 can't send anything out */ 1082 static netdev_tx_t 1083 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev) 1084 { 1085 printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name); 1086 /* sb1000 can't xmit datagrams */ 1087 dev_kfree_skb(skb); 1088 return NETDEV_TX_OK; 1089 } 1090 1091 /* SB1000 interrupt handler. */ 1092 static irqreturn_t sb1000_interrupt(int irq, void *dev_id) 1093 { 1094 static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00}; 1095 static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 1096 1097 char *name; 1098 unsigned char st; 1099 int ioaddr[2]; 1100 struct net_device *dev = dev_id; 1101 struct sb1000_private *lp = netdev_priv(dev); 1102 1103 const int MaxRxErrorCount = 6; 1104 1105 ioaddr[0] = dev->base_addr; 1106 /* mem_start holds the second I/O address */ 1107 ioaddr[1] = dev->mem_start; 1108 name = dev->name; 1109 1110 /* is it a good interrupt? */ 1111 st = inb(ioaddr[1] + 6); 1112 if (!(st & 0x08 && st & 0x20)) { 1113 return IRQ_NONE; 1114 } 1115 1116 if (sb1000_debug > 3) 1117 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name); 1118 1119 st = inb(ioaddr[0] + 7); 1120 if (sb1000_rx(dev)) 1121 lp->rx_error_count++; 1122 #ifdef SB1000_DELAY 1123 udelay(SB1000_DELAY); 1124 #endif /* SB1000_DELAY */ 1125 sb1000_issue_read_command(ioaddr, name); 1126 if (st & 0x01) { 1127 sb1000_error_dpc(dev); 1128 sb1000_issue_read_command(ioaddr, name); 1129 } 1130 if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) { 1131 sb1000_wait_for_ready_clear(ioaddr, name); 1132 sb1000_send_command(ioaddr, name, Command0); 1133 sb1000_wait_for_ready(ioaddr, name); 1134 sb1000_issue_read_command(ioaddr, name); 1135 } 1136 if (lp->rx_error_count >= MaxRxErrorCount) { 1137 sb1000_wait_for_ready_clear(ioaddr, name); 1138 sb1000_send_command(ioaddr, name, Command1); 1139 sb1000_wait_for_ready(ioaddr, name); 1140 sb1000_issue_read_command(ioaddr, name); 1141 lp->rx_error_count = 0; 1142 } 1143 1144 return IRQ_HANDLED; 1145 } 1146 1147 static int sb1000_close(struct net_device *dev) 1148 { 1149 int i; 1150 int ioaddr[2]; 1151 struct sb1000_private *lp = netdev_priv(dev); 1152 1153 if (sb1000_debug > 2) 1154 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name); 1155 1156 netif_stop_queue(dev); 1157 1158 ioaddr[0] = dev->base_addr; 1159 /* mem_start holds the second I/O address */ 1160 ioaddr[1] = dev->mem_start; 1161 1162 free_irq(dev->irq, dev); 1163 /* If we don't do this, we can't re-insmod it later. */ 1164 release_region(ioaddr[1], SB1000_IO_EXTENT); 1165 release_region(ioaddr[0], SB1000_IO_EXTENT); 1166 1167 /* free rx_skb's if needed */ 1168 for (i=0; i<4; i++) { 1169 if (lp->rx_skb[i]) { 1170 dev_kfree_skb(lp->rx_skb[i]); 1171 } 1172 } 1173 return 0; 1174 } 1175 1176 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>"); 1177 MODULE_DESCRIPTION("General Instruments SB1000 driver"); 1178 MODULE_LICENSE("GPL"); 1179 1180 module_pnp_driver(sb1000_driver); 1181