xref: /linux/drivers/net/ppp/ppp_generic.c (revision fea88a0c02822fbb91a0b8301bf9af04377876a3)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure describing one ppp unit.
98  * A ppp unit corresponds to a ppp network interface device
99  * and represents a multilink bundle.
100  * It can have 0 or more ppp channels connected to it.
101  */
102 struct ppp {
103 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
104 	struct file	*owner;		/* file that owns this unit 48 */
105 	struct list_head channels;	/* list of attached channels 4c */
106 	int		n_channels;	/* how many channels are attached 54 */
107 	spinlock_t	rlock;		/* lock for receive side 58 */
108 	spinlock_t	wlock;		/* lock for transmit side 5c */
109 	int		mru;		/* max receive unit 60 */
110 	unsigned int	flags;		/* control bits 64 */
111 	unsigned int	xstate;		/* transmit state bits 68 */
112 	unsigned int	rstate;		/* receive state bits 6c */
113 	int		debug;		/* debug flags 70 */
114 	struct slcompress *vj;		/* state for VJ header compression */
115 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
116 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
117 	struct compressor *xcomp;	/* transmit packet compressor 8c */
118 	void		*xc_state;	/* its internal state 90 */
119 	struct compressor *rcomp;	/* receive decompressor 94 */
120 	void		*rc_state;	/* its internal state 98 */
121 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
122 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
123 	struct net_device *dev;		/* network interface device a4 */
124 	int		closing;	/* is device closing down? a8 */
125 #ifdef CONFIG_PPP_MULTILINK
126 	int		nxchan;		/* next channel to send something on */
127 	u32		nxseq;		/* next sequence number to send */
128 	int		mrru;		/* MP: max reconst. receive unit */
129 	u32		nextseq;	/* MP: seq no of next packet */
130 	u32		minseq;		/* MP: min of most recent seqnos */
131 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
132 #endif /* CONFIG_PPP_MULTILINK */
133 #ifdef CONFIG_PPP_FILTER
134 	struct sock_filter *pass_filter;	/* filter for packets to pass */
135 	struct sock_filter *active_filter;/* filter for pkts to reset idle */
136 	unsigned pass_len, active_len;
137 #endif /* CONFIG_PPP_FILTER */
138 	struct net	*ppp_net;	/* the net we belong to */
139 };
140 
141 /*
142  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
143  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
144  * SC_MUST_COMP
145  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
146  * Bits in xstate: SC_COMP_RUN
147  */
148 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
149 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
150 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
151 
152 /*
153  * Private data structure for each channel.
154  * This includes the data structure used for multilink.
155  */
156 struct channel {
157 	struct ppp_file	file;		/* stuff for read/write/poll */
158 	struct list_head list;		/* link in all/new_channels list */
159 	struct ppp_channel *chan;	/* public channel data structure */
160 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
161 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
162 	struct ppp	*ppp;		/* ppp unit we're connected to */
163 	struct net	*chan_net;	/* the net channel belongs to */
164 	struct list_head clist;		/* link in list of channels per unit */
165 	rwlock_t	upl;		/* protects `ppp' */
166 #ifdef CONFIG_PPP_MULTILINK
167 	u8		avail;		/* flag used in multilink stuff */
168 	u8		had_frag;	/* >= 1 fragments have been sent */
169 	u32		lastseq;	/* MP: last sequence # received */
170 	int		speed;		/* speed of the corresponding ppp channel*/
171 #endif /* CONFIG_PPP_MULTILINK */
172 };
173 
174 /*
175  * SMP locking issues:
176  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
177  * list and the ppp.n_channels field, you need to take both locks
178  * before you modify them.
179  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
180  * channel.downl.
181  */
182 
183 static DEFINE_MUTEX(ppp_mutex);
184 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
185 static atomic_t channel_count = ATOMIC_INIT(0);
186 
187 /* per-net private data for this module */
188 static int ppp_net_id __read_mostly;
189 struct ppp_net {
190 	/* units to ppp mapping */
191 	struct idr units_idr;
192 
193 	/*
194 	 * all_ppp_mutex protects the units_idr mapping.
195 	 * It also ensures that finding a ppp unit in the units_idr
196 	 * map and updating its file.refcnt field is atomic.
197 	 */
198 	struct mutex all_ppp_mutex;
199 
200 	/* channels */
201 	struct list_head all_channels;
202 	struct list_head new_channels;
203 	int last_channel_index;
204 
205 	/*
206 	 * all_channels_lock protects all_channels and
207 	 * last_channel_index, and the atomicity of find
208 	 * a channel and updating its file.refcnt field.
209 	 */
210 	spinlock_t all_channels_lock;
211 };
212 
213 /* Get the PPP protocol number from a skb */
214 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
215 
216 /* We limit the length of ppp->file.rq to this (arbitrary) value */
217 #define PPP_MAX_RQLEN	32
218 
219 /*
220  * Maximum number of multilink fragments queued up.
221  * This has to be large enough to cope with the maximum latency of
222  * the slowest channel relative to the others.  Strictly it should
223  * depend on the number of channels and their characteristics.
224  */
225 #define PPP_MP_MAX_QLEN	128
226 
227 /* Multilink header bits. */
228 #define B	0x80		/* this fragment begins a packet */
229 #define E	0x40		/* this fragment ends a packet */
230 
231 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
232 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
233 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
234 
235 /* Prototypes. */
236 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
237 			struct file *file, unsigned int cmd, unsigned long arg);
238 static int ppp_xmit_process(struct ppp *ppp);
239 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
240 static void ppp_push(struct ppp *ppp);
241 static void ppp_channel_push(struct channel *pch);
242 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
243 			      struct channel *pch);
244 static void ppp_receive_error(struct ppp *ppp);
245 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
246 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
247 					    struct sk_buff *skb);
248 #ifdef CONFIG_PPP_MULTILINK
249 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
250 				struct channel *pch);
251 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
252 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
253 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
254 #endif /* CONFIG_PPP_MULTILINK */
255 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
256 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
257 static void ppp_ccp_closed(struct ppp *ppp);
258 static struct compressor *find_compressor(int type);
259 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
260 static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
261 static void init_ppp_file(struct ppp_file *pf, int kind);
262 static void ppp_shutdown_interface(struct ppp *ppp);
263 static void ppp_destroy_interface(struct ppp *ppp);
264 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
265 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
266 static int ppp_connect_channel(struct channel *pch, int unit);
267 static int ppp_disconnect_channel(struct channel *pch);
268 static void ppp_destroy_channel(struct channel *pch);
269 static int unit_get(struct idr *p, void *ptr);
270 static int unit_set(struct idr *p, void *ptr, int n);
271 static void unit_put(struct idr *p, int n);
272 static void *unit_find(struct idr *p, int n);
273 
274 static struct class *ppp_class;
275 
276 /* per net-namespace data */
277 static inline struct ppp_net *ppp_pernet(struct net *net)
278 {
279 	BUG_ON(!net);
280 
281 	return net_generic(net, ppp_net_id);
282 }
283 
284 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
285 static inline int proto_to_npindex(int proto)
286 {
287 	switch (proto) {
288 	case PPP_IP:
289 		return NP_IP;
290 	case PPP_IPV6:
291 		return NP_IPV6;
292 	case PPP_IPX:
293 		return NP_IPX;
294 	case PPP_AT:
295 		return NP_AT;
296 	case PPP_MPLS_UC:
297 		return NP_MPLS_UC;
298 	case PPP_MPLS_MC:
299 		return NP_MPLS_MC;
300 	}
301 	return -EINVAL;
302 }
303 
304 /* Translates an NP index into a PPP protocol number */
305 static const int npindex_to_proto[NUM_NP] = {
306 	PPP_IP,
307 	PPP_IPV6,
308 	PPP_IPX,
309 	PPP_AT,
310 	PPP_MPLS_UC,
311 	PPP_MPLS_MC,
312 };
313 
314 /* Translates an ethertype into an NP index */
315 static inline int ethertype_to_npindex(int ethertype)
316 {
317 	switch (ethertype) {
318 	case ETH_P_IP:
319 		return NP_IP;
320 	case ETH_P_IPV6:
321 		return NP_IPV6;
322 	case ETH_P_IPX:
323 		return NP_IPX;
324 	case ETH_P_PPPTALK:
325 	case ETH_P_ATALK:
326 		return NP_AT;
327 	case ETH_P_MPLS_UC:
328 		return NP_MPLS_UC;
329 	case ETH_P_MPLS_MC:
330 		return NP_MPLS_MC;
331 	}
332 	return -1;
333 }
334 
335 /* Translates an NP index into an ethertype */
336 static const int npindex_to_ethertype[NUM_NP] = {
337 	ETH_P_IP,
338 	ETH_P_IPV6,
339 	ETH_P_IPX,
340 	ETH_P_PPPTALK,
341 	ETH_P_MPLS_UC,
342 	ETH_P_MPLS_MC,
343 };
344 
345 /*
346  * Locking shorthand.
347  */
348 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
349 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
350 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
351 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
352 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
353 				     ppp_recv_lock(ppp); } while (0)
354 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
355 				     ppp_xmit_unlock(ppp); } while (0)
356 
357 /*
358  * /dev/ppp device routines.
359  * The /dev/ppp device is used by pppd to control the ppp unit.
360  * It supports the read, write, ioctl and poll functions.
361  * Open instances of /dev/ppp can be in one of three states:
362  * unattached, attached to a ppp unit, or attached to a ppp channel.
363  */
364 static int ppp_open(struct inode *inode, struct file *file)
365 {
366 	/*
367 	 * This could (should?) be enforced by the permissions on /dev/ppp.
368 	 */
369 	if (!capable(CAP_NET_ADMIN))
370 		return -EPERM;
371 	return 0;
372 }
373 
374 static int ppp_release(struct inode *unused, struct file *file)
375 {
376 	struct ppp_file *pf = file->private_data;
377 	struct ppp *ppp;
378 
379 	if (pf) {
380 		file->private_data = NULL;
381 		if (pf->kind == INTERFACE) {
382 			ppp = PF_TO_PPP(pf);
383 			if (file == ppp->owner)
384 				ppp_shutdown_interface(ppp);
385 		}
386 		if (atomic_dec_and_test(&pf->refcnt)) {
387 			switch (pf->kind) {
388 			case INTERFACE:
389 				ppp_destroy_interface(PF_TO_PPP(pf));
390 				break;
391 			case CHANNEL:
392 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
393 				break;
394 			}
395 		}
396 	}
397 	return 0;
398 }
399 
400 static ssize_t ppp_read(struct file *file, char __user *buf,
401 			size_t count, loff_t *ppos)
402 {
403 	struct ppp_file *pf = file->private_data;
404 	DECLARE_WAITQUEUE(wait, current);
405 	ssize_t ret;
406 	struct sk_buff *skb = NULL;
407 	struct iovec iov;
408 
409 	ret = count;
410 
411 	if (!pf)
412 		return -ENXIO;
413 	add_wait_queue(&pf->rwait, &wait);
414 	for (;;) {
415 		set_current_state(TASK_INTERRUPTIBLE);
416 		skb = skb_dequeue(&pf->rq);
417 		if (skb)
418 			break;
419 		ret = 0;
420 		if (pf->dead)
421 			break;
422 		if (pf->kind == INTERFACE) {
423 			/*
424 			 * Return 0 (EOF) on an interface that has no
425 			 * channels connected, unless it is looping
426 			 * network traffic (demand mode).
427 			 */
428 			struct ppp *ppp = PF_TO_PPP(pf);
429 			if (ppp->n_channels == 0 &&
430 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
431 				break;
432 		}
433 		ret = -EAGAIN;
434 		if (file->f_flags & O_NONBLOCK)
435 			break;
436 		ret = -ERESTARTSYS;
437 		if (signal_pending(current))
438 			break;
439 		schedule();
440 	}
441 	set_current_state(TASK_RUNNING);
442 	remove_wait_queue(&pf->rwait, &wait);
443 
444 	if (!skb)
445 		goto out;
446 
447 	ret = -EOVERFLOW;
448 	if (skb->len > count)
449 		goto outf;
450 	ret = -EFAULT;
451 	iov.iov_base = buf;
452 	iov.iov_len = count;
453 	if (skb_copy_datagram_iovec(skb, 0, &iov, skb->len))
454 		goto outf;
455 	ret = skb->len;
456 
457  outf:
458 	kfree_skb(skb);
459  out:
460 	return ret;
461 }
462 
463 static ssize_t ppp_write(struct file *file, const char __user *buf,
464 			 size_t count, loff_t *ppos)
465 {
466 	struct ppp_file *pf = file->private_data;
467 	struct sk_buff *skb;
468 	ssize_t ret;
469 
470 	if (!pf)
471 		return -ENXIO;
472 	ret = -ENOMEM;
473 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
474 	if (!skb)
475 		goto out;
476 	skb_reserve(skb, pf->hdrlen);
477 	ret = -EFAULT;
478 	if (copy_from_user(skb_put(skb, count), buf, count)) {
479 		kfree_skb(skb);
480 		goto out;
481 	}
482 
483 	skb_queue_tail(&pf->xq, skb);
484 
485 	switch (pf->kind) {
486 	case INTERFACE:
487 		ppp_xmit_process(PF_TO_PPP(pf));
488 		break;
489 	case CHANNEL:
490 		ppp_channel_push(PF_TO_CHANNEL(pf));
491 		break;
492 	}
493 
494 	ret = count;
495 
496  out:
497 	return ret;
498 }
499 
500 /* No kernel lock - fine */
501 static unsigned int ppp_poll(struct file *file, poll_table *wait)
502 {
503 	struct ppp_file *pf = file->private_data;
504 	unsigned int mask;
505 
506 	if (!pf)
507 		return 0;
508 	poll_wait(file, &pf->rwait, wait);
509 	mask = POLLOUT | POLLWRNORM;
510 	if (skb_peek(&pf->rq))
511 		mask |= POLLIN | POLLRDNORM;
512 	if (pf->dead)
513 		mask |= POLLHUP;
514 	else if (pf->kind == INTERFACE) {
515 		/* see comment in ppp_read */
516 		struct ppp *ppp = PF_TO_PPP(pf);
517 		if (ppp->n_channels == 0 &&
518 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
519 			mask |= POLLIN | POLLRDNORM;
520 	}
521 
522 	return mask;
523 }
524 
525 #ifdef CONFIG_PPP_FILTER
526 static int get_filter(void __user *arg, struct sock_filter **p)
527 {
528 	struct sock_fprog uprog;
529 	struct sock_filter *code = NULL;
530 	int len, err;
531 
532 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
533 		return -EFAULT;
534 
535 	if (!uprog.len) {
536 		*p = NULL;
537 		return 0;
538 	}
539 
540 	len = uprog.len * sizeof(struct sock_filter);
541 	code = memdup_user(uprog.filter, len);
542 	if (IS_ERR(code))
543 		return PTR_ERR(code);
544 
545 	err = sk_chk_filter(code, uprog.len);
546 	if (err) {
547 		kfree(code);
548 		return err;
549 	}
550 
551 	*p = code;
552 	return uprog.len;
553 }
554 #endif /* CONFIG_PPP_FILTER */
555 
556 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
557 {
558 	struct ppp_file *pf = file->private_data;
559 	struct ppp *ppp;
560 	int err = -EFAULT, val, val2, i;
561 	struct ppp_idle idle;
562 	struct npioctl npi;
563 	int unit, cflags;
564 	struct slcompress *vj;
565 	void __user *argp = (void __user *)arg;
566 	int __user *p = argp;
567 
568 	if (!pf)
569 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
570 					pf, file, cmd, arg);
571 
572 	if (cmd == PPPIOCDETACH) {
573 		/*
574 		 * We have to be careful here... if the file descriptor
575 		 * has been dup'd, we could have another process in the
576 		 * middle of a poll using the same file *, so we had
577 		 * better not free the interface data structures -
578 		 * instead we fail the ioctl.  Even in this case, we
579 		 * shut down the interface if we are the owner of it.
580 		 * Actually, we should get rid of PPPIOCDETACH, userland
581 		 * (i.e. pppd) could achieve the same effect by closing
582 		 * this fd and reopening /dev/ppp.
583 		 */
584 		err = -EINVAL;
585 		mutex_lock(&ppp_mutex);
586 		if (pf->kind == INTERFACE) {
587 			ppp = PF_TO_PPP(pf);
588 			if (file == ppp->owner)
589 				ppp_shutdown_interface(ppp);
590 		}
591 		if (atomic_long_read(&file->f_count) <= 2) {
592 			ppp_release(NULL, file);
593 			err = 0;
594 		} else
595 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
596 				atomic_long_read(&file->f_count));
597 		mutex_unlock(&ppp_mutex);
598 		return err;
599 	}
600 
601 	if (pf->kind == CHANNEL) {
602 		struct channel *pch;
603 		struct ppp_channel *chan;
604 
605 		mutex_lock(&ppp_mutex);
606 		pch = PF_TO_CHANNEL(pf);
607 
608 		switch (cmd) {
609 		case PPPIOCCONNECT:
610 			if (get_user(unit, p))
611 				break;
612 			err = ppp_connect_channel(pch, unit);
613 			break;
614 
615 		case PPPIOCDISCONN:
616 			err = ppp_disconnect_channel(pch);
617 			break;
618 
619 		default:
620 			down_read(&pch->chan_sem);
621 			chan = pch->chan;
622 			err = -ENOTTY;
623 			if (chan && chan->ops->ioctl)
624 				err = chan->ops->ioctl(chan, cmd, arg);
625 			up_read(&pch->chan_sem);
626 		}
627 		mutex_unlock(&ppp_mutex);
628 		return err;
629 	}
630 
631 	if (pf->kind != INTERFACE) {
632 		/* can't happen */
633 		pr_err("PPP: not interface or channel??\n");
634 		return -EINVAL;
635 	}
636 
637 	mutex_lock(&ppp_mutex);
638 	ppp = PF_TO_PPP(pf);
639 	switch (cmd) {
640 	case PPPIOCSMRU:
641 		if (get_user(val, p))
642 			break;
643 		ppp->mru = val;
644 		err = 0;
645 		break;
646 
647 	case PPPIOCSFLAGS:
648 		if (get_user(val, p))
649 			break;
650 		ppp_lock(ppp);
651 		cflags = ppp->flags & ~val;
652 		ppp->flags = val & SC_FLAG_BITS;
653 		ppp_unlock(ppp);
654 		if (cflags & SC_CCP_OPEN)
655 			ppp_ccp_closed(ppp);
656 		err = 0;
657 		break;
658 
659 	case PPPIOCGFLAGS:
660 		val = ppp->flags | ppp->xstate | ppp->rstate;
661 		if (put_user(val, p))
662 			break;
663 		err = 0;
664 		break;
665 
666 	case PPPIOCSCOMPRESS:
667 		err = ppp_set_compress(ppp, arg);
668 		break;
669 
670 	case PPPIOCGUNIT:
671 		if (put_user(ppp->file.index, p))
672 			break;
673 		err = 0;
674 		break;
675 
676 	case PPPIOCSDEBUG:
677 		if (get_user(val, p))
678 			break;
679 		ppp->debug = val;
680 		err = 0;
681 		break;
682 
683 	case PPPIOCGDEBUG:
684 		if (put_user(ppp->debug, p))
685 			break;
686 		err = 0;
687 		break;
688 
689 	case PPPIOCGIDLE:
690 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
691 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
692 		if (copy_to_user(argp, &idle, sizeof(idle)))
693 			break;
694 		err = 0;
695 		break;
696 
697 	case PPPIOCSMAXCID:
698 		if (get_user(val, p))
699 			break;
700 		val2 = 15;
701 		if ((val >> 16) != 0) {
702 			val2 = val >> 16;
703 			val &= 0xffff;
704 		}
705 		vj = slhc_init(val2+1, val+1);
706 		if (!vj) {
707 			netdev_err(ppp->dev,
708 				   "PPP: no memory (VJ compressor)\n");
709 			err = -ENOMEM;
710 			break;
711 		}
712 		ppp_lock(ppp);
713 		if (ppp->vj)
714 			slhc_free(ppp->vj);
715 		ppp->vj = vj;
716 		ppp_unlock(ppp);
717 		err = 0;
718 		break;
719 
720 	case PPPIOCGNPMODE:
721 	case PPPIOCSNPMODE:
722 		if (copy_from_user(&npi, argp, sizeof(npi)))
723 			break;
724 		err = proto_to_npindex(npi.protocol);
725 		if (err < 0)
726 			break;
727 		i = err;
728 		if (cmd == PPPIOCGNPMODE) {
729 			err = -EFAULT;
730 			npi.mode = ppp->npmode[i];
731 			if (copy_to_user(argp, &npi, sizeof(npi)))
732 				break;
733 		} else {
734 			ppp->npmode[i] = npi.mode;
735 			/* we may be able to transmit more packets now (??) */
736 			netif_wake_queue(ppp->dev);
737 		}
738 		err = 0;
739 		break;
740 
741 #ifdef CONFIG_PPP_FILTER
742 	case PPPIOCSPASS:
743 	{
744 		struct sock_filter *code;
745 		err = get_filter(argp, &code);
746 		if (err >= 0) {
747 			ppp_lock(ppp);
748 			kfree(ppp->pass_filter);
749 			ppp->pass_filter = code;
750 			ppp->pass_len = err;
751 			ppp_unlock(ppp);
752 			err = 0;
753 		}
754 		break;
755 	}
756 	case PPPIOCSACTIVE:
757 	{
758 		struct sock_filter *code;
759 		err = get_filter(argp, &code);
760 		if (err >= 0) {
761 			ppp_lock(ppp);
762 			kfree(ppp->active_filter);
763 			ppp->active_filter = code;
764 			ppp->active_len = err;
765 			ppp_unlock(ppp);
766 			err = 0;
767 		}
768 		break;
769 	}
770 #endif /* CONFIG_PPP_FILTER */
771 
772 #ifdef CONFIG_PPP_MULTILINK
773 	case PPPIOCSMRRU:
774 		if (get_user(val, p))
775 			break;
776 		ppp_recv_lock(ppp);
777 		ppp->mrru = val;
778 		ppp_recv_unlock(ppp);
779 		err = 0;
780 		break;
781 #endif /* CONFIG_PPP_MULTILINK */
782 
783 	default:
784 		err = -ENOTTY;
785 	}
786 	mutex_unlock(&ppp_mutex);
787 	return err;
788 }
789 
790 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
791 			struct file *file, unsigned int cmd, unsigned long arg)
792 {
793 	int unit, err = -EFAULT;
794 	struct ppp *ppp;
795 	struct channel *chan;
796 	struct ppp_net *pn;
797 	int __user *p = (int __user *)arg;
798 
799 	mutex_lock(&ppp_mutex);
800 	switch (cmd) {
801 	case PPPIOCNEWUNIT:
802 		/* Create a new ppp unit */
803 		if (get_user(unit, p))
804 			break;
805 		ppp = ppp_create_interface(net, unit, &err);
806 		if (!ppp)
807 			break;
808 		file->private_data = &ppp->file;
809 		ppp->owner = file;
810 		err = -EFAULT;
811 		if (put_user(ppp->file.index, p))
812 			break;
813 		err = 0;
814 		break;
815 
816 	case PPPIOCATTACH:
817 		/* Attach to an existing ppp unit */
818 		if (get_user(unit, p))
819 			break;
820 		err = -ENXIO;
821 		pn = ppp_pernet(net);
822 		mutex_lock(&pn->all_ppp_mutex);
823 		ppp = ppp_find_unit(pn, unit);
824 		if (ppp) {
825 			atomic_inc(&ppp->file.refcnt);
826 			file->private_data = &ppp->file;
827 			err = 0;
828 		}
829 		mutex_unlock(&pn->all_ppp_mutex);
830 		break;
831 
832 	case PPPIOCATTCHAN:
833 		if (get_user(unit, p))
834 			break;
835 		err = -ENXIO;
836 		pn = ppp_pernet(net);
837 		spin_lock_bh(&pn->all_channels_lock);
838 		chan = ppp_find_channel(pn, unit);
839 		if (chan) {
840 			atomic_inc(&chan->file.refcnt);
841 			file->private_data = &chan->file;
842 			err = 0;
843 		}
844 		spin_unlock_bh(&pn->all_channels_lock);
845 		break;
846 
847 	default:
848 		err = -ENOTTY;
849 	}
850 	mutex_unlock(&ppp_mutex);
851 	return err;
852 }
853 
854 static const struct file_operations ppp_device_fops = {
855 	.owner		= THIS_MODULE,
856 	.read		= ppp_read,
857 	.write		= ppp_write,
858 	.poll		= ppp_poll,
859 	.unlocked_ioctl	= ppp_ioctl,
860 	.open		= ppp_open,
861 	.release	= ppp_release,
862 	.llseek		= noop_llseek,
863 };
864 
865 static __net_init int ppp_init_net(struct net *net)
866 {
867 	struct ppp_net *pn = net_generic(net, ppp_net_id);
868 
869 	idr_init(&pn->units_idr);
870 	mutex_init(&pn->all_ppp_mutex);
871 
872 	INIT_LIST_HEAD(&pn->all_channels);
873 	INIT_LIST_HEAD(&pn->new_channels);
874 
875 	spin_lock_init(&pn->all_channels_lock);
876 
877 	return 0;
878 }
879 
880 static __net_exit void ppp_exit_net(struct net *net)
881 {
882 	struct ppp_net *pn = net_generic(net, ppp_net_id);
883 
884 	idr_destroy(&pn->units_idr);
885 }
886 
887 static struct pernet_operations ppp_net_ops = {
888 	.init = ppp_init_net,
889 	.exit = ppp_exit_net,
890 	.id   = &ppp_net_id,
891 	.size = sizeof(struct ppp_net),
892 };
893 
894 #define PPP_MAJOR	108
895 
896 /* Called at boot time if ppp is compiled into the kernel,
897    or at module load time (from init_module) if compiled as a module. */
898 static int __init ppp_init(void)
899 {
900 	int err;
901 
902 	pr_info("PPP generic driver version " PPP_VERSION "\n");
903 
904 	err = register_pernet_device(&ppp_net_ops);
905 	if (err) {
906 		pr_err("failed to register PPP pernet device (%d)\n", err);
907 		goto out;
908 	}
909 
910 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
911 	if (err) {
912 		pr_err("failed to register PPP device (%d)\n", err);
913 		goto out_net;
914 	}
915 
916 	ppp_class = class_create(THIS_MODULE, "ppp");
917 	if (IS_ERR(ppp_class)) {
918 		err = PTR_ERR(ppp_class);
919 		goto out_chrdev;
920 	}
921 
922 	/* not a big deal if we fail here :-) */
923 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
924 
925 	return 0;
926 
927 out_chrdev:
928 	unregister_chrdev(PPP_MAJOR, "ppp");
929 out_net:
930 	unregister_pernet_device(&ppp_net_ops);
931 out:
932 	return err;
933 }
934 
935 /*
936  * Network interface unit routines.
937  */
938 static netdev_tx_t
939 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
940 {
941 	struct ppp *ppp = netdev_priv(dev);
942 	int npi, proto;
943 	unsigned char *pp;
944 
945 	npi = ethertype_to_npindex(ntohs(skb->protocol));
946 	if (npi < 0)
947 		goto outf;
948 
949 	/* Drop, accept or reject the packet */
950 	switch (ppp->npmode[npi]) {
951 	case NPMODE_PASS:
952 		break;
953 	case NPMODE_QUEUE:
954 		/* it would be nice to have a way to tell the network
955 		   system to queue this one up for later. */
956 		goto outf;
957 	case NPMODE_DROP:
958 	case NPMODE_ERROR:
959 		goto outf;
960 	}
961 
962 	/* Put the 2-byte PPP protocol number on the front,
963 	   making sure there is room for the address and control fields. */
964 	if (skb_cow_head(skb, PPP_HDRLEN))
965 		goto outf;
966 
967 	pp = skb_push(skb, 2);
968 	proto = npindex_to_proto[npi];
969 	put_unaligned_be16(proto, pp);
970 
971 	skb_queue_tail(&ppp->file.xq, skb);
972 	if (!ppp_xmit_process(ppp))
973 		netif_stop_queue(dev);
974 	return NETDEV_TX_OK;
975 
976  outf:
977 	kfree_skb(skb);
978 	++dev->stats.tx_dropped;
979 	return NETDEV_TX_OK;
980 }
981 
982 static int
983 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
984 {
985 	struct ppp *ppp = netdev_priv(dev);
986 	int err = -EFAULT;
987 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
988 	struct ppp_stats stats;
989 	struct ppp_comp_stats cstats;
990 	char *vers;
991 
992 	switch (cmd) {
993 	case SIOCGPPPSTATS:
994 		ppp_get_stats(ppp, &stats);
995 		if (copy_to_user(addr, &stats, sizeof(stats)))
996 			break;
997 		err = 0;
998 		break;
999 
1000 	case SIOCGPPPCSTATS:
1001 		memset(&cstats, 0, sizeof(cstats));
1002 		if (ppp->xc_state)
1003 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1004 		if (ppp->rc_state)
1005 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1006 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1007 			break;
1008 		err = 0;
1009 		break;
1010 
1011 	case SIOCGPPPVER:
1012 		vers = PPP_VERSION;
1013 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1014 			break;
1015 		err = 0;
1016 		break;
1017 
1018 	default:
1019 		err = -EINVAL;
1020 	}
1021 
1022 	return err;
1023 }
1024 
1025 static const struct net_device_ops ppp_netdev_ops = {
1026 	.ndo_start_xmit = ppp_start_xmit,
1027 	.ndo_do_ioctl   = ppp_net_ioctl,
1028 };
1029 
1030 static void ppp_setup(struct net_device *dev)
1031 {
1032 	dev->netdev_ops = &ppp_netdev_ops;
1033 	dev->hard_header_len = PPP_HDRLEN;
1034 	dev->mtu = PPP_MRU;
1035 	dev->addr_len = 0;
1036 	dev->tx_queue_len = 3;
1037 	dev->type = ARPHRD_PPP;
1038 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1039 	dev->features |= NETIF_F_NETNS_LOCAL;
1040 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
1041 }
1042 
1043 /*
1044  * Transmit-side routines.
1045  */
1046 
1047 /*
1048  * Called to do any work queued up on the transmit side
1049  * that can now be done.
1050  */
1051 static int
1052 ppp_xmit_process(struct ppp *ppp)
1053 {
1054 	struct sk_buff *skb;
1055 	int ret = 0;
1056 
1057 	ppp_xmit_lock(ppp);
1058 	if (!ppp->closing) {
1059 		ppp_push(ppp);
1060 		while (!ppp->xmit_pending &&
1061 		       (skb = skb_dequeue(&ppp->file.xq)))
1062 			ppp_send_frame(ppp, skb);
1063 		/* If there's no work left to do, tell the core net
1064 		   code that we can accept some more. */
1065 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq)) {
1066 			netif_wake_queue(ppp->dev);
1067 			ret = 1;
1068 		}
1069 	}
1070 	ppp_xmit_unlock(ppp);
1071 	return ret;
1072 }
1073 
1074 static inline struct sk_buff *
1075 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1076 {
1077 	struct sk_buff *new_skb;
1078 	int len;
1079 	int new_skb_size = ppp->dev->mtu +
1080 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1081 	int compressor_skb_size = ppp->dev->mtu +
1082 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1083 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1084 	if (!new_skb) {
1085 		if (net_ratelimit())
1086 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1087 		return NULL;
1088 	}
1089 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1090 		skb_reserve(new_skb,
1091 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1092 
1093 	/* compressor still expects A/C bytes in hdr */
1094 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1095 				   new_skb->data, skb->len + 2,
1096 				   compressor_skb_size);
1097 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1098 		kfree_skb(skb);
1099 		skb = new_skb;
1100 		skb_put(skb, len);
1101 		skb_pull(skb, 2);	/* pull off A/C bytes */
1102 	} else if (len == 0) {
1103 		/* didn't compress, or CCP not up yet */
1104 		kfree_skb(new_skb);
1105 		new_skb = skb;
1106 	} else {
1107 		/*
1108 		 * (len < 0)
1109 		 * MPPE requires that we do not send unencrypted
1110 		 * frames.  The compressor will return -1 if we
1111 		 * should drop the frame.  We cannot simply test
1112 		 * the compress_proto because MPPE and MPPC share
1113 		 * the same number.
1114 		 */
1115 		if (net_ratelimit())
1116 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1117 		kfree_skb(skb);
1118 		kfree_skb(new_skb);
1119 		new_skb = NULL;
1120 	}
1121 	return new_skb;
1122 }
1123 
1124 /*
1125  * Compress and send a frame.
1126  * The caller should have locked the xmit path,
1127  * and xmit_pending should be 0.
1128  */
1129 static void
1130 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1131 {
1132 	int proto = PPP_PROTO(skb);
1133 	struct sk_buff *new_skb;
1134 	int len;
1135 	unsigned char *cp;
1136 
1137 	if (proto < 0x8000) {
1138 #ifdef CONFIG_PPP_FILTER
1139 		/* check if we should pass this packet */
1140 		/* the filter instructions are constructed assuming
1141 		   a four-byte PPP header on each packet */
1142 		*skb_push(skb, 2) = 1;
1143 		if (ppp->pass_filter &&
1144 		    sk_run_filter(skb, ppp->pass_filter) == 0) {
1145 			if (ppp->debug & 1)
1146 				netdev_printk(KERN_DEBUG, ppp->dev,
1147 					      "PPP: outbound frame "
1148 					      "not passed\n");
1149 			kfree_skb(skb);
1150 			return;
1151 		}
1152 		/* if this packet passes the active filter, record the time */
1153 		if (!(ppp->active_filter &&
1154 		      sk_run_filter(skb, ppp->active_filter) == 0))
1155 			ppp->last_xmit = jiffies;
1156 		skb_pull(skb, 2);
1157 #else
1158 		/* for data packets, record the time */
1159 		ppp->last_xmit = jiffies;
1160 #endif /* CONFIG_PPP_FILTER */
1161 	}
1162 
1163 	++ppp->dev->stats.tx_packets;
1164 	ppp->dev->stats.tx_bytes += skb->len - 2;
1165 
1166 	switch (proto) {
1167 	case PPP_IP:
1168 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1169 			break;
1170 		/* try to do VJ TCP header compression */
1171 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1172 				    GFP_ATOMIC);
1173 		if (!new_skb) {
1174 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1175 			goto drop;
1176 		}
1177 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1178 		cp = skb->data + 2;
1179 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1180 				    new_skb->data + 2, &cp,
1181 				    !(ppp->flags & SC_NO_TCP_CCID));
1182 		if (cp == skb->data + 2) {
1183 			/* didn't compress */
1184 			kfree_skb(new_skb);
1185 		} else {
1186 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1187 				proto = PPP_VJC_COMP;
1188 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1189 			} else {
1190 				proto = PPP_VJC_UNCOMP;
1191 				cp[0] = skb->data[2];
1192 			}
1193 			kfree_skb(skb);
1194 			skb = new_skb;
1195 			cp = skb_put(skb, len + 2);
1196 			cp[0] = 0;
1197 			cp[1] = proto;
1198 		}
1199 		break;
1200 
1201 	case PPP_CCP:
1202 		/* peek at outbound CCP frames */
1203 		ppp_ccp_peek(ppp, skb, 0);
1204 		break;
1205 	}
1206 
1207 	/* try to do packet compression */
1208 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1209 	    proto != PPP_LCP && proto != PPP_CCP) {
1210 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1211 			if (net_ratelimit())
1212 				netdev_err(ppp->dev,
1213 					   "ppp: compression required but "
1214 					   "down - pkt dropped.\n");
1215 			goto drop;
1216 		}
1217 		skb = pad_compress_skb(ppp, skb);
1218 		if (!skb)
1219 			goto drop;
1220 	}
1221 
1222 	/*
1223 	 * If we are waiting for traffic (demand dialling),
1224 	 * queue it up for pppd to receive.
1225 	 */
1226 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1227 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1228 			goto drop;
1229 		skb_queue_tail(&ppp->file.rq, skb);
1230 		wake_up_interruptible(&ppp->file.rwait);
1231 		return;
1232 	}
1233 
1234 	ppp->xmit_pending = skb;
1235 	ppp_push(ppp);
1236 	return;
1237 
1238  drop:
1239 	kfree_skb(skb);
1240 	++ppp->dev->stats.tx_errors;
1241 }
1242 
1243 /*
1244  * Try to send the frame in xmit_pending.
1245  * The caller should have the xmit path locked.
1246  */
1247 static void
1248 ppp_push(struct ppp *ppp)
1249 {
1250 	struct list_head *list;
1251 	struct channel *pch;
1252 	struct sk_buff *skb = ppp->xmit_pending;
1253 
1254 	if (!skb)
1255 		return;
1256 
1257 	list = &ppp->channels;
1258 	if (list_empty(list)) {
1259 		/* nowhere to send the packet, just drop it */
1260 		ppp->xmit_pending = NULL;
1261 		kfree_skb(skb);
1262 		return;
1263 	}
1264 
1265 	if ((ppp->flags & SC_MULTILINK) == 0) {
1266 		/* not doing multilink: send it down the first channel */
1267 		list = list->next;
1268 		pch = list_entry(list, struct channel, clist);
1269 
1270 		spin_lock_bh(&pch->downl);
1271 		if (pch->chan) {
1272 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1273 				ppp->xmit_pending = NULL;
1274 		} else {
1275 			/* channel got unregistered */
1276 			kfree_skb(skb);
1277 			ppp->xmit_pending = NULL;
1278 		}
1279 		spin_unlock_bh(&pch->downl);
1280 		return;
1281 	}
1282 
1283 #ifdef CONFIG_PPP_MULTILINK
1284 	/* Multilink: fragment the packet over as many links
1285 	   as can take the packet at the moment. */
1286 	if (!ppp_mp_explode(ppp, skb))
1287 		return;
1288 #endif /* CONFIG_PPP_MULTILINK */
1289 
1290 	ppp->xmit_pending = NULL;
1291 	kfree_skb(skb);
1292 }
1293 
1294 #ifdef CONFIG_PPP_MULTILINK
1295 static bool mp_protocol_compress __read_mostly = true;
1296 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1297 MODULE_PARM_DESC(mp_protocol_compress,
1298 		 "compress protocol id in multilink fragments");
1299 
1300 /*
1301  * Divide a packet to be transmitted into fragments and
1302  * send them out the individual links.
1303  */
1304 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1305 {
1306 	int len, totlen;
1307 	int i, bits, hdrlen, mtu;
1308 	int flen;
1309 	int navail, nfree, nzero;
1310 	int nbigger;
1311 	int totspeed;
1312 	int totfree;
1313 	unsigned char *p, *q;
1314 	struct list_head *list;
1315 	struct channel *pch;
1316 	struct sk_buff *frag;
1317 	struct ppp_channel *chan;
1318 
1319 	totspeed = 0; /*total bitrate of the bundle*/
1320 	nfree = 0; /* # channels which have no packet already queued */
1321 	navail = 0; /* total # of usable channels (not deregistered) */
1322 	nzero = 0; /* number of channels with zero speed associated*/
1323 	totfree = 0; /*total # of channels available and
1324 				  *having no queued packets before
1325 				  *starting the fragmentation*/
1326 
1327 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1328 	i = 0;
1329 	list_for_each_entry(pch, &ppp->channels, clist) {
1330 		if (pch->chan) {
1331 			pch->avail = 1;
1332 			navail++;
1333 			pch->speed = pch->chan->speed;
1334 		} else {
1335 			pch->avail = 0;
1336 		}
1337 		if (pch->avail) {
1338 			if (skb_queue_empty(&pch->file.xq) ||
1339 				!pch->had_frag) {
1340 					if (pch->speed == 0)
1341 						nzero++;
1342 					else
1343 						totspeed += pch->speed;
1344 
1345 					pch->avail = 2;
1346 					++nfree;
1347 					++totfree;
1348 				}
1349 			if (!pch->had_frag && i < ppp->nxchan)
1350 				ppp->nxchan = i;
1351 		}
1352 		++i;
1353 	}
1354 	/*
1355 	 * Don't start sending this packet unless at least half of
1356 	 * the channels are free.  This gives much better TCP
1357 	 * performance if we have a lot of channels.
1358 	 */
1359 	if (nfree == 0 || nfree < navail / 2)
1360 		return 0; /* can't take now, leave it in xmit_pending */
1361 
1362 	/* Do protocol field compression */
1363 	p = skb->data;
1364 	len = skb->len;
1365 	if (*p == 0 && mp_protocol_compress) {
1366 		++p;
1367 		--len;
1368 	}
1369 
1370 	totlen = len;
1371 	nbigger = len % nfree;
1372 
1373 	/* skip to the channel after the one we last used
1374 	   and start at that one */
1375 	list = &ppp->channels;
1376 	for (i = 0; i < ppp->nxchan; ++i) {
1377 		list = list->next;
1378 		if (list == &ppp->channels) {
1379 			i = 0;
1380 			break;
1381 		}
1382 	}
1383 
1384 	/* create a fragment for each channel */
1385 	bits = B;
1386 	while (len > 0) {
1387 		list = list->next;
1388 		if (list == &ppp->channels) {
1389 			i = 0;
1390 			continue;
1391 		}
1392 		pch = list_entry(list, struct channel, clist);
1393 		++i;
1394 		if (!pch->avail)
1395 			continue;
1396 
1397 		/*
1398 		 * Skip this channel if it has a fragment pending already and
1399 		 * we haven't given a fragment to all of the free channels.
1400 		 */
1401 		if (pch->avail == 1) {
1402 			if (nfree > 0)
1403 				continue;
1404 		} else {
1405 			pch->avail = 1;
1406 		}
1407 
1408 		/* check the channel's mtu and whether it is still attached. */
1409 		spin_lock_bh(&pch->downl);
1410 		if (pch->chan == NULL) {
1411 			/* can't use this channel, it's being deregistered */
1412 			if (pch->speed == 0)
1413 				nzero--;
1414 			else
1415 				totspeed -= pch->speed;
1416 
1417 			spin_unlock_bh(&pch->downl);
1418 			pch->avail = 0;
1419 			totlen = len;
1420 			totfree--;
1421 			nfree--;
1422 			if (--navail == 0)
1423 				break;
1424 			continue;
1425 		}
1426 
1427 		/*
1428 		*if the channel speed is not set divide
1429 		*the packet evenly among the free channels;
1430 		*otherwise divide it according to the speed
1431 		*of the channel we are going to transmit on
1432 		*/
1433 		flen = len;
1434 		if (nfree > 0) {
1435 			if (pch->speed == 0) {
1436 				flen = len/nfree;
1437 				if (nbigger > 0) {
1438 					flen++;
1439 					nbigger--;
1440 				}
1441 			} else {
1442 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1443 					((totspeed*totfree)/pch->speed)) - hdrlen;
1444 				if (nbigger > 0) {
1445 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1446 					nbigger -= ((totfree - nzero)*pch->speed)/
1447 							totspeed;
1448 				}
1449 			}
1450 			nfree--;
1451 		}
1452 
1453 		/*
1454 		 *check if we are on the last channel or
1455 		 *we exceded the length of the data to
1456 		 *fragment
1457 		 */
1458 		if ((nfree <= 0) || (flen > len))
1459 			flen = len;
1460 		/*
1461 		 *it is not worth to tx on slow channels:
1462 		 *in that case from the resulting flen according to the
1463 		 *above formula will be equal or less than zero.
1464 		 *Skip the channel in this case
1465 		 */
1466 		if (flen <= 0) {
1467 			pch->avail = 2;
1468 			spin_unlock_bh(&pch->downl);
1469 			continue;
1470 		}
1471 
1472 		/*
1473 		 * hdrlen includes the 2-byte PPP protocol field, but the
1474 		 * MTU counts only the payload excluding the protocol field.
1475 		 * (RFC1661 Section 2)
1476 		 */
1477 		mtu = pch->chan->mtu - (hdrlen - 2);
1478 		if (mtu < 4)
1479 			mtu = 4;
1480 		if (flen > mtu)
1481 			flen = mtu;
1482 		if (flen == len)
1483 			bits |= E;
1484 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1485 		if (!frag)
1486 			goto noskb;
1487 		q = skb_put(frag, flen + hdrlen);
1488 
1489 		/* make the MP header */
1490 		put_unaligned_be16(PPP_MP, q);
1491 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1492 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1493 			q[3] = ppp->nxseq;
1494 		} else {
1495 			q[2] = bits;
1496 			q[3] = ppp->nxseq >> 16;
1497 			q[4] = ppp->nxseq >> 8;
1498 			q[5] = ppp->nxseq;
1499 		}
1500 
1501 		memcpy(q + hdrlen, p, flen);
1502 
1503 		/* try to send it down the channel */
1504 		chan = pch->chan;
1505 		if (!skb_queue_empty(&pch->file.xq) ||
1506 			!chan->ops->start_xmit(chan, frag))
1507 			skb_queue_tail(&pch->file.xq, frag);
1508 		pch->had_frag = 1;
1509 		p += flen;
1510 		len -= flen;
1511 		++ppp->nxseq;
1512 		bits = 0;
1513 		spin_unlock_bh(&pch->downl);
1514 	}
1515 	ppp->nxchan = i;
1516 
1517 	return 1;
1518 
1519  noskb:
1520 	spin_unlock_bh(&pch->downl);
1521 	if (ppp->debug & 1)
1522 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1523 	++ppp->dev->stats.tx_errors;
1524 	++ppp->nxseq;
1525 	return 1;	/* abandon the frame */
1526 }
1527 #endif /* CONFIG_PPP_MULTILINK */
1528 
1529 /*
1530  * Try to send data out on a channel.
1531  */
1532 static void
1533 ppp_channel_push(struct channel *pch)
1534 {
1535 	struct sk_buff *skb;
1536 	struct ppp *ppp;
1537 
1538 	spin_lock_bh(&pch->downl);
1539 	if (pch->chan) {
1540 		while (!skb_queue_empty(&pch->file.xq)) {
1541 			skb = skb_dequeue(&pch->file.xq);
1542 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1543 				/* put the packet back and try again later */
1544 				skb_queue_head(&pch->file.xq, skb);
1545 				break;
1546 			}
1547 		}
1548 	} else {
1549 		/* channel got deregistered */
1550 		skb_queue_purge(&pch->file.xq);
1551 	}
1552 	spin_unlock_bh(&pch->downl);
1553 	/* see if there is anything from the attached unit to be sent */
1554 	if (skb_queue_empty(&pch->file.xq)) {
1555 		read_lock_bh(&pch->upl);
1556 		ppp = pch->ppp;
1557 		if (ppp)
1558 			ppp_xmit_process(ppp);
1559 		read_unlock_bh(&pch->upl);
1560 	}
1561 }
1562 
1563 /*
1564  * Receive-side routines.
1565  */
1566 
1567 struct ppp_mp_skb_parm {
1568 	u32		sequence;
1569 	u8		BEbits;
1570 };
1571 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1572 
1573 static inline void
1574 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1575 {
1576 	ppp_recv_lock(ppp);
1577 	if (!ppp->closing)
1578 		ppp_receive_frame(ppp, skb, pch);
1579 	else
1580 		kfree_skb(skb);
1581 	ppp_recv_unlock(ppp);
1582 }
1583 
1584 void
1585 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1586 {
1587 	struct channel *pch = chan->ppp;
1588 	int proto;
1589 
1590 	if (!pch) {
1591 		kfree_skb(skb);
1592 		return;
1593 	}
1594 
1595 	read_lock_bh(&pch->upl);
1596 	if (!pskb_may_pull(skb, 2)) {
1597 		kfree_skb(skb);
1598 		if (pch->ppp) {
1599 			++pch->ppp->dev->stats.rx_length_errors;
1600 			ppp_receive_error(pch->ppp);
1601 		}
1602 		goto done;
1603 	}
1604 
1605 	proto = PPP_PROTO(skb);
1606 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1607 		/* put it on the channel queue */
1608 		skb_queue_tail(&pch->file.rq, skb);
1609 		/* drop old frames if queue too long */
1610 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1611 		       (skb = skb_dequeue(&pch->file.rq)))
1612 			kfree_skb(skb);
1613 		wake_up_interruptible(&pch->file.rwait);
1614 	} else {
1615 		ppp_do_recv(pch->ppp, skb, pch);
1616 	}
1617 
1618 done:
1619 	read_unlock_bh(&pch->upl);
1620 }
1621 
1622 /* Put a 0-length skb in the receive queue as an error indication */
1623 void
1624 ppp_input_error(struct ppp_channel *chan, int code)
1625 {
1626 	struct channel *pch = chan->ppp;
1627 	struct sk_buff *skb;
1628 
1629 	if (!pch)
1630 		return;
1631 
1632 	read_lock_bh(&pch->upl);
1633 	if (pch->ppp) {
1634 		skb = alloc_skb(0, GFP_ATOMIC);
1635 		if (skb) {
1636 			skb->len = 0;		/* probably unnecessary */
1637 			skb->cb[0] = code;
1638 			ppp_do_recv(pch->ppp, skb, pch);
1639 		}
1640 	}
1641 	read_unlock_bh(&pch->upl);
1642 }
1643 
1644 /*
1645  * We come in here to process a received frame.
1646  * The receive side of the ppp unit is locked.
1647  */
1648 static void
1649 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1650 {
1651 	/* note: a 0-length skb is used as an error indication */
1652 	if (skb->len > 0) {
1653 #ifdef CONFIG_PPP_MULTILINK
1654 		/* XXX do channel-level decompression here */
1655 		if (PPP_PROTO(skb) == PPP_MP)
1656 			ppp_receive_mp_frame(ppp, skb, pch);
1657 		else
1658 #endif /* CONFIG_PPP_MULTILINK */
1659 			ppp_receive_nonmp_frame(ppp, skb);
1660 	} else {
1661 		kfree_skb(skb);
1662 		ppp_receive_error(ppp);
1663 	}
1664 }
1665 
1666 static void
1667 ppp_receive_error(struct ppp *ppp)
1668 {
1669 	++ppp->dev->stats.rx_errors;
1670 	if (ppp->vj)
1671 		slhc_toss(ppp->vj);
1672 }
1673 
1674 static void
1675 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1676 {
1677 	struct sk_buff *ns;
1678 	int proto, len, npi;
1679 
1680 	/*
1681 	 * Decompress the frame, if compressed.
1682 	 * Note that some decompressors need to see uncompressed frames
1683 	 * that come in as well as compressed frames.
1684 	 */
1685 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1686 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1687 		skb = ppp_decompress_frame(ppp, skb);
1688 
1689 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1690 		goto err;
1691 
1692 	proto = PPP_PROTO(skb);
1693 	switch (proto) {
1694 	case PPP_VJC_COMP:
1695 		/* decompress VJ compressed packets */
1696 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1697 			goto err;
1698 
1699 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1700 			/* copy to a new sk_buff with more tailroom */
1701 			ns = dev_alloc_skb(skb->len + 128);
1702 			if (!ns) {
1703 				netdev_err(ppp->dev, "PPP: no memory "
1704 					   "(VJ decomp)\n");
1705 				goto err;
1706 			}
1707 			skb_reserve(ns, 2);
1708 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1709 			kfree_skb(skb);
1710 			skb = ns;
1711 		}
1712 		else
1713 			skb->ip_summed = CHECKSUM_NONE;
1714 
1715 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1716 		if (len <= 0) {
1717 			netdev_printk(KERN_DEBUG, ppp->dev,
1718 				      "PPP: VJ decompression error\n");
1719 			goto err;
1720 		}
1721 		len += 2;
1722 		if (len > skb->len)
1723 			skb_put(skb, len - skb->len);
1724 		else if (len < skb->len)
1725 			skb_trim(skb, len);
1726 		proto = PPP_IP;
1727 		break;
1728 
1729 	case PPP_VJC_UNCOMP:
1730 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1731 			goto err;
1732 
1733 		/* Until we fix the decompressor need to make sure
1734 		 * data portion is linear.
1735 		 */
1736 		if (!pskb_may_pull(skb, skb->len))
1737 			goto err;
1738 
1739 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1740 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1741 			goto err;
1742 		}
1743 		proto = PPP_IP;
1744 		break;
1745 
1746 	case PPP_CCP:
1747 		ppp_ccp_peek(ppp, skb, 1);
1748 		break;
1749 	}
1750 
1751 	++ppp->dev->stats.rx_packets;
1752 	ppp->dev->stats.rx_bytes += skb->len - 2;
1753 
1754 	npi = proto_to_npindex(proto);
1755 	if (npi < 0) {
1756 		/* control or unknown frame - pass it to pppd */
1757 		skb_queue_tail(&ppp->file.rq, skb);
1758 		/* limit queue length by dropping old frames */
1759 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1760 		       (skb = skb_dequeue(&ppp->file.rq)))
1761 			kfree_skb(skb);
1762 		/* wake up any process polling or blocking on read */
1763 		wake_up_interruptible(&ppp->file.rwait);
1764 
1765 	} else {
1766 		/* network protocol frame - give it to the kernel */
1767 
1768 #ifdef CONFIG_PPP_FILTER
1769 		/* check if the packet passes the pass and active filters */
1770 		/* the filter instructions are constructed assuming
1771 		   a four-byte PPP header on each packet */
1772 		if (ppp->pass_filter || ppp->active_filter) {
1773 			if (skb_cloned(skb) &&
1774 			    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1775 				goto err;
1776 
1777 			*skb_push(skb, 2) = 0;
1778 			if (ppp->pass_filter &&
1779 			    sk_run_filter(skb, ppp->pass_filter) == 0) {
1780 				if (ppp->debug & 1)
1781 					netdev_printk(KERN_DEBUG, ppp->dev,
1782 						      "PPP: inbound frame "
1783 						      "not passed\n");
1784 				kfree_skb(skb);
1785 				return;
1786 			}
1787 			if (!(ppp->active_filter &&
1788 			      sk_run_filter(skb, ppp->active_filter) == 0))
1789 				ppp->last_recv = jiffies;
1790 			__skb_pull(skb, 2);
1791 		} else
1792 #endif /* CONFIG_PPP_FILTER */
1793 			ppp->last_recv = jiffies;
1794 
1795 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1796 		    ppp->npmode[npi] != NPMODE_PASS) {
1797 			kfree_skb(skb);
1798 		} else {
1799 			/* chop off protocol */
1800 			skb_pull_rcsum(skb, 2);
1801 			skb->dev = ppp->dev;
1802 			skb->protocol = htons(npindex_to_ethertype[npi]);
1803 			skb_reset_mac_header(skb);
1804 			netif_rx(skb);
1805 		}
1806 	}
1807 	return;
1808 
1809  err:
1810 	kfree_skb(skb);
1811 	ppp_receive_error(ppp);
1812 }
1813 
1814 static struct sk_buff *
1815 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1816 {
1817 	int proto = PPP_PROTO(skb);
1818 	struct sk_buff *ns;
1819 	int len;
1820 
1821 	/* Until we fix all the decompressor's need to make sure
1822 	 * data portion is linear.
1823 	 */
1824 	if (!pskb_may_pull(skb, skb->len))
1825 		goto err;
1826 
1827 	if (proto == PPP_COMP) {
1828 		int obuff_size;
1829 
1830 		switch(ppp->rcomp->compress_proto) {
1831 		case CI_MPPE:
1832 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1833 			break;
1834 		default:
1835 			obuff_size = ppp->mru + PPP_HDRLEN;
1836 			break;
1837 		}
1838 
1839 		ns = dev_alloc_skb(obuff_size);
1840 		if (!ns) {
1841 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1842 				   "no memory\n");
1843 			goto err;
1844 		}
1845 		/* the decompressor still expects the A/C bytes in the hdr */
1846 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1847 				skb->len + 2, ns->data, obuff_size);
1848 		if (len < 0) {
1849 			/* Pass the compressed frame to pppd as an
1850 			   error indication. */
1851 			if (len == DECOMP_FATALERROR)
1852 				ppp->rstate |= SC_DC_FERROR;
1853 			kfree_skb(ns);
1854 			goto err;
1855 		}
1856 
1857 		kfree_skb(skb);
1858 		skb = ns;
1859 		skb_put(skb, len);
1860 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1861 
1862 	} else {
1863 		/* Uncompressed frame - pass to decompressor so it
1864 		   can update its dictionary if necessary. */
1865 		if (ppp->rcomp->incomp)
1866 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1867 					   skb->len + 2);
1868 	}
1869 
1870 	return skb;
1871 
1872  err:
1873 	ppp->rstate |= SC_DC_ERROR;
1874 	ppp_receive_error(ppp);
1875 	return skb;
1876 }
1877 
1878 #ifdef CONFIG_PPP_MULTILINK
1879 /*
1880  * Receive a multilink frame.
1881  * We put it on the reconstruction queue and then pull off
1882  * as many completed frames as we can.
1883  */
1884 static void
1885 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1886 {
1887 	u32 mask, seq;
1888 	struct channel *ch;
1889 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1890 
1891 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1892 		goto err;		/* no good, throw it away */
1893 
1894 	/* Decode sequence number and begin/end bits */
1895 	if (ppp->flags & SC_MP_SHORTSEQ) {
1896 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1897 		mask = 0xfff;
1898 	} else {
1899 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1900 		mask = 0xffffff;
1901 	}
1902 	PPP_MP_CB(skb)->BEbits = skb->data[2];
1903 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
1904 
1905 	/*
1906 	 * Do protocol ID decompression on the first fragment of each packet.
1907 	 */
1908 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1909 		*skb_push(skb, 1) = 0;
1910 
1911 	/*
1912 	 * Expand sequence number to 32 bits, making it as close
1913 	 * as possible to ppp->minseq.
1914 	 */
1915 	seq |= ppp->minseq & ~mask;
1916 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1917 		seq += mask + 1;
1918 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1919 		seq -= mask + 1;	/* should never happen */
1920 	PPP_MP_CB(skb)->sequence = seq;
1921 	pch->lastseq = seq;
1922 
1923 	/*
1924 	 * If this packet comes before the next one we were expecting,
1925 	 * drop it.
1926 	 */
1927 	if (seq_before(seq, ppp->nextseq)) {
1928 		kfree_skb(skb);
1929 		++ppp->dev->stats.rx_dropped;
1930 		ppp_receive_error(ppp);
1931 		return;
1932 	}
1933 
1934 	/*
1935 	 * Reevaluate minseq, the minimum over all channels of the
1936 	 * last sequence number received on each channel.  Because of
1937 	 * the increasing sequence number rule, we know that any fragment
1938 	 * before `minseq' which hasn't arrived is never going to arrive.
1939 	 * The list of channels can't change because we have the receive
1940 	 * side of the ppp unit locked.
1941 	 */
1942 	list_for_each_entry(ch, &ppp->channels, clist) {
1943 		if (seq_before(ch->lastseq, seq))
1944 			seq = ch->lastseq;
1945 	}
1946 	if (seq_before(ppp->minseq, seq))
1947 		ppp->minseq = seq;
1948 
1949 	/* Put the fragment on the reconstruction queue */
1950 	ppp_mp_insert(ppp, skb);
1951 
1952 	/* If the queue is getting long, don't wait any longer for packets
1953 	   before the start of the queue. */
1954 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
1955 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
1956 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
1957 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
1958 	}
1959 
1960 	/* Pull completed packets off the queue and receive them. */
1961 	while ((skb = ppp_mp_reconstruct(ppp))) {
1962 		if (pskb_may_pull(skb, 2))
1963 			ppp_receive_nonmp_frame(ppp, skb);
1964 		else {
1965 			++ppp->dev->stats.rx_length_errors;
1966 			kfree_skb(skb);
1967 			ppp_receive_error(ppp);
1968 		}
1969 	}
1970 
1971 	return;
1972 
1973  err:
1974 	kfree_skb(skb);
1975 	ppp_receive_error(ppp);
1976 }
1977 
1978 /*
1979  * Insert a fragment on the MP reconstruction queue.
1980  * The queue is ordered by increasing sequence number.
1981  */
1982 static void
1983 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
1984 {
1985 	struct sk_buff *p;
1986 	struct sk_buff_head *list = &ppp->mrq;
1987 	u32 seq = PPP_MP_CB(skb)->sequence;
1988 
1989 	/* N.B. we don't need to lock the list lock because we have the
1990 	   ppp unit receive-side lock. */
1991 	skb_queue_walk(list, p) {
1992 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
1993 			break;
1994 	}
1995 	__skb_queue_before(list, p, skb);
1996 }
1997 
1998 /*
1999  * Reconstruct a packet from the MP fragment queue.
2000  * We go through increasing sequence numbers until we find a
2001  * complete packet, or we get to the sequence number for a fragment
2002  * which hasn't arrived but might still do so.
2003  */
2004 static struct sk_buff *
2005 ppp_mp_reconstruct(struct ppp *ppp)
2006 {
2007 	u32 seq = ppp->nextseq;
2008 	u32 minseq = ppp->minseq;
2009 	struct sk_buff_head *list = &ppp->mrq;
2010 	struct sk_buff *p, *tmp;
2011 	struct sk_buff *head, *tail;
2012 	struct sk_buff *skb = NULL;
2013 	int lost = 0, len = 0;
2014 
2015 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2016 		return NULL;
2017 	head = list->next;
2018 	tail = NULL;
2019 	skb_queue_walk_safe(list, p, tmp) {
2020 	again:
2021 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2022 			/* this can't happen, anyway ignore the skb */
2023 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2024 				   "seq %u < %u\n",
2025 				   PPP_MP_CB(p)->sequence, seq);
2026 			__skb_unlink(p, list);
2027 			kfree_skb(p);
2028 			continue;
2029 		}
2030 		if (PPP_MP_CB(p)->sequence != seq) {
2031 			u32 oldseq;
2032 			/* Fragment `seq' is missing.  If it is after
2033 			   minseq, it might arrive later, so stop here. */
2034 			if (seq_after(seq, minseq))
2035 				break;
2036 			/* Fragment `seq' is lost, keep going. */
2037 			lost = 1;
2038 			oldseq = seq;
2039 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2040 				minseq + 1: PPP_MP_CB(p)->sequence;
2041 
2042 			if (ppp->debug & 1)
2043 				netdev_printk(KERN_DEBUG, ppp->dev,
2044 					      "lost frag %u..%u\n",
2045 					      oldseq, seq-1);
2046 
2047 			goto again;
2048 		}
2049 
2050 		/*
2051 		 * At this point we know that all the fragments from
2052 		 * ppp->nextseq to seq are either present or lost.
2053 		 * Also, there are no complete packets in the queue
2054 		 * that have no missing fragments and end before this
2055 		 * fragment.
2056 		 */
2057 
2058 		/* B bit set indicates this fragment starts a packet */
2059 		if (PPP_MP_CB(p)->BEbits & B) {
2060 			head = p;
2061 			lost = 0;
2062 			len = 0;
2063 		}
2064 
2065 		len += p->len;
2066 
2067 		/* Got a complete packet yet? */
2068 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2069 		    (PPP_MP_CB(head)->BEbits & B)) {
2070 			if (len > ppp->mrru + 2) {
2071 				++ppp->dev->stats.rx_length_errors;
2072 				netdev_printk(KERN_DEBUG, ppp->dev,
2073 					      "PPP: reconstructed packet"
2074 					      " is too long (%d)\n", len);
2075 			} else {
2076 				tail = p;
2077 				break;
2078 			}
2079 			ppp->nextseq = seq + 1;
2080 		}
2081 
2082 		/*
2083 		 * If this is the ending fragment of a packet,
2084 		 * and we haven't found a complete valid packet yet,
2085 		 * we can discard up to and including this fragment.
2086 		 */
2087 		if (PPP_MP_CB(p)->BEbits & E) {
2088 			struct sk_buff *tmp2;
2089 
2090 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2091 				if (ppp->debug & 1)
2092 					netdev_printk(KERN_DEBUG, ppp->dev,
2093 						      "discarding frag %u\n",
2094 						      PPP_MP_CB(p)->sequence);
2095 				__skb_unlink(p, list);
2096 				kfree_skb(p);
2097 			}
2098 			head = skb_peek(list);
2099 			if (!head)
2100 				break;
2101 		}
2102 		++seq;
2103 	}
2104 
2105 	/* If we have a complete packet, copy it all into one skb. */
2106 	if (tail != NULL) {
2107 		/* If we have discarded any fragments,
2108 		   signal a receive error. */
2109 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2110 			skb_queue_walk_safe(list, p, tmp) {
2111 				if (p == head)
2112 					break;
2113 				if (ppp->debug & 1)
2114 					netdev_printk(KERN_DEBUG, ppp->dev,
2115 						      "discarding frag %u\n",
2116 						      PPP_MP_CB(p)->sequence);
2117 				__skb_unlink(p, list);
2118 				kfree_skb(p);
2119 			}
2120 
2121 			if (ppp->debug & 1)
2122 				netdev_printk(KERN_DEBUG, ppp->dev,
2123 					      "  missed pkts %u..%u\n",
2124 					      ppp->nextseq,
2125 					      PPP_MP_CB(head)->sequence-1);
2126 			++ppp->dev->stats.rx_dropped;
2127 			ppp_receive_error(ppp);
2128 		}
2129 
2130 		skb = head;
2131 		if (head != tail) {
2132 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2133 			p = skb_queue_next(list, head);
2134 			__skb_unlink(skb, list);
2135 			skb_queue_walk_from_safe(list, p, tmp) {
2136 				__skb_unlink(p, list);
2137 				*fragpp = p;
2138 				p->next = NULL;
2139 				fragpp = &p->next;
2140 
2141 				skb->len += p->len;
2142 				skb->data_len += p->len;
2143 				skb->truesize += p->truesize;
2144 
2145 				if (p == tail)
2146 					break;
2147 			}
2148 		} else {
2149 			__skb_unlink(skb, list);
2150 		}
2151 
2152 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2153 	}
2154 
2155 	return skb;
2156 }
2157 #endif /* CONFIG_PPP_MULTILINK */
2158 
2159 /*
2160  * Channel interface.
2161  */
2162 
2163 /* Create a new, unattached ppp channel. */
2164 int ppp_register_channel(struct ppp_channel *chan)
2165 {
2166 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2167 }
2168 
2169 /* Create a new, unattached ppp channel for specified net. */
2170 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2171 {
2172 	struct channel *pch;
2173 	struct ppp_net *pn;
2174 
2175 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2176 	if (!pch)
2177 		return -ENOMEM;
2178 
2179 	pn = ppp_pernet(net);
2180 
2181 	pch->ppp = NULL;
2182 	pch->chan = chan;
2183 	pch->chan_net = net;
2184 	chan->ppp = pch;
2185 	init_ppp_file(&pch->file, CHANNEL);
2186 	pch->file.hdrlen = chan->hdrlen;
2187 #ifdef CONFIG_PPP_MULTILINK
2188 	pch->lastseq = -1;
2189 #endif /* CONFIG_PPP_MULTILINK */
2190 	init_rwsem(&pch->chan_sem);
2191 	spin_lock_init(&pch->downl);
2192 	rwlock_init(&pch->upl);
2193 
2194 	spin_lock_bh(&pn->all_channels_lock);
2195 	pch->file.index = ++pn->last_channel_index;
2196 	list_add(&pch->list, &pn->new_channels);
2197 	atomic_inc(&channel_count);
2198 	spin_unlock_bh(&pn->all_channels_lock);
2199 
2200 	return 0;
2201 }
2202 
2203 /*
2204  * Return the index of a channel.
2205  */
2206 int ppp_channel_index(struct ppp_channel *chan)
2207 {
2208 	struct channel *pch = chan->ppp;
2209 
2210 	if (pch)
2211 		return pch->file.index;
2212 	return -1;
2213 }
2214 
2215 /*
2216  * Return the PPP unit number to which a channel is connected.
2217  */
2218 int ppp_unit_number(struct ppp_channel *chan)
2219 {
2220 	struct channel *pch = chan->ppp;
2221 	int unit = -1;
2222 
2223 	if (pch) {
2224 		read_lock_bh(&pch->upl);
2225 		if (pch->ppp)
2226 			unit = pch->ppp->file.index;
2227 		read_unlock_bh(&pch->upl);
2228 	}
2229 	return unit;
2230 }
2231 
2232 /*
2233  * Return the PPP device interface name of a channel.
2234  */
2235 char *ppp_dev_name(struct ppp_channel *chan)
2236 {
2237 	struct channel *pch = chan->ppp;
2238 	char *name = NULL;
2239 
2240 	if (pch) {
2241 		read_lock_bh(&pch->upl);
2242 		if (pch->ppp && pch->ppp->dev)
2243 			name = pch->ppp->dev->name;
2244 		read_unlock_bh(&pch->upl);
2245 	}
2246 	return name;
2247 }
2248 
2249 
2250 /*
2251  * Disconnect a channel from the generic layer.
2252  * This must be called in process context.
2253  */
2254 void
2255 ppp_unregister_channel(struct ppp_channel *chan)
2256 {
2257 	struct channel *pch = chan->ppp;
2258 	struct ppp_net *pn;
2259 
2260 	if (!pch)
2261 		return;		/* should never happen */
2262 
2263 	chan->ppp = NULL;
2264 
2265 	/*
2266 	 * This ensures that we have returned from any calls into the
2267 	 * the channel's start_xmit or ioctl routine before we proceed.
2268 	 */
2269 	down_write(&pch->chan_sem);
2270 	spin_lock_bh(&pch->downl);
2271 	pch->chan = NULL;
2272 	spin_unlock_bh(&pch->downl);
2273 	up_write(&pch->chan_sem);
2274 	ppp_disconnect_channel(pch);
2275 
2276 	pn = ppp_pernet(pch->chan_net);
2277 	spin_lock_bh(&pn->all_channels_lock);
2278 	list_del(&pch->list);
2279 	spin_unlock_bh(&pn->all_channels_lock);
2280 
2281 	pch->file.dead = 1;
2282 	wake_up_interruptible(&pch->file.rwait);
2283 	if (atomic_dec_and_test(&pch->file.refcnt))
2284 		ppp_destroy_channel(pch);
2285 }
2286 
2287 /*
2288  * Callback from a channel when it can accept more to transmit.
2289  * This should be called at BH/softirq level, not interrupt level.
2290  */
2291 void
2292 ppp_output_wakeup(struct ppp_channel *chan)
2293 {
2294 	struct channel *pch = chan->ppp;
2295 
2296 	if (!pch)
2297 		return;
2298 	ppp_channel_push(pch);
2299 }
2300 
2301 /*
2302  * Compression control.
2303  */
2304 
2305 /* Process the PPPIOCSCOMPRESS ioctl. */
2306 static int
2307 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2308 {
2309 	int err;
2310 	struct compressor *cp, *ocomp;
2311 	struct ppp_option_data data;
2312 	void *state, *ostate;
2313 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2314 
2315 	err = -EFAULT;
2316 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2317 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2318 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2319 		goto out;
2320 	err = -EINVAL;
2321 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2322 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2323 		goto out;
2324 
2325 	cp = try_then_request_module(
2326 		find_compressor(ccp_option[0]),
2327 		"ppp-compress-%d", ccp_option[0]);
2328 	if (!cp)
2329 		goto out;
2330 
2331 	err = -ENOBUFS;
2332 	if (data.transmit) {
2333 		state = cp->comp_alloc(ccp_option, data.length);
2334 		if (state) {
2335 			ppp_xmit_lock(ppp);
2336 			ppp->xstate &= ~SC_COMP_RUN;
2337 			ocomp = ppp->xcomp;
2338 			ostate = ppp->xc_state;
2339 			ppp->xcomp = cp;
2340 			ppp->xc_state = state;
2341 			ppp_xmit_unlock(ppp);
2342 			if (ostate) {
2343 				ocomp->comp_free(ostate);
2344 				module_put(ocomp->owner);
2345 			}
2346 			err = 0;
2347 		} else
2348 			module_put(cp->owner);
2349 
2350 	} else {
2351 		state = cp->decomp_alloc(ccp_option, data.length);
2352 		if (state) {
2353 			ppp_recv_lock(ppp);
2354 			ppp->rstate &= ~SC_DECOMP_RUN;
2355 			ocomp = ppp->rcomp;
2356 			ostate = ppp->rc_state;
2357 			ppp->rcomp = cp;
2358 			ppp->rc_state = state;
2359 			ppp_recv_unlock(ppp);
2360 			if (ostate) {
2361 				ocomp->decomp_free(ostate);
2362 				module_put(ocomp->owner);
2363 			}
2364 			err = 0;
2365 		} else
2366 			module_put(cp->owner);
2367 	}
2368 
2369  out:
2370 	return err;
2371 }
2372 
2373 /*
2374  * Look at a CCP packet and update our state accordingly.
2375  * We assume the caller has the xmit or recv path locked.
2376  */
2377 static void
2378 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2379 {
2380 	unsigned char *dp;
2381 	int len;
2382 
2383 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2384 		return;	/* no header */
2385 	dp = skb->data + 2;
2386 
2387 	switch (CCP_CODE(dp)) {
2388 	case CCP_CONFREQ:
2389 
2390 		/* A ConfReq starts negotiation of compression
2391 		 * in one direction of transmission,
2392 		 * and hence brings it down...but which way?
2393 		 *
2394 		 * Remember:
2395 		 * A ConfReq indicates what the sender would like to receive
2396 		 */
2397 		if(inbound)
2398 			/* He is proposing what I should send */
2399 			ppp->xstate &= ~SC_COMP_RUN;
2400 		else
2401 			/* I am proposing to what he should send */
2402 			ppp->rstate &= ~SC_DECOMP_RUN;
2403 
2404 		break;
2405 
2406 	case CCP_TERMREQ:
2407 	case CCP_TERMACK:
2408 		/*
2409 		 * CCP is going down, both directions of transmission
2410 		 */
2411 		ppp->rstate &= ~SC_DECOMP_RUN;
2412 		ppp->xstate &= ~SC_COMP_RUN;
2413 		break;
2414 
2415 	case CCP_CONFACK:
2416 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2417 			break;
2418 		len = CCP_LENGTH(dp);
2419 		if (!pskb_may_pull(skb, len + 2))
2420 			return;		/* too short */
2421 		dp += CCP_HDRLEN;
2422 		len -= CCP_HDRLEN;
2423 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2424 			break;
2425 		if (inbound) {
2426 			/* we will start receiving compressed packets */
2427 			if (!ppp->rc_state)
2428 				break;
2429 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2430 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2431 				ppp->rstate |= SC_DECOMP_RUN;
2432 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2433 			}
2434 		} else {
2435 			/* we will soon start sending compressed packets */
2436 			if (!ppp->xc_state)
2437 				break;
2438 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2439 					ppp->file.index, 0, ppp->debug))
2440 				ppp->xstate |= SC_COMP_RUN;
2441 		}
2442 		break;
2443 
2444 	case CCP_RESETACK:
2445 		/* reset the [de]compressor */
2446 		if ((ppp->flags & SC_CCP_UP) == 0)
2447 			break;
2448 		if (inbound) {
2449 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2450 				ppp->rcomp->decomp_reset(ppp->rc_state);
2451 				ppp->rstate &= ~SC_DC_ERROR;
2452 			}
2453 		} else {
2454 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2455 				ppp->xcomp->comp_reset(ppp->xc_state);
2456 		}
2457 		break;
2458 	}
2459 }
2460 
2461 /* Free up compression resources. */
2462 static void
2463 ppp_ccp_closed(struct ppp *ppp)
2464 {
2465 	void *xstate, *rstate;
2466 	struct compressor *xcomp, *rcomp;
2467 
2468 	ppp_lock(ppp);
2469 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2470 	ppp->xstate = 0;
2471 	xcomp = ppp->xcomp;
2472 	xstate = ppp->xc_state;
2473 	ppp->xc_state = NULL;
2474 	ppp->rstate = 0;
2475 	rcomp = ppp->rcomp;
2476 	rstate = ppp->rc_state;
2477 	ppp->rc_state = NULL;
2478 	ppp_unlock(ppp);
2479 
2480 	if (xstate) {
2481 		xcomp->comp_free(xstate);
2482 		module_put(xcomp->owner);
2483 	}
2484 	if (rstate) {
2485 		rcomp->decomp_free(rstate);
2486 		module_put(rcomp->owner);
2487 	}
2488 }
2489 
2490 /* List of compressors. */
2491 static LIST_HEAD(compressor_list);
2492 static DEFINE_SPINLOCK(compressor_list_lock);
2493 
2494 struct compressor_entry {
2495 	struct list_head list;
2496 	struct compressor *comp;
2497 };
2498 
2499 static struct compressor_entry *
2500 find_comp_entry(int proto)
2501 {
2502 	struct compressor_entry *ce;
2503 
2504 	list_for_each_entry(ce, &compressor_list, list) {
2505 		if (ce->comp->compress_proto == proto)
2506 			return ce;
2507 	}
2508 	return NULL;
2509 }
2510 
2511 /* Register a compressor */
2512 int
2513 ppp_register_compressor(struct compressor *cp)
2514 {
2515 	struct compressor_entry *ce;
2516 	int ret;
2517 	spin_lock(&compressor_list_lock);
2518 	ret = -EEXIST;
2519 	if (find_comp_entry(cp->compress_proto))
2520 		goto out;
2521 	ret = -ENOMEM;
2522 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2523 	if (!ce)
2524 		goto out;
2525 	ret = 0;
2526 	ce->comp = cp;
2527 	list_add(&ce->list, &compressor_list);
2528  out:
2529 	spin_unlock(&compressor_list_lock);
2530 	return ret;
2531 }
2532 
2533 /* Unregister a compressor */
2534 void
2535 ppp_unregister_compressor(struct compressor *cp)
2536 {
2537 	struct compressor_entry *ce;
2538 
2539 	spin_lock(&compressor_list_lock);
2540 	ce = find_comp_entry(cp->compress_proto);
2541 	if (ce && ce->comp == cp) {
2542 		list_del(&ce->list);
2543 		kfree(ce);
2544 	}
2545 	spin_unlock(&compressor_list_lock);
2546 }
2547 
2548 /* Find a compressor. */
2549 static struct compressor *
2550 find_compressor(int type)
2551 {
2552 	struct compressor_entry *ce;
2553 	struct compressor *cp = NULL;
2554 
2555 	spin_lock(&compressor_list_lock);
2556 	ce = find_comp_entry(type);
2557 	if (ce) {
2558 		cp = ce->comp;
2559 		if (!try_module_get(cp->owner))
2560 			cp = NULL;
2561 	}
2562 	spin_unlock(&compressor_list_lock);
2563 	return cp;
2564 }
2565 
2566 /*
2567  * Miscelleneous stuff.
2568  */
2569 
2570 static void
2571 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2572 {
2573 	struct slcompress *vj = ppp->vj;
2574 
2575 	memset(st, 0, sizeof(*st));
2576 	st->p.ppp_ipackets = ppp->dev->stats.rx_packets;
2577 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2578 	st->p.ppp_ibytes = ppp->dev->stats.rx_bytes;
2579 	st->p.ppp_opackets = ppp->dev->stats.tx_packets;
2580 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2581 	st->p.ppp_obytes = ppp->dev->stats.tx_bytes;
2582 	if (!vj)
2583 		return;
2584 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2585 	st->vj.vjs_compressed = vj->sls_o_compressed;
2586 	st->vj.vjs_searches = vj->sls_o_searches;
2587 	st->vj.vjs_misses = vj->sls_o_misses;
2588 	st->vj.vjs_errorin = vj->sls_i_error;
2589 	st->vj.vjs_tossed = vj->sls_i_tossed;
2590 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2591 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2592 }
2593 
2594 /*
2595  * Stuff for handling the lists of ppp units and channels
2596  * and for initialization.
2597  */
2598 
2599 /*
2600  * Create a new ppp interface unit.  Fails if it can't allocate memory
2601  * or if there is already a unit with the requested number.
2602  * unit == -1 means allocate a new number.
2603  */
2604 static struct ppp *
2605 ppp_create_interface(struct net *net, int unit, int *retp)
2606 {
2607 	struct ppp *ppp;
2608 	struct ppp_net *pn;
2609 	struct net_device *dev = NULL;
2610 	int ret = -ENOMEM;
2611 	int i;
2612 
2613 	dev = alloc_netdev(sizeof(struct ppp), "", ppp_setup);
2614 	if (!dev)
2615 		goto out1;
2616 
2617 	pn = ppp_pernet(net);
2618 
2619 	ppp = netdev_priv(dev);
2620 	ppp->dev = dev;
2621 	ppp->mru = PPP_MRU;
2622 	init_ppp_file(&ppp->file, INTERFACE);
2623 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2624 	for (i = 0; i < NUM_NP; ++i)
2625 		ppp->npmode[i] = NPMODE_PASS;
2626 	INIT_LIST_HEAD(&ppp->channels);
2627 	spin_lock_init(&ppp->rlock);
2628 	spin_lock_init(&ppp->wlock);
2629 #ifdef CONFIG_PPP_MULTILINK
2630 	ppp->minseq = -1;
2631 	skb_queue_head_init(&ppp->mrq);
2632 #endif /* CONFIG_PPP_MULTILINK */
2633 
2634 	/*
2635 	 * drum roll: don't forget to set
2636 	 * the net device is belong to
2637 	 */
2638 	dev_net_set(dev, net);
2639 
2640 	mutex_lock(&pn->all_ppp_mutex);
2641 
2642 	if (unit < 0) {
2643 		unit = unit_get(&pn->units_idr, ppp);
2644 		if (unit < 0) {
2645 			ret = unit;
2646 			goto out2;
2647 		}
2648 	} else {
2649 		ret = -EEXIST;
2650 		if (unit_find(&pn->units_idr, unit))
2651 			goto out2; /* unit already exists */
2652 		/*
2653 		 * if caller need a specified unit number
2654 		 * lets try to satisfy him, otherwise --
2655 		 * he should better ask us for new unit number
2656 		 *
2657 		 * NOTE: yes I know that returning EEXIST it's not
2658 		 * fair but at least pppd will ask us to allocate
2659 		 * new unit in this case so user is happy :)
2660 		 */
2661 		unit = unit_set(&pn->units_idr, ppp, unit);
2662 		if (unit < 0)
2663 			goto out2;
2664 	}
2665 
2666 	/* Initialize the new ppp unit */
2667 	ppp->file.index = unit;
2668 	sprintf(dev->name, "ppp%d", unit);
2669 
2670 	ret = register_netdev(dev);
2671 	if (ret != 0) {
2672 		unit_put(&pn->units_idr, unit);
2673 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2674 			   dev->name, ret);
2675 		goto out2;
2676 	}
2677 
2678 	ppp->ppp_net = net;
2679 
2680 	atomic_inc(&ppp_unit_count);
2681 	mutex_unlock(&pn->all_ppp_mutex);
2682 
2683 	*retp = 0;
2684 	return ppp;
2685 
2686 out2:
2687 	mutex_unlock(&pn->all_ppp_mutex);
2688 	free_netdev(dev);
2689 out1:
2690 	*retp = ret;
2691 	return NULL;
2692 }
2693 
2694 /*
2695  * Initialize a ppp_file structure.
2696  */
2697 static void
2698 init_ppp_file(struct ppp_file *pf, int kind)
2699 {
2700 	pf->kind = kind;
2701 	skb_queue_head_init(&pf->xq);
2702 	skb_queue_head_init(&pf->rq);
2703 	atomic_set(&pf->refcnt, 1);
2704 	init_waitqueue_head(&pf->rwait);
2705 }
2706 
2707 /*
2708  * Take down a ppp interface unit - called when the owning file
2709  * (the one that created the unit) is closed or detached.
2710  */
2711 static void ppp_shutdown_interface(struct ppp *ppp)
2712 {
2713 	struct ppp_net *pn;
2714 
2715 	pn = ppp_pernet(ppp->ppp_net);
2716 	mutex_lock(&pn->all_ppp_mutex);
2717 
2718 	/* This will call dev_close() for us. */
2719 	ppp_lock(ppp);
2720 	if (!ppp->closing) {
2721 		ppp->closing = 1;
2722 		ppp_unlock(ppp);
2723 		unregister_netdev(ppp->dev);
2724 		unit_put(&pn->units_idr, ppp->file.index);
2725 	} else
2726 		ppp_unlock(ppp);
2727 
2728 	ppp->file.dead = 1;
2729 	ppp->owner = NULL;
2730 	wake_up_interruptible(&ppp->file.rwait);
2731 
2732 	mutex_unlock(&pn->all_ppp_mutex);
2733 }
2734 
2735 /*
2736  * Free the memory used by a ppp unit.  This is only called once
2737  * there are no channels connected to the unit and no file structs
2738  * that reference the unit.
2739  */
2740 static void ppp_destroy_interface(struct ppp *ppp)
2741 {
2742 	atomic_dec(&ppp_unit_count);
2743 
2744 	if (!ppp->file.dead || ppp->n_channels) {
2745 		/* "can't happen" */
2746 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2747 			   "but dead=%d n_channels=%d !\n",
2748 			   ppp, ppp->file.dead, ppp->n_channels);
2749 		return;
2750 	}
2751 
2752 	ppp_ccp_closed(ppp);
2753 	if (ppp->vj) {
2754 		slhc_free(ppp->vj);
2755 		ppp->vj = NULL;
2756 	}
2757 	skb_queue_purge(&ppp->file.xq);
2758 	skb_queue_purge(&ppp->file.rq);
2759 #ifdef CONFIG_PPP_MULTILINK
2760 	skb_queue_purge(&ppp->mrq);
2761 #endif /* CONFIG_PPP_MULTILINK */
2762 #ifdef CONFIG_PPP_FILTER
2763 	kfree(ppp->pass_filter);
2764 	ppp->pass_filter = NULL;
2765 	kfree(ppp->active_filter);
2766 	ppp->active_filter = NULL;
2767 #endif /* CONFIG_PPP_FILTER */
2768 
2769 	kfree_skb(ppp->xmit_pending);
2770 
2771 	free_netdev(ppp->dev);
2772 }
2773 
2774 /*
2775  * Locate an existing ppp unit.
2776  * The caller should have locked the all_ppp_mutex.
2777  */
2778 static struct ppp *
2779 ppp_find_unit(struct ppp_net *pn, int unit)
2780 {
2781 	return unit_find(&pn->units_idr, unit);
2782 }
2783 
2784 /*
2785  * Locate an existing ppp channel.
2786  * The caller should have locked the all_channels_lock.
2787  * First we look in the new_channels list, then in the
2788  * all_channels list.  If found in the new_channels list,
2789  * we move it to the all_channels list.  This is for speed
2790  * when we have a lot of channels in use.
2791  */
2792 static struct channel *
2793 ppp_find_channel(struct ppp_net *pn, int unit)
2794 {
2795 	struct channel *pch;
2796 
2797 	list_for_each_entry(pch, &pn->new_channels, list) {
2798 		if (pch->file.index == unit) {
2799 			list_move(&pch->list, &pn->all_channels);
2800 			return pch;
2801 		}
2802 	}
2803 
2804 	list_for_each_entry(pch, &pn->all_channels, list) {
2805 		if (pch->file.index == unit)
2806 			return pch;
2807 	}
2808 
2809 	return NULL;
2810 }
2811 
2812 /*
2813  * Connect a PPP channel to a PPP interface unit.
2814  */
2815 static int
2816 ppp_connect_channel(struct channel *pch, int unit)
2817 {
2818 	struct ppp *ppp;
2819 	struct ppp_net *pn;
2820 	int ret = -ENXIO;
2821 	int hdrlen;
2822 
2823 	pn = ppp_pernet(pch->chan_net);
2824 
2825 	mutex_lock(&pn->all_ppp_mutex);
2826 	ppp = ppp_find_unit(pn, unit);
2827 	if (!ppp)
2828 		goto out;
2829 	write_lock_bh(&pch->upl);
2830 	ret = -EINVAL;
2831 	if (pch->ppp)
2832 		goto outl;
2833 
2834 	ppp_lock(ppp);
2835 	if (pch->file.hdrlen > ppp->file.hdrlen)
2836 		ppp->file.hdrlen = pch->file.hdrlen;
2837 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2838 	if (hdrlen > ppp->dev->hard_header_len)
2839 		ppp->dev->hard_header_len = hdrlen;
2840 	list_add_tail(&pch->clist, &ppp->channels);
2841 	++ppp->n_channels;
2842 	pch->ppp = ppp;
2843 	atomic_inc(&ppp->file.refcnt);
2844 	ppp_unlock(ppp);
2845 	ret = 0;
2846 
2847  outl:
2848 	write_unlock_bh(&pch->upl);
2849  out:
2850 	mutex_unlock(&pn->all_ppp_mutex);
2851 	return ret;
2852 }
2853 
2854 /*
2855  * Disconnect a channel from its ppp unit.
2856  */
2857 static int
2858 ppp_disconnect_channel(struct channel *pch)
2859 {
2860 	struct ppp *ppp;
2861 	int err = -EINVAL;
2862 
2863 	write_lock_bh(&pch->upl);
2864 	ppp = pch->ppp;
2865 	pch->ppp = NULL;
2866 	write_unlock_bh(&pch->upl);
2867 	if (ppp) {
2868 		/* remove it from the ppp unit's list */
2869 		ppp_lock(ppp);
2870 		list_del(&pch->clist);
2871 		if (--ppp->n_channels == 0)
2872 			wake_up_interruptible(&ppp->file.rwait);
2873 		ppp_unlock(ppp);
2874 		if (atomic_dec_and_test(&ppp->file.refcnt))
2875 			ppp_destroy_interface(ppp);
2876 		err = 0;
2877 	}
2878 	return err;
2879 }
2880 
2881 /*
2882  * Free up the resources used by a ppp channel.
2883  */
2884 static void ppp_destroy_channel(struct channel *pch)
2885 {
2886 	atomic_dec(&channel_count);
2887 
2888 	if (!pch->file.dead) {
2889 		/* "can't happen" */
2890 		pr_err("ppp: destroying undead channel %p !\n", pch);
2891 		return;
2892 	}
2893 	skb_queue_purge(&pch->file.xq);
2894 	skb_queue_purge(&pch->file.rq);
2895 	kfree(pch);
2896 }
2897 
2898 static void __exit ppp_cleanup(void)
2899 {
2900 	/* should never happen */
2901 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2902 		pr_err("PPP: removing module but units remain!\n");
2903 	unregister_chrdev(PPP_MAJOR, "ppp");
2904 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2905 	class_destroy(ppp_class);
2906 	unregister_pernet_device(&ppp_net_ops);
2907 }
2908 
2909 /*
2910  * Units handling. Caller must protect concurrent access
2911  * by holding all_ppp_mutex
2912  */
2913 
2914 static int __unit_alloc(struct idr *p, void *ptr, int n)
2915 {
2916 	int unit, err;
2917 
2918 again:
2919 	if (!idr_pre_get(p, GFP_KERNEL)) {
2920 		pr_err("PPP: No free memory for idr\n");
2921 		return -ENOMEM;
2922 	}
2923 
2924 	err = idr_get_new_above(p, ptr, n, &unit);
2925 	if (err < 0) {
2926 		if (err == -EAGAIN)
2927 			goto again;
2928 		return err;
2929 	}
2930 
2931 	return unit;
2932 }
2933 
2934 /* associate pointer with specified number */
2935 static int unit_set(struct idr *p, void *ptr, int n)
2936 {
2937 	int unit;
2938 
2939 	unit = __unit_alloc(p, ptr, n);
2940 	if (unit < 0)
2941 		return unit;
2942 	else if (unit != n) {
2943 		idr_remove(p, unit);
2944 		return -EINVAL;
2945 	}
2946 
2947 	return unit;
2948 }
2949 
2950 /* get new free unit number and associate pointer with it */
2951 static int unit_get(struct idr *p, void *ptr)
2952 {
2953 	return __unit_alloc(p, ptr, 0);
2954 }
2955 
2956 /* put unit number back to a pool */
2957 static void unit_put(struct idr *p, int n)
2958 {
2959 	idr_remove(p, n);
2960 }
2961 
2962 /* get pointer associated with the number */
2963 static void *unit_find(struct idr *p, int n)
2964 {
2965 	return idr_find(p, n);
2966 }
2967 
2968 /* Module/initialization stuff */
2969 
2970 module_init(ppp_init);
2971 module_exit(ppp_cleanup);
2972 
2973 EXPORT_SYMBOL(ppp_register_net_channel);
2974 EXPORT_SYMBOL(ppp_register_channel);
2975 EXPORT_SYMBOL(ppp_unregister_channel);
2976 EXPORT_SYMBOL(ppp_channel_index);
2977 EXPORT_SYMBOL(ppp_unit_number);
2978 EXPORT_SYMBOL(ppp_dev_name);
2979 EXPORT_SYMBOL(ppp_input);
2980 EXPORT_SYMBOL(ppp_input_error);
2981 EXPORT_SYMBOL(ppp_output_wakeup);
2982 EXPORT_SYMBOL(ppp_register_compressor);
2983 EXPORT_SYMBOL(ppp_unregister_compressor);
2984 MODULE_LICENSE("GPL");
2985 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
2986 MODULE_ALIAS("devname:ppp");
2987