xref: /linux/drivers/net/ppp/ppp_generic.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/if_ppp.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure describing one ppp unit.
98  * A ppp unit corresponds to a ppp network interface device
99  * and represents a multilink bundle.
100  * It can have 0 or more ppp channels connected to it.
101  */
102 struct ppp {
103 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
104 	struct file	*owner;		/* file that owns this unit 48 */
105 	struct list_head channels;	/* list of attached channels 4c */
106 	int		n_channels;	/* how many channels are attached 54 */
107 	spinlock_t	rlock;		/* lock for receive side 58 */
108 	spinlock_t	wlock;		/* lock for transmit side 5c */
109 	int		mru;		/* max receive unit 60 */
110 	unsigned int	flags;		/* control bits 64 */
111 	unsigned int	xstate;		/* transmit state bits 68 */
112 	unsigned int	rstate;		/* receive state bits 6c */
113 	int		debug;		/* debug flags 70 */
114 	struct slcompress *vj;		/* state for VJ header compression */
115 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
116 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
117 	struct compressor *xcomp;	/* transmit packet compressor 8c */
118 	void		*xc_state;	/* its internal state 90 */
119 	struct compressor *rcomp;	/* receive decompressor 94 */
120 	void		*rc_state;	/* its internal state 98 */
121 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
122 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
123 	struct net_device *dev;		/* network interface device a4 */
124 	int		closing;	/* is device closing down? a8 */
125 #ifdef CONFIG_PPP_MULTILINK
126 	int		nxchan;		/* next channel to send something on */
127 	u32		nxseq;		/* next sequence number to send */
128 	int		mrru;		/* MP: max reconst. receive unit */
129 	u32		nextseq;	/* MP: seq no of next packet */
130 	u32		minseq;		/* MP: min of most recent seqnos */
131 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
132 #endif /* CONFIG_PPP_MULTILINK */
133 #ifdef CONFIG_PPP_FILTER
134 	struct sock_filter *pass_filter;	/* filter for packets to pass */
135 	struct sock_filter *active_filter;/* filter for pkts to reset idle */
136 	unsigned pass_len, active_len;
137 #endif /* CONFIG_PPP_FILTER */
138 	struct net	*ppp_net;	/* the net we belong to */
139 };
140 
141 /*
142  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
143  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
144  * SC_MUST_COMP
145  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
146  * Bits in xstate: SC_COMP_RUN
147  */
148 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
149 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
150 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
151 
152 /*
153  * Private data structure for each channel.
154  * This includes the data structure used for multilink.
155  */
156 struct channel {
157 	struct ppp_file	file;		/* stuff for read/write/poll */
158 	struct list_head list;		/* link in all/new_channels list */
159 	struct ppp_channel *chan;	/* public channel data structure */
160 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
161 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
162 	struct ppp	*ppp;		/* ppp unit we're connected to */
163 	struct net	*chan_net;	/* the net channel belongs to */
164 	struct list_head clist;		/* link in list of channels per unit */
165 	rwlock_t	upl;		/* protects `ppp' */
166 #ifdef CONFIG_PPP_MULTILINK
167 	u8		avail;		/* flag used in multilink stuff */
168 	u8		had_frag;	/* >= 1 fragments have been sent */
169 	u32		lastseq;	/* MP: last sequence # received */
170 	int		speed;		/* speed of the corresponding ppp channel*/
171 #endif /* CONFIG_PPP_MULTILINK */
172 };
173 
174 /*
175  * SMP locking issues:
176  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
177  * list and the ppp.n_channels field, you need to take both locks
178  * before you modify them.
179  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
180  * channel.downl.
181  */
182 
183 static DEFINE_MUTEX(ppp_mutex);
184 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
185 static atomic_t channel_count = ATOMIC_INIT(0);
186 
187 /* per-net private data for this module */
188 static int ppp_net_id __read_mostly;
189 struct ppp_net {
190 	/* units to ppp mapping */
191 	struct idr units_idr;
192 
193 	/*
194 	 * all_ppp_mutex protects the units_idr mapping.
195 	 * It also ensures that finding a ppp unit in the units_idr
196 	 * map and updating its file.refcnt field is atomic.
197 	 */
198 	struct mutex all_ppp_mutex;
199 
200 	/* channels */
201 	struct list_head all_channels;
202 	struct list_head new_channels;
203 	int last_channel_index;
204 
205 	/*
206 	 * all_channels_lock protects all_channels and
207 	 * last_channel_index, and the atomicity of find
208 	 * a channel and updating its file.refcnt field.
209 	 */
210 	spinlock_t all_channels_lock;
211 };
212 
213 /* Get the PPP protocol number from a skb */
214 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
215 
216 /* We limit the length of ppp->file.rq to this (arbitrary) value */
217 #define PPP_MAX_RQLEN	32
218 
219 /*
220  * Maximum number of multilink fragments queued up.
221  * This has to be large enough to cope with the maximum latency of
222  * the slowest channel relative to the others.  Strictly it should
223  * depend on the number of channels and their characteristics.
224  */
225 #define PPP_MP_MAX_QLEN	128
226 
227 /* Multilink header bits. */
228 #define B	0x80		/* this fragment begins a packet */
229 #define E	0x40		/* this fragment ends a packet */
230 
231 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
232 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
233 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
234 
235 /* Prototypes. */
236 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
237 			struct file *file, unsigned int cmd, unsigned long arg);
238 static void ppp_xmit_process(struct ppp *ppp);
239 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
240 static void ppp_push(struct ppp *ppp);
241 static void ppp_channel_push(struct channel *pch);
242 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
243 			      struct channel *pch);
244 static void ppp_receive_error(struct ppp *ppp);
245 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
246 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
247 					    struct sk_buff *skb);
248 #ifdef CONFIG_PPP_MULTILINK
249 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
250 				struct channel *pch);
251 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
252 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
253 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
254 #endif /* CONFIG_PPP_MULTILINK */
255 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
256 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
257 static void ppp_ccp_closed(struct ppp *ppp);
258 static struct compressor *find_compressor(int type);
259 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
260 static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
261 static void init_ppp_file(struct ppp_file *pf, int kind);
262 static void ppp_shutdown_interface(struct ppp *ppp);
263 static void ppp_destroy_interface(struct ppp *ppp);
264 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
265 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
266 static int ppp_connect_channel(struct channel *pch, int unit);
267 static int ppp_disconnect_channel(struct channel *pch);
268 static void ppp_destroy_channel(struct channel *pch);
269 static int unit_get(struct idr *p, void *ptr);
270 static int unit_set(struct idr *p, void *ptr, int n);
271 static void unit_put(struct idr *p, int n);
272 static void *unit_find(struct idr *p, int n);
273 
274 static struct class *ppp_class;
275 
276 /* per net-namespace data */
277 static inline struct ppp_net *ppp_pernet(struct net *net)
278 {
279 	BUG_ON(!net);
280 
281 	return net_generic(net, ppp_net_id);
282 }
283 
284 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
285 static inline int proto_to_npindex(int proto)
286 {
287 	switch (proto) {
288 	case PPP_IP:
289 		return NP_IP;
290 	case PPP_IPV6:
291 		return NP_IPV6;
292 	case PPP_IPX:
293 		return NP_IPX;
294 	case PPP_AT:
295 		return NP_AT;
296 	case PPP_MPLS_UC:
297 		return NP_MPLS_UC;
298 	case PPP_MPLS_MC:
299 		return NP_MPLS_MC;
300 	}
301 	return -EINVAL;
302 }
303 
304 /* Translates an NP index into a PPP protocol number */
305 static const int npindex_to_proto[NUM_NP] = {
306 	PPP_IP,
307 	PPP_IPV6,
308 	PPP_IPX,
309 	PPP_AT,
310 	PPP_MPLS_UC,
311 	PPP_MPLS_MC,
312 };
313 
314 /* Translates an ethertype into an NP index */
315 static inline int ethertype_to_npindex(int ethertype)
316 {
317 	switch (ethertype) {
318 	case ETH_P_IP:
319 		return NP_IP;
320 	case ETH_P_IPV6:
321 		return NP_IPV6;
322 	case ETH_P_IPX:
323 		return NP_IPX;
324 	case ETH_P_PPPTALK:
325 	case ETH_P_ATALK:
326 		return NP_AT;
327 	case ETH_P_MPLS_UC:
328 		return NP_MPLS_UC;
329 	case ETH_P_MPLS_MC:
330 		return NP_MPLS_MC;
331 	}
332 	return -1;
333 }
334 
335 /* Translates an NP index into an ethertype */
336 static const int npindex_to_ethertype[NUM_NP] = {
337 	ETH_P_IP,
338 	ETH_P_IPV6,
339 	ETH_P_IPX,
340 	ETH_P_PPPTALK,
341 	ETH_P_MPLS_UC,
342 	ETH_P_MPLS_MC,
343 };
344 
345 /*
346  * Locking shorthand.
347  */
348 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
349 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
350 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
351 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
352 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
353 				     ppp_recv_lock(ppp); } while (0)
354 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
355 				     ppp_xmit_unlock(ppp); } while (0)
356 
357 /*
358  * /dev/ppp device routines.
359  * The /dev/ppp device is used by pppd to control the ppp unit.
360  * It supports the read, write, ioctl and poll functions.
361  * Open instances of /dev/ppp can be in one of three states:
362  * unattached, attached to a ppp unit, or attached to a ppp channel.
363  */
364 static int ppp_open(struct inode *inode, struct file *file)
365 {
366 	/*
367 	 * This could (should?) be enforced by the permissions on /dev/ppp.
368 	 */
369 	if (!capable(CAP_NET_ADMIN))
370 		return -EPERM;
371 	return 0;
372 }
373 
374 static int ppp_release(struct inode *unused, struct file *file)
375 {
376 	struct ppp_file *pf = file->private_data;
377 	struct ppp *ppp;
378 
379 	if (pf) {
380 		file->private_data = NULL;
381 		if (pf->kind == INTERFACE) {
382 			ppp = PF_TO_PPP(pf);
383 			if (file == ppp->owner)
384 				ppp_shutdown_interface(ppp);
385 		}
386 		if (atomic_dec_and_test(&pf->refcnt)) {
387 			switch (pf->kind) {
388 			case INTERFACE:
389 				ppp_destroy_interface(PF_TO_PPP(pf));
390 				break;
391 			case CHANNEL:
392 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
393 				break;
394 			}
395 		}
396 	}
397 	return 0;
398 }
399 
400 static ssize_t ppp_read(struct file *file, char __user *buf,
401 			size_t count, loff_t *ppos)
402 {
403 	struct ppp_file *pf = file->private_data;
404 	DECLARE_WAITQUEUE(wait, current);
405 	ssize_t ret;
406 	struct sk_buff *skb = NULL;
407 	struct iovec iov;
408 
409 	ret = count;
410 
411 	if (!pf)
412 		return -ENXIO;
413 	add_wait_queue(&pf->rwait, &wait);
414 	for (;;) {
415 		set_current_state(TASK_INTERRUPTIBLE);
416 		skb = skb_dequeue(&pf->rq);
417 		if (skb)
418 			break;
419 		ret = 0;
420 		if (pf->dead)
421 			break;
422 		if (pf->kind == INTERFACE) {
423 			/*
424 			 * Return 0 (EOF) on an interface that has no
425 			 * channels connected, unless it is looping
426 			 * network traffic (demand mode).
427 			 */
428 			struct ppp *ppp = PF_TO_PPP(pf);
429 			if (ppp->n_channels == 0 &&
430 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
431 				break;
432 		}
433 		ret = -EAGAIN;
434 		if (file->f_flags & O_NONBLOCK)
435 			break;
436 		ret = -ERESTARTSYS;
437 		if (signal_pending(current))
438 			break;
439 		schedule();
440 	}
441 	set_current_state(TASK_RUNNING);
442 	remove_wait_queue(&pf->rwait, &wait);
443 
444 	if (!skb)
445 		goto out;
446 
447 	ret = -EOVERFLOW;
448 	if (skb->len > count)
449 		goto outf;
450 	ret = -EFAULT;
451 	iov.iov_base = buf;
452 	iov.iov_len = count;
453 	if (skb_copy_datagram_iovec(skb, 0, &iov, skb->len))
454 		goto outf;
455 	ret = skb->len;
456 
457  outf:
458 	kfree_skb(skb);
459  out:
460 	return ret;
461 }
462 
463 static ssize_t ppp_write(struct file *file, const char __user *buf,
464 			 size_t count, loff_t *ppos)
465 {
466 	struct ppp_file *pf = file->private_data;
467 	struct sk_buff *skb;
468 	ssize_t ret;
469 
470 	if (!pf)
471 		return -ENXIO;
472 	ret = -ENOMEM;
473 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
474 	if (!skb)
475 		goto out;
476 	skb_reserve(skb, pf->hdrlen);
477 	ret = -EFAULT;
478 	if (copy_from_user(skb_put(skb, count), buf, count)) {
479 		kfree_skb(skb);
480 		goto out;
481 	}
482 
483 	skb_queue_tail(&pf->xq, skb);
484 
485 	switch (pf->kind) {
486 	case INTERFACE:
487 		ppp_xmit_process(PF_TO_PPP(pf));
488 		break;
489 	case CHANNEL:
490 		ppp_channel_push(PF_TO_CHANNEL(pf));
491 		break;
492 	}
493 
494 	ret = count;
495 
496  out:
497 	return ret;
498 }
499 
500 /* No kernel lock - fine */
501 static unsigned int ppp_poll(struct file *file, poll_table *wait)
502 {
503 	struct ppp_file *pf = file->private_data;
504 	unsigned int mask;
505 
506 	if (!pf)
507 		return 0;
508 	poll_wait(file, &pf->rwait, wait);
509 	mask = POLLOUT | POLLWRNORM;
510 	if (skb_peek(&pf->rq))
511 		mask |= POLLIN | POLLRDNORM;
512 	if (pf->dead)
513 		mask |= POLLHUP;
514 	else if (pf->kind == INTERFACE) {
515 		/* see comment in ppp_read */
516 		struct ppp *ppp = PF_TO_PPP(pf);
517 		if (ppp->n_channels == 0 &&
518 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
519 			mask |= POLLIN | POLLRDNORM;
520 	}
521 
522 	return mask;
523 }
524 
525 #ifdef CONFIG_PPP_FILTER
526 static int get_filter(void __user *arg, struct sock_filter **p)
527 {
528 	struct sock_fprog uprog;
529 	struct sock_filter *code = NULL;
530 	int len, err;
531 
532 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
533 		return -EFAULT;
534 
535 	if (!uprog.len) {
536 		*p = NULL;
537 		return 0;
538 	}
539 
540 	len = uprog.len * sizeof(struct sock_filter);
541 	code = memdup_user(uprog.filter, len);
542 	if (IS_ERR(code))
543 		return PTR_ERR(code);
544 
545 	err = sk_chk_filter(code, uprog.len);
546 	if (err) {
547 		kfree(code);
548 		return err;
549 	}
550 
551 	*p = code;
552 	return uprog.len;
553 }
554 #endif /* CONFIG_PPP_FILTER */
555 
556 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
557 {
558 	struct ppp_file *pf = file->private_data;
559 	struct ppp *ppp;
560 	int err = -EFAULT, val, val2, i;
561 	struct ppp_idle idle;
562 	struct npioctl npi;
563 	int unit, cflags;
564 	struct slcompress *vj;
565 	void __user *argp = (void __user *)arg;
566 	int __user *p = argp;
567 
568 	if (!pf)
569 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
570 					pf, file, cmd, arg);
571 
572 	if (cmd == PPPIOCDETACH) {
573 		/*
574 		 * We have to be careful here... if the file descriptor
575 		 * has been dup'd, we could have another process in the
576 		 * middle of a poll using the same file *, so we had
577 		 * better not free the interface data structures -
578 		 * instead we fail the ioctl.  Even in this case, we
579 		 * shut down the interface if we are the owner of it.
580 		 * Actually, we should get rid of PPPIOCDETACH, userland
581 		 * (i.e. pppd) could achieve the same effect by closing
582 		 * this fd and reopening /dev/ppp.
583 		 */
584 		err = -EINVAL;
585 		mutex_lock(&ppp_mutex);
586 		if (pf->kind == INTERFACE) {
587 			ppp = PF_TO_PPP(pf);
588 			if (file == ppp->owner)
589 				ppp_shutdown_interface(ppp);
590 		}
591 		if (atomic_long_read(&file->f_count) <= 2) {
592 			ppp_release(NULL, file);
593 			err = 0;
594 		} else
595 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
596 				atomic_long_read(&file->f_count));
597 		mutex_unlock(&ppp_mutex);
598 		return err;
599 	}
600 
601 	if (pf->kind == CHANNEL) {
602 		struct channel *pch;
603 		struct ppp_channel *chan;
604 
605 		mutex_lock(&ppp_mutex);
606 		pch = PF_TO_CHANNEL(pf);
607 
608 		switch (cmd) {
609 		case PPPIOCCONNECT:
610 			if (get_user(unit, p))
611 				break;
612 			err = ppp_connect_channel(pch, unit);
613 			break;
614 
615 		case PPPIOCDISCONN:
616 			err = ppp_disconnect_channel(pch);
617 			break;
618 
619 		default:
620 			down_read(&pch->chan_sem);
621 			chan = pch->chan;
622 			err = -ENOTTY;
623 			if (chan && chan->ops->ioctl)
624 				err = chan->ops->ioctl(chan, cmd, arg);
625 			up_read(&pch->chan_sem);
626 		}
627 		mutex_unlock(&ppp_mutex);
628 		return err;
629 	}
630 
631 	if (pf->kind != INTERFACE) {
632 		/* can't happen */
633 		pr_err("PPP: not interface or channel??\n");
634 		return -EINVAL;
635 	}
636 
637 	mutex_lock(&ppp_mutex);
638 	ppp = PF_TO_PPP(pf);
639 	switch (cmd) {
640 	case PPPIOCSMRU:
641 		if (get_user(val, p))
642 			break;
643 		ppp->mru = val;
644 		err = 0;
645 		break;
646 
647 	case PPPIOCSFLAGS:
648 		if (get_user(val, p))
649 			break;
650 		ppp_lock(ppp);
651 		cflags = ppp->flags & ~val;
652 		ppp->flags = val & SC_FLAG_BITS;
653 		ppp_unlock(ppp);
654 		if (cflags & SC_CCP_OPEN)
655 			ppp_ccp_closed(ppp);
656 		err = 0;
657 		break;
658 
659 	case PPPIOCGFLAGS:
660 		val = ppp->flags | ppp->xstate | ppp->rstate;
661 		if (put_user(val, p))
662 			break;
663 		err = 0;
664 		break;
665 
666 	case PPPIOCSCOMPRESS:
667 		err = ppp_set_compress(ppp, arg);
668 		break;
669 
670 	case PPPIOCGUNIT:
671 		if (put_user(ppp->file.index, p))
672 			break;
673 		err = 0;
674 		break;
675 
676 	case PPPIOCSDEBUG:
677 		if (get_user(val, p))
678 			break;
679 		ppp->debug = val;
680 		err = 0;
681 		break;
682 
683 	case PPPIOCGDEBUG:
684 		if (put_user(ppp->debug, p))
685 			break;
686 		err = 0;
687 		break;
688 
689 	case PPPIOCGIDLE:
690 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
691 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
692 		if (copy_to_user(argp, &idle, sizeof(idle)))
693 			break;
694 		err = 0;
695 		break;
696 
697 	case PPPIOCSMAXCID:
698 		if (get_user(val, p))
699 			break;
700 		val2 = 15;
701 		if ((val >> 16) != 0) {
702 			val2 = val >> 16;
703 			val &= 0xffff;
704 		}
705 		vj = slhc_init(val2+1, val+1);
706 		if (!vj) {
707 			netdev_err(ppp->dev,
708 				   "PPP: no memory (VJ compressor)\n");
709 			err = -ENOMEM;
710 			break;
711 		}
712 		ppp_lock(ppp);
713 		if (ppp->vj)
714 			slhc_free(ppp->vj);
715 		ppp->vj = vj;
716 		ppp_unlock(ppp);
717 		err = 0;
718 		break;
719 
720 	case PPPIOCGNPMODE:
721 	case PPPIOCSNPMODE:
722 		if (copy_from_user(&npi, argp, sizeof(npi)))
723 			break;
724 		err = proto_to_npindex(npi.protocol);
725 		if (err < 0)
726 			break;
727 		i = err;
728 		if (cmd == PPPIOCGNPMODE) {
729 			err = -EFAULT;
730 			npi.mode = ppp->npmode[i];
731 			if (copy_to_user(argp, &npi, sizeof(npi)))
732 				break;
733 		} else {
734 			ppp->npmode[i] = npi.mode;
735 			/* we may be able to transmit more packets now (??) */
736 			netif_wake_queue(ppp->dev);
737 		}
738 		err = 0;
739 		break;
740 
741 #ifdef CONFIG_PPP_FILTER
742 	case PPPIOCSPASS:
743 	{
744 		struct sock_filter *code;
745 		err = get_filter(argp, &code);
746 		if (err >= 0) {
747 			ppp_lock(ppp);
748 			kfree(ppp->pass_filter);
749 			ppp->pass_filter = code;
750 			ppp->pass_len = err;
751 			ppp_unlock(ppp);
752 			err = 0;
753 		}
754 		break;
755 	}
756 	case PPPIOCSACTIVE:
757 	{
758 		struct sock_filter *code;
759 		err = get_filter(argp, &code);
760 		if (err >= 0) {
761 			ppp_lock(ppp);
762 			kfree(ppp->active_filter);
763 			ppp->active_filter = code;
764 			ppp->active_len = err;
765 			ppp_unlock(ppp);
766 			err = 0;
767 		}
768 		break;
769 	}
770 #endif /* CONFIG_PPP_FILTER */
771 
772 #ifdef CONFIG_PPP_MULTILINK
773 	case PPPIOCSMRRU:
774 		if (get_user(val, p))
775 			break;
776 		ppp_recv_lock(ppp);
777 		ppp->mrru = val;
778 		ppp_recv_unlock(ppp);
779 		err = 0;
780 		break;
781 #endif /* CONFIG_PPP_MULTILINK */
782 
783 	default:
784 		err = -ENOTTY;
785 	}
786 	mutex_unlock(&ppp_mutex);
787 	return err;
788 }
789 
790 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
791 			struct file *file, unsigned int cmd, unsigned long arg)
792 {
793 	int unit, err = -EFAULT;
794 	struct ppp *ppp;
795 	struct channel *chan;
796 	struct ppp_net *pn;
797 	int __user *p = (int __user *)arg;
798 
799 	mutex_lock(&ppp_mutex);
800 	switch (cmd) {
801 	case PPPIOCNEWUNIT:
802 		/* Create a new ppp unit */
803 		if (get_user(unit, p))
804 			break;
805 		ppp = ppp_create_interface(net, unit, &err);
806 		if (!ppp)
807 			break;
808 		file->private_data = &ppp->file;
809 		ppp->owner = file;
810 		err = -EFAULT;
811 		if (put_user(ppp->file.index, p))
812 			break;
813 		err = 0;
814 		break;
815 
816 	case PPPIOCATTACH:
817 		/* Attach to an existing ppp unit */
818 		if (get_user(unit, p))
819 			break;
820 		err = -ENXIO;
821 		pn = ppp_pernet(net);
822 		mutex_lock(&pn->all_ppp_mutex);
823 		ppp = ppp_find_unit(pn, unit);
824 		if (ppp) {
825 			atomic_inc(&ppp->file.refcnt);
826 			file->private_data = &ppp->file;
827 			err = 0;
828 		}
829 		mutex_unlock(&pn->all_ppp_mutex);
830 		break;
831 
832 	case PPPIOCATTCHAN:
833 		if (get_user(unit, p))
834 			break;
835 		err = -ENXIO;
836 		pn = ppp_pernet(net);
837 		spin_lock_bh(&pn->all_channels_lock);
838 		chan = ppp_find_channel(pn, unit);
839 		if (chan) {
840 			atomic_inc(&chan->file.refcnt);
841 			file->private_data = &chan->file;
842 			err = 0;
843 		}
844 		spin_unlock_bh(&pn->all_channels_lock);
845 		break;
846 
847 	default:
848 		err = -ENOTTY;
849 	}
850 	mutex_unlock(&ppp_mutex);
851 	return err;
852 }
853 
854 static const struct file_operations ppp_device_fops = {
855 	.owner		= THIS_MODULE,
856 	.read		= ppp_read,
857 	.write		= ppp_write,
858 	.poll		= ppp_poll,
859 	.unlocked_ioctl	= ppp_ioctl,
860 	.open		= ppp_open,
861 	.release	= ppp_release,
862 	.llseek		= noop_llseek,
863 };
864 
865 static __net_init int ppp_init_net(struct net *net)
866 {
867 	struct ppp_net *pn = net_generic(net, ppp_net_id);
868 
869 	idr_init(&pn->units_idr);
870 	mutex_init(&pn->all_ppp_mutex);
871 
872 	INIT_LIST_HEAD(&pn->all_channels);
873 	INIT_LIST_HEAD(&pn->new_channels);
874 
875 	spin_lock_init(&pn->all_channels_lock);
876 
877 	return 0;
878 }
879 
880 static __net_exit void ppp_exit_net(struct net *net)
881 {
882 	struct ppp_net *pn = net_generic(net, ppp_net_id);
883 
884 	idr_destroy(&pn->units_idr);
885 }
886 
887 static struct pernet_operations ppp_net_ops = {
888 	.init = ppp_init_net,
889 	.exit = ppp_exit_net,
890 	.id   = &ppp_net_id,
891 	.size = sizeof(struct ppp_net),
892 };
893 
894 #define PPP_MAJOR	108
895 
896 /* Called at boot time if ppp is compiled into the kernel,
897    or at module load time (from init_module) if compiled as a module. */
898 static int __init ppp_init(void)
899 {
900 	int err;
901 
902 	pr_info("PPP generic driver version " PPP_VERSION "\n");
903 
904 	err = register_pernet_device(&ppp_net_ops);
905 	if (err) {
906 		pr_err("failed to register PPP pernet device (%d)\n", err);
907 		goto out;
908 	}
909 
910 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
911 	if (err) {
912 		pr_err("failed to register PPP device (%d)\n", err);
913 		goto out_net;
914 	}
915 
916 	ppp_class = class_create(THIS_MODULE, "ppp");
917 	if (IS_ERR(ppp_class)) {
918 		err = PTR_ERR(ppp_class);
919 		goto out_chrdev;
920 	}
921 
922 	/* not a big deal if we fail here :-) */
923 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
924 
925 	return 0;
926 
927 out_chrdev:
928 	unregister_chrdev(PPP_MAJOR, "ppp");
929 out_net:
930 	unregister_pernet_device(&ppp_net_ops);
931 out:
932 	return err;
933 }
934 
935 /*
936  * Network interface unit routines.
937  */
938 static netdev_tx_t
939 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
940 {
941 	struct ppp *ppp = netdev_priv(dev);
942 	int npi, proto;
943 	unsigned char *pp;
944 
945 	npi = ethertype_to_npindex(ntohs(skb->protocol));
946 	if (npi < 0)
947 		goto outf;
948 
949 	/* Drop, accept or reject the packet */
950 	switch (ppp->npmode[npi]) {
951 	case NPMODE_PASS:
952 		break;
953 	case NPMODE_QUEUE:
954 		/* it would be nice to have a way to tell the network
955 		   system to queue this one up for later. */
956 		goto outf;
957 	case NPMODE_DROP:
958 	case NPMODE_ERROR:
959 		goto outf;
960 	}
961 
962 	/* Put the 2-byte PPP protocol number on the front,
963 	   making sure there is room for the address and control fields. */
964 	if (skb_cow_head(skb, PPP_HDRLEN))
965 		goto outf;
966 
967 	pp = skb_push(skb, 2);
968 	proto = npindex_to_proto[npi];
969 	put_unaligned_be16(proto, pp);
970 
971 	netif_stop_queue(dev);
972 	skb_queue_tail(&ppp->file.xq, skb);
973 	ppp_xmit_process(ppp);
974 	return NETDEV_TX_OK;
975 
976  outf:
977 	kfree_skb(skb);
978 	++dev->stats.tx_dropped;
979 	return NETDEV_TX_OK;
980 }
981 
982 static int
983 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
984 {
985 	struct ppp *ppp = netdev_priv(dev);
986 	int err = -EFAULT;
987 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
988 	struct ppp_stats stats;
989 	struct ppp_comp_stats cstats;
990 	char *vers;
991 
992 	switch (cmd) {
993 	case SIOCGPPPSTATS:
994 		ppp_get_stats(ppp, &stats);
995 		if (copy_to_user(addr, &stats, sizeof(stats)))
996 			break;
997 		err = 0;
998 		break;
999 
1000 	case SIOCGPPPCSTATS:
1001 		memset(&cstats, 0, sizeof(cstats));
1002 		if (ppp->xc_state)
1003 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1004 		if (ppp->rc_state)
1005 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1006 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1007 			break;
1008 		err = 0;
1009 		break;
1010 
1011 	case SIOCGPPPVER:
1012 		vers = PPP_VERSION;
1013 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1014 			break;
1015 		err = 0;
1016 		break;
1017 
1018 	default:
1019 		err = -EINVAL;
1020 	}
1021 
1022 	return err;
1023 }
1024 
1025 static const struct net_device_ops ppp_netdev_ops = {
1026 	.ndo_start_xmit = ppp_start_xmit,
1027 	.ndo_do_ioctl   = ppp_net_ioctl,
1028 };
1029 
1030 static void ppp_setup(struct net_device *dev)
1031 {
1032 	dev->netdev_ops = &ppp_netdev_ops;
1033 	dev->hard_header_len = PPP_HDRLEN;
1034 	dev->mtu = PPP_MTU;
1035 	dev->addr_len = 0;
1036 	dev->tx_queue_len = 3;
1037 	dev->type = ARPHRD_PPP;
1038 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1039 	dev->features |= NETIF_F_NETNS_LOCAL;
1040 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
1041 }
1042 
1043 /*
1044  * Transmit-side routines.
1045  */
1046 
1047 /*
1048  * Called to do any work queued up on the transmit side
1049  * that can now be done.
1050  */
1051 static void
1052 ppp_xmit_process(struct ppp *ppp)
1053 {
1054 	struct sk_buff *skb;
1055 
1056 	ppp_xmit_lock(ppp);
1057 	if (!ppp->closing) {
1058 		ppp_push(ppp);
1059 		while (!ppp->xmit_pending &&
1060 		       (skb = skb_dequeue(&ppp->file.xq)))
1061 			ppp_send_frame(ppp, skb);
1062 		/* If there's no work left to do, tell the core net
1063 		   code that we can accept some more. */
1064 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1065 			netif_wake_queue(ppp->dev);
1066 	}
1067 	ppp_xmit_unlock(ppp);
1068 }
1069 
1070 static inline struct sk_buff *
1071 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1072 {
1073 	struct sk_buff *new_skb;
1074 	int len;
1075 	int new_skb_size = ppp->dev->mtu +
1076 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1077 	int compressor_skb_size = ppp->dev->mtu +
1078 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1079 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1080 	if (!new_skb) {
1081 		if (net_ratelimit())
1082 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1083 		return NULL;
1084 	}
1085 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1086 		skb_reserve(new_skb,
1087 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1088 
1089 	/* compressor still expects A/C bytes in hdr */
1090 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1091 				   new_skb->data, skb->len + 2,
1092 				   compressor_skb_size);
1093 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1094 		kfree_skb(skb);
1095 		skb = new_skb;
1096 		skb_put(skb, len);
1097 		skb_pull(skb, 2);	/* pull off A/C bytes */
1098 	} else if (len == 0) {
1099 		/* didn't compress, or CCP not up yet */
1100 		kfree_skb(new_skb);
1101 		new_skb = skb;
1102 	} else {
1103 		/*
1104 		 * (len < 0)
1105 		 * MPPE requires that we do not send unencrypted
1106 		 * frames.  The compressor will return -1 if we
1107 		 * should drop the frame.  We cannot simply test
1108 		 * the compress_proto because MPPE and MPPC share
1109 		 * the same number.
1110 		 */
1111 		if (net_ratelimit())
1112 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1113 		kfree_skb(skb);
1114 		kfree_skb(new_skb);
1115 		new_skb = NULL;
1116 	}
1117 	return new_skb;
1118 }
1119 
1120 /*
1121  * Compress and send a frame.
1122  * The caller should have locked the xmit path,
1123  * and xmit_pending should be 0.
1124  */
1125 static void
1126 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1127 {
1128 	int proto = PPP_PROTO(skb);
1129 	struct sk_buff *new_skb;
1130 	int len;
1131 	unsigned char *cp;
1132 
1133 	if (proto < 0x8000) {
1134 #ifdef CONFIG_PPP_FILTER
1135 		/* check if we should pass this packet */
1136 		/* the filter instructions are constructed assuming
1137 		   a four-byte PPP header on each packet */
1138 		*skb_push(skb, 2) = 1;
1139 		if (ppp->pass_filter &&
1140 		    sk_run_filter(skb, ppp->pass_filter) == 0) {
1141 			if (ppp->debug & 1)
1142 				netdev_printk(KERN_DEBUG, ppp->dev,
1143 					      "PPP: outbound frame "
1144 					      "not passed\n");
1145 			kfree_skb(skb);
1146 			return;
1147 		}
1148 		/* if this packet passes the active filter, record the time */
1149 		if (!(ppp->active_filter &&
1150 		      sk_run_filter(skb, ppp->active_filter) == 0))
1151 			ppp->last_xmit = jiffies;
1152 		skb_pull(skb, 2);
1153 #else
1154 		/* for data packets, record the time */
1155 		ppp->last_xmit = jiffies;
1156 #endif /* CONFIG_PPP_FILTER */
1157 	}
1158 
1159 	++ppp->dev->stats.tx_packets;
1160 	ppp->dev->stats.tx_bytes += skb->len - 2;
1161 
1162 	switch (proto) {
1163 	case PPP_IP:
1164 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1165 			break;
1166 		/* try to do VJ TCP header compression */
1167 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1168 				    GFP_ATOMIC);
1169 		if (!new_skb) {
1170 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1171 			goto drop;
1172 		}
1173 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1174 		cp = skb->data + 2;
1175 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1176 				    new_skb->data + 2, &cp,
1177 				    !(ppp->flags & SC_NO_TCP_CCID));
1178 		if (cp == skb->data + 2) {
1179 			/* didn't compress */
1180 			kfree_skb(new_skb);
1181 		} else {
1182 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1183 				proto = PPP_VJC_COMP;
1184 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1185 			} else {
1186 				proto = PPP_VJC_UNCOMP;
1187 				cp[0] = skb->data[2];
1188 			}
1189 			kfree_skb(skb);
1190 			skb = new_skb;
1191 			cp = skb_put(skb, len + 2);
1192 			cp[0] = 0;
1193 			cp[1] = proto;
1194 		}
1195 		break;
1196 
1197 	case PPP_CCP:
1198 		/* peek at outbound CCP frames */
1199 		ppp_ccp_peek(ppp, skb, 0);
1200 		break;
1201 	}
1202 
1203 	/* try to do packet compression */
1204 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1205 	    proto != PPP_LCP && proto != PPP_CCP) {
1206 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1207 			if (net_ratelimit())
1208 				netdev_err(ppp->dev,
1209 					   "ppp: compression required but "
1210 					   "down - pkt dropped.\n");
1211 			goto drop;
1212 		}
1213 		skb = pad_compress_skb(ppp, skb);
1214 		if (!skb)
1215 			goto drop;
1216 	}
1217 
1218 	/*
1219 	 * If we are waiting for traffic (demand dialling),
1220 	 * queue it up for pppd to receive.
1221 	 */
1222 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1223 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1224 			goto drop;
1225 		skb_queue_tail(&ppp->file.rq, skb);
1226 		wake_up_interruptible(&ppp->file.rwait);
1227 		return;
1228 	}
1229 
1230 	ppp->xmit_pending = skb;
1231 	ppp_push(ppp);
1232 	return;
1233 
1234  drop:
1235 	kfree_skb(skb);
1236 	++ppp->dev->stats.tx_errors;
1237 }
1238 
1239 /*
1240  * Try to send the frame in xmit_pending.
1241  * The caller should have the xmit path locked.
1242  */
1243 static void
1244 ppp_push(struct ppp *ppp)
1245 {
1246 	struct list_head *list;
1247 	struct channel *pch;
1248 	struct sk_buff *skb = ppp->xmit_pending;
1249 
1250 	if (!skb)
1251 		return;
1252 
1253 	list = &ppp->channels;
1254 	if (list_empty(list)) {
1255 		/* nowhere to send the packet, just drop it */
1256 		ppp->xmit_pending = NULL;
1257 		kfree_skb(skb);
1258 		return;
1259 	}
1260 
1261 	if ((ppp->flags & SC_MULTILINK) == 0) {
1262 		/* not doing multilink: send it down the first channel */
1263 		list = list->next;
1264 		pch = list_entry(list, struct channel, clist);
1265 
1266 		spin_lock_bh(&pch->downl);
1267 		if (pch->chan) {
1268 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1269 				ppp->xmit_pending = NULL;
1270 		} else {
1271 			/* channel got unregistered */
1272 			kfree_skb(skb);
1273 			ppp->xmit_pending = NULL;
1274 		}
1275 		spin_unlock_bh(&pch->downl);
1276 		return;
1277 	}
1278 
1279 #ifdef CONFIG_PPP_MULTILINK
1280 	/* Multilink: fragment the packet over as many links
1281 	   as can take the packet at the moment. */
1282 	if (!ppp_mp_explode(ppp, skb))
1283 		return;
1284 #endif /* CONFIG_PPP_MULTILINK */
1285 
1286 	ppp->xmit_pending = NULL;
1287 	kfree_skb(skb);
1288 }
1289 
1290 #ifdef CONFIG_PPP_MULTILINK
1291 static bool mp_protocol_compress __read_mostly = true;
1292 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1293 MODULE_PARM_DESC(mp_protocol_compress,
1294 		 "compress protocol id in multilink fragments");
1295 
1296 /*
1297  * Divide a packet to be transmitted into fragments and
1298  * send them out the individual links.
1299  */
1300 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1301 {
1302 	int len, totlen;
1303 	int i, bits, hdrlen, mtu;
1304 	int flen;
1305 	int navail, nfree, nzero;
1306 	int nbigger;
1307 	int totspeed;
1308 	int totfree;
1309 	unsigned char *p, *q;
1310 	struct list_head *list;
1311 	struct channel *pch;
1312 	struct sk_buff *frag;
1313 	struct ppp_channel *chan;
1314 
1315 	totspeed = 0; /*total bitrate of the bundle*/
1316 	nfree = 0; /* # channels which have no packet already queued */
1317 	navail = 0; /* total # of usable channels (not deregistered) */
1318 	nzero = 0; /* number of channels with zero speed associated*/
1319 	totfree = 0; /*total # of channels available and
1320 				  *having no queued packets before
1321 				  *starting the fragmentation*/
1322 
1323 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1324 	i = 0;
1325 	list_for_each_entry(pch, &ppp->channels, clist) {
1326 		if (pch->chan) {
1327 			pch->avail = 1;
1328 			navail++;
1329 			pch->speed = pch->chan->speed;
1330 		} else {
1331 			pch->avail = 0;
1332 		}
1333 		if (pch->avail) {
1334 			if (skb_queue_empty(&pch->file.xq) ||
1335 				!pch->had_frag) {
1336 					if (pch->speed == 0)
1337 						nzero++;
1338 					else
1339 						totspeed += pch->speed;
1340 
1341 					pch->avail = 2;
1342 					++nfree;
1343 					++totfree;
1344 				}
1345 			if (!pch->had_frag && i < ppp->nxchan)
1346 				ppp->nxchan = i;
1347 		}
1348 		++i;
1349 	}
1350 	/*
1351 	 * Don't start sending this packet unless at least half of
1352 	 * the channels are free.  This gives much better TCP
1353 	 * performance if we have a lot of channels.
1354 	 */
1355 	if (nfree == 0 || nfree < navail / 2)
1356 		return 0; /* can't take now, leave it in xmit_pending */
1357 
1358 	/* Do protocol field compression */
1359 	p = skb->data;
1360 	len = skb->len;
1361 	if (*p == 0 && mp_protocol_compress) {
1362 		++p;
1363 		--len;
1364 	}
1365 
1366 	totlen = len;
1367 	nbigger = len % nfree;
1368 
1369 	/* skip to the channel after the one we last used
1370 	   and start at that one */
1371 	list = &ppp->channels;
1372 	for (i = 0; i < ppp->nxchan; ++i) {
1373 		list = list->next;
1374 		if (list == &ppp->channels) {
1375 			i = 0;
1376 			break;
1377 		}
1378 	}
1379 
1380 	/* create a fragment for each channel */
1381 	bits = B;
1382 	while (len > 0) {
1383 		list = list->next;
1384 		if (list == &ppp->channels) {
1385 			i = 0;
1386 			continue;
1387 		}
1388 		pch = list_entry(list, struct channel, clist);
1389 		++i;
1390 		if (!pch->avail)
1391 			continue;
1392 
1393 		/*
1394 		 * Skip this channel if it has a fragment pending already and
1395 		 * we haven't given a fragment to all of the free channels.
1396 		 */
1397 		if (pch->avail == 1) {
1398 			if (nfree > 0)
1399 				continue;
1400 		} else {
1401 			pch->avail = 1;
1402 		}
1403 
1404 		/* check the channel's mtu and whether it is still attached. */
1405 		spin_lock_bh(&pch->downl);
1406 		if (pch->chan == NULL) {
1407 			/* can't use this channel, it's being deregistered */
1408 			if (pch->speed == 0)
1409 				nzero--;
1410 			else
1411 				totspeed -= pch->speed;
1412 
1413 			spin_unlock_bh(&pch->downl);
1414 			pch->avail = 0;
1415 			totlen = len;
1416 			totfree--;
1417 			nfree--;
1418 			if (--navail == 0)
1419 				break;
1420 			continue;
1421 		}
1422 
1423 		/*
1424 		*if the channel speed is not set divide
1425 		*the packet evenly among the free channels;
1426 		*otherwise divide it according to the speed
1427 		*of the channel we are going to transmit on
1428 		*/
1429 		flen = len;
1430 		if (nfree > 0) {
1431 			if (pch->speed == 0) {
1432 				flen = len/nfree;
1433 				if (nbigger > 0) {
1434 					flen++;
1435 					nbigger--;
1436 				}
1437 			} else {
1438 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1439 					((totspeed*totfree)/pch->speed)) - hdrlen;
1440 				if (nbigger > 0) {
1441 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1442 					nbigger -= ((totfree - nzero)*pch->speed)/
1443 							totspeed;
1444 				}
1445 			}
1446 			nfree--;
1447 		}
1448 
1449 		/*
1450 		 *check if we are on the last channel or
1451 		 *we exceded the length of the data to
1452 		 *fragment
1453 		 */
1454 		if ((nfree <= 0) || (flen > len))
1455 			flen = len;
1456 		/*
1457 		 *it is not worth to tx on slow channels:
1458 		 *in that case from the resulting flen according to the
1459 		 *above formula will be equal or less than zero.
1460 		 *Skip the channel in this case
1461 		 */
1462 		if (flen <= 0) {
1463 			pch->avail = 2;
1464 			spin_unlock_bh(&pch->downl);
1465 			continue;
1466 		}
1467 
1468 		/*
1469 		 * hdrlen includes the 2-byte PPP protocol field, but the
1470 		 * MTU counts only the payload excluding the protocol field.
1471 		 * (RFC1661 Section 2)
1472 		 */
1473 		mtu = pch->chan->mtu - (hdrlen - 2);
1474 		if (mtu < 4)
1475 			mtu = 4;
1476 		if (flen > mtu)
1477 			flen = mtu;
1478 		if (flen == len)
1479 			bits |= E;
1480 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1481 		if (!frag)
1482 			goto noskb;
1483 		q = skb_put(frag, flen + hdrlen);
1484 
1485 		/* make the MP header */
1486 		put_unaligned_be16(PPP_MP, q);
1487 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1488 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1489 			q[3] = ppp->nxseq;
1490 		} else {
1491 			q[2] = bits;
1492 			q[3] = ppp->nxseq >> 16;
1493 			q[4] = ppp->nxseq >> 8;
1494 			q[5] = ppp->nxseq;
1495 		}
1496 
1497 		memcpy(q + hdrlen, p, flen);
1498 
1499 		/* try to send it down the channel */
1500 		chan = pch->chan;
1501 		if (!skb_queue_empty(&pch->file.xq) ||
1502 			!chan->ops->start_xmit(chan, frag))
1503 			skb_queue_tail(&pch->file.xq, frag);
1504 		pch->had_frag = 1;
1505 		p += flen;
1506 		len -= flen;
1507 		++ppp->nxseq;
1508 		bits = 0;
1509 		spin_unlock_bh(&pch->downl);
1510 	}
1511 	ppp->nxchan = i;
1512 
1513 	return 1;
1514 
1515  noskb:
1516 	spin_unlock_bh(&pch->downl);
1517 	if (ppp->debug & 1)
1518 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1519 	++ppp->dev->stats.tx_errors;
1520 	++ppp->nxseq;
1521 	return 1;	/* abandon the frame */
1522 }
1523 #endif /* CONFIG_PPP_MULTILINK */
1524 
1525 /*
1526  * Try to send data out on a channel.
1527  */
1528 static void
1529 ppp_channel_push(struct channel *pch)
1530 {
1531 	struct sk_buff *skb;
1532 	struct ppp *ppp;
1533 
1534 	spin_lock_bh(&pch->downl);
1535 	if (pch->chan) {
1536 		while (!skb_queue_empty(&pch->file.xq)) {
1537 			skb = skb_dequeue(&pch->file.xq);
1538 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1539 				/* put the packet back and try again later */
1540 				skb_queue_head(&pch->file.xq, skb);
1541 				break;
1542 			}
1543 		}
1544 	} else {
1545 		/* channel got deregistered */
1546 		skb_queue_purge(&pch->file.xq);
1547 	}
1548 	spin_unlock_bh(&pch->downl);
1549 	/* see if there is anything from the attached unit to be sent */
1550 	if (skb_queue_empty(&pch->file.xq)) {
1551 		read_lock_bh(&pch->upl);
1552 		ppp = pch->ppp;
1553 		if (ppp)
1554 			ppp_xmit_process(ppp);
1555 		read_unlock_bh(&pch->upl);
1556 	}
1557 }
1558 
1559 /*
1560  * Receive-side routines.
1561  */
1562 
1563 struct ppp_mp_skb_parm {
1564 	u32		sequence;
1565 	u8		BEbits;
1566 };
1567 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1568 
1569 static inline void
1570 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1571 {
1572 	ppp_recv_lock(ppp);
1573 	if (!ppp->closing)
1574 		ppp_receive_frame(ppp, skb, pch);
1575 	else
1576 		kfree_skb(skb);
1577 	ppp_recv_unlock(ppp);
1578 }
1579 
1580 void
1581 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1582 {
1583 	struct channel *pch = chan->ppp;
1584 	int proto;
1585 
1586 	if (!pch) {
1587 		kfree_skb(skb);
1588 		return;
1589 	}
1590 
1591 	read_lock_bh(&pch->upl);
1592 	if (!pskb_may_pull(skb, 2)) {
1593 		kfree_skb(skb);
1594 		if (pch->ppp) {
1595 			++pch->ppp->dev->stats.rx_length_errors;
1596 			ppp_receive_error(pch->ppp);
1597 		}
1598 		goto done;
1599 	}
1600 
1601 	proto = PPP_PROTO(skb);
1602 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1603 		/* put it on the channel queue */
1604 		skb_queue_tail(&pch->file.rq, skb);
1605 		/* drop old frames if queue too long */
1606 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1607 		       (skb = skb_dequeue(&pch->file.rq)))
1608 			kfree_skb(skb);
1609 		wake_up_interruptible(&pch->file.rwait);
1610 	} else {
1611 		ppp_do_recv(pch->ppp, skb, pch);
1612 	}
1613 
1614 done:
1615 	read_unlock_bh(&pch->upl);
1616 }
1617 
1618 /* Put a 0-length skb in the receive queue as an error indication */
1619 void
1620 ppp_input_error(struct ppp_channel *chan, int code)
1621 {
1622 	struct channel *pch = chan->ppp;
1623 	struct sk_buff *skb;
1624 
1625 	if (!pch)
1626 		return;
1627 
1628 	read_lock_bh(&pch->upl);
1629 	if (pch->ppp) {
1630 		skb = alloc_skb(0, GFP_ATOMIC);
1631 		if (skb) {
1632 			skb->len = 0;		/* probably unnecessary */
1633 			skb->cb[0] = code;
1634 			ppp_do_recv(pch->ppp, skb, pch);
1635 		}
1636 	}
1637 	read_unlock_bh(&pch->upl);
1638 }
1639 
1640 /*
1641  * We come in here to process a received frame.
1642  * The receive side of the ppp unit is locked.
1643  */
1644 static void
1645 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1646 {
1647 	/* note: a 0-length skb is used as an error indication */
1648 	if (skb->len > 0) {
1649 #ifdef CONFIG_PPP_MULTILINK
1650 		/* XXX do channel-level decompression here */
1651 		if (PPP_PROTO(skb) == PPP_MP)
1652 			ppp_receive_mp_frame(ppp, skb, pch);
1653 		else
1654 #endif /* CONFIG_PPP_MULTILINK */
1655 			ppp_receive_nonmp_frame(ppp, skb);
1656 	} else {
1657 		kfree_skb(skb);
1658 		ppp_receive_error(ppp);
1659 	}
1660 }
1661 
1662 static void
1663 ppp_receive_error(struct ppp *ppp)
1664 {
1665 	++ppp->dev->stats.rx_errors;
1666 	if (ppp->vj)
1667 		slhc_toss(ppp->vj);
1668 }
1669 
1670 static void
1671 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1672 {
1673 	struct sk_buff *ns;
1674 	int proto, len, npi;
1675 
1676 	/*
1677 	 * Decompress the frame, if compressed.
1678 	 * Note that some decompressors need to see uncompressed frames
1679 	 * that come in as well as compressed frames.
1680 	 */
1681 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1682 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1683 		skb = ppp_decompress_frame(ppp, skb);
1684 
1685 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1686 		goto err;
1687 
1688 	proto = PPP_PROTO(skb);
1689 	switch (proto) {
1690 	case PPP_VJC_COMP:
1691 		/* decompress VJ compressed packets */
1692 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1693 			goto err;
1694 
1695 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1696 			/* copy to a new sk_buff with more tailroom */
1697 			ns = dev_alloc_skb(skb->len + 128);
1698 			if (!ns) {
1699 				netdev_err(ppp->dev, "PPP: no memory "
1700 					   "(VJ decomp)\n");
1701 				goto err;
1702 			}
1703 			skb_reserve(ns, 2);
1704 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1705 			kfree_skb(skb);
1706 			skb = ns;
1707 		}
1708 		else
1709 			skb->ip_summed = CHECKSUM_NONE;
1710 
1711 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1712 		if (len <= 0) {
1713 			netdev_printk(KERN_DEBUG, ppp->dev,
1714 				      "PPP: VJ decompression error\n");
1715 			goto err;
1716 		}
1717 		len += 2;
1718 		if (len > skb->len)
1719 			skb_put(skb, len - skb->len);
1720 		else if (len < skb->len)
1721 			skb_trim(skb, len);
1722 		proto = PPP_IP;
1723 		break;
1724 
1725 	case PPP_VJC_UNCOMP:
1726 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1727 			goto err;
1728 
1729 		/* Until we fix the decompressor need to make sure
1730 		 * data portion is linear.
1731 		 */
1732 		if (!pskb_may_pull(skb, skb->len))
1733 			goto err;
1734 
1735 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1736 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1737 			goto err;
1738 		}
1739 		proto = PPP_IP;
1740 		break;
1741 
1742 	case PPP_CCP:
1743 		ppp_ccp_peek(ppp, skb, 1);
1744 		break;
1745 	}
1746 
1747 	++ppp->dev->stats.rx_packets;
1748 	ppp->dev->stats.rx_bytes += skb->len - 2;
1749 
1750 	npi = proto_to_npindex(proto);
1751 	if (npi < 0) {
1752 		/* control or unknown frame - pass it to pppd */
1753 		skb_queue_tail(&ppp->file.rq, skb);
1754 		/* limit queue length by dropping old frames */
1755 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1756 		       (skb = skb_dequeue(&ppp->file.rq)))
1757 			kfree_skb(skb);
1758 		/* wake up any process polling or blocking on read */
1759 		wake_up_interruptible(&ppp->file.rwait);
1760 
1761 	} else {
1762 		/* network protocol frame - give it to the kernel */
1763 
1764 #ifdef CONFIG_PPP_FILTER
1765 		/* check if the packet passes the pass and active filters */
1766 		/* the filter instructions are constructed assuming
1767 		   a four-byte PPP header on each packet */
1768 		if (ppp->pass_filter || ppp->active_filter) {
1769 			if (skb_cloned(skb) &&
1770 			    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1771 				goto err;
1772 
1773 			*skb_push(skb, 2) = 0;
1774 			if (ppp->pass_filter &&
1775 			    sk_run_filter(skb, ppp->pass_filter) == 0) {
1776 				if (ppp->debug & 1)
1777 					netdev_printk(KERN_DEBUG, ppp->dev,
1778 						      "PPP: inbound frame "
1779 						      "not passed\n");
1780 				kfree_skb(skb);
1781 				return;
1782 			}
1783 			if (!(ppp->active_filter &&
1784 			      sk_run_filter(skb, ppp->active_filter) == 0))
1785 				ppp->last_recv = jiffies;
1786 			__skb_pull(skb, 2);
1787 		} else
1788 #endif /* CONFIG_PPP_FILTER */
1789 			ppp->last_recv = jiffies;
1790 
1791 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1792 		    ppp->npmode[npi] != NPMODE_PASS) {
1793 			kfree_skb(skb);
1794 		} else {
1795 			/* chop off protocol */
1796 			skb_pull_rcsum(skb, 2);
1797 			skb->dev = ppp->dev;
1798 			skb->protocol = htons(npindex_to_ethertype[npi]);
1799 			skb_reset_mac_header(skb);
1800 			netif_rx(skb);
1801 		}
1802 	}
1803 	return;
1804 
1805  err:
1806 	kfree_skb(skb);
1807 	ppp_receive_error(ppp);
1808 }
1809 
1810 static struct sk_buff *
1811 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1812 {
1813 	int proto = PPP_PROTO(skb);
1814 	struct sk_buff *ns;
1815 	int len;
1816 
1817 	/* Until we fix all the decompressor's need to make sure
1818 	 * data portion is linear.
1819 	 */
1820 	if (!pskb_may_pull(skb, skb->len))
1821 		goto err;
1822 
1823 	if (proto == PPP_COMP) {
1824 		int obuff_size;
1825 
1826 		switch(ppp->rcomp->compress_proto) {
1827 		case CI_MPPE:
1828 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1829 			break;
1830 		default:
1831 			obuff_size = ppp->mru + PPP_HDRLEN;
1832 			break;
1833 		}
1834 
1835 		ns = dev_alloc_skb(obuff_size);
1836 		if (!ns) {
1837 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1838 				   "no memory\n");
1839 			goto err;
1840 		}
1841 		/* the decompressor still expects the A/C bytes in the hdr */
1842 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1843 				skb->len + 2, ns->data, obuff_size);
1844 		if (len < 0) {
1845 			/* Pass the compressed frame to pppd as an
1846 			   error indication. */
1847 			if (len == DECOMP_FATALERROR)
1848 				ppp->rstate |= SC_DC_FERROR;
1849 			kfree_skb(ns);
1850 			goto err;
1851 		}
1852 
1853 		kfree_skb(skb);
1854 		skb = ns;
1855 		skb_put(skb, len);
1856 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1857 
1858 	} else {
1859 		/* Uncompressed frame - pass to decompressor so it
1860 		   can update its dictionary if necessary. */
1861 		if (ppp->rcomp->incomp)
1862 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1863 					   skb->len + 2);
1864 	}
1865 
1866 	return skb;
1867 
1868  err:
1869 	ppp->rstate |= SC_DC_ERROR;
1870 	ppp_receive_error(ppp);
1871 	return skb;
1872 }
1873 
1874 #ifdef CONFIG_PPP_MULTILINK
1875 /*
1876  * Receive a multilink frame.
1877  * We put it on the reconstruction queue and then pull off
1878  * as many completed frames as we can.
1879  */
1880 static void
1881 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1882 {
1883 	u32 mask, seq;
1884 	struct channel *ch;
1885 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1886 
1887 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1888 		goto err;		/* no good, throw it away */
1889 
1890 	/* Decode sequence number and begin/end bits */
1891 	if (ppp->flags & SC_MP_SHORTSEQ) {
1892 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1893 		mask = 0xfff;
1894 	} else {
1895 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1896 		mask = 0xffffff;
1897 	}
1898 	PPP_MP_CB(skb)->BEbits = skb->data[2];
1899 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
1900 
1901 	/*
1902 	 * Do protocol ID decompression on the first fragment of each packet.
1903 	 */
1904 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1905 		*skb_push(skb, 1) = 0;
1906 
1907 	/*
1908 	 * Expand sequence number to 32 bits, making it as close
1909 	 * as possible to ppp->minseq.
1910 	 */
1911 	seq |= ppp->minseq & ~mask;
1912 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1913 		seq += mask + 1;
1914 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1915 		seq -= mask + 1;	/* should never happen */
1916 	PPP_MP_CB(skb)->sequence = seq;
1917 	pch->lastseq = seq;
1918 
1919 	/*
1920 	 * If this packet comes before the next one we were expecting,
1921 	 * drop it.
1922 	 */
1923 	if (seq_before(seq, ppp->nextseq)) {
1924 		kfree_skb(skb);
1925 		++ppp->dev->stats.rx_dropped;
1926 		ppp_receive_error(ppp);
1927 		return;
1928 	}
1929 
1930 	/*
1931 	 * Reevaluate minseq, the minimum over all channels of the
1932 	 * last sequence number received on each channel.  Because of
1933 	 * the increasing sequence number rule, we know that any fragment
1934 	 * before `minseq' which hasn't arrived is never going to arrive.
1935 	 * The list of channels can't change because we have the receive
1936 	 * side of the ppp unit locked.
1937 	 */
1938 	list_for_each_entry(ch, &ppp->channels, clist) {
1939 		if (seq_before(ch->lastseq, seq))
1940 			seq = ch->lastseq;
1941 	}
1942 	if (seq_before(ppp->minseq, seq))
1943 		ppp->minseq = seq;
1944 
1945 	/* Put the fragment on the reconstruction queue */
1946 	ppp_mp_insert(ppp, skb);
1947 
1948 	/* If the queue is getting long, don't wait any longer for packets
1949 	   before the start of the queue. */
1950 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
1951 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
1952 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
1953 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
1954 	}
1955 
1956 	/* Pull completed packets off the queue and receive them. */
1957 	while ((skb = ppp_mp_reconstruct(ppp))) {
1958 		if (pskb_may_pull(skb, 2))
1959 			ppp_receive_nonmp_frame(ppp, skb);
1960 		else {
1961 			++ppp->dev->stats.rx_length_errors;
1962 			kfree_skb(skb);
1963 			ppp_receive_error(ppp);
1964 		}
1965 	}
1966 
1967 	return;
1968 
1969  err:
1970 	kfree_skb(skb);
1971 	ppp_receive_error(ppp);
1972 }
1973 
1974 /*
1975  * Insert a fragment on the MP reconstruction queue.
1976  * The queue is ordered by increasing sequence number.
1977  */
1978 static void
1979 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
1980 {
1981 	struct sk_buff *p;
1982 	struct sk_buff_head *list = &ppp->mrq;
1983 	u32 seq = PPP_MP_CB(skb)->sequence;
1984 
1985 	/* N.B. we don't need to lock the list lock because we have the
1986 	   ppp unit receive-side lock. */
1987 	skb_queue_walk(list, p) {
1988 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
1989 			break;
1990 	}
1991 	__skb_queue_before(list, p, skb);
1992 }
1993 
1994 /*
1995  * Reconstruct a packet from the MP fragment queue.
1996  * We go through increasing sequence numbers until we find a
1997  * complete packet, or we get to the sequence number for a fragment
1998  * which hasn't arrived but might still do so.
1999  */
2000 static struct sk_buff *
2001 ppp_mp_reconstruct(struct ppp *ppp)
2002 {
2003 	u32 seq = ppp->nextseq;
2004 	u32 minseq = ppp->minseq;
2005 	struct sk_buff_head *list = &ppp->mrq;
2006 	struct sk_buff *p, *tmp;
2007 	struct sk_buff *head, *tail;
2008 	struct sk_buff *skb = NULL;
2009 	int lost = 0, len = 0;
2010 
2011 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2012 		return NULL;
2013 	head = list->next;
2014 	tail = NULL;
2015 	skb_queue_walk_safe(list, p, tmp) {
2016 	again:
2017 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2018 			/* this can't happen, anyway ignore the skb */
2019 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2020 				   "seq %u < %u\n",
2021 				   PPP_MP_CB(p)->sequence, seq);
2022 			__skb_unlink(p, list);
2023 			kfree_skb(p);
2024 			continue;
2025 		}
2026 		if (PPP_MP_CB(p)->sequence != seq) {
2027 			/* Fragment `seq' is missing.  If it is after
2028 			   minseq, it might arrive later, so stop here. */
2029 			if (seq_after(seq, minseq))
2030 				break;
2031 			/* Fragment `seq' is lost, keep going. */
2032 			lost = 1;
2033 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2034 				minseq + 1: PPP_MP_CB(p)->sequence;
2035 			goto again;
2036 		}
2037 
2038 		/*
2039 		 * At this point we know that all the fragments from
2040 		 * ppp->nextseq to seq are either present or lost.
2041 		 * Also, there are no complete packets in the queue
2042 		 * that have no missing fragments and end before this
2043 		 * fragment.
2044 		 */
2045 
2046 		/* B bit set indicates this fragment starts a packet */
2047 		if (PPP_MP_CB(p)->BEbits & B) {
2048 			head = p;
2049 			lost = 0;
2050 			len = 0;
2051 		}
2052 
2053 		len += p->len;
2054 
2055 		/* Got a complete packet yet? */
2056 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2057 		    (PPP_MP_CB(head)->BEbits & B)) {
2058 			if (len > ppp->mrru + 2) {
2059 				++ppp->dev->stats.rx_length_errors;
2060 				netdev_printk(KERN_DEBUG, ppp->dev,
2061 					      "PPP: reconstructed packet"
2062 					      " is too long (%d)\n", len);
2063 			} else {
2064 				tail = p;
2065 				break;
2066 			}
2067 			ppp->nextseq = seq + 1;
2068 		}
2069 
2070 		/*
2071 		 * If this is the ending fragment of a packet,
2072 		 * and we haven't found a complete valid packet yet,
2073 		 * we can discard up to and including this fragment.
2074 		 */
2075 		if (PPP_MP_CB(p)->BEbits & E) {
2076 			struct sk_buff *tmp2;
2077 
2078 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2079 				__skb_unlink(p, list);
2080 				kfree_skb(p);
2081 			}
2082 			head = skb_peek(list);
2083 			if (!head)
2084 				break;
2085 		}
2086 		++seq;
2087 	}
2088 
2089 	/* If we have a complete packet, copy it all into one skb. */
2090 	if (tail != NULL) {
2091 		/* If we have discarded any fragments,
2092 		   signal a receive error. */
2093 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2094 			if (ppp->debug & 1)
2095 				netdev_printk(KERN_DEBUG, ppp->dev,
2096 					      "  missed pkts %u..%u\n",
2097 					      ppp->nextseq,
2098 					      PPP_MP_CB(head)->sequence-1);
2099 			++ppp->dev->stats.rx_dropped;
2100 			ppp_receive_error(ppp);
2101 		}
2102 
2103 		skb = head;
2104 		if (head != tail) {
2105 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2106 			p = skb_queue_next(list, head);
2107 			__skb_unlink(skb, list);
2108 			skb_queue_walk_from_safe(list, p, tmp) {
2109 				__skb_unlink(p, list);
2110 				*fragpp = p;
2111 				p->next = NULL;
2112 				fragpp = &p->next;
2113 
2114 				skb->len += p->len;
2115 				skb->data_len += p->len;
2116 				skb->truesize += p->len;
2117 
2118 				if (p == tail)
2119 					break;
2120 			}
2121 		} else {
2122 			__skb_unlink(skb, list);
2123 		}
2124 
2125 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2126 	}
2127 
2128 	return skb;
2129 }
2130 #endif /* CONFIG_PPP_MULTILINK */
2131 
2132 /*
2133  * Channel interface.
2134  */
2135 
2136 /* Create a new, unattached ppp channel. */
2137 int ppp_register_channel(struct ppp_channel *chan)
2138 {
2139 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2140 }
2141 
2142 /* Create a new, unattached ppp channel for specified net. */
2143 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2144 {
2145 	struct channel *pch;
2146 	struct ppp_net *pn;
2147 
2148 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2149 	if (!pch)
2150 		return -ENOMEM;
2151 
2152 	pn = ppp_pernet(net);
2153 
2154 	pch->ppp = NULL;
2155 	pch->chan = chan;
2156 	pch->chan_net = net;
2157 	chan->ppp = pch;
2158 	init_ppp_file(&pch->file, CHANNEL);
2159 	pch->file.hdrlen = chan->hdrlen;
2160 #ifdef CONFIG_PPP_MULTILINK
2161 	pch->lastseq = -1;
2162 #endif /* CONFIG_PPP_MULTILINK */
2163 	init_rwsem(&pch->chan_sem);
2164 	spin_lock_init(&pch->downl);
2165 	rwlock_init(&pch->upl);
2166 
2167 	spin_lock_bh(&pn->all_channels_lock);
2168 	pch->file.index = ++pn->last_channel_index;
2169 	list_add(&pch->list, &pn->new_channels);
2170 	atomic_inc(&channel_count);
2171 	spin_unlock_bh(&pn->all_channels_lock);
2172 
2173 	return 0;
2174 }
2175 
2176 /*
2177  * Return the index of a channel.
2178  */
2179 int ppp_channel_index(struct ppp_channel *chan)
2180 {
2181 	struct channel *pch = chan->ppp;
2182 
2183 	if (pch)
2184 		return pch->file.index;
2185 	return -1;
2186 }
2187 
2188 /*
2189  * Return the PPP unit number to which a channel is connected.
2190  */
2191 int ppp_unit_number(struct ppp_channel *chan)
2192 {
2193 	struct channel *pch = chan->ppp;
2194 	int unit = -1;
2195 
2196 	if (pch) {
2197 		read_lock_bh(&pch->upl);
2198 		if (pch->ppp)
2199 			unit = pch->ppp->file.index;
2200 		read_unlock_bh(&pch->upl);
2201 	}
2202 	return unit;
2203 }
2204 
2205 /*
2206  * Return the PPP device interface name of a channel.
2207  */
2208 char *ppp_dev_name(struct ppp_channel *chan)
2209 {
2210 	struct channel *pch = chan->ppp;
2211 	char *name = NULL;
2212 
2213 	if (pch) {
2214 		read_lock_bh(&pch->upl);
2215 		if (pch->ppp && pch->ppp->dev)
2216 			name = pch->ppp->dev->name;
2217 		read_unlock_bh(&pch->upl);
2218 	}
2219 	return name;
2220 }
2221 
2222 
2223 /*
2224  * Disconnect a channel from the generic layer.
2225  * This must be called in process context.
2226  */
2227 void
2228 ppp_unregister_channel(struct ppp_channel *chan)
2229 {
2230 	struct channel *pch = chan->ppp;
2231 	struct ppp_net *pn;
2232 
2233 	if (!pch)
2234 		return;		/* should never happen */
2235 
2236 	chan->ppp = NULL;
2237 
2238 	/*
2239 	 * This ensures that we have returned from any calls into the
2240 	 * the channel's start_xmit or ioctl routine before we proceed.
2241 	 */
2242 	down_write(&pch->chan_sem);
2243 	spin_lock_bh(&pch->downl);
2244 	pch->chan = NULL;
2245 	spin_unlock_bh(&pch->downl);
2246 	up_write(&pch->chan_sem);
2247 	ppp_disconnect_channel(pch);
2248 
2249 	pn = ppp_pernet(pch->chan_net);
2250 	spin_lock_bh(&pn->all_channels_lock);
2251 	list_del(&pch->list);
2252 	spin_unlock_bh(&pn->all_channels_lock);
2253 
2254 	pch->file.dead = 1;
2255 	wake_up_interruptible(&pch->file.rwait);
2256 	if (atomic_dec_and_test(&pch->file.refcnt))
2257 		ppp_destroy_channel(pch);
2258 }
2259 
2260 /*
2261  * Callback from a channel when it can accept more to transmit.
2262  * This should be called at BH/softirq level, not interrupt level.
2263  */
2264 void
2265 ppp_output_wakeup(struct ppp_channel *chan)
2266 {
2267 	struct channel *pch = chan->ppp;
2268 
2269 	if (!pch)
2270 		return;
2271 	ppp_channel_push(pch);
2272 }
2273 
2274 /*
2275  * Compression control.
2276  */
2277 
2278 /* Process the PPPIOCSCOMPRESS ioctl. */
2279 static int
2280 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2281 {
2282 	int err;
2283 	struct compressor *cp, *ocomp;
2284 	struct ppp_option_data data;
2285 	void *state, *ostate;
2286 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2287 
2288 	err = -EFAULT;
2289 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2290 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2291 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2292 		goto out;
2293 	err = -EINVAL;
2294 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2295 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2296 		goto out;
2297 
2298 	cp = try_then_request_module(
2299 		find_compressor(ccp_option[0]),
2300 		"ppp-compress-%d", ccp_option[0]);
2301 	if (!cp)
2302 		goto out;
2303 
2304 	err = -ENOBUFS;
2305 	if (data.transmit) {
2306 		state = cp->comp_alloc(ccp_option, data.length);
2307 		if (state) {
2308 			ppp_xmit_lock(ppp);
2309 			ppp->xstate &= ~SC_COMP_RUN;
2310 			ocomp = ppp->xcomp;
2311 			ostate = ppp->xc_state;
2312 			ppp->xcomp = cp;
2313 			ppp->xc_state = state;
2314 			ppp_xmit_unlock(ppp);
2315 			if (ostate) {
2316 				ocomp->comp_free(ostate);
2317 				module_put(ocomp->owner);
2318 			}
2319 			err = 0;
2320 		} else
2321 			module_put(cp->owner);
2322 
2323 	} else {
2324 		state = cp->decomp_alloc(ccp_option, data.length);
2325 		if (state) {
2326 			ppp_recv_lock(ppp);
2327 			ppp->rstate &= ~SC_DECOMP_RUN;
2328 			ocomp = ppp->rcomp;
2329 			ostate = ppp->rc_state;
2330 			ppp->rcomp = cp;
2331 			ppp->rc_state = state;
2332 			ppp_recv_unlock(ppp);
2333 			if (ostate) {
2334 				ocomp->decomp_free(ostate);
2335 				module_put(ocomp->owner);
2336 			}
2337 			err = 0;
2338 		} else
2339 			module_put(cp->owner);
2340 	}
2341 
2342  out:
2343 	return err;
2344 }
2345 
2346 /*
2347  * Look at a CCP packet and update our state accordingly.
2348  * We assume the caller has the xmit or recv path locked.
2349  */
2350 static void
2351 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2352 {
2353 	unsigned char *dp;
2354 	int len;
2355 
2356 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2357 		return;	/* no header */
2358 	dp = skb->data + 2;
2359 
2360 	switch (CCP_CODE(dp)) {
2361 	case CCP_CONFREQ:
2362 
2363 		/* A ConfReq starts negotiation of compression
2364 		 * in one direction of transmission,
2365 		 * and hence brings it down...but which way?
2366 		 *
2367 		 * Remember:
2368 		 * A ConfReq indicates what the sender would like to receive
2369 		 */
2370 		if(inbound)
2371 			/* He is proposing what I should send */
2372 			ppp->xstate &= ~SC_COMP_RUN;
2373 		else
2374 			/* I am proposing to what he should send */
2375 			ppp->rstate &= ~SC_DECOMP_RUN;
2376 
2377 		break;
2378 
2379 	case CCP_TERMREQ:
2380 	case CCP_TERMACK:
2381 		/*
2382 		 * CCP is going down, both directions of transmission
2383 		 */
2384 		ppp->rstate &= ~SC_DECOMP_RUN;
2385 		ppp->xstate &= ~SC_COMP_RUN;
2386 		break;
2387 
2388 	case CCP_CONFACK:
2389 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2390 			break;
2391 		len = CCP_LENGTH(dp);
2392 		if (!pskb_may_pull(skb, len + 2))
2393 			return;		/* too short */
2394 		dp += CCP_HDRLEN;
2395 		len -= CCP_HDRLEN;
2396 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2397 			break;
2398 		if (inbound) {
2399 			/* we will start receiving compressed packets */
2400 			if (!ppp->rc_state)
2401 				break;
2402 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2403 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2404 				ppp->rstate |= SC_DECOMP_RUN;
2405 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2406 			}
2407 		} else {
2408 			/* we will soon start sending compressed packets */
2409 			if (!ppp->xc_state)
2410 				break;
2411 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2412 					ppp->file.index, 0, ppp->debug))
2413 				ppp->xstate |= SC_COMP_RUN;
2414 		}
2415 		break;
2416 
2417 	case CCP_RESETACK:
2418 		/* reset the [de]compressor */
2419 		if ((ppp->flags & SC_CCP_UP) == 0)
2420 			break;
2421 		if (inbound) {
2422 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2423 				ppp->rcomp->decomp_reset(ppp->rc_state);
2424 				ppp->rstate &= ~SC_DC_ERROR;
2425 			}
2426 		} else {
2427 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2428 				ppp->xcomp->comp_reset(ppp->xc_state);
2429 		}
2430 		break;
2431 	}
2432 }
2433 
2434 /* Free up compression resources. */
2435 static void
2436 ppp_ccp_closed(struct ppp *ppp)
2437 {
2438 	void *xstate, *rstate;
2439 	struct compressor *xcomp, *rcomp;
2440 
2441 	ppp_lock(ppp);
2442 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2443 	ppp->xstate = 0;
2444 	xcomp = ppp->xcomp;
2445 	xstate = ppp->xc_state;
2446 	ppp->xc_state = NULL;
2447 	ppp->rstate = 0;
2448 	rcomp = ppp->rcomp;
2449 	rstate = ppp->rc_state;
2450 	ppp->rc_state = NULL;
2451 	ppp_unlock(ppp);
2452 
2453 	if (xstate) {
2454 		xcomp->comp_free(xstate);
2455 		module_put(xcomp->owner);
2456 	}
2457 	if (rstate) {
2458 		rcomp->decomp_free(rstate);
2459 		module_put(rcomp->owner);
2460 	}
2461 }
2462 
2463 /* List of compressors. */
2464 static LIST_HEAD(compressor_list);
2465 static DEFINE_SPINLOCK(compressor_list_lock);
2466 
2467 struct compressor_entry {
2468 	struct list_head list;
2469 	struct compressor *comp;
2470 };
2471 
2472 static struct compressor_entry *
2473 find_comp_entry(int proto)
2474 {
2475 	struct compressor_entry *ce;
2476 
2477 	list_for_each_entry(ce, &compressor_list, list) {
2478 		if (ce->comp->compress_proto == proto)
2479 			return ce;
2480 	}
2481 	return NULL;
2482 }
2483 
2484 /* Register a compressor */
2485 int
2486 ppp_register_compressor(struct compressor *cp)
2487 {
2488 	struct compressor_entry *ce;
2489 	int ret;
2490 	spin_lock(&compressor_list_lock);
2491 	ret = -EEXIST;
2492 	if (find_comp_entry(cp->compress_proto))
2493 		goto out;
2494 	ret = -ENOMEM;
2495 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2496 	if (!ce)
2497 		goto out;
2498 	ret = 0;
2499 	ce->comp = cp;
2500 	list_add(&ce->list, &compressor_list);
2501  out:
2502 	spin_unlock(&compressor_list_lock);
2503 	return ret;
2504 }
2505 
2506 /* Unregister a compressor */
2507 void
2508 ppp_unregister_compressor(struct compressor *cp)
2509 {
2510 	struct compressor_entry *ce;
2511 
2512 	spin_lock(&compressor_list_lock);
2513 	ce = find_comp_entry(cp->compress_proto);
2514 	if (ce && ce->comp == cp) {
2515 		list_del(&ce->list);
2516 		kfree(ce);
2517 	}
2518 	spin_unlock(&compressor_list_lock);
2519 }
2520 
2521 /* Find a compressor. */
2522 static struct compressor *
2523 find_compressor(int type)
2524 {
2525 	struct compressor_entry *ce;
2526 	struct compressor *cp = NULL;
2527 
2528 	spin_lock(&compressor_list_lock);
2529 	ce = find_comp_entry(type);
2530 	if (ce) {
2531 		cp = ce->comp;
2532 		if (!try_module_get(cp->owner))
2533 			cp = NULL;
2534 	}
2535 	spin_unlock(&compressor_list_lock);
2536 	return cp;
2537 }
2538 
2539 /*
2540  * Miscelleneous stuff.
2541  */
2542 
2543 static void
2544 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2545 {
2546 	struct slcompress *vj = ppp->vj;
2547 
2548 	memset(st, 0, sizeof(*st));
2549 	st->p.ppp_ipackets = ppp->dev->stats.rx_packets;
2550 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2551 	st->p.ppp_ibytes = ppp->dev->stats.rx_bytes;
2552 	st->p.ppp_opackets = ppp->dev->stats.tx_packets;
2553 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2554 	st->p.ppp_obytes = ppp->dev->stats.tx_bytes;
2555 	if (!vj)
2556 		return;
2557 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2558 	st->vj.vjs_compressed = vj->sls_o_compressed;
2559 	st->vj.vjs_searches = vj->sls_o_searches;
2560 	st->vj.vjs_misses = vj->sls_o_misses;
2561 	st->vj.vjs_errorin = vj->sls_i_error;
2562 	st->vj.vjs_tossed = vj->sls_i_tossed;
2563 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2564 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2565 }
2566 
2567 /*
2568  * Stuff for handling the lists of ppp units and channels
2569  * and for initialization.
2570  */
2571 
2572 /*
2573  * Create a new ppp interface unit.  Fails if it can't allocate memory
2574  * or if there is already a unit with the requested number.
2575  * unit == -1 means allocate a new number.
2576  */
2577 static struct ppp *
2578 ppp_create_interface(struct net *net, int unit, int *retp)
2579 {
2580 	struct ppp *ppp;
2581 	struct ppp_net *pn;
2582 	struct net_device *dev = NULL;
2583 	int ret = -ENOMEM;
2584 	int i;
2585 
2586 	dev = alloc_netdev(sizeof(struct ppp), "", ppp_setup);
2587 	if (!dev)
2588 		goto out1;
2589 
2590 	pn = ppp_pernet(net);
2591 
2592 	ppp = netdev_priv(dev);
2593 	ppp->dev = dev;
2594 	ppp->mru = PPP_MRU;
2595 	init_ppp_file(&ppp->file, INTERFACE);
2596 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2597 	for (i = 0; i < NUM_NP; ++i)
2598 		ppp->npmode[i] = NPMODE_PASS;
2599 	INIT_LIST_HEAD(&ppp->channels);
2600 	spin_lock_init(&ppp->rlock);
2601 	spin_lock_init(&ppp->wlock);
2602 #ifdef CONFIG_PPP_MULTILINK
2603 	ppp->minseq = -1;
2604 	skb_queue_head_init(&ppp->mrq);
2605 #endif /* CONFIG_PPP_MULTILINK */
2606 
2607 	/*
2608 	 * drum roll: don't forget to set
2609 	 * the net device is belong to
2610 	 */
2611 	dev_net_set(dev, net);
2612 
2613 	mutex_lock(&pn->all_ppp_mutex);
2614 
2615 	if (unit < 0) {
2616 		unit = unit_get(&pn->units_idr, ppp);
2617 		if (unit < 0) {
2618 			ret = unit;
2619 			goto out2;
2620 		}
2621 	} else {
2622 		ret = -EEXIST;
2623 		if (unit_find(&pn->units_idr, unit))
2624 			goto out2; /* unit already exists */
2625 		/*
2626 		 * if caller need a specified unit number
2627 		 * lets try to satisfy him, otherwise --
2628 		 * he should better ask us for new unit number
2629 		 *
2630 		 * NOTE: yes I know that returning EEXIST it's not
2631 		 * fair but at least pppd will ask us to allocate
2632 		 * new unit in this case so user is happy :)
2633 		 */
2634 		unit = unit_set(&pn->units_idr, ppp, unit);
2635 		if (unit < 0)
2636 			goto out2;
2637 	}
2638 
2639 	/* Initialize the new ppp unit */
2640 	ppp->file.index = unit;
2641 	sprintf(dev->name, "ppp%d", unit);
2642 
2643 	ret = register_netdev(dev);
2644 	if (ret != 0) {
2645 		unit_put(&pn->units_idr, unit);
2646 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2647 			   dev->name, ret);
2648 		goto out2;
2649 	}
2650 
2651 	ppp->ppp_net = net;
2652 
2653 	atomic_inc(&ppp_unit_count);
2654 	mutex_unlock(&pn->all_ppp_mutex);
2655 
2656 	*retp = 0;
2657 	return ppp;
2658 
2659 out2:
2660 	mutex_unlock(&pn->all_ppp_mutex);
2661 	free_netdev(dev);
2662 out1:
2663 	*retp = ret;
2664 	return NULL;
2665 }
2666 
2667 /*
2668  * Initialize a ppp_file structure.
2669  */
2670 static void
2671 init_ppp_file(struct ppp_file *pf, int kind)
2672 {
2673 	pf->kind = kind;
2674 	skb_queue_head_init(&pf->xq);
2675 	skb_queue_head_init(&pf->rq);
2676 	atomic_set(&pf->refcnt, 1);
2677 	init_waitqueue_head(&pf->rwait);
2678 }
2679 
2680 /*
2681  * Take down a ppp interface unit - called when the owning file
2682  * (the one that created the unit) is closed or detached.
2683  */
2684 static void ppp_shutdown_interface(struct ppp *ppp)
2685 {
2686 	struct ppp_net *pn;
2687 
2688 	pn = ppp_pernet(ppp->ppp_net);
2689 	mutex_lock(&pn->all_ppp_mutex);
2690 
2691 	/* This will call dev_close() for us. */
2692 	ppp_lock(ppp);
2693 	if (!ppp->closing) {
2694 		ppp->closing = 1;
2695 		ppp_unlock(ppp);
2696 		unregister_netdev(ppp->dev);
2697 		unit_put(&pn->units_idr, ppp->file.index);
2698 	} else
2699 		ppp_unlock(ppp);
2700 
2701 	ppp->file.dead = 1;
2702 	ppp->owner = NULL;
2703 	wake_up_interruptible(&ppp->file.rwait);
2704 
2705 	mutex_unlock(&pn->all_ppp_mutex);
2706 }
2707 
2708 /*
2709  * Free the memory used by a ppp unit.  This is only called once
2710  * there are no channels connected to the unit and no file structs
2711  * that reference the unit.
2712  */
2713 static void ppp_destroy_interface(struct ppp *ppp)
2714 {
2715 	atomic_dec(&ppp_unit_count);
2716 
2717 	if (!ppp->file.dead || ppp->n_channels) {
2718 		/* "can't happen" */
2719 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2720 			   "but dead=%d n_channels=%d !\n",
2721 			   ppp, ppp->file.dead, ppp->n_channels);
2722 		return;
2723 	}
2724 
2725 	ppp_ccp_closed(ppp);
2726 	if (ppp->vj) {
2727 		slhc_free(ppp->vj);
2728 		ppp->vj = NULL;
2729 	}
2730 	skb_queue_purge(&ppp->file.xq);
2731 	skb_queue_purge(&ppp->file.rq);
2732 #ifdef CONFIG_PPP_MULTILINK
2733 	skb_queue_purge(&ppp->mrq);
2734 #endif /* CONFIG_PPP_MULTILINK */
2735 #ifdef CONFIG_PPP_FILTER
2736 	kfree(ppp->pass_filter);
2737 	ppp->pass_filter = NULL;
2738 	kfree(ppp->active_filter);
2739 	ppp->active_filter = NULL;
2740 #endif /* CONFIG_PPP_FILTER */
2741 
2742 	kfree_skb(ppp->xmit_pending);
2743 
2744 	free_netdev(ppp->dev);
2745 }
2746 
2747 /*
2748  * Locate an existing ppp unit.
2749  * The caller should have locked the all_ppp_mutex.
2750  */
2751 static struct ppp *
2752 ppp_find_unit(struct ppp_net *pn, int unit)
2753 {
2754 	return unit_find(&pn->units_idr, unit);
2755 }
2756 
2757 /*
2758  * Locate an existing ppp channel.
2759  * The caller should have locked the all_channels_lock.
2760  * First we look in the new_channels list, then in the
2761  * all_channels list.  If found in the new_channels list,
2762  * we move it to the all_channels list.  This is for speed
2763  * when we have a lot of channels in use.
2764  */
2765 static struct channel *
2766 ppp_find_channel(struct ppp_net *pn, int unit)
2767 {
2768 	struct channel *pch;
2769 
2770 	list_for_each_entry(pch, &pn->new_channels, list) {
2771 		if (pch->file.index == unit) {
2772 			list_move(&pch->list, &pn->all_channels);
2773 			return pch;
2774 		}
2775 	}
2776 
2777 	list_for_each_entry(pch, &pn->all_channels, list) {
2778 		if (pch->file.index == unit)
2779 			return pch;
2780 	}
2781 
2782 	return NULL;
2783 }
2784 
2785 /*
2786  * Connect a PPP channel to a PPP interface unit.
2787  */
2788 static int
2789 ppp_connect_channel(struct channel *pch, int unit)
2790 {
2791 	struct ppp *ppp;
2792 	struct ppp_net *pn;
2793 	int ret = -ENXIO;
2794 	int hdrlen;
2795 
2796 	pn = ppp_pernet(pch->chan_net);
2797 
2798 	mutex_lock(&pn->all_ppp_mutex);
2799 	ppp = ppp_find_unit(pn, unit);
2800 	if (!ppp)
2801 		goto out;
2802 	write_lock_bh(&pch->upl);
2803 	ret = -EINVAL;
2804 	if (pch->ppp)
2805 		goto outl;
2806 
2807 	ppp_lock(ppp);
2808 	if (pch->file.hdrlen > ppp->file.hdrlen)
2809 		ppp->file.hdrlen = pch->file.hdrlen;
2810 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2811 	if (hdrlen > ppp->dev->hard_header_len)
2812 		ppp->dev->hard_header_len = hdrlen;
2813 	list_add_tail(&pch->clist, &ppp->channels);
2814 	++ppp->n_channels;
2815 	pch->ppp = ppp;
2816 	atomic_inc(&ppp->file.refcnt);
2817 	ppp_unlock(ppp);
2818 	ret = 0;
2819 
2820  outl:
2821 	write_unlock_bh(&pch->upl);
2822  out:
2823 	mutex_unlock(&pn->all_ppp_mutex);
2824 	return ret;
2825 }
2826 
2827 /*
2828  * Disconnect a channel from its ppp unit.
2829  */
2830 static int
2831 ppp_disconnect_channel(struct channel *pch)
2832 {
2833 	struct ppp *ppp;
2834 	int err = -EINVAL;
2835 
2836 	write_lock_bh(&pch->upl);
2837 	ppp = pch->ppp;
2838 	pch->ppp = NULL;
2839 	write_unlock_bh(&pch->upl);
2840 	if (ppp) {
2841 		/* remove it from the ppp unit's list */
2842 		ppp_lock(ppp);
2843 		list_del(&pch->clist);
2844 		if (--ppp->n_channels == 0)
2845 			wake_up_interruptible(&ppp->file.rwait);
2846 		ppp_unlock(ppp);
2847 		if (atomic_dec_and_test(&ppp->file.refcnt))
2848 			ppp_destroy_interface(ppp);
2849 		err = 0;
2850 	}
2851 	return err;
2852 }
2853 
2854 /*
2855  * Free up the resources used by a ppp channel.
2856  */
2857 static void ppp_destroy_channel(struct channel *pch)
2858 {
2859 	atomic_dec(&channel_count);
2860 
2861 	if (!pch->file.dead) {
2862 		/* "can't happen" */
2863 		pr_err("ppp: destroying undead channel %p !\n", pch);
2864 		return;
2865 	}
2866 	skb_queue_purge(&pch->file.xq);
2867 	skb_queue_purge(&pch->file.rq);
2868 	kfree(pch);
2869 }
2870 
2871 static void __exit ppp_cleanup(void)
2872 {
2873 	/* should never happen */
2874 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2875 		pr_err("PPP: removing module but units remain!\n");
2876 	unregister_chrdev(PPP_MAJOR, "ppp");
2877 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2878 	class_destroy(ppp_class);
2879 	unregister_pernet_device(&ppp_net_ops);
2880 }
2881 
2882 /*
2883  * Units handling. Caller must protect concurrent access
2884  * by holding all_ppp_mutex
2885  */
2886 
2887 static int __unit_alloc(struct idr *p, void *ptr, int n)
2888 {
2889 	int unit, err;
2890 
2891 again:
2892 	if (!idr_pre_get(p, GFP_KERNEL)) {
2893 		pr_err("PPP: No free memory for idr\n");
2894 		return -ENOMEM;
2895 	}
2896 
2897 	err = idr_get_new_above(p, ptr, n, &unit);
2898 	if (err < 0) {
2899 		if (err == -EAGAIN)
2900 			goto again;
2901 		return err;
2902 	}
2903 
2904 	return unit;
2905 }
2906 
2907 /* associate pointer with specified number */
2908 static int unit_set(struct idr *p, void *ptr, int n)
2909 {
2910 	int unit;
2911 
2912 	unit = __unit_alloc(p, ptr, n);
2913 	if (unit < 0)
2914 		return unit;
2915 	else if (unit != n) {
2916 		idr_remove(p, unit);
2917 		return -EINVAL;
2918 	}
2919 
2920 	return unit;
2921 }
2922 
2923 /* get new free unit number and associate pointer with it */
2924 static int unit_get(struct idr *p, void *ptr)
2925 {
2926 	return __unit_alloc(p, ptr, 0);
2927 }
2928 
2929 /* put unit number back to a pool */
2930 static void unit_put(struct idr *p, int n)
2931 {
2932 	idr_remove(p, n);
2933 }
2934 
2935 /* get pointer associated with the number */
2936 static void *unit_find(struct idr *p, int n)
2937 {
2938 	return idr_find(p, n);
2939 }
2940 
2941 /* Module/initialization stuff */
2942 
2943 module_init(ppp_init);
2944 module_exit(ppp_cleanup);
2945 
2946 EXPORT_SYMBOL(ppp_register_net_channel);
2947 EXPORT_SYMBOL(ppp_register_channel);
2948 EXPORT_SYMBOL(ppp_unregister_channel);
2949 EXPORT_SYMBOL(ppp_channel_index);
2950 EXPORT_SYMBOL(ppp_unit_number);
2951 EXPORT_SYMBOL(ppp_dev_name);
2952 EXPORT_SYMBOL(ppp_input);
2953 EXPORT_SYMBOL(ppp_input_error);
2954 EXPORT_SYMBOL(ppp_output_wakeup);
2955 EXPORT_SYMBOL(ppp_register_compressor);
2956 EXPORT_SYMBOL(ppp_unregister_compressor);
2957 MODULE_LICENSE("GPL");
2958 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
2959 MODULE_ALIAS("devname:ppp");
2960