xref: /linux/drivers/net/ppp/ppp_generic.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
147 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 	struct net	*ppp_net;	/* the net we belong to */
150 	struct ppp_link_stats stats64;	/* 64 bit network stats */
151 };
152 
153 /*
154  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156  * SC_MUST_COMP
157  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158  * Bits in xstate: SC_COMP_RUN
159  */
160 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163 
164 /*
165  * Private data structure for each channel.
166  * This includes the data structure used for multilink.
167  */
168 struct channel {
169 	struct ppp_file	file;		/* stuff for read/write/poll */
170 	struct list_head list;		/* link in all/new_channels list */
171 	struct ppp_channel *chan;	/* public channel data structure */
172 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174 	struct ppp	*ppp;		/* ppp unit we're connected to */
175 	struct net	*chan_net;	/* the net channel belongs to */
176 	struct list_head clist;		/* link in list of channels per unit */
177 	rwlock_t	upl;		/* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 	u8		avail;		/* flag used in multilink stuff */
180 	u8		had_frag;	/* >= 1 fragments have been sent */
181 	u32		lastseq;	/* MP: last sequence # received */
182 	int		speed;		/* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185 
186 /*
187  * SMP locking issues:
188  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189  * list and the ppp.n_channels field, you need to take both locks
190  * before you modify them.
191  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192  * channel.downl.
193  */
194 
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198 
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 	/* units to ppp mapping */
203 	struct idr units_idr;
204 
205 	/*
206 	 * all_ppp_mutex protects the units_idr mapping.
207 	 * It also ensures that finding a ppp unit in the units_idr
208 	 * map and updating its file.refcnt field is atomic.
209 	 */
210 	struct mutex all_ppp_mutex;
211 
212 	/* channels */
213 	struct list_head all_channels;
214 	struct list_head new_channels;
215 	int last_channel_index;
216 
217 	/*
218 	 * all_channels_lock protects all_channels and
219 	 * last_channel_index, and the atomicity of find
220 	 * a channel and updating its file.refcnt field.
221 	 */
222 	spinlock_t all_channels_lock;
223 };
224 
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227 
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN	32
230 
231 /*
232  * Maximum number of multilink fragments queued up.
233  * This has to be large enough to cope with the maximum latency of
234  * the slowest channel relative to the others.  Strictly it should
235  * depend on the number of channels and their characteristics.
236  */
237 #define PPP_MP_MAX_QLEN	128
238 
239 /* Multilink header bits. */
240 #define B	0x80		/* this fragment begins a packet */
241 #define E	0x40		/* this fragment ends a packet */
242 
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
245 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
246 
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 			struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 			      struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 					    struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 				struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit,
273 					struct file *file, int *retp);
274 static void init_ppp_file(struct ppp_file *pf, int kind);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285 
286 static struct class *ppp_class;
287 
288 /* per net-namespace data */
289 static inline struct ppp_net *ppp_pernet(struct net *net)
290 {
291 	BUG_ON(!net);
292 
293 	return net_generic(net, ppp_net_id);
294 }
295 
296 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
297 static inline int proto_to_npindex(int proto)
298 {
299 	switch (proto) {
300 	case PPP_IP:
301 		return NP_IP;
302 	case PPP_IPV6:
303 		return NP_IPV6;
304 	case PPP_IPX:
305 		return NP_IPX;
306 	case PPP_AT:
307 		return NP_AT;
308 	case PPP_MPLS_UC:
309 		return NP_MPLS_UC;
310 	case PPP_MPLS_MC:
311 		return NP_MPLS_MC;
312 	}
313 	return -EINVAL;
314 }
315 
316 /* Translates an NP index into a PPP protocol number */
317 static const int npindex_to_proto[NUM_NP] = {
318 	PPP_IP,
319 	PPP_IPV6,
320 	PPP_IPX,
321 	PPP_AT,
322 	PPP_MPLS_UC,
323 	PPP_MPLS_MC,
324 };
325 
326 /* Translates an ethertype into an NP index */
327 static inline int ethertype_to_npindex(int ethertype)
328 {
329 	switch (ethertype) {
330 	case ETH_P_IP:
331 		return NP_IP;
332 	case ETH_P_IPV6:
333 		return NP_IPV6;
334 	case ETH_P_IPX:
335 		return NP_IPX;
336 	case ETH_P_PPPTALK:
337 	case ETH_P_ATALK:
338 		return NP_AT;
339 	case ETH_P_MPLS_UC:
340 		return NP_MPLS_UC;
341 	case ETH_P_MPLS_MC:
342 		return NP_MPLS_MC;
343 	}
344 	return -1;
345 }
346 
347 /* Translates an NP index into an ethertype */
348 static const int npindex_to_ethertype[NUM_NP] = {
349 	ETH_P_IP,
350 	ETH_P_IPV6,
351 	ETH_P_IPX,
352 	ETH_P_PPPTALK,
353 	ETH_P_MPLS_UC,
354 	ETH_P_MPLS_MC,
355 };
356 
357 /*
358  * Locking shorthand.
359  */
360 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
361 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
362 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
363 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
364 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
365 				     ppp_recv_lock(ppp); } while (0)
366 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
367 				     ppp_xmit_unlock(ppp); } while (0)
368 
369 /*
370  * /dev/ppp device routines.
371  * The /dev/ppp device is used by pppd to control the ppp unit.
372  * It supports the read, write, ioctl and poll functions.
373  * Open instances of /dev/ppp can be in one of three states:
374  * unattached, attached to a ppp unit, or attached to a ppp channel.
375  */
376 static int ppp_open(struct inode *inode, struct file *file)
377 {
378 	/*
379 	 * This could (should?) be enforced by the permissions on /dev/ppp.
380 	 */
381 	if (!capable(CAP_NET_ADMIN))
382 		return -EPERM;
383 	return 0;
384 }
385 
386 static int ppp_release(struct inode *unused, struct file *file)
387 {
388 	struct ppp_file *pf = file->private_data;
389 	struct ppp *ppp;
390 
391 	if (pf) {
392 		file->private_data = NULL;
393 		if (pf->kind == INTERFACE) {
394 			ppp = PF_TO_PPP(pf);
395 			rtnl_lock();
396 			if (file == ppp->owner)
397 				unregister_netdevice(ppp->dev);
398 			rtnl_unlock();
399 		}
400 		if (atomic_dec_and_test(&pf->refcnt)) {
401 			switch (pf->kind) {
402 			case INTERFACE:
403 				ppp_destroy_interface(PF_TO_PPP(pf));
404 				break;
405 			case CHANNEL:
406 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
407 				break;
408 			}
409 		}
410 	}
411 	return 0;
412 }
413 
414 static ssize_t ppp_read(struct file *file, char __user *buf,
415 			size_t count, loff_t *ppos)
416 {
417 	struct ppp_file *pf = file->private_data;
418 	DECLARE_WAITQUEUE(wait, current);
419 	ssize_t ret;
420 	struct sk_buff *skb = NULL;
421 	struct iovec iov;
422 	struct iov_iter to;
423 
424 	ret = count;
425 
426 	if (!pf)
427 		return -ENXIO;
428 	add_wait_queue(&pf->rwait, &wait);
429 	for (;;) {
430 		set_current_state(TASK_INTERRUPTIBLE);
431 		skb = skb_dequeue(&pf->rq);
432 		if (skb)
433 			break;
434 		ret = 0;
435 		if (pf->dead)
436 			break;
437 		if (pf->kind == INTERFACE) {
438 			/*
439 			 * Return 0 (EOF) on an interface that has no
440 			 * channels connected, unless it is looping
441 			 * network traffic (demand mode).
442 			 */
443 			struct ppp *ppp = PF_TO_PPP(pf);
444 			if (ppp->n_channels == 0 &&
445 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
446 				break;
447 		}
448 		ret = -EAGAIN;
449 		if (file->f_flags & O_NONBLOCK)
450 			break;
451 		ret = -ERESTARTSYS;
452 		if (signal_pending(current))
453 			break;
454 		schedule();
455 	}
456 	set_current_state(TASK_RUNNING);
457 	remove_wait_queue(&pf->rwait, &wait);
458 
459 	if (!skb)
460 		goto out;
461 
462 	ret = -EOVERFLOW;
463 	if (skb->len > count)
464 		goto outf;
465 	ret = -EFAULT;
466 	iov.iov_base = buf;
467 	iov.iov_len = count;
468 	iov_iter_init(&to, READ, &iov, 1, count);
469 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
470 		goto outf;
471 	ret = skb->len;
472 
473  outf:
474 	kfree_skb(skb);
475  out:
476 	return ret;
477 }
478 
479 static ssize_t ppp_write(struct file *file, const char __user *buf,
480 			 size_t count, loff_t *ppos)
481 {
482 	struct ppp_file *pf = file->private_data;
483 	struct sk_buff *skb;
484 	ssize_t ret;
485 
486 	if (!pf)
487 		return -ENXIO;
488 	ret = -ENOMEM;
489 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
490 	if (!skb)
491 		goto out;
492 	skb_reserve(skb, pf->hdrlen);
493 	ret = -EFAULT;
494 	if (copy_from_user(skb_put(skb, count), buf, count)) {
495 		kfree_skb(skb);
496 		goto out;
497 	}
498 
499 	skb_queue_tail(&pf->xq, skb);
500 
501 	switch (pf->kind) {
502 	case INTERFACE:
503 		ppp_xmit_process(PF_TO_PPP(pf));
504 		break;
505 	case CHANNEL:
506 		ppp_channel_push(PF_TO_CHANNEL(pf));
507 		break;
508 	}
509 
510 	ret = count;
511 
512  out:
513 	return ret;
514 }
515 
516 /* No kernel lock - fine */
517 static unsigned int ppp_poll(struct file *file, poll_table *wait)
518 {
519 	struct ppp_file *pf = file->private_data;
520 	unsigned int mask;
521 
522 	if (!pf)
523 		return 0;
524 	poll_wait(file, &pf->rwait, wait);
525 	mask = POLLOUT | POLLWRNORM;
526 	if (skb_peek(&pf->rq))
527 		mask |= POLLIN | POLLRDNORM;
528 	if (pf->dead)
529 		mask |= POLLHUP;
530 	else if (pf->kind == INTERFACE) {
531 		/* see comment in ppp_read */
532 		struct ppp *ppp = PF_TO_PPP(pf);
533 		if (ppp->n_channels == 0 &&
534 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
535 			mask |= POLLIN | POLLRDNORM;
536 	}
537 
538 	return mask;
539 }
540 
541 #ifdef CONFIG_PPP_FILTER
542 static int get_filter(void __user *arg, struct sock_filter **p)
543 {
544 	struct sock_fprog uprog;
545 	struct sock_filter *code = NULL;
546 	int len;
547 
548 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
549 		return -EFAULT;
550 
551 	if (!uprog.len) {
552 		*p = NULL;
553 		return 0;
554 	}
555 
556 	len = uprog.len * sizeof(struct sock_filter);
557 	code = memdup_user(uprog.filter, len);
558 	if (IS_ERR(code))
559 		return PTR_ERR(code);
560 
561 	*p = code;
562 	return uprog.len;
563 }
564 #endif /* CONFIG_PPP_FILTER */
565 
566 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
567 {
568 	struct ppp_file *pf = file->private_data;
569 	struct ppp *ppp;
570 	int err = -EFAULT, val, val2, i;
571 	struct ppp_idle idle;
572 	struct npioctl npi;
573 	int unit, cflags;
574 	struct slcompress *vj;
575 	void __user *argp = (void __user *)arg;
576 	int __user *p = argp;
577 
578 	if (!pf)
579 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
580 					pf, file, cmd, arg);
581 
582 	if (cmd == PPPIOCDETACH) {
583 		/*
584 		 * We have to be careful here... if the file descriptor
585 		 * has been dup'd, we could have another process in the
586 		 * middle of a poll using the same file *, so we had
587 		 * better not free the interface data structures -
588 		 * instead we fail the ioctl.  Even in this case, we
589 		 * shut down the interface if we are the owner of it.
590 		 * Actually, we should get rid of PPPIOCDETACH, userland
591 		 * (i.e. pppd) could achieve the same effect by closing
592 		 * this fd and reopening /dev/ppp.
593 		 */
594 		err = -EINVAL;
595 		mutex_lock(&ppp_mutex);
596 		if (pf->kind == INTERFACE) {
597 			ppp = PF_TO_PPP(pf);
598 			rtnl_lock();
599 			if (file == ppp->owner)
600 				unregister_netdevice(ppp->dev);
601 			rtnl_unlock();
602 		}
603 		if (atomic_long_read(&file->f_count) < 2) {
604 			ppp_release(NULL, file);
605 			err = 0;
606 		} else
607 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
608 				atomic_long_read(&file->f_count));
609 		mutex_unlock(&ppp_mutex);
610 		return err;
611 	}
612 
613 	if (pf->kind == CHANNEL) {
614 		struct channel *pch;
615 		struct ppp_channel *chan;
616 
617 		mutex_lock(&ppp_mutex);
618 		pch = PF_TO_CHANNEL(pf);
619 
620 		switch (cmd) {
621 		case PPPIOCCONNECT:
622 			if (get_user(unit, p))
623 				break;
624 			err = ppp_connect_channel(pch, unit);
625 			break;
626 
627 		case PPPIOCDISCONN:
628 			err = ppp_disconnect_channel(pch);
629 			break;
630 
631 		default:
632 			down_read(&pch->chan_sem);
633 			chan = pch->chan;
634 			err = -ENOTTY;
635 			if (chan && chan->ops->ioctl)
636 				err = chan->ops->ioctl(chan, cmd, arg);
637 			up_read(&pch->chan_sem);
638 		}
639 		mutex_unlock(&ppp_mutex);
640 		return err;
641 	}
642 
643 	if (pf->kind != INTERFACE) {
644 		/* can't happen */
645 		pr_err("PPP: not interface or channel??\n");
646 		return -EINVAL;
647 	}
648 
649 	mutex_lock(&ppp_mutex);
650 	ppp = PF_TO_PPP(pf);
651 	switch (cmd) {
652 	case PPPIOCSMRU:
653 		if (get_user(val, p))
654 			break;
655 		ppp->mru = val;
656 		err = 0;
657 		break;
658 
659 	case PPPIOCSFLAGS:
660 		if (get_user(val, p))
661 			break;
662 		ppp_lock(ppp);
663 		cflags = ppp->flags & ~val;
664 #ifdef CONFIG_PPP_MULTILINK
665 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
666 			ppp->nextseq = 0;
667 #endif
668 		ppp->flags = val & SC_FLAG_BITS;
669 		ppp_unlock(ppp);
670 		if (cflags & SC_CCP_OPEN)
671 			ppp_ccp_closed(ppp);
672 		err = 0;
673 		break;
674 
675 	case PPPIOCGFLAGS:
676 		val = ppp->flags | ppp->xstate | ppp->rstate;
677 		if (put_user(val, p))
678 			break;
679 		err = 0;
680 		break;
681 
682 	case PPPIOCSCOMPRESS:
683 		err = ppp_set_compress(ppp, arg);
684 		break;
685 
686 	case PPPIOCGUNIT:
687 		if (put_user(ppp->file.index, p))
688 			break;
689 		err = 0;
690 		break;
691 
692 	case PPPIOCSDEBUG:
693 		if (get_user(val, p))
694 			break;
695 		ppp->debug = val;
696 		err = 0;
697 		break;
698 
699 	case PPPIOCGDEBUG:
700 		if (put_user(ppp->debug, p))
701 			break;
702 		err = 0;
703 		break;
704 
705 	case PPPIOCGIDLE:
706 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
707 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
708 		if (copy_to_user(argp, &idle, sizeof(idle)))
709 			break;
710 		err = 0;
711 		break;
712 
713 	case PPPIOCSMAXCID:
714 		if (get_user(val, p))
715 			break;
716 		val2 = 15;
717 		if ((val >> 16) != 0) {
718 			val2 = val >> 16;
719 			val &= 0xffff;
720 		}
721 		vj = slhc_init(val2+1, val+1);
722 		if (!vj) {
723 			netdev_err(ppp->dev,
724 				   "PPP: no memory (VJ compressor)\n");
725 			err = -ENOMEM;
726 			break;
727 		}
728 		ppp_lock(ppp);
729 		if (ppp->vj)
730 			slhc_free(ppp->vj);
731 		ppp->vj = vj;
732 		ppp_unlock(ppp);
733 		err = 0;
734 		break;
735 
736 	case PPPIOCGNPMODE:
737 	case PPPIOCSNPMODE:
738 		if (copy_from_user(&npi, argp, sizeof(npi)))
739 			break;
740 		err = proto_to_npindex(npi.protocol);
741 		if (err < 0)
742 			break;
743 		i = err;
744 		if (cmd == PPPIOCGNPMODE) {
745 			err = -EFAULT;
746 			npi.mode = ppp->npmode[i];
747 			if (copy_to_user(argp, &npi, sizeof(npi)))
748 				break;
749 		} else {
750 			ppp->npmode[i] = npi.mode;
751 			/* we may be able to transmit more packets now (??) */
752 			netif_wake_queue(ppp->dev);
753 		}
754 		err = 0;
755 		break;
756 
757 #ifdef CONFIG_PPP_FILTER
758 	case PPPIOCSPASS:
759 	{
760 		struct sock_filter *code;
761 
762 		err = get_filter(argp, &code);
763 		if (err >= 0) {
764 			struct bpf_prog *pass_filter = NULL;
765 			struct sock_fprog_kern fprog = {
766 				.len = err,
767 				.filter = code,
768 			};
769 
770 			err = 0;
771 			if (fprog.filter)
772 				err = bpf_prog_create(&pass_filter, &fprog);
773 			if (!err) {
774 				ppp_lock(ppp);
775 				if (ppp->pass_filter)
776 					bpf_prog_destroy(ppp->pass_filter);
777 				ppp->pass_filter = pass_filter;
778 				ppp_unlock(ppp);
779 			}
780 			kfree(code);
781 		}
782 		break;
783 	}
784 	case PPPIOCSACTIVE:
785 	{
786 		struct sock_filter *code;
787 
788 		err = get_filter(argp, &code);
789 		if (err >= 0) {
790 			struct bpf_prog *active_filter = NULL;
791 			struct sock_fprog_kern fprog = {
792 				.len = err,
793 				.filter = code,
794 			};
795 
796 			err = 0;
797 			if (fprog.filter)
798 				err = bpf_prog_create(&active_filter, &fprog);
799 			if (!err) {
800 				ppp_lock(ppp);
801 				if (ppp->active_filter)
802 					bpf_prog_destroy(ppp->active_filter);
803 				ppp->active_filter = active_filter;
804 				ppp_unlock(ppp);
805 			}
806 			kfree(code);
807 		}
808 		break;
809 	}
810 #endif /* CONFIG_PPP_FILTER */
811 
812 #ifdef CONFIG_PPP_MULTILINK
813 	case PPPIOCSMRRU:
814 		if (get_user(val, p))
815 			break;
816 		ppp_recv_lock(ppp);
817 		ppp->mrru = val;
818 		ppp_recv_unlock(ppp);
819 		err = 0;
820 		break;
821 #endif /* CONFIG_PPP_MULTILINK */
822 
823 	default:
824 		err = -ENOTTY;
825 	}
826 	mutex_unlock(&ppp_mutex);
827 	return err;
828 }
829 
830 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
831 			struct file *file, unsigned int cmd, unsigned long arg)
832 {
833 	int unit, err = -EFAULT;
834 	struct ppp *ppp;
835 	struct channel *chan;
836 	struct ppp_net *pn;
837 	int __user *p = (int __user *)arg;
838 
839 	mutex_lock(&ppp_mutex);
840 	switch (cmd) {
841 	case PPPIOCNEWUNIT:
842 		/* Create a new ppp unit */
843 		if (get_user(unit, p))
844 			break;
845 		ppp = ppp_create_interface(net, unit, file, &err);
846 		if (!ppp)
847 			break;
848 		file->private_data = &ppp->file;
849 		err = -EFAULT;
850 		if (put_user(ppp->file.index, p))
851 			break;
852 		err = 0;
853 		break;
854 
855 	case PPPIOCATTACH:
856 		/* Attach to an existing ppp unit */
857 		if (get_user(unit, p))
858 			break;
859 		err = -ENXIO;
860 		pn = ppp_pernet(net);
861 		mutex_lock(&pn->all_ppp_mutex);
862 		ppp = ppp_find_unit(pn, unit);
863 		if (ppp) {
864 			atomic_inc(&ppp->file.refcnt);
865 			file->private_data = &ppp->file;
866 			err = 0;
867 		}
868 		mutex_unlock(&pn->all_ppp_mutex);
869 		break;
870 
871 	case PPPIOCATTCHAN:
872 		if (get_user(unit, p))
873 			break;
874 		err = -ENXIO;
875 		pn = ppp_pernet(net);
876 		spin_lock_bh(&pn->all_channels_lock);
877 		chan = ppp_find_channel(pn, unit);
878 		if (chan) {
879 			atomic_inc(&chan->file.refcnt);
880 			file->private_data = &chan->file;
881 			err = 0;
882 		}
883 		spin_unlock_bh(&pn->all_channels_lock);
884 		break;
885 
886 	default:
887 		err = -ENOTTY;
888 	}
889 	mutex_unlock(&ppp_mutex);
890 	return err;
891 }
892 
893 static const struct file_operations ppp_device_fops = {
894 	.owner		= THIS_MODULE,
895 	.read		= ppp_read,
896 	.write		= ppp_write,
897 	.poll		= ppp_poll,
898 	.unlocked_ioctl	= ppp_ioctl,
899 	.open		= ppp_open,
900 	.release	= ppp_release,
901 	.llseek		= noop_llseek,
902 };
903 
904 static __net_init int ppp_init_net(struct net *net)
905 {
906 	struct ppp_net *pn = net_generic(net, ppp_net_id);
907 
908 	idr_init(&pn->units_idr);
909 	mutex_init(&pn->all_ppp_mutex);
910 
911 	INIT_LIST_HEAD(&pn->all_channels);
912 	INIT_LIST_HEAD(&pn->new_channels);
913 
914 	spin_lock_init(&pn->all_channels_lock);
915 
916 	return 0;
917 }
918 
919 static __net_exit void ppp_exit_net(struct net *net)
920 {
921 	struct ppp_net *pn = net_generic(net, ppp_net_id);
922 	struct ppp *ppp;
923 	LIST_HEAD(list);
924 	int id;
925 
926 	rtnl_lock();
927 	idr_for_each_entry(&pn->units_idr, ppp, id)
928 		unregister_netdevice_queue(ppp->dev, &list);
929 
930 	unregister_netdevice_many(&list);
931 	rtnl_unlock();
932 
933 	idr_destroy(&pn->units_idr);
934 }
935 
936 static struct pernet_operations ppp_net_ops = {
937 	.init = ppp_init_net,
938 	.exit = ppp_exit_net,
939 	.id   = &ppp_net_id,
940 	.size = sizeof(struct ppp_net),
941 };
942 
943 #define PPP_MAJOR	108
944 
945 /* Called at boot time if ppp is compiled into the kernel,
946    or at module load time (from init_module) if compiled as a module. */
947 static int __init ppp_init(void)
948 {
949 	int err;
950 
951 	pr_info("PPP generic driver version " PPP_VERSION "\n");
952 
953 	err = register_pernet_device(&ppp_net_ops);
954 	if (err) {
955 		pr_err("failed to register PPP pernet device (%d)\n", err);
956 		goto out;
957 	}
958 
959 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
960 	if (err) {
961 		pr_err("failed to register PPP device (%d)\n", err);
962 		goto out_net;
963 	}
964 
965 	ppp_class = class_create(THIS_MODULE, "ppp");
966 	if (IS_ERR(ppp_class)) {
967 		err = PTR_ERR(ppp_class);
968 		goto out_chrdev;
969 	}
970 
971 	/* not a big deal if we fail here :-) */
972 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
973 
974 	return 0;
975 
976 out_chrdev:
977 	unregister_chrdev(PPP_MAJOR, "ppp");
978 out_net:
979 	unregister_pernet_device(&ppp_net_ops);
980 out:
981 	return err;
982 }
983 
984 /*
985  * Network interface unit routines.
986  */
987 static netdev_tx_t
988 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
989 {
990 	struct ppp *ppp = netdev_priv(dev);
991 	int npi, proto;
992 	unsigned char *pp;
993 
994 	npi = ethertype_to_npindex(ntohs(skb->protocol));
995 	if (npi < 0)
996 		goto outf;
997 
998 	/* Drop, accept or reject the packet */
999 	switch (ppp->npmode[npi]) {
1000 	case NPMODE_PASS:
1001 		break;
1002 	case NPMODE_QUEUE:
1003 		/* it would be nice to have a way to tell the network
1004 		   system to queue this one up for later. */
1005 		goto outf;
1006 	case NPMODE_DROP:
1007 	case NPMODE_ERROR:
1008 		goto outf;
1009 	}
1010 
1011 	/* Put the 2-byte PPP protocol number on the front,
1012 	   making sure there is room for the address and control fields. */
1013 	if (skb_cow_head(skb, PPP_HDRLEN))
1014 		goto outf;
1015 
1016 	pp = skb_push(skb, 2);
1017 	proto = npindex_to_proto[npi];
1018 	put_unaligned_be16(proto, pp);
1019 
1020 	skb_queue_tail(&ppp->file.xq, skb);
1021 	ppp_xmit_process(ppp);
1022 	return NETDEV_TX_OK;
1023 
1024  outf:
1025 	kfree_skb(skb);
1026 	++dev->stats.tx_dropped;
1027 	return NETDEV_TX_OK;
1028 }
1029 
1030 static int
1031 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1032 {
1033 	struct ppp *ppp = netdev_priv(dev);
1034 	int err = -EFAULT;
1035 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1036 	struct ppp_stats stats;
1037 	struct ppp_comp_stats cstats;
1038 	char *vers;
1039 
1040 	switch (cmd) {
1041 	case SIOCGPPPSTATS:
1042 		ppp_get_stats(ppp, &stats);
1043 		if (copy_to_user(addr, &stats, sizeof(stats)))
1044 			break;
1045 		err = 0;
1046 		break;
1047 
1048 	case SIOCGPPPCSTATS:
1049 		memset(&cstats, 0, sizeof(cstats));
1050 		if (ppp->xc_state)
1051 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1052 		if (ppp->rc_state)
1053 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1054 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1055 			break;
1056 		err = 0;
1057 		break;
1058 
1059 	case SIOCGPPPVER:
1060 		vers = PPP_VERSION;
1061 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1062 			break;
1063 		err = 0;
1064 		break;
1065 
1066 	default:
1067 		err = -EINVAL;
1068 	}
1069 
1070 	return err;
1071 }
1072 
1073 static struct rtnl_link_stats64*
1074 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1075 {
1076 	struct ppp *ppp = netdev_priv(dev);
1077 
1078 	ppp_recv_lock(ppp);
1079 	stats64->rx_packets = ppp->stats64.rx_packets;
1080 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1081 	ppp_recv_unlock(ppp);
1082 
1083 	ppp_xmit_lock(ppp);
1084 	stats64->tx_packets = ppp->stats64.tx_packets;
1085 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1086 	ppp_xmit_unlock(ppp);
1087 
1088 	stats64->rx_errors        = dev->stats.rx_errors;
1089 	stats64->tx_errors        = dev->stats.tx_errors;
1090 	stats64->rx_dropped       = dev->stats.rx_dropped;
1091 	stats64->tx_dropped       = dev->stats.tx_dropped;
1092 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1093 
1094 	return stats64;
1095 }
1096 
1097 static struct lock_class_key ppp_tx_busylock;
1098 static int ppp_dev_init(struct net_device *dev)
1099 {
1100 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1101 	return 0;
1102 }
1103 
1104 static void ppp_dev_uninit(struct net_device *dev)
1105 {
1106 	struct ppp *ppp = netdev_priv(dev);
1107 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1108 
1109 	ppp_lock(ppp);
1110 	ppp->closing = 1;
1111 	ppp_unlock(ppp);
1112 
1113 	mutex_lock(&pn->all_ppp_mutex);
1114 	unit_put(&pn->units_idr, ppp->file.index);
1115 	mutex_unlock(&pn->all_ppp_mutex);
1116 
1117 	ppp->owner = NULL;
1118 
1119 	ppp->file.dead = 1;
1120 	wake_up_interruptible(&ppp->file.rwait);
1121 }
1122 
1123 static const struct net_device_ops ppp_netdev_ops = {
1124 	.ndo_init	 = ppp_dev_init,
1125 	.ndo_uninit      = ppp_dev_uninit,
1126 	.ndo_start_xmit  = ppp_start_xmit,
1127 	.ndo_do_ioctl    = ppp_net_ioctl,
1128 	.ndo_get_stats64 = ppp_get_stats64,
1129 };
1130 
1131 static void ppp_setup(struct net_device *dev)
1132 {
1133 	dev->netdev_ops = &ppp_netdev_ops;
1134 	dev->hard_header_len = PPP_HDRLEN;
1135 	dev->mtu = PPP_MRU;
1136 	dev->addr_len = 0;
1137 	dev->tx_queue_len = 3;
1138 	dev->type = ARPHRD_PPP;
1139 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1140 	dev->features |= NETIF_F_NETNS_LOCAL;
1141 	netif_keep_dst(dev);
1142 }
1143 
1144 /*
1145  * Transmit-side routines.
1146  */
1147 
1148 /*
1149  * Called to do any work queued up on the transmit side
1150  * that can now be done.
1151  */
1152 static void
1153 ppp_xmit_process(struct ppp *ppp)
1154 {
1155 	struct sk_buff *skb;
1156 
1157 	ppp_xmit_lock(ppp);
1158 	if (!ppp->closing) {
1159 		ppp_push(ppp);
1160 		while (!ppp->xmit_pending &&
1161 		       (skb = skb_dequeue(&ppp->file.xq)))
1162 			ppp_send_frame(ppp, skb);
1163 		/* If there's no work left to do, tell the core net
1164 		   code that we can accept some more. */
1165 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1166 			netif_wake_queue(ppp->dev);
1167 		else
1168 			netif_stop_queue(ppp->dev);
1169 	}
1170 	ppp_xmit_unlock(ppp);
1171 }
1172 
1173 static inline struct sk_buff *
1174 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1175 {
1176 	struct sk_buff *new_skb;
1177 	int len;
1178 	int new_skb_size = ppp->dev->mtu +
1179 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1180 	int compressor_skb_size = ppp->dev->mtu +
1181 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1182 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1183 	if (!new_skb) {
1184 		if (net_ratelimit())
1185 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1186 		return NULL;
1187 	}
1188 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1189 		skb_reserve(new_skb,
1190 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1191 
1192 	/* compressor still expects A/C bytes in hdr */
1193 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1194 				   new_skb->data, skb->len + 2,
1195 				   compressor_skb_size);
1196 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1197 		consume_skb(skb);
1198 		skb = new_skb;
1199 		skb_put(skb, len);
1200 		skb_pull(skb, 2);	/* pull off A/C bytes */
1201 	} else if (len == 0) {
1202 		/* didn't compress, or CCP not up yet */
1203 		consume_skb(new_skb);
1204 		new_skb = skb;
1205 	} else {
1206 		/*
1207 		 * (len < 0)
1208 		 * MPPE requires that we do not send unencrypted
1209 		 * frames.  The compressor will return -1 if we
1210 		 * should drop the frame.  We cannot simply test
1211 		 * the compress_proto because MPPE and MPPC share
1212 		 * the same number.
1213 		 */
1214 		if (net_ratelimit())
1215 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1216 		kfree_skb(skb);
1217 		consume_skb(new_skb);
1218 		new_skb = NULL;
1219 	}
1220 	return new_skb;
1221 }
1222 
1223 /*
1224  * Compress and send a frame.
1225  * The caller should have locked the xmit path,
1226  * and xmit_pending should be 0.
1227  */
1228 static void
1229 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1230 {
1231 	int proto = PPP_PROTO(skb);
1232 	struct sk_buff *new_skb;
1233 	int len;
1234 	unsigned char *cp;
1235 
1236 	if (proto < 0x8000) {
1237 #ifdef CONFIG_PPP_FILTER
1238 		/* check if we should pass this packet */
1239 		/* the filter instructions are constructed assuming
1240 		   a four-byte PPP header on each packet */
1241 		*skb_push(skb, 2) = 1;
1242 		if (ppp->pass_filter &&
1243 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1244 			if (ppp->debug & 1)
1245 				netdev_printk(KERN_DEBUG, ppp->dev,
1246 					      "PPP: outbound frame "
1247 					      "not passed\n");
1248 			kfree_skb(skb);
1249 			return;
1250 		}
1251 		/* if this packet passes the active filter, record the time */
1252 		if (!(ppp->active_filter &&
1253 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1254 			ppp->last_xmit = jiffies;
1255 		skb_pull(skb, 2);
1256 #else
1257 		/* for data packets, record the time */
1258 		ppp->last_xmit = jiffies;
1259 #endif /* CONFIG_PPP_FILTER */
1260 	}
1261 
1262 	++ppp->stats64.tx_packets;
1263 	ppp->stats64.tx_bytes += skb->len - 2;
1264 
1265 	switch (proto) {
1266 	case PPP_IP:
1267 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1268 			break;
1269 		/* try to do VJ TCP header compression */
1270 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1271 				    GFP_ATOMIC);
1272 		if (!new_skb) {
1273 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1274 			goto drop;
1275 		}
1276 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1277 		cp = skb->data + 2;
1278 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1279 				    new_skb->data + 2, &cp,
1280 				    !(ppp->flags & SC_NO_TCP_CCID));
1281 		if (cp == skb->data + 2) {
1282 			/* didn't compress */
1283 			consume_skb(new_skb);
1284 		} else {
1285 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1286 				proto = PPP_VJC_COMP;
1287 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1288 			} else {
1289 				proto = PPP_VJC_UNCOMP;
1290 				cp[0] = skb->data[2];
1291 			}
1292 			consume_skb(skb);
1293 			skb = new_skb;
1294 			cp = skb_put(skb, len + 2);
1295 			cp[0] = 0;
1296 			cp[1] = proto;
1297 		}
1298 		break;
1299 
1300 	case PPP_CCP:
1301 		/* peek at outbound CCP frames */
1302 		ppp_ccp_peek(ppp, skb, 0);
1303 		break;
1304 	}
1305 
1306 	/* try to do packet compression */
1307 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1308 	    proto != PPP_LCP && proto != PPP_CCP) {
1309 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1310 			if (net_ratelimit())
1311 				netdev_err(ppp->dev,
1312 					   "ppp: compression required but "
1313 					   "down - pkt dropped.\n");
1314 			goto drop;
1315 		}
1316 		skb = pad_compress_skb(ppp, skb);
1317 		if (!skb)
1318 			goto drop;
1319 	}
1320 
1321 	/*
1322 	 * If we are waiting for traffic (demand dialling),
1323 	 * queue it up for pppd to receive.
1324 	 */
1325 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1326 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1327 			goto drop;
1328 		skb_queue_tail(&ppp->file.rq, skb);
1329 		wake_up_interruptible(&ppp->file.rwait);
1330 		return;
1331 	}
1332 
1333 	ppp->xmit_pending = skb;
1334 	ppp_push(ppp);
1335 	return;
1336 
1337  drop:
1338 	kfree_skb(skb);
1339 	++ppp->dev->stats.tx_errors;
1340 }
1341 
1342 /*
1343  * Try to send the frame in xmit_pending.
1344  * The caller should have the xmit path locked.
1345  */
1346 static void
1347 ppp_push(struct ppp *ppp)
1348 {
1349 	struct list_head *list;
1350 	struct channel *pch;
1351 	struct sk_buff *skb = ppp->xmit_pending;
1352 
1353 	if (!skb)
1354 		return;
1355 
1356 	list = &ppp->channels;
1357 	if (list_empty(list)) {
1358 		/* nowhere to send the packet, just drop it */
1359 		ppp->xmit_pending = NULL;
1360 		kfree_skb(skb);
1361 		return;
1362 	}
1363 
1364 	if ((ppp->flags & SC_MULTILINK) == 0) {
1365 		/* not doing multilink: send it down the first channel */
1366 		list = list->next;
1367 		pch = list_entry(list, struct channel, clist);
1368 
1369 		spin_lock_bh(&pch->downl);
1370 		if (pch->chan) {
1371 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1372 				ppp->xmit_pending = NULL;
1373 		} else {
1374 			/* channel got unregistered */
1375 			kfree_skb(skb);
1376 			ppp->xmit_pending = NULL;
1377 		}
1378 		spin_unlock_bh(&pch->downl);
1379 		return;
1380 	}
1381 
1382 #ifdef CONFIG_PPP_MULTILINK
1383 	/* Multilink: fragment the packet over as many links
1384 	   as can take the packet at the moment. */
1385 	if (!ppp_mp_explode(ppp, skb))
1386 		return;
1387 #endif /* CONFIG_PPP_MULTILINK */
1388 
1389 	ppp->xmit_pending = NULL;
1390 	kfree_skb(skb);
1391 }
1392 
1393 #ifdef CONFIG_PPP_MULTILINK
1394 static bool mp_protocol_compress __read_mostly = true;
1395 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1396 MODULE_PARM_DESC(mp_protocol_compress,
1397 		 "compress protocol id in multilink fragments");
1398 
1399 /*
1400  * Divide a packet to be transmitted into fragments and
1401  * send them out the individual links.
1402  */
1403 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1404 {
1405 	int len, totlen;
1406 	int i, bits, hdrlen, mtu;
1407 	int flen;
1408 	int navail, nfree, nzero;
1409 	int nbigger;
1410 	int totspeed;
1411 	int totfree;
1412 	unsigned char *p, *q;
1413 	struct list_head *list;
1414 	struct channel *pch;
1415 	struct sk_buff *frag;
1416 	struct ppp_channel *chan;
1417 
1418 	totspeed = 0; /*total bitrate of the bundle*/
1419 	nfree = 0; /* # channels which have no packet already queued */
1420 	navail = 0; /* total # of usable channels (not deregistered) */
1421 	nzero = 0; /* number of channels with zero speed associated*/
1422 	totfree = 0; /*total # of channels available and
1423 				  *having no queued packets before
1424 				  *starting the fragmentation*/
1425 
1426 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1427 	i = 0;
1428 	list_for_each_entry(pch, &ppp->channels, clist) {
1429 		if (pch->chan) {
1430 			pch->avail = 1;
1431 			navail++;
1432 			pch->speed = pch->chan->speed;
1433 		} else {
1434 			pch->avail = 0;
1435 		}
1436 		if (pch->avail) {
1437 			if (skb_queue_empty(&pch->file.xq) ||
1438 				!pch->had_frag) {
1439 					if (pch->speed == 0)
1440 						nzero++;
1441 					else
1442 						totspeed += pch->speed;
1443 
1444 					pch->avail = 2;
1445 					++nfree;
1446 					++totfree;
1447 				}
1448 			if (!pch->had_frag && i < ppp->nxchan)
1449 				ppp->nxchan = i;
1450 		}
1451 		++i;
1452 	}
1453 	/*
1454 	 * Don't start sending this packet unless at least half of
1455 	 * the channels are free.  This gives much better TCP
1456 	 * performance if we have a lot of channels.
1457 	 */
1458 	if (nfree == 0 || nfree < navail / 2)
1459 		return 0; /* can't take now, leave it in xmit_pending */
1460 
1461 	/* Do protocol field compression */
1462 	p = skb->data;
1463 	len = skb->len;
1464 	if (*p == 0 && mp_protocol_compress) {
1465 		++p;
1466 		--len;
1467 	}
1468 
1469 	totlen = len;
1470 	nbigger = len % nfree;
1471 
1472 	/* skip to the channel after the one we last used
1473 	   and start at that one */
1474 	list = &ppp->channels;
1475 	for (i = 0; i < ppp->nxchan; ++i) {
1476 		list = list->next;
1477 		if (list == &ppp->channels) {
1478 			i = 0;
1479 			break;
1480 		}
1481 	}
1482 
1483 	/* create a fragment for each channel */
1484 	bits = B;
1485 	while (len > 0) {
1486 		list = list->next;
1487 		if (list == &ppp->channels) {
1488 			i = 0;
1489 			continue;
1490 		}
1491 		pch = list_entry(list, struct channel, clist);
1492 		++i;
1493 		if (!pch->avail)
1494 			continue;
1495 
1496 		/*
1497 		 * Skip this channel if it has a fragment pending already and
1498 		 * we haven't given a fragment to all of the free channels.
1499 		 */
1500 		if (pch->avail == 1) {
1501 			if (nfree > 0)
1502 				continue;
1503 		} else {
1504 			pch->avail = 1;
1505 		}
1506 
1507 		/* check the channel's mtu and whether it is still attached. */
1508 		spin_lock_bh(&pch->downl);
1509 		if (pch->chan == NULL) {
1510 			/* can't use this channel, it's being deregistered */
1511 			if (pch->speed == 0)
1512 				nzero--;
1513 			else
1514 				totspeed -= pch->speed;
1515 
1516 			spin_unlock_bh(&pch->downl);
1517 			pch->avail = 0;
1518 			totlen = len;
1519 			totfree--;
1520 			nfree--;
1521 			if (--navail == 0)
1522 				break;
1523 			continue;
1524 		}
1525 
1526 		/*
1527 		*if the channel speed is not set divide
1528 		*the packet evenly among the free channels;
1529 		*otherwise divide it according to the speed
1530 		*of the channel we are going to transmit on
1531 		*/
1532 		flen = len;
1533 		if (nfree > 0) {
1534 			if (pch->speed == 0) {
1535 				flen = len/nfree;
1536 				if (nbigger > 0) {
1537 					flen++;
1538 					nbigger--;
1539 				}
1540 			} else {
1541 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1542 					((totspeed*totfree)/pch->speed)) - hdrlen;
1543 				if (nbigger > 0) {
1544 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1545 					nbigger -= ((totfree - nzero)*pch->speed)/
1546 							totspeed;
1547 				}
1548 			}
1549 			nfree--;
1550 		}
1551 
1552 		/*
1553 		 *check if we are on the last channel or
1554 		 *we exceded the length of the data to
1555 		 *fragment
1556 		 */
1557 		if ((nfree <= 0) || (flen > len))
1558 			flen = len;
1559 		/*
1560 		 *it is not worth to tx on slow channels:
1561 		 *in that case from the resulting flen according to the
1562 		 *above formula will be equal or less than zero.
1563 		 *Skip the channel in this case
1564 		 */
1565 		if (flen <= 0) {
1566 			pch->avail = 2;
1567 			spin_unlock_bh(&pch->downl);
1568 			continue;
1569 		}
1570 
1571 		/*
1572 		 * hdrlen includes the 2-byte PPP protocol field, but the
1573 		 * MTU counts only the payload excluding the protocol field.
1574 		 * (RFC1661 Section 2)
1575 		 */
1576 		mtu = pch->chan->mtu - (hdrlen - 2);
1577 		if (mtu < 4)
1578 			mtu = 4;
1579 		if (flen > mtu)
1580 			flen = mtu;
1581 		if (flen == len)
1582 			bits |= E;
1583 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1584 		if (!frag)
1585 			goto noskb;
1586 		q = skb_put(frag, flen + hdrlen);
1587 
1588 		/* make the MP header */
1589 		put_unaligned_be16(PPP_MP, q);
1590 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1591 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1592 			q[3] = ppp->nxseq;
1593 		} else {
1594 			q[2] = bits;
1595 			q[3] = ppp->nxseq >> 16;
1596 			q[4] = ppp->nxseq >> 8;
1597 			q[5] = ppp->nxseq;
1598 		}
1599 
1600 		memcpy(q + hdrlen, p, flen);
1601 
1602 		/* try to send it down the channel */
1603 		chan = pch->chan;
1604 		if (!skb_queue_empty(&pch->file.xq) ||
1605 			!chan->ops->start_xmit(chan, frag))
1606 			skb_queue_tail(&pch->file.xq, frag);
1607 		pch->had_frag = 1;
1608 		p += flen;
1609 		len -= flen;
1610 		++ppp->nxseq;
1611 		bits = 0;
1612 		spin_unlock_bh(&pch->downl);
1613 	}
1614 	ppp->nxchan = i;
1615 
1616 	return 1;
1617 
1618  noskb:
1619 	spin_unlock_bh(&pch->downl);
1620 	if (ppp->debug & 1)
1621 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1622 	++ppp->dev->stats.tx_errors;
1623 	++ppp->nxseq;
1624 	return 1;	/* abandon the frame */
1625 }
1626 #endif /* CONFIG_PPP_MULTILINK */
1627 
1628 /*
1629  * Try to send data out on a channel.
1630  */
1631 static void
1632 ppp_channel_push(struct channel *pch)
1633 {
1634 	struct sk_buff *skb;
1635 	struct ppp *ppp;
1636 
1637 	spin_lock_bh(&pch->downl);
1638 	if (pch->chan) {
1639 		while (!skb_queue_empty(&pch->file.xq)) {
1640 			skb = skb_dequeue(&pch->file.xq);
1641 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1642 				/* put the packet back and try again later */
1643 				skb_queue_head(&pch->file.xq, skb);
1644 				break;
1645 			}
1646 		}
1647 	} else {
1648 		/* channel got deregistered */
1649 		skb_queue_purge(&pch->file.xq);
1650 	}
1651 	spin_unlock_bh(&pch->downl);
1652 	/* see if there is anything from the attached unit to be sent */
1653 	if (skb_queue_empty(&pch->file.xq)) {
1654 		read_lock_bh(&pch->upl);
1655 		ppp = pch->ppp;
1656 		if (ppp)
1657 			ppp_xmit_process(ppp);
1658 		read_unlock_bh(&pch->upl);
1659 	}
1660 }
1661 
1662 /*
1663  * Receive-side routines.
1664  */
1665 
1666 struct ppp_mp_skb_parm {
1667 	u32		sequence;
1668 	u8		BEbits;
1669 };
1670 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1671 
1672 static inline void
1673 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1674 {
1675 	ppp_recv_lock(ppp);
1676 	if (!ppp->closing)
1677 		ppp_receive_frame(ppp, skb, pch);
1678 	else
1679 		kfree_skb(skb);
1680 	ppp_recv_unlock(ppp);
1681 }
1682 
1683 void
1684 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1685 {
1686 	struct channel *pch = chan->ppp;
1687 	int proto;
1688 
1689 	if (!pch) {
1690 		kfree_skb(skb);
1691 		return;
1692 	}
1693 
1694 	read_lock_bh(&pch->upl);
1695 	if (!pskb_may_pull(skb, 2)) {
1696 		kfree_skb(skb);
1697 		if (pch->ppp) {
1698 			++pch->ppp->dev->stats.rx_length_errors;
1699 			ppp_receive_error(pch->ppp);
1700 		}
1701 		goto done;
1702 	}
1703 
1704 	proto = PPP_PROTO(skb);
1705 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1706 		/* put it on the channel queue */
1707 		skb_queue_tail(&pch->file.rq, skb);
1708 		/* drop old frames if queue too long */
1709 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1710 		       (skb = skb_dequeue(&pch->file.rq)))
1711 			kfree_skb(skb);
1712 		wake_up_interruptible(&pch->file.rwait);
1713 	} else {
1714 		ppp_do_recv(pch->ppp, skb, pch);
1715 	}
1716 
1717 done:
1718 	read_unlock_bh(&pch->upl);
1719 }
1720 
1721 /* Put a 0-length skb in the receive queue as an error indication */
1722 void
1723 ppp_input_error(struct ppp_channel *chan, int code)
1724 {
1725 	struct channel *pch = chan->ppp;
1726 	struct sk_buff *skb;
1727 
1728 	if (!pch)
1729 		return;
1730 
1731 	read_lock_bh(&pch->upl);
1732 	if (pch->ppp) {
1733 		skb = alloc_skb(0, GFP_ATOMIC);
1734 		if (skb) {
1735 			skb->len = 0;		/* probably unnecessary */
1736 			skb->cb[0] = code;
1737 			ppp_do_recv(pch->ppp, skb, pch);
1738 		}
1739 	}
1740 	read_unlock_bh(&pch->upl);
1741 }
1742 
1743 /*
1744  * We come in here to process a received frame.
1745  * The receive side of the ppp unit is locked.
1746  */
1747 static void
1748 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1749 {
1750 	/* note: a 0-length skb is used as an error indication */
1751 	if (skb->len > 0) {
1752 		skb_checksum_complete_unset(skb);
1753 #ifdef CONFIG_PPP_MULTILINK
1754 		/* XXX do channel-level decompression here */
1755 		if (PPP_PROTO(skb) == PPP_MP)
1756 			ppp_receive_mp_frame(ppp, skb, pch);
1757 		else
1758 #endif /* CONFIG_PPP_MULTILINK */
1759 			ppp_receive_nonmp_frame(ppp, skb);
1760 	} else {
1761 		kfree_skb(skb);
1762 		ppp_receive_error(ppp);
1763 	}
1764 }
1765 
1766 static void
1767 ppp_receive_error(struct ppp *ppp)
1768 {
1769 	++ppp->dev->stats.rx_errors;
1770 	if (ppp->vj)
1771 		slhc_toss(ppp->vj);
1772 }
1773 
1774 static void
1775 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1776 {
1777 	struct sk_buff *ns;
1778 	int proto, len, npi;
1779 
1780 	/*
1781 	 * Decompress the frame, if compressed.
1782 	 * Note that some decompressors need to see uncompressed frames
1783 	 * that come in as well as compressed frames.
1784 	 */
1785 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1786 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1787 		skb = ppp_decompress_frame(ppp, skb);
1788 
1789 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1790 		goto err;
1791 
1792 	proto = PPP_PROTO(skb);
1793 	switch (proto) {
1794 	case PPP_VJC_COMP:
1795 		/* decompress VJ compressed packets */
1796 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1797 			goto err;
1798 
1799 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1800 			/* copy to a new sk_buff with more tailroom */
1801 			ns = dev_alloc_skb(skb->len + 128);
1802 			if (!ns) {
1803 				netdev_err(ppp->dev, "PPP: no memory "
1804 					   "(VJ decomp)\n");
1805 				goto err;
1806 			}
1807 			skb_reserve(ns, 2);
1808 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1809 			consume_skb(skb);
1810 			skb = ns;
1811 		}
1812 		else
1813 			skb->ip_summed = CHECKSUM_NONE;
1814 
1815 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1816 		if (len <= 0) {
1817 			netdev_printk(KERN_DEBUG, ppp->dev,
1818 				      "PPP: VJ decompression error\n");
1819 			goto err;
1820 		}
1821 		len += 2;
1822 		if (len > skb->len)
1823 			skb_put(skb, len - skb->len);
1824 		else if (len < skb->len)
1825 			skb_trim(skb, len);
1826 		proto = PPP_IP;
1827 		break;
1828 
1829 	case PPP_VJC_UNCOMP:
1830 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1831 			goto err;
1832 
1833 		/* Until we fix the decompressor need to make sure
1834 		 * data portion is linear.
1835 		 */
1836 		if (!pskb_may_pull(skb, skb->len))
1837 			goto err;
1838 
1839 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1840 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1841 			goto err;
1842 		}
1843 		proto = PPP_IP;
1844 		break;
1845 
1846 	case PPP_CCP:
1847 		ppp_ccp_peek(ppp, skb, 1);
1848 		break;
1849 	}
1850 
1851 	++ppp->stats64.rx_packets;
1852 	ppp->stats64.rx_bytes += skb->len - 2;
1853 
1854 	npi = proto_to_npindex(proto);
1855 	if (npi < 0) {
1856 		/* control or unknown frame - pass it to pppd */
1857 		skb_queue_tail(&ppp->file.rq, skb);
1858 		/* limit queue length by dropping old frames */
1859 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1860 		       (skb = skb_dequeue(&ppp->file.rq)))
1861 			kfree_skb(skb);
1862 		/* wake up any process polling or blocking on read */
1863 		wake_up_interruptible(&ppp->file.rwait);
1864 
1865 	} else {
1866 		/* network protocol frame - give it to the kernel */
1867 
1868 #ifdef CONFIG_PPP_FILTER
1869 		/* check if the packet passes the pass and active filters */
1870 		/* the filter instructions are constructed assuming
1871 		   a four-byte PPP header on each packet */
1872 		if (ppp->pass_filter || ppp->active_filter) {
1873 			if (skb_unclone(skb, GFP_ATOMIC))
1874 				goto err;
1875 
1876 			*skb_push(skb, 2) = 0;
1877 			if (ppp->pass_filter &&
1878 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1879 				if (ppp->debug & 1)
1880 					netdev_printk(KERN_DEBUG, ppp->dev,
1881 						      "PPP: inbound frame "
1882 						      "not passed\n");
1883 				kfree_skb(skb);
1884 				return;
1885 			}
1886 			if (!(ppp->active_filter &&
1887 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1888 				ppp->last_recv = jiffies;
1889 			__skb_pull(skb, 2);
1890 		} else
1891 #endif /* CONFIG_PPP_FILTER */
1892 			ppp->last_recv = jiffies;
1893 
1894 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1895 		    ppp->npmode[npi] != NPMODE_PASS) {
1896 			kfree_skb(skb);
1897 		} else {
1898 			/* chop off protocol */
1899 			skb_pull_rcsum(skb, 2);
1900 			skb->dev = ppp->dev;
1901 			skb->protocol = htons(npindex_to_ethertype[npi]);
1902 			skb_reset_mac_header(skb);
1903 			netif_rx(skb);
1904 		}
1905 	}
1906 	return;
1907 
1908  err:
1909 	kfree_skb(skb);
1910 	ppp_receive_error(ppp);
1911 }
1912 
1913 static struct sk_buff *
1914 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1915 {
1916 	int proto = PPP_PROTO(skb);
1917 	struct sk_buff *ns;
1918 	int len;
1919 
1920 	/* Until we fix all the decompressor's need to make sure
1921 	 * data portion is linear.
1922 	 */
1923 	if (!pskb_may_pull(skb, skb->len))
1924 		goto err;
1925 
1926 	if (proto == PPP_COMP) {
1927 		int obuff_size;
1928 
1929 		switch(ppp->rcomp->compress_proto) {
1930 		case CI_MPPE:
1931 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1932 			break;
1933 		default:
1934 			obuff_size = ppp->mru + PPP_HDRLEN;
1935 			break;
1936 		}
1937 
1938 		ns = dev_alloc_skb(obuff_size);
1939 		if (!ns) {
1940 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1941 				   "no memory\n");
1942 			goto err;
1943 		}
1944 		/* the decompressor still expects the A/C bytes in the hdr */
1945 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1946 				skb->len + 2, ns->data, obuff_size);
1947 		if (len < 0) {
1948 			/* Pass the compressed frame to pppd as an
1949 			   error indication. */
1950 			if (len == DECOMP_FATALERROR)
1951 				ppp->rstate |= SC_DC_FERROR;
1952 			kfree_skb(ns);
1953 			goto err;
1954 		}
1955 
1956 		consume_skb(skb);
1957 		skb = ns;
1958 		skb_put(skb, len);
1959 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1960 
1961 	} else {
1962 		/* Uncompressed frame - pass to decompressor so it
1963 		   can update its dictionary if necessary. */
1964 		if (ppp->rcomp->incomp)
1965 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1966 					   skb->len + 2);
1967 	}
1968 
1969 	return skb;
1970 
1971  err:
1972 	ppp->rstate |= SC_DC_ERROR;
1973 	ppp_receive_error(ppp);
1974 	return skb;
1975 }
1976 
1977 #ifdef CONFIG_PPP_MULTILINK
1978 /*
1979  * Receive a multilink frame.
1980  * We put it on the reconstruction queue and then pull off
1981  * as many completed frames as we can.
1982  */
1983 static void
1984 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1985 {
1986 	u32 mask, seq;
1987 	struct channel *ch;
1988 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1989 
1990 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1991 		goto err;		/* no good, throw it away */
1992 
1993 	/* Decode sequence number and begin/end bits */
1994 	if (ppp->flags & SC_MP_SHORTSEQ) {
1995 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1996 		mask = 0xfff;
1997 	} else {
1998 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1999 		mask = 0xffffff;
2000 	}
2001 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2002 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2003 
2004 	/*
2005 	 * Do protocol ID decompression on the first fragment of each packet.
2006 	 */
2007 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2008 		*skb_push(skb, 1) = 0;
2009 
2010 	/*
2011 	 * Expand sequence number to 32 bits, making it as close
2012 	 * as possible to ppp->minseq.
2013 	 */
2014 	seq |= ppp->minseq & ~mask;
2015 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2016 		seq += mask + 1;
2017 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2018 		seq -= mask + 1;	/* should never happen */
2019 	PPP_MP_CB(skb)->sequence = seq;
2020 	pch->lastseq = seq;
2021 
2022 	/*
2023 	 * If this packet comes before the next one we were expecting,
2024 	 * drop it.
2025 	 */
2026 	if (seq_before(seq, ppp->nextseq)) {
2027 		kfree_skb(skb);
2028 		++ppp->dev->stats.rx_dropped;
2029 		ppp_receive_error(ppp);
2030 		return;
2031 	}
2032 
2033 	/*
2034 	 * Reevaluate minseq, the minimum over all channels of the
2035 	 * last sequence number received on each channel.  Because of
2036 	 * the increasing sequence number rule, we know that any fragment
2037 	 * before `minseq' which hasn't arrived is never going to arrive.
2038 	 * The list of channels can't change because we have the receive
2039 	 * side of the ppp unit locked.
2040 	 */
2041 	list_for_each_entry(ch, &ppp->channels, clist) {
2042 		if (seq_before(ch->lastseq, seq))
2043 			seq = ch->lastseq;
2044 	}
2045 	if (seq_before(ppp->minseq, seq))
2046 		ppp->minseq = seq;
2047 
2048 	/* Put the fragment on the reconstruction queue */
2049 	ppp_mp_insert(ppp, skb);
2050 
2051 	/* If the queue is getting long, don't wait any longer for packets
2052 	   before the start of the queue. */
2053 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2054 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2055 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2056 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2057 	}
2058 
2059 	/* Pull completed packets off the queue and receive them. */
2060 	while ((skb = ppp_mp_reconstruct(ppp))) {
2061 		if (pskb_may_pull(skb, 2))
2062 			ppp_receive_nonmp_frame(ppp, skb);
2063 		else {
2064 			++ppp->dev->stats.rx_length_errors;
2065 			kfree_skb(skb);
2066 			ppp_receive_error(ppp);
2067 		}
2068 	}
2069 
2070 	return;
2071 
2072  err:
2073 	kfree_skb(skb);
2074 	ppp_receive_error(ppp);
2075 }
2076 
2077 /*
2078  * Insert a fragment on the MP reconstruction queue.
2079  * The queue is ordered by increasing sequence number.
2080  */
2081 static void
2082 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2083 {
2084 	struct sk_buff *p;
2085 	struct sk_buff_head *list = &ppp->mrq;
2086 	u32 seq = PPP_MP_CB(skb)->sequence;
2087 
2088 	/* N.B. we don't need to lock the list lock because we have the
2089 	   ppp unit receive-side lock. */
2090 	skb_queue_walk(list, p) {
2091 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2092 			break;
2093 	}
2094 	__skb_queue_before(list, p, skb);
2095 }
2096 
2097 /*
2098  * Reconstruct a packet from the MP fragment queue.
2099  * We go through increasing sequence numbers until we find a
2100  * complete packet, or we get to the sequence number for a fragment
2101  * which hasn't arrived but might still do so.
2102  */
2103 static struct sk_buff *
2104 ppp_mp_reconstruct(struct ppp *ppp)
2105 {
2106 	u32 seq = ppp->nextseq;
2107 	u32 minseq = ppp->minseq;
2108 	struct sk_buff_head *list = &ppp->mrq;
2109 	struct sk_buff *p, *tmp;
2110 	struct sk_buff *head, *tail;
2111 	struct sk_buff *skb = NULL;
2112 	int lost = 0, len = 0;
2113 
2114 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2115 		return NULL;
2116 	head = list->next;
2117 	tail = NULL;
2118 	skb_queue_walk_safe(list, p, tmp) {
2119 	again:
2120 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2121 			/* this can't happen, anyway ignore the skb */
2122 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2123 				   "seq %u < %u\n",
2124 				   PPP_MP_CB(p)->sequence, seq);
2125 			__skb_unlink(p, list);
2126 			kfree_skb(p);
2127 			continue;
2128 		}
2129 		if (PPP_MP_CB(p)->sequence != seq) {
2130 			u32 oldseq;
2131 			/* Fragment `seq' is missing.  If it is after
2132 			   minseq, it might arrive later, so stop here. */
2133 			if (seq_after(seq, minseq))
2134 				break;
2135 			/* Fragment `seq' is lost, keep going. */
2136 			lost = 1;
2137 			oldseq = seq;
2138 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2139 				minseq + 1: PPP_MP_CB(p)->sequence;
2140 
2141 			if (ppp->debug & 1)
2142 				netdev_printk(KERN_DEBUG, ppp->dev,
2143 					      "lost frag %u..%u\n",
2144 					      oldseq, seq-1);
2145 
2146 			goto again;
2147 		}
2148 
2149 		/*
2150 		 * At this point we know that all the fragments from
2151 		 * ppp->nextseq to seq are either present or lost.
2152 		 * Also, there are no complete packets in the queue
2153 		 * that have no missing fragments and end before this
2154 		 * fragment.
2155 		 */
2156 
2157 		/* B bit set indicates this fragment starts a packet */
2158 		if (PPP_MP_CB(p)->BEbits & B) {
2159 			head = p;
2160 			lost = 0;
2161 			len = 0;
2162 		}
2163 
2164 		len += p->len;
2165 
2166 		/* Got a complete packet yet? */
2167 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2168 		    (PPP_MP_CB(head)->BEbits & B)) {
2169 			if (len > ppp->mrru + 2) {
2170 				++ppp->dev->stats.rx_length_errors;
2171 				netdev_printk(KERN_DEBUG, ppp->dev,
2172 					      "PPP: reconstructed packet"
2173 					      " is too long (%d)\n", len);
2174 			} else {
2175 				tail = p;
2176 				break;
2177 			}
2178 			ppp->nextseq = seq + 1;
2179 		}
2180 
2181 		/*
2182 		 * If this is the ending fragment of a packet,
2183 		 * and we haven't found a complete valid packet yet,
2184 		 * we can discard up to and including this fragment.
2185 		 */
2186 		if (PPP_MP_CB(p)->BEbits & E) {
2187 			struct sk_buff *tmp2;
2188 
2189 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2190 				if (ppp->debug & 1)
2191 					netdev_printk(KERN_DEBUG, ppp->dev,
2192 						      "discarding frag %u\n",
2193 						      PPP_MP_CB(p)->sequence);
2194 				__skb_unlink(p, list);
2195 				kfree_skb(p);
2196 			}
2197 			head = skb_peek(list);
2198 			if (!head)
2199 				break;
2200 		}
2201 		++seq;
2202 	}
2203 
2204 	/* If we have a complete packet, copy it all into one skb. */
2205 	if (tail != NULL) {
2206 		/* If we have discarded any fragments,
2207 		   signal a receive error. */
2208 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2209 			skb_queue_walk_safe(list, p, tmp) {
2210 				if (p == head)
2211 					break;
2212 				if (ppp->debug & 1)
2213 					netdev_printk(KERN_DEBUG, ppp->dev,
2214 						      "discarding frag %u\n",
2215 						      PPP_MP_CB(p)->sequence);
2216 				__skb_unlink(p, list);
2217 				kfree_skb(p);
2218 			}
2219 
2220 			if (ppp->debug & 1)
2221 				netdev_printk(KERN_DEBUG, ppp->dev,
2222 					      "  missed pkts %u..%u\n",
2223 					      ppp->nextseq,
2224 					      PPP_MP_CB(head)->sequence-1);
2225 			++ppp->dev->stats.rx_dropped;
2226 			ppp_receive_error(ppp);
2227 		}
2228 
2229 		skb = head;
2230 		if (head != tail) {
2231 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2232 			p = skb_queue_next(list, head);
2233 			__skb_unlink(skb, list);
2234 			skb_queue_walk_from_safe(list, p, tmp) {
2235 				__skb_unlink(p, list);
2236 				*fragpp = p;
2237 				p->next = NULL;
2238 				fragpp = &p->next;
2239 
2240 				skb->len += p->len;
2241 				skb->data_len += p->len;
2242 				skb->truesize += p->truesize;
2243 
2244 				if (p == tail)
2245 					break;
2246 			}
2247 		} else {
2248 			__skb_unlink(skb, list);
2249 		}
2250 
2251 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2252 	}
2253 
2254 	return skb;
2255 }
2256 #endif /* CONFIG_PPP_MULTILINK */
2257 
2258 /*
2259  * Channel interface.
2260  */
2261 
2262 /* Create a new, unattached ppp channel. */
2263 int ppp_register_channel(struct ppp_channel *chan)
2264 {
2265 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2266 }
2267 
2268 /* Create a new, unattached ppp channel for specified net. */
2269 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2270 {
2271 	struct channel *pch;
2272 	struct ppp_net *pn;
2273 
2274 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2275 	if (!pch)
2276 		return -ENOMEM;
2277 
2278 	pn = ppp_pernet(net);
2279 
2280 	pch->ppp = NULL;
2281 	pch->chan = chan;
2282 	pch->chan_net = net;
2283 	chan->ppp = pch;
2284 	init_ppp_file(&pch->file, CHANNEL);
2285 	pch->file.hdrlen = chan->hdrlen;
2286 #ifdef CONFIG_PPP_MULTILINK
2287 	pch->lastseq = -1;
2288 #endif /* CONFIG_PPP_MULTILINK */
2289 	init_rwsem(&pch->chan_sem);
2290 	spin_lock_init(&pch->downl);
2291 	rwlock_init(&pch->upl);
2292 
2293 	spin_lock_bh(&pn->all_channels_lock);
2294 	pch->file.index = ++pn->last_channel_index;
2295 	list_add(&pch->list, &pn->new_channels);
2296 	atomic_inc(&channel_count);
2297 	spin_unlock_bh(&pn->all_channels_lock);
2298 
2299 	return 0;
2300 }
2301 
2302 /*
2303  * Return the index of a channel.
2304  */
2305 int ppp_channel_index(struct ppp_channel *chan)
2306 {
2307 	struct channel *pch = chan->ppp;
2308 
2309 	if (pch)
2310 		return pch->file.index;
2311 	return -1;
2312 }
2313 
2314 /*
2315  * Return the PPP unit number to which a channel is connected.
2316  */
2317 int ppp_unit_number(struct ppp_channel *chan)
2318 {
2319 	struct channel *pch = chan->ppp;
2320 	int unit = -1;
2321 
2322 	if (pch) {
2323 		read_lock_bh(&pch->upl);
2324 		if (pch->ppp)
2325 			unit = pch->ppp->file.index;
2326 		read_unlock_bh(&pch->upl);
2327 	}
2328 	return unit;
2329 }
2330 
2331 /*
2332  * Return the PPP device interface name of a channel.
2333  */
2334 char *ppp_dev_name(struct ppp_channel *chan)
2335 {
2336 	struct channel *pch = chan->ppp;
2337 	char *name = NULL;
2338 
2339 	if (pch) {
2340 		read_lock_bh(&pch->upl);
2341 		if (pch->ppp && pch->ppp->dev)
2342 			name = pch->ppp->dev->name;
2343 		read_unlock_bh(&pch->upl);
2344 	}
2345 	return name;
2346 }
2347 
2348 
2349 /*
2350  * Disconnect a channel from the generic layer.
2351  * This must be called in process context.
2352  */
2353 void
2354 ppp_unregister_channel(struct ppp_channel *chan)
2355 {
2356 	struct channel *pch = chan->ppp;
2357 	struct ppp_net *pn;
2358 
2359 	if (!pch)
2360 		return;		/* should never happen */
2361 
2362 	chan->ppp = NULL;
2363 
2364 	/*
2365 	 * This ensures that we have returned from any calls into the
2366 	 * the channel's start_xmit or ioctl routine before we proceed.
2367 	 */
2368 	down_write(&pch->chan_sem);
2369 	spin_lock_bh(&pch->downl);
2370 	pch->chan = NULL;
2371 	spin_unlock_bh(&pch->downl);
2372 	up_write(&pch->chan_sem);
2373 	ppp_disconnect_channel(pch);
2374 
2375 	pn = ppp_pernet(pch->chan_net);
2376 	spin_lock_bh(&pn->all_channels_lock);
2377 	list_del(&pch->list);
2378 	spin_unlock_bh(&pn->all_channels_lock);
2379 
2380 	pch->file.dead = 1;
2381 	wake_up_interruptible(&pch->file.rwait);
2382 	if (atomic_dec_and_test(&pch->file.refcnt))
2383 		ppp_destroy_channel(pch);
2384 }
2385 
2386 /*
2387  * Callback from a channel when it can accept more to transmit.
2388  * This should be called at BH/softirq level, not interrupt level.
2389  */
2390 void
2391 ppp_output_wakeup(struct ppp_channel *chan)
2392 {
2393 	struct channel *pch = chan->ppp;
2394 
2395 	if (!pch)
2396 		return;
2397 	ppp_channel_push(pch);
2398 }
2399 
2400 /*
2401  * Compression control.
2402  */
2403 
2404 /* Process the PPPIOCSCOMPRESS ioctl. */
2405 static int
2406 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2407 {
2408 	int err;
2409 	struct compressor *cp, *ocomp;
2410 	struct ppp_option_data data;
2411 	void *state, *ostate;
2412 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2413 
2414 	err = -EFAULT;
2415 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2416 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2417 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2418 		goto out;
2419 	err = -EINVAL;
2420 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2421 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2422 		goto out;
2423 
2424 	cp = try_then_request_module(
2425 		find_compressor(ccp_option[0]),
2426 		"ppp-compress-%d", ccp_option[0]);
2427 	if (!cp)
2428 		goto out;
2429 
2430 	err = -ENOBUFS;
2431 	if (data.transmit) {
2432 		state = cp->comp_alloc(ccp_option, data.length);
2433 		if (state) {
2434 			ppp_xmit_lock(ppp);
2435 			ppp->xstate &= ~SC_COMP_RUN;
2436 			ocomp = ppp->xcomp;
2437 			ostate = ppp->xc_state;
2438 			ppp->xcomp = cp;
2439 			ppp->xc_state = state;
2440 			ppp_xmit_unlock(ppp);
2441 			if (ostate) {
2442 				ocomp->comp_free(ostate);
2443 				module_put(ocomp->owner);
2444 			}
2445 			err = 0;
2446 		} else
2447 			module_put(cp->owner);
2448 
2449 	} else {
2450 		state = cp->decomp_alloc(ccp_option, data.length);
2451 		if (state) {
2452 			ppp_recv_lock(ppp);
2453 			ppp->rstate &= ~SC_DECOMP_RUN;
2454 			ocomp = ppp->rcomp;
2455 			ostate = ppp->rc_state;
2456 			ppp->rcomp = cp;
2457 			ppp->rc_state = state;
2458 			ppp_recv_unlock(ppp);
2459 			if (ostate) {
2460 				ocomp->decomp_free(ostate);
2461 				module_put(ocomp->owner);
2462 			}
2463 			err = 0;
2464 		} else
2465 			module_put(cp->owner);
2466 	}
2467 
2468  out:
2469 	return err;
2470 }
2471 
2472 /*
2473  * Look at a CCP packet and update our state accordingly.
2474  * We assume the caller has the xmit or recv path locked.
2475  */
2476 static void
2477 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2478 {
2479 	unsigned char *dp;
2480 	int len;
2481 
2482 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2483 		return;	/* no header */
2484 	dp = skb->data + 2;
2485 
2486 	switch (CCP_CODE(dp)) {
2487 	case CCP_CONFREQ:
2488 
2489 		/* A ConfReq starts negotiation of compression
2490 		 * in one direction of transmission,
2491 		 * and hence brings it down...but which way?
2492 		 *
2493 		 * Remember:
2494 		 * A ConfReq indicates what the sender would like to receive
2495 		 */
2496 		if(inbound)
2497 			/* He is proposing what I should send */
2498 			ppp->xstate &= ~SC_COMP_RUN;
2499 		else
2500 			/* I am proposing to what he should send */
2501 			ppp->rstate &= ~SC_DECOMP_RUN;
2502 
2503 		break;
2504 
2505 	case CCP_TERMREQ:
2506 	case CCP_TERMACK:
2507 		/*
2508 		 * CCP is going down, both directions of transmission
2509 		 */
2510 		ppp->rstate &= ~SC_DECOMP_RUN;
2511 		ppp->xstate &= ~SC_COMP_RUN;
2512 		break;
2513 
2514 	case CCP_CONFACK:
2515 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2516 			break;
2517 		len = CCP_LENGTH(dp);
2518 		if (!pskb_may_pull(skb, len + 2))
2519 			return;		/* too short */
2520 		dp += CCP_HDRLEN;
2521 		len -= CCP_HDRLEN;
2522 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2523 			break;
2524 		if (inbound) {
2525 			/* we will start receiving compressed packets */
2526 			if (!ppp->rc_state)
2527 				break;
2528 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2529 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2530 				ppp->rstate |= SC_DECOMP_RUN;
2531 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2532 			}
2533 		} else {
2534 			/* we will soon start sending compressed packets */
2535 			if (!ppp->xc_state)
2536 				break;
2537 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2538 					ppp->file.index, 0, ppp->debug))
2539 				ppp->xstate |= SC_COMP_RUN;
2540 		}
2541 		break;
2542 
2543 	case CCP_RESETACK:
2544 		/* reset the [de]compressor */
2545 		if ((ppp->flags & SC_CCP_UP) == 0)
2546 			break;
2547 		if (inbound) {
2548 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2549 				ppp->rcomp->decomp_reset(ppp->rc_state);
2550 				ppp->rstate &= ~SC_DC_ERROR;
2551 			}
2552 		} else {
2553 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2554 				ppp->xcomp->comp_reset(ppp->xc_state);
2555 		}
2556 		break;
2557 	}
2558 }
2559 
2560 /* Free up compression resources. */
2561 static void
2562 ppp_ccp_closed(struct ppp *ppp)
2563 {
2564 	void *xstate, *rstate;
2565 	struct compressor *xcomp, *rcomp;
2566 
2567 	ppp_lock(ppp);
2568 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2569 	ppp->xstate = 0;
2570 	xcomp = ppp->xcomp;
2571 	xstate = ppp->xc_state;
2572 	ppp->xc_state = NULL;
2573 	ppp->rstate = 0;
2574 	rcomp = ppp->rcomp;
2575 	rstate = ppp->rc_state;
2576 	ppp->rc_state = NULL;
2577 	ppp_unlock(ppp);
2578 
2579 	if (xstate) {
2580 		xcomp->comp_free(xstate);
2581 		module_put(xcomp->owner);
2582 	}
2583 	if (rstate) {
2584 		rcomp->decomp_free(rstate);
2585 		module_put(rcomp->owner);
2586 	}
2587 }
2588 
2589 /* List of compressors. */
2590 static LIST_HEAD(compressor_list);
2591 static DEFINE_SPINLOCK(compressor_list_lock);
2592 
2593 struct compressor_entry {
2594 	struct list_head list;
2595 	struct compressor *comp;
2596 };
2597 
2598 static struct compressor_entry *
2599 find_comp_entry(int proto)
2600 {
2601 	struct compressor_entry *ce;
2602 
2603 	list_for_each_entry(ce, &compressor_list, list) {
2604 		if (ce->comp->compress_proto == proto)
2605 			return ce;
2606 	}
2607 	return NULL;
2608 }
2609 
2610 /* Register a compressor */
2611 int
2612 ppp_register_compressor(struct compressor *cp)
2613 {
2614 	struct compressor_entry *ce;
2615 	int ret;
2616 	spin_lock(&compressor_list_lock);
2617 	ret = -EEXIST;
2618 	if (find_comp_entry(cp->compress_proto))
2619 		goto out;
2620 	ret = -ENOMEM;
2621 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2622 	if (!ce)
2623 		goto out;
2624 	ret = 0;
2625 	ce->comp = cp;
2626 	list_add(&ce->list, &compressor_list);
2627  out:
2628 	spin_unlock(&compressor_list_lock);
2629 	return ret;
2630 }
2631 
2632 /* Unregister a compressor */
2633 void
2634 ppp_unregister_compressor(struct compressor *cp)
2635 {
2636 	struct compressor_entry *ce;
2637 
2638 	spin_lock(&compressor_list_lock);
2639 	ce = find_comp_entry(cp->compress_proto);
2640 	if (ce && ce->comp == cp) {
2641 		list_del(&ce->list);
2642 		kfree(ce);
2643 	}
2644 	spin_unlock(&compressor_list_lock);
2645 }
2646 
2647 /* Find a compressor. */
2648 static struct compressor *
2649 find_compressor(int type)
2650 {
2651 	struct compressor_entry *ce;
2652 	struct compressor *cp = NULL;
2653 
2654 	spin_lock(&compressor_list_lock);
2655 	ce = find_comp_entry(type);
2656 	if (ce) {
2657 		cp = ce->comp;
2658 		if (!try_module_get(cp->owner))
2659 			cp = NULL;
2660 	}
2661 	spin_unlock(&compressor_list_lock);
2662 	return cp;
2663 }
2664 
2665 /*
2666  * Miscelleneous stuff.
2667  */
2668 
2669 static void
2670 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2671 {
2672 	struct slcompress *vj = ppp->vj;
2673 
2674 	memset(st, 0, sizeof(*st));
2675 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2676 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2677 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2678 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2679 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2680 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2681 	if (!vj)
2682 		return;
2683 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2684 	st->vj.vjs_compressed = vj->sls_o_compressed;
2685 	st->vj.vjs_searches = vj->sls_o_searches;
2686 	st->vj.vjs_misses = vj->sls_o_misses;
2687 	st->vj.vjs_errorin = vj->sls_i_error;
2688 	st->vj.vjs_tossed = vj->sls_i_tossed;
2689 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2690 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2691 }
2692 
2693 /*
2694  * Stuff for handling the lists of ppp units and channels
2695  * and for initialization.
2696  */
2697 
2698 /*
2699  * Create a new ppp interface unit.  Fails if it can't allocate memory
2700  * or if there is already a unit with the requested number.
2701  * unit == -1 means allocate a new number.
2702  */
2703 static struct ppp *ppp_create_interface(struct net *net, int unit,
2704 					struct file *file, int *retp)
2705 {
2706 	struct ppp *ppp;
2707 	struct ppp_net *pn;
2708 	struct net_device *dev = NULL;
2709 	int ret = -ENOMEM;
2710 	int i;
2711 
2712 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_UNKNOWN,
2713 			   ppp_setup);
2714 	if (!dev)
2715 		goto out1;
2716 
2717 	pn = ppp_pernet(net);
2718 
2719 	ppp = netdev_priv(dev);
2720 	ppp->dev = dev;
2721 	ppp->mru = PPP_MRU;
2722 	init_ppp_file(&ppp->file, INTERFACE);
2723 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2724 	ppp->owner = file;
2725 	for (i = 0; i < NUM_NP; ++i)
2726 		ppp->npmode[i] = NPMODE_PASS;
2727 	INIT_LIST_HEAD(&ppp->channels);
2728 	spin_lock_init(&ppp->rlock);
2729 	spin_lock_init(&ppp->wlock);
2730 #ifdef CONFIG_PPP_MULTILINK
2731 	ppp->minseq = -1;
2732 	skb_queue_head_init(&ppp->mrq);
2733 #endif /* CONFIG_PPP_MULTILINK */
2734 #ifdef CONFIG_PPP_FILTER
2735 	ppp->pass_filter = NULL;
2736 	ppp->active_filter = NULL;
2737 #endif /* CONFIG_PPP_FILTER */
2738 
2739 	/*
2740 	 * drum roll: don't forget to set
2741 	 * the net device is belong to
2742 	 */
2743 	dev_net_set(dev, net);
2744 
2745 	mutex_lock(&pn->all_ppp_mutex);
2746 
2747 	if (unit < 0) {
2748 		unit = unit_get(&pn->units_idr, ppp);
2749 		if (unit < 0) {
2750 			ret = unit;
2751 			goto out2;
2752 		}
2753 	} else {
2754 		ret = -EEXIST;
2755 		if (unit_find(&pn->units_idr, unit))
2756 			goto out2; /* unit already exists */
2757 		/*
2758 		 * if caller need a specified unit number
2759 		 * lets try to satisfy him, otherwise --
2760 		 * he should better ask us for new unit number
2761 		 *
2762 		 * NOTE: yes I know that returning EEXIST it's not
2763 		 * fair but at least pppd will ask us to allocate
2764 		 * new unit in this case so user is happy :)
2765 		 */
2766 		unit = unit_set(&pn->units_idr, ppp, unit);
2767 		if (unit < 0)
2768 			goto out2;
2769 	}
2770 
2771 	/* Initialize the new ppp unit */
2772 	ppp->file.index = unit;
2773 	sprintf(dev->name, "ppp%d", unit);
2774 
2775 	ret = register_netdev(dev);
2776 	if (ret != 0) {
2777 		unit_put(&pn->units_idr, unit);
2778 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2779 			   dev->name, ret);
2780 		goto out2;
2781 	}
2782 
2783 	ppp->ppp_net = net;
2784 
2785 	atomic_inc(&ppp_unit_count);
2786 	mutex_unlock(&pn->all_ppp_mutex);
2787 
2788 	*retp = 0;
2789 	return ppp;
2790 
2791 out2:
2792 	mutex_unlock(&pn->all_ppp_mutex);
2793 	free_netdev(dev);
2794 out1:
2795 	*retp = ret;
2796 	return NULL;
2797 }
2798 
2799 /*
2800  * Initialize a ppp_file structure.
2801  */
2802 static void
2803 init_ppp_file(struct ppp_file *pf, int kind)
2804 {
2805 	pf->kind = kind;
2806 	skb_queue_head_init(&pf->xq);
2807 	skb_queue_head_init(&pf->rq);
2808 	atomic_set(&pf->refcnt, 1);
2809 	init_waitqueue_head(&pf->rwait);
2810 }
2811 
2812 /*
2813  * Free the memory used by a ppp unit.  This is only called once
2814  * there are no channels connected to the unit and no file structs
2815  * that reference the unit.
2816  */
2817 static void ppp_destroy_interface(struct ppp *ppp)
2818 {
2819 	atomic_dec(&ppp_unit_count);
2820 
2821 	if (!ppp->file.dead || ppp->n_channels) {
2822 		/* "can't happen" */
2823 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2824 			   "but dead=%d n_channels=%d !\n",
2825 			   ppp, ppp->file.dead, ppp->n_channels);
2826 		return;
2827 	}
2828 
2829 	ppp_ccp_closed(ppp);
2830 	if (ppp->vj) {
2831 		slhc_free(ppp->vj);
2832 		ppp->vj = NULL;
2833 	}
2834 	skb_queue_purge(&ppp->file.xq);
2835 	skb_queue_purge(&ppp->file.rq);
2836 #ifdef CONFIG_PPP_MULTILINK
2837 	skb_queue_purge(&ppp->mrq);
2838 #endif /* CONFIG_PPP_MULTILINK */
2839 #ifdef CONFIG_PPP_FILTER
2840 	if (ppp->pass_filter) {
2841 		bpf_prog_destroy(ppp->pass_filter);
2842 		ppp->pass_filter = NULL;
2843 	}
2844 
2845 	if (ppp->active_filter) {
2846 		bpf_prog_destroy(ppp->active_filter);
2847 		ppp->active_filter = NULL;
2848 	}
2849 #endif /* CONFIG_PPP_FILTER */
2850 
2851 	kfree_skb(ppp->xmit_pending);
2852 
2853 	free_netdev(ppp->dev);
2854 }
2855 
2856 /*
2857  * Locate an existing ppp unit.
2858  * The caller should have locked the all_ppp_mutex.
2859  */
2860 static struct ppp *
2861 ppp_find_unit(struct ppp_net *pn, int unit)
2862 {
2863 	return unit_find(&pn->units_idr, unit);
2864 }
2865 
2866 /*
2867  * Locate an existing ppp channel.
2868  * The caller should have locked the all_channels_lock.
2869  * First we look in the new_channels list, then in the
2870  * all_channels list.  If found in the new_channels list,
2871  * we move it to the all_channels list.  This is for speed
2872  * when we have a lot of channels in use.
2873  */
2874 static struct channel *
2875 ppp_find_channel(struct ppp_net *pn, int unit)
2876 {
2877 	struct channel *pch;
2878 
2879 	list_for_each_entry(pch, &pn->new_channels, list) {
2880 		if (pch->file.index == unit) {
2881 			list_move(&pch->list, &pn->all_channels);
2882 			return pch;
2883 		}
2884 	}
2885 
2886 	list_for_each_entry(pch, &pn->all_channels, list) {
2887 		if (pch->file.index == unit)
2888 			return pch;
2889 	}
2890 
2891 	return NULL;
2892 }
2893 
2894 /*
2895  * Connect a PPP channel to a PPP interface unit.
2896  */
2897 static int
2898 ppp_connect_channel(struct channel *pch, int unit)
2899 {
2900 	struct ppp *ppp;
2901 	struct ppp_net *pn;
2902 	int ret = -ENXIO;
2903 	int hdrlen;
2904 
2905 	pn = ppp_pernet(pch->chan_net);
2906 
2907 	mutex_lock(&pn->all_ppp_mutex);
2908 	ppp = ppp_find_unit(pn, unit);
2909 	if (!ppp)
2910 		goto out;
2911 	write_lock_bh(&pch->upl);
2912 	ret = -EINVAL;
2913 	if (pch->ppp)
2914 		goto outl;
2915 
2916 	ppp_lock(ppp);
2917 	if (pch->file.hdrlen > ppp->file.hdrlen)
2918 		ppp->file.hdrlen = pch->file.hdrlen;
2919 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2920 	if (hdrlen > ppp->dev->hard_header_len)
2921 		ppp->dev->hard_header_len = hdrlen;
2922 	list_add_tail(&pch->clist, &ppp->channels);
2923 	++ppp->n_channels;
2924 	pch->ppp = ppp;
2925 	atomic_inc(&ppp->file.refcnt);
2926 	ppp_unlock(ppp);
2927 	ret = 0;
2928 
2929  outl:
2930 	write_unlock_bh(&pch->upl);
2931  out:
2932 	mutex_unlock(&pn->all_ppp_mutex);
2933 	return ret;
2934 }
2935 
2936 /*
2937  * Disconnect a channel from its ppp unit.
2938  */
2939 static int
2940 ppp_disconnect_channel(struct channel *pch)
2941 {
2942 	struct ppp *ppp;
2943 	int err = -EINVAL;
2944 
2945 	write_lock_bh(&pch->upl);
2946 	ppp = pch->ppp;
2947 	pch->ppp = NULL;
2948 	write_unlock_bh(&pch->upl);
2949 	if (ppp) {
2950 		/* remove it from the ppp unit's list */
2951 		ppp_lock(ppp);
2952 		list_del(&pch->clist);
2953 		if (--ppp->n_channels == 0)
2954 			wake_up_interruptible(&ppp->file.rwait);
2955 		ppp_unlock(ppp);
2956 		if (atomic_dec_and_test(&ppp->file.refcnt))
2957 			ppp_destroy_interface(ppp);
2958 		err = 0;
2959 	}
2960 	return err;
2961 }
2962 
2963 /*
2964  * Free up the resources used by a ppp channel.
2965  */
2966 static void ppp_destroy_channel(struct channel *pch)
2967 {
2968 	atomic_dec(&channel_count);
2969 
2970 	if (!pch->file.dead) {
2971 		/* "can't happen" */
2972 		pr_err("ppp: destroying undead channel %p !\n", pch);
2973 		return;
2974 	}
2975 	skb_queue_purge(&pch->file.xq);
2976 	skb_queue_purge(&pch->file.rq);
2977 	kfree(pch);
2978 }
2979 
2980 static void __exit ppp_cleanup(void)
2981 {
2982 	/* should never happen */
2983 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2984 		pr_err("PPP: removing module but units remain!\n");
2985 	unregister_chrdev(PPP_MAJOR, "ppp");
2986 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2987 	class_destroy(ppp_class);
2988 	unregister_pernet_device(&ppp_net_ops);
2989 }
2990 
2991 /*
2992  * Units handling. Caller must protect concurrent access
2993  * by holding all_ppp_mutex
2994  */
2995 
2996 /* associate pointer with specified number */
2997 static int unit_set(struct idr *p, void *ptr, int n)
2998 {
2999 	int unit;
3000 
3001 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3002 	if (unit == -ENOSPC)
3003 		unit = -EINVAL;
3004 	return unit;
3005 }
3006 
3007 /* get new free unit number and associate pointer with it */
3008 static int unit_get(struct idr *p, void *ptr)
3009 {
3010 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3011 }
3012 
3013 /* put unit number back to a pool */
3014 static void unit_put(struct idr *p, int n)
3015 {
3016 	idr_remove(p, n);
3017 }
3018 
3019 /* get pointer associated with the number */
3020 static void *unit_find(struct idr *p, int n)
3021 {
3022 	return idr_find(p, n);
3023 }
3024 
3025 /* Module/initialization stuff */
3026 
3027 module_init(ppp_init);
3028 module_exit(ppp_cleanup);
3029 
3030 EXPORT_SYMBOL(ppp_register_net_channel);
3031 EXPORT_SYMBOL(ppp_register_channel);
3032 EXPORT_SYMBOL(ppp_unregister_channel);
3033 EXPORT_SYMBOL(ppp_channel_index);
3034 EXPORT_SYMBOL(ppp_unit_number);
3035 EXPORT_SYMBOL(ppp_dev_name);
3036 EXPORT_SYMBOL(ppp_input);
3037 EXPORT_SYMBOL(ppp_input_error);
3038 EXPORT_SYMBOL(ppp_output_wakeup);
3039 EXPORT_SYMBOL(ppp_register_compressor);
3040 EXPORT_SYMBOL(ppp_unregister_compressor);
3041 MODULE_LICENSE("GPL");
3042 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3043 MODULE_ALIAS("devname:ppp");
3044