xref: /linux/drivers/net/ppp/ppp_generic.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
147 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 	struct net	*ppp_net;	/* the net we belong to */
150 	struct ppp_link_stats stats64;	/* 64 bit network stats */
151 };
152 
153 /*
154  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156  * SC_MUST_COMP
157  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158  * Bits in xstate: SC_COMP_RUN
159  */
160 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163 
164 /*
165  * Private data structure for each channel.
166  * This includes the data structure used for multilink.
167  */
168 struct channel {
169 	struct ppp_file	file;		/* stuff for read/write/poll */
170 	struct list_head list;		/* link in all/new_channels list */
171 	struct ppp_channel *chan;	/* public channel data structure */
172 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174 	struct ppp	*ppp;		/* ppp unit we're connected to */
175 	struct net	*chan_net;	/* the net channel belongs to */
176 	struct list_head clist;		/* link in list of channels per unit */
177 	rwlock_t	upl;		/* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 	u8		avail;		/* flag used in multilink stuff */
180 	u8		had_frag;	/* >= 1 fragments have been sent */
181 	u32		lastseq;	/* MP: last sequence # received */
182 	int		speed;		/* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185 
186 /*
187  * SMP locking issues:
188  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189  * list and the ppp.n_channels field, you need to take both locks
190  * before you modify them.
191  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192  * channel.downl.
193  */
194 
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198 
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 	/* units to ppp mapping */
203 	struct idr units_idr;
204 
205 	/*
206 	 * all_ppp_mutex protects the units_idr mapping.
207 	 * It also ensures that finding a ppp unit in the units_idr
208 	 * map and updating its file.refcnt field is atomic.
209 	 */
210 	struct mutex all_ppp_mutex;
211 
212 	/* channels */
213 	struct list_head all_channels;
214 	struct list_head new_channels;
215 	int last_channel_index;
216 
217 	/*
218 	 * all_channels_lock protects all_channels and
219 	 * last_channel_index, and the atomicity of find
220 	 * a channel and updating its file.refcnt field.
221 	 */
222 	spinlock_t all_channels_lock;
223 };
224 
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227 
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN	32
230 
231 /*
232  * Maximum number of multilink fragments queued up.
233  * This has to be large enough to cope with the maximum latency of
234  * the slowest channel relative to the others.  Strictly it should
235  * depend on the number of channels and their characteristics.
236  */
237 #define PPP_MP_MAX_QLEN	128
238 
239 /* Multilink header bits. */
240 #define B	0x80		/* this fragment begins a packet */
241 #define E	0x40		/* this fragment ends a packet */
242 
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
245 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
246 
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 			struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 			      struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 					    struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 				struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit,
273 					struct file *file, int *retp);
274 static void init_ppp_file(struct ppp_file *pf, int kind);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285 
286 static const struct net_device_ops ppp_netdev_ops;
287 
288 static struct class *ppp_class;
289 
290 /* per net-namespace data */
291 static inline struct ppp_net *ppp_pernet(struct net *net)
292 {
293 	BUG_ON(!net);
294 
295 	return net_generic(net, ppp_net_id);
296 }
297 
298 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
299 static inline int proto_to_npindex(int proto)
300 {
301 	switch (proto) {
302 	case PPP_IP:
303 		return NP_IP;
304 	case PPP_IPV6:
305 		return NP_IPV6;
306 	case PPP_IPX:
307 		return NP_IPX;
308 	case PPP_AT:
309 		return NP_AT;
310 	case PPP_MPLS_UC:
311 		return NP_MPLS_UC;
312 	case PPP_MPLS_MC:
313 		return NP_MPLS_MC;
314 	}
315 	return -EINVAL;
316 }
317 
318 /* Translates an NP index into a PPP protocol number */
319 static const int npindex_to_proto[NUM_NP] = {
320 	PPP_IP,
321 	PPP_IPV6,
322 	PPP_IPX,
323 	PPP_AT,
324 	PPP_MPLS_UC,
325 	PPP_MPLS_MC,
326 };
327 
328 /* Translates an ethertype into an NP index */
329 static inline int ethertype_to_npindex(int ethertype)
330 {
331 	switch (ethertype) {
332 	case ETH_P_IP:
333 		return NP_IP;
334 	case ETH_P_IPV6:
335 		return NP_IPV6;
336 	case ETH_P_IPX:
337 		return NP_IPX;
338 	case ETH_P_PPPTALK:
339 	case ETH_P_ATALK:
340 		return NP_AT;
341 	case ETH_P_MPLS_UC:
342 		return NP_MPLS_UC;
343 	case ETH_P_MPLS_MC:
344 		return NP_MPLS_MC;
345 	}
346 	return -1;
347 }
348 
349 /* Translates an NP index into an ethertype */
350 static const int npindex_to_ethertype[NUM_NP] = {
351 	ETH_P_IP,
352 	ETH_P_IPV6,
353 	ETH_P_IPX,
354 	ETH_P_PPPTALK,
355 	ETH_P_MPLS_UC,
356 	ETH_P_MPLS_MC,
357 };
358 
359 /*
360  * Locking shorthand.
361  */
362 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
363 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
364 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
365 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
366 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
367 				     ppp_recv_lock(ppp); } while (0)
368 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
369 				     ppp_xmit_unlock(ppp); } while (0)
370 
371 /*
372  * /dev/ppp device routines.
373  * The /dev/ppp device is used by pppd to control the ppp unit.
374  * It supports the read, write, ioctl and poll functions.
375  * Open instances of /dev/ppp can be in one of three states:
376  * unattached, attached to a ppp unit, or attached to a ppp channel.
377  */
378 static int ppp_open(struct inode *inode, struct file *file)
379 {
380 	/*
381 	 * This could (should?) be enforced by the permissions on /dev/ppp.
382 	 */
383 	if (!capable(CAP_NET_ADMIN))
384 		return -EPERM;
385 	return 0;
386 }
387 
388 static int ppp_release(struct inode *unused, struct file *file)
389 {
390 	struct ppp_file *pf = file->private_data;
391 	struct ppp *ppp;
392 
393 	if (pf) {
394 		file->private_data = NULL;
395 		if (pf->kind == INTERFACE) {
396 			ppp = PF_TO_PPP(pf);
397 			rtnl_lock();
398 			if (file == ppp->owner)
399 				unregister_netdevice(ppp->dev);
400 			rtnl_unlock();
401 		}
402 		if (atomic_dec_and_test(&pf->refcnt)) {
403 			switch (pf->kind) {
404 			case INTERFACE:
405 				ppp_destroy_interface(PF_TO_PPP(pf));
406 				break;
407 			case CHANNEL:
408 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
409 				break;
410 			}
411 		}
412 	}
413 	return 0;
414 }
415 
416 static ssize_t ppp_read(struct file *file, char __user *buf,
417 			size_t count, loff_t *ppos)
418 {
419 	struct ppp_file *pf = file->private_data;
420 	DECLARE_WAITQUEUE(wait, current);
421 	ssize_t ret;
422 	struct sk_buff *skb = NULL;
423 	struct iovec iov;
424 	struct iov_iter to;
425 
426 	ret = count;
427 
428 	if (!pf)
429 		return -ENXIO;
430 	add_wait_queue(&pf->rwait, &wait);
431 	for (;;) {
432 		set_current_state(TASK_INTERRUPTIBLE);
433 		skb = skb_dequeue(&pf->rq);
434 		if (skb)
435 			break;
436 		ret = 0;
437 		if (pf->dead)
438 			break;
439 		if (pf->kind == INTERFACE) {
440 			/*
441 			 * Return 0 (EOF) on an interface that has no
442 			 * channels connected, unless it is looping
443 			 * network traffic (demand mode).
444 			 */
445 			struct ppp *ppp = PF_TO_PPP(pf);
446 			if (ppp->n_channels == 0 &&
447 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
448 				break;
449 		}
450 		ret = -EAGAIN;
451 		if (file->f_flags & O_NONBLOCK)
452 			break;
453 		ret = -ERESTARTSYS;
454 		if (signal_pending(current))
455 			break;
456 		schedule();
457 	}
458 	set_current_state(TASK_RUNNING);
459 	remove_wait_queue(&pf->rwait, &wait);
460 
461 	if (!skb)
462 		goto out;
463 
464 	ret = -EOVERFLOW;
465 	if (skb->len > count)
466 		goto outf;
467 	ret = -EFAULT;
468 	iov.iov_base = buf;
469 	iov.iov_len = count;
470 	iov_iter_init(&to, READ, &iov, 1, count);
471 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
472 		goto outf;
473 	ret = skb->len;
474 
475  outf:
476 	kfree_skb(skb);
477  out:
478 	return ret;
479 }
480 
481 static ssize_t ppp_write(struct file *file, const char __user *buf,
482 			 size_t count, loff_t *ppos)
483 {
484 	struct ppp_file *pf = file->private_data;
485 	struct sk_buff *skb;
486 	ssize_t ret;
487 
488 	if (!pf)
489 		return -ENXIO;
490 	ret = -ENOMEM;
491 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
492 	if (!skb)
493 		goto out;
494 	skb_reserve(skb, pf->hdrlen);
495 	ret = -EFAULT;
496 	if (copy_from_user(skb_put(skb, count), buf, count)) {
497 		kfree_skb(skb);
498 		goto out;
499 	}
500 
501 	skb_queue_tail(&pf->xq, skb);
502 
503 	switch (pf->kind) {
504 	case INTERFACE:
505 		ppp_xmit_process(PF_TO_PPP(pf));
506 		break;
507 	case CHANNEL:
508 		ppp_channel_push(PF_TO_CHANNEL(pf));
509 		break;
510 	}
511 
512 	ret = count;
513 
514  out:
515 	return ret;
516 }
517 
518 /* No kernel lock - fine */
519 static unsigned int ppp_poll(struct file *file, poll_table *wait)
520 {
521 	struct ppp_file *pf = file->private_data;
522 	unsigned int mask;
523 
524 	if (!pf)
525 		return 0;
526 	poll_wait(file, &pf->rwait, wait);
527 	mask = POLLOUT | POLLWRNORM;
528 	if (skb_peek(&pf->rq))
529 		mask |= POLLIN | POLLRDNORM;
530 	if (pf->dead)
531 		mask |= POLLHUP;
532 	else if (pf->kind == INTERFACE) {
533 		/* see comment in ppp_read */
534 		struct ppp *ppp = PF_TO_PPP(pf);
535 		if (ppp->n_channels == 0 &&
536 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
537 			mask |= POLLIN | POLLRDNORM;
538 	}
539 
540 	return mask;
541 }
542 
543 #ifdef CONFIG_PPP_FILTER
544 static int get_filter(void __user *arg, struct sock_filter **p)
545 {
546 	struct sock_fprog uprog;
547 	struct sock_filter *code = NULL;
548 	int len;
549 
550 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
551 		return -EFAULT;
552 
553 	if (!uprog.len) {
554 		*p = NULL;
555 		return 0;
556 	}
557 
558 	len = uprog.len * sizeof(struct sock_filter);
559 	code = memdup_user(uprog.filter, len);
560 	if (IS_ERR(code))
561 		return PTR_ERR(code);
562 
563 	*p = code;
564 	return uprog.len;
565 }
566 #endif /* CONFIG_PPP_FILTER */
567 
568 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
569 {
570 	struct ppp_file *pf = file->private_data;
571 	struct ppp *ppp;
572 	int err = -EFAULT, val, val2, i;
573 	struct ppp_idle idle;
574 	struct npioctl npi;
575 	int unit, cflags;
576 	struct slcompress *vj;
577 	void __user *argp = (void __user *)arg;
578 	int __user *p = argp;
579 
580 	if (!pf)
581 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
582 					pf, file, cmd, arg);
583 
584 	if (cmd == PPPIOCDETACH) {
585 		/*
586 		 * We have to be careful here... if the file descriptor
587 		 * has been dup'd, we could have another process in the
588 		 * middle of a poll using the same file *, so we had
589 		 * better not free the interface data structures -
590 		 * instead we fail the ioctl.  Even in this case, we
591 		 * shut down the interface if we are the owner of it.
592 		 * Actually, we should get rid of PPPIOCDETACH, userland
593 		 * (i.e. pppd) could achieve the same effect by closing
594 		 * this fd and reopening /dev/ppp.
595 		 */
596 		err = -EINVAL;
597 		mutex_lock(&ppp_mutex);
598 		if (pf->kind == INTERFACE) {
599 			ppp = PF_TO_PPP(pf);
600 			rtnl_lock();
601 			if (file == ppp->owner)
602 				unregister_netdevice(ppp->dev);
603 			rtnl_unlock();
604 		}
605 		if (atomic_long_read(&file->f_count) < 2) {
606 			ppp_release(NULL, file);
607 			err = 0;
608 		} else
609 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
610 				atomic_long_read(&file->f_count));
611 		mutex_unlock(&ppp_mutex);
612 		return err;
613 	}
614 
615 	if (pf->kind == CHANNEL) {
616 		struct channel *pch;
617 		struct ppp_channel *chan;
618 
619 		mutex_lock(&ppp_mutex);
620 		pch = PF_TO_CHANNEL(pf);
621 
622 		switch (cmd) {
623 		case PPPIOCCONNECT:
624 			if (get_user(unit, p))
625 				break;
626 			err = ppp_connect_channel(pch, unit);
627 			break;
628 
629 		case PPPIOCDISCONN:
630 			err = ppp_disconnect_channel(pch);
631 			break;
632 
633 		default:
634 			down_read(&pch->chan_sem);
635 			chan = pch->chan;
636 			err = -ENOTTY;
637 			if (chan && chan->ops->ioctl)
638 				err = chan->ops->ioctl(chan, cmd, arg);
639 			up_read(&pch->chan_sem);
640 		}
641 		mutex_unlock(&ppp_mutex);
642 		return err;
643 	}
644 
645 	if (pf->kind != INTERFACE) {
646 		/* can't happen */
647 		pr_err("PPP: not interface or channel??\n");
648 		return -EINVAL;
649 	}
650 
651 	mutex_lock(&ppp_mutex);
652 	ppp = PF_TO_PPP(pf);
653 	switch (cmd) {
654 	case PPPIOCSMRU:
655 		if (get_user(val, p))
656 			break;
657 		ppp->mru = val;
658 		err = 0;
659 		break;
660 
661 	case PPPIOCSFLAGS:
662 		if (get_user(val, p))
663 			break;
664 		ppp_lock(ppp);
665 		cflags = ppp->flags & ~val;
666 #ifdef CONFIG_PPP_MULTILINK
667 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
668 			ppp->nextseq = 0;
669 #endif
670 		ppp->flags = val & SC_FLAG_BITS;
671 		ppp_unlock(ppp);
672 		if (cflags & SC_CCP_OPEN)
673 			ppp_ccp_closed(ppp);
674 		err = 0;
675 		break;
676 
677 	case PPPIOCGFLAGS:
678 		val = ppp->flags | ppp->xstate | ppp->rstate;
679 		if (put_user(val, p))
680 			break;
681 		err = 0;
682 		break;
683 
684 	case PPPIOCSCOMPRESS:
685 		err = ppp_set_compress(ppp, arg);
686 		break;
687 
688 	case PPPIOCGUNIT:
689 		if (put_user(ppp->file.index, p))
690 			break;
691 		err = 0;
692 		break;
693 
694 	case PPPIOCSDEBUG:
695 		if (get_user(val, p))
696 			break;
697 		ppp->debug = val;
698 		err = 0;
699 		break;
700 
701 	case PPPIOCGDEBUG:
702 		if (put_user(ppp->debug, p))
703 			break;
704 		err = 0;
705 		break;
706 
707 	case PPPIOCGIDLE:
708 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
709 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
710 		if (copy_to_user(argp, &idle, sizeof(idle)))
711 			break;
712 		err = 0;
713 		break;
714 
715 	case PPPIOCSMAXCID:
716 		if (get_user(val, p))
717 			break;
718 		val2 = 15;
719 		if ((val >> 16) != 0) {
720 			val2 = val >> 16;
721 			val &= 0xffff;
722 		}
723 		vj = slhc_init(val2+1, val+1);
724 		if (!vj) {
725 			netdev_err(ppp->dev,
726 				   "PPP: no memory (VJ compressor)\n");
727 			err = -ENOMEM;
728 			break;
729 		}
730 		ppp_lock(ppp);
731 		if (ppp->vj)
732 			slhc_free(ppp->vj);
733 		ppp->vj = vj;
734 		ppp_unlock(ppp);
735 		err = 0;
736 		break;
737 
738 	case PPPIOCGNPMODE:
739 	case PPPIOCSNPMODE:
740 		if (copy_from_user(&npi, argp, sizeof(npi)))
741 			break;
742 		err = proto_to_npindex(npi.protocol);
743 		if (err < 0)
744 			break;
745 		i = err;
746 		if (cmd == PPPIOCGNPMODE) {
747 			err = -EFAULT;
748 			npi.mode = ppp->npmode[i];
749 			if (copy_to_user(argp, &npi, sizeof(npi)))
750 				break;
751 		} else {
752 			ppp->npmode[i] = npi.mode;
753 			/* we may be able to transmit more packets now (??) */
754 			netif_wake_queue(ppp->dev);
755 		}
756 		err = 0;
757 		break;
758 
759 #ifdef CONFIG_PPP_FILTER
760 	case PPPIOCSPASS:
761 	{
762 		struct sock_filter *code;
763 
764 		err = get_filter(argp, &code);
765 		if (err >= 0) {
766 			struct bpf_prog *pass_filter = NULL;
767 			struct sock_fprog_kern fprog = {
768 				.len = err,
769 				.filter = code,
770 			};
771 
772 			err = 0;
773 			if (fprog.filter)
774 				err = bpf_prog_create(&pass_filter, &fprog);
775 			if (!err) {
776 				ppp_lock(ppp);
777 				if (ppp->pass_filter)
778 					bpf_prog_destroy(ppp->pass_filter);
779 				ppp->pass_filter = pass_filter;
780 				ppp_unlock(ppp);
781 			}
782 			kfree(code);
783 		}
784 		break;
785 	}
786 	case PPPIOCSACTIVE:
787 	{
788 		struct sock_filter *code;
789 
790 		err = get_filter(argp, &code);
791 		if (err >= 0) {
792 			struct bpf_prog *active_filter = NULL;
793 			struct sock_fprog_kern fprog = {
794 				.len = err,
795 				.filter = code,
796 			};
797 
798 			err = 0;
799 			if (fprog.filter)
800 				err = bpf_prog_create(&active_filter, &fprog);
801 			if (!err) {
802 				ppp_lock(ppp);
803 				if (ppp->active_filter)
804 					bpf_prog_destroy(ppp->active_filter);
805 				ppp->active_filter = active_filter;
806 				ppp_unlock(ppp);
807 			}
808 			kfree(code);
809 		}
810 		break;
811 	}
812 #endif /* CONFIG_PPP_FILTER */
813 
814 #ifdef CONFIG_PPP_MULTILINK
815 	case PPPIOCSMRRU:
816 		if (get_user(val, p))
817 			break;
818 		ppp_recv_lock(ppp);
819 		ppp->mrru = val;
820 		ppp_recv_unlock(ppp);
821 		err = 0;
822 		break;
823 #endif /* CONFIG_PPP_MULTILINK */
824 
825 	default:
826 		err = -ENOTTY;
827 	}
828 	mutex_unlock(&ppp_mutex);
829 	return err;
830 }
831 
832 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
833 			struct file *file, unsigned int cmd, unsigned long arg)
834 {
835 	int unit, err = -EFAULT;
836 	struct ppp *ppp;
837 	struct channel *chan;
838 	struct ppp_net *pn;
839 	int __user *p = (int __user *)arg;
840 
841 	mutex_lock(&ppp_mutex);
842 	switch (cmd) {
843 	case PPPIOCNEWUNIT:
844 		/* Create a new ppp unit */
845 		if (get_user(unit, p))
846 			break;
847 		ppp = ppp_create_interface(net, unit, file, &err);
848 		if (!ppp)
849 			break;
850 		file->private_data = &ppp->file;
851 		err = -EFAULT;
852 		if (put_user(ppp->file.index, p))
853 			break;
854 		err = 0;
855 		break;
856 
857 	case PPPIOCATTACH:
858 		/* Attach to an existing ppp unit */
859 		if (get_user(unit, p))
860 			break;
861 		err = -ENXIO;
862 		pn = ppp_pernet(net);
863 		mutex_lock(&pn->all_ppp_mutex);
864 		ppp = ppp_find_unit(pn, unit);
865 		if (ppp) {
866 			atomic_inc(&ppp->file.refcnt);
867 			file->private_data = &ppp->file;
868 			err = 0;
869 		}
870 		mutex_unlock(&pn->all_ppp_mutex);
871 		break;
872 
873 	case PPPIOCATTCHAN:
874 		if (get_user(unit, p))
875 			break;
876 		err = -ENXIO;
877 		pn = ppp_pernet(net);
878 		spin_lock_bh(&pn->all_channels_lock);
879 		chan = ppp_find_channel(pn, unit);
880 		if (chan) {
881 			atomic_inc(&chan->file.refcnt);
882 			file->private_data = &chan->file;
883 			err = 0;
884 		}
885 		spin_unlock_bh(&pn->all_channels_lock);
886 		break;
887 
888 	default:
889 		err = -ENOTTY;
890 	}
891 	mutex_unlock(&ppp_mutex);
892 	return err;
893 }
894 
895 static const struct file_operations ppp_device_fops = {
896 	.owner		= THIS_MODULE,
897 	.read		= ppp_read,
898 	.write		= ppp_write,
899 	.poll		= ppp_poll,
900 	.unlocked_ioctl	= ppp_ioctl,
901 	.open		= ppp_open,
902 	.release	= ppp_release,
903 	.llseek		= noop_llseek,
904 };
905 
906 static __net_init int ppp_init_net(struct net *net)
907 {
908 	struct ppp_net *pn = net_generic(net, ppp_net_id);
909 
910 	idr_init(&pn->units_idr);
911 	mutex_init(&pn->all_ppp_mutex);
912 
913 	INIT_LIST_HEAD(&pn->all_channels);
914 	INIT_LIST_HEAD(&pn->new_channels);
915 
916 	spin_lock_init(&pn->all_channels_lock);
917 
918 	return 0;
919 }
920 
921 static __net_exit void ppp_exit_net(struct net *net)
922 {
923 	struct ppp_net *pn = net_generic(net, ppp_net_id);
924 	struct net_device *dev;
925 	struct net_device *aux;
926 	struct ppp *ppp;
927 	LIST_HEAD(list);
928 	int id;
929 
930 	rtnl_lock();
931 	for_each_netdev_safe(net, dev, aux) {
932 		if (dev->netdev_ops == &ppp_netdev_ops)
933 			unregister_netdevice_queue(dev, &list);
934 	}
935 
936 	idr_for_each_entry(&pn->units_idr, ppp, id)
937 		/* Skip devices already unregistered by previous loop */
938 		if (!net_eq(dev_net(ppp->dev), net))
939 			unregister_netdevice_queue(ppp->dev, &list);
940 
941 	unregister_netdevice_many(&list);
942 	rtnl_unlock();
943 
944 	idr_destroy(&pn->units_idr);
945 }
946 
947 static struct pernet_operations ppp_net_ops = {
948 	.init = ppp_init_net,
949 	.exit = ppp_exit_net,
950 	.id   = &ppp_net_id,
951 	.size = sizeof(struct ppp_net),
952 };
953 
954 #define PPP_MAJOR	108
955 
956 /* Called at boot time if ppp is compiled into the kernel,
957    or at module load time (from init_module) if compiled as a module. */
958 static int __init ppp_init(void)
959 {
960 	int err;
961 
962 	pr_info("PPP generic driver version " PPP_VERSION "\n");
963 
964 	err = register_pernet_device(&ppp_net_ops);
965 	if (err) {
966 		pr_err("failed to register PPP pernet device (%d)\n", err);
967 		goto out;
968 	}
969 
970 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
971 	if (err) {
972 		pr_err("failed to register PPP device (%d)\n", err);
973 		goto out_net;
974 	}
975 
976 	ppp_class = class_create(THIS_MODULE, "ppp");
977 	if (IS_ERR(ppp_class)) {
978 		err = PTR_ERR(ppp_class);
979 		goto out_chrdev;
980 	}
981 
982 	/* not a big deal if we fail here :-) */
983 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
984 
985 	return 0;
986 
987 out_chrdev:
988 	unregister_chrdev(PPP_MAJOR, "ppp");
989 out_net:
990 	unregister_pernet_device(&ppp_net_ops);
991 out:
992 	return err;
993 }
994 
995 /*
996  * Network interface unit routines.
997  */
998 static netdev_tx_t
999 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1000 {
1001 	struct ppp *ppp = netdev_priv(dev);
1002 	int npi, proto;
1003 	unsigned char *pp;
1004 
1005 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1006 	if (npi < 0)
1007 		goto outf;
1008 
1009 	/* Drop, accept or reject the packet */
1010 	switch (ppp->npmode[npi]) {
1011 	case NPMODE_PASS:
1012 		break;
1013 	case NPMODE_QUEUE:
1014 		/* it would be nice to have a way to tell the network
1015 		   system to queue this one up for later. */
1016 		goto outf;
1017 	case NPMODE_DROP:
1018 	case NPMODE_ERROR:
1019 		goto outf;
1020 	}
1021 
1022 	/* Put the 2-byte PPP protocol number on the front,
1023 	   making sure there is room for the address and control fields. */
1024 	if (skb_cow_head(skb, PPP_HDRLEN))
1025 		goto outf;
1026 
1027 	pp = skb_push(skb, 2);
1028 	proto = npindex_to_proto[npi];
1029 	put_unaligned_be16(proto, pp);
1030 
1031 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1032 	skb_queue_tail(&ppp->file.xq, skb);
1033 	ppp_xmit_process(ppp);
1034 	return NETDEV_TX_OK;
1035 
1036  outf:
1037 	kfree_skb(skb);
1038 	++dev->stats.tx_dropped;
1039 	return NETDEV_TX_OK;
1040 }
1041 
1042 static int
1043 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1044 {
1045 	struct ppp *ppp = netdev_priv(dev);
1046 	int err = -EFAULT;
1047 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1048 	struct ppp_stats stats;
1049 	struct ppp_comp_stats cstats;
1050 	char *vers;
1051 
1052 	switch (cmd) {
1053 	case SIOCGPPPSTATS:
1054 		ppp_get_stats(ppp, &stats);
1055 		if (copy_to_user(addr, &stats, sizeof(stats)))
1056 			break;
1057 		err = 0;
1058 		break;
1059 
1060 	case SIOCGPPPCSTATS:
1061 		memset(&cstats, 0, sizeof(cstats));
1062 		if (ppp->xc_state)
1063 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1064 		if (ppp->rc_state)
1065 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1066 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1067 			break;
1068 		err = 0;
1069 		break;
1070 
1071 	case SIOCGPPPVER:
1072 		vers = PPP_VERSION;
1073 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1074 			break;
1075 		err = 0;
1076 		break;
1077 
1078 	default:
1079 		err = -EINVAL;
1080 	}
1081 
1082 	return err;
1083 }
1084 
1085 static struct rtnl_link_stats64*
1086 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1087 {
1088 	struct ppp *ppp = netdev_priv(dev);
1089 
1090 	ppp_recv_lock(ppp);
1091 	stats64->rx_packets = ppp->stats64.rx_packets;
1092 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1093 	ppp_recv_unlock(ppp);
1094 
1095 	ppp_xmit_lock(ppp);
1096 	stats64->tx_packets = ppp->stats64.tx_packets;
1097 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1098 	ppp_xmit_unlock(ppp);
1099 
1100 	stats64->rx_errors        = dev->stats.rx_errors;
1101 	stats64->tx_errors        = dev->stats.tx_errors;
1102 	stats64->rx_dropped       = dev->stats.rx_dropped;
1103 	stats64->tx_dropped       = dev->stats.tx_dropped;
1104 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1105 
1106 	return stats64;
1107 }
1108 
1109 static struct lock_class_key ppp_tx_busylock;
1110 static int ppp_dev_init(struct net_device *dev)
1111 {
1112 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1113 	return 0;
1114 }
1115 
1116 static void ppp_dev_uninit(struct net_device *dev)
1117 {
1118 	struct ppp *ppp = netdev_priv(dev);
1119 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1120 
1121 	ppp_lock(ppp);
1122 	ppp->closing = 1;
1123 	ppp_unlock(ppp);
1124 
1125 	mutex_lock(&pn->all_ppp_mutex);
1126 	unit_put(&pn->units_idr, ppp->file.index);
1127 	mutex_unlock(&pn->all_ppp_mutex);
1128 
1129 	ppp->owner = NULL;
1130 
1131 	ppp->file.dead = 1;
1132 	wake_up_interruptible(&ppp->file.rwait);
1133 }
1134 
1135 static const struct net_device_ops ppp_netdev_ops = {
1136 	.ndo_init	 = ppp_dev_init,
1137 	.ndo_uninit      = ppp_dev_uninit,
1138 	.ndo_start_xmit  = ppp_start_xmit,
1139 	.ndo_do_ioctl    = ppp_net_ioctl,
1140 	.ndo_get_stats64 = ppp_get_stats64,
1141 };
1142 
1143 static void ppp_setup(struct net_device *dev)
1144 {
1145 	dev->netdev_ops = &ppp_netdev_ops;
1146 	dev->hard_header_len = PPP_HDRLEN;
1147 	dev->mtu = PPP_MRU;
1148 	dev->addr_len = 0;
1149 	dev->tx_queue_len = 3;
1150 	dev->type = ARPHRD_PPP;
1151 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1152 	netif_keep_dst(dev);
1153 }
1154 
1155 /*
1156  * Transmit-side routines.
1157  */
1158 
1159 /*
1160  * Called to do any work queued up on the transmit side
1161  * that can now be done.
1162  */
1163 static void
1164 ppp_xmit_process(struct ppp *ppp)
1165 {
1166 	struct sk_buff *skb;
1167 
1168 	ppp_xmit_lock(ppp);
1169 	if (!ppp->closing) {
1170 		ppp_push(ppp);
1171 		while (!ppp->xmit_pending &&
1172 		       (skb = skb_dequeue(&ppp->file.xq)))
1173 			ppp_send_frame(ppp, skb);
1174 		/* If there's no work left to do, tell the core net
1175 		   code that we can accept some more. */
1176 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1177 			netif_wake_queue(ppp->dev);
1178 		else
1179 			netif_stop_queue(ppp->dev);
1180 	}
1181 	ppp_xmit_unlock(ppp);
1182 }
1183 
1184 static inline struct sk_buff *
1185 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1186 {
1187 	struct sk_buff *new_skb;
1188 	int len;
1189 	int new_skb_size = ppp->dev->mtu +
1190 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1191 	int compressor_skb_size = ppp->dev->mtu +
1192 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1193 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1194 	if (!new_skb) {
1195 		if (net_ratelimit())
1196 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1197 		return NULL;
1198 	}
1199 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1200 		skb_reserve(new_skb,
1201 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1202 
1203 	/* compressor still expects A/C bytes in hdr */
1204 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1205 				   new_skb->data, skb->len + 2,
1206 				   compressor_skb_size);
1207 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1208 		consume_skb(skb);
1209 		skb = new_skb;
1210 		skb_put(skb, len);
1211 		skb_pull(skb, 2);	/* pull off A/C bytes */
1212 	} else if (len == 0) {
1213 		/* didn't compress, or CCP not up yet */
1214 		consume_skb(new_skb);
1215 		new_skb = skb;
1216 	} else {
1217 		/*
1218 		 * (len < 0)
1219 		 * MPPE requires that we do not send unencrypted
1220 		 * frames.  The compressor will return -1 if we
1221 		 * should drop the frame.  We cannot simply test
1222 		 * the compress_proto because MPPE and MPPC share
1223 		 * the same number.
1224 		 */
1225 		if (net_ratelimit())
1226 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1227 		kfree_skb(skb);
1228 		consume_skb(new_skb);
1229 		new_skb = NULL;
1230 	}
1231 	return new_skb;
1232 }
1233 
1234 /*
1235  * Compress and send a frame.
1236  * The caller should have locked the xmit path,
1237  * and xmit_pending should be 0.
1238  */
1239 static void
1240 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1241 {
1242 	int proto = PPP_PROTO(skb);
1243 	struct sk_buff *new_skb;
1244 	int len;
1245 	unsigned char *cp;
1246 
1247 	if (proto < 0x8000) {
1248 #ifdef CONFIG_PPP_FILTER
1249 		/* check if we should pass this packet */
1250 		/* the filter instructions are constructed assuming
1251 		   a four-byte PPP header on each packet */
1252 		*skb_push(skb, 2) = 1;
1253 		if (ppp->pass_filter &&
1254 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1255 			if (ppp->debug & 1)
1256 				netdev_printk(KERN_DEBUG, ppp->dev,
1257 					      "PPP: outbound frame "
1258 					      "not passed\n");
1259 			kfree_skb(skb);
1260 			return;
1261 		}
1262 		/* if this packet passes the active filter, record the time */
1263 		if (!(ppp->active_filter &&
1264 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1265 			ppp->last_xmit = jiffies;
1266 		skb_pull(skb, 2);
1267 #else
1268 		/* for data packets, record the time */
1269 		ppp->last_xmit = jiffies;
1270 #endif /* CONFIG_PPP_FILTER */
1271 	}
1272 
1273 	++ppp->stats64.tx_packets;
1274 	ppp->stats64.tx_bytes += skb->len - 2;
1275 
1276 	switch (proto) {
1277 	case PPP_IP:
1278 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1279 			break;
1280 		/* try to do VJ TCP header compression */
1281 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1282 				    GFP_ATOMIC);
1283 		if (!new_skb) {
1284 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1285 			goto drop;
1286 		}
1287 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1288 		cp = skb->data + 2;
1289 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1290 				    new_skb->data + 2, &cp,
1291 				    !(ppp->flags & SC_NO_TCP_CCID));
1292 		if (cp == skb->data + 2) {
1293 			/* didn't compress */
1294 			consume_skb(new_skb);
1295 		} else {
1296 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1297 				proto = PPP_VJC_COMP;
1298 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1299 			} else {
1300 				proto = PPP_VJC_UNCOMP;
1301 				cp[0] = skb->data[2];
1302 			}
1303 			consume_skb(skb);
1304 			skb = new_skb;
1305 			cp = skb_put(skb, len + 2);
1306 			cp[0] = 0;
1307 			cp[1] = proto;
1308 		}
1309 		break;
1310 
1311 	case PPP_CCP:
1312 		/* peek at outbound CCP frames */
1313 		ppp_ccp_peek(ppp, skb, 0);
1314 		break;
1315 	}
1316 
1317 	/* try to do packet compression */
1318 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1319 	    proto != PPP_LCP && proto != PPP_CCP) {
1320 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1321 			if (net_ratelimit())
1322 				netdev_err(ppp->dev,
1323 					   "ppp: compression required but "
1324 					   "down - pkt dropped.\n");
1325 			goto drop;
1326 		}
1327 		skb = pad_compress_skb(ppp, skb);
1328 		if (!skb)
1329 			goto drop;
1330 	}
1331 
1332 	/*
1333 	 * If we are waiting for traffic (demand dialling),
1334 	 * queue it up for pppd to receive.
1335 	 */
1336 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1337 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1338 			goto drop;
1339 		skb_queue_tail(&ppp->file.rq, skb);
1340 		wake_up_interruptible(&ppp->file.rwait);
1341 		return;
1342 	}
1343 
1344 	ppp->xmit_pending = skb;
1345 	ppp_push(ppp);
1346 	return;
1347 
1348  drop:
1349 	kfree_skb(skb);
1350 	++ppp->dev->stats.tx_errors;
1351 }
1352 
1353 /*
1354  * Try to send the frame in xmit_pending.
1355  * The caller should have the xmit path locked.
1356  */
1357 static void
1358 ppp_push(struct ppp *ppp)
1359 {
1360 	struct list_head *list;
1361 	struct channel *pch;
1362 	struct sk_buff *skb = ppp->xmit_pending;
1363 
1364 	if (!skb)
1365 		return;
1366 
1367 	list = &ppp->channels;
1368 	if (list_empty(list)) {
1369 		/* nowhere to send the packet, just drop it */
1370 		ppp->xmit_pending = NULL;
1371 		kfree_skb(skb);
1372 		return;
1373 	}
1374 
1375 	if ((ppp->flags & SC_MULTILINK) == 0) {
1376 		/* not doing multilink: send it down the first channel */
1377 		list = list->next;
1378 		pch = list_entry(list, struct channel, clist);
1379 
1380 		spin_lock_bh(&pch->downl);
1381 		if (pch->chan) {
1382 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1383 				ppp->xmit_pending = NULL;
1384 		} else {
1385 			/* channel got unregistered */
1386 			kfree_skb(skb);
1387 			ppp->xmit_pending = NULL;
1388 		}
1389 		spin_unlock_bh(&pch->downl);
1390 		return;
1391 	}
1392 
1393 #ifdef CONFIG_PPP_MULTILINK
1394 	/* Multilink: fragment the packet over as many links
1395 	   as can take the packet at the moment. */
1396 	if (!ppp_mp_explode(ppp, skb))
1397 		return;
1398 #endif /* CONFIG_PPP_MULTILINK */
1399 
1400 	ppp->xmit_pending = NULL;
1401 	kfree_skb(skb);
1402 }
1403 
1404 #ifdef CONFIG_PPP_MULTILINK
1405 static bool mp_protocol_compress __read_mostly = true;
1406 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1407 MODULE_PARM_DESC(mp_protocol_compress,
1408 		 "compress protocol id in multilink fragments");
1409 
1410 /*
1411  * Divide a packet to be transmitted into fragments and
1412  * send them out the individual links.
1413  */
1414 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1415 {
1416 	int len, totlen;
1417 	int i, bits, hdrlen, mtu;
1418 	int flen;
1419 	int navail, nfree, nzero;
1420 	int nbigger;
1421 	int totspeed;
1422 	int totfree;
1423 	unsigned char *p, *q;
1424 	struct list_head *list;
1425 	struct channel *pch;
1426 	struct sk_buff *frag;
1427 	struct ppp_channel *chan;
1428 
1429 	totspeed = 0; /*total bitrate of the bundle*/
1430 	nfree = 0; /* # channels which have no packet already queued */
1431 	navail = 0; /* total # of usable channels (not deregistered) */
1432 	nzero = 0; /* number of channels with zero speed associated*/
1433 	totfree = 0; /*total # of channels available and
1434 				  *having no queued packets before
1435 				  *starting the fragmentation*/
1436 
1437 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1438 	i = 0;
1439 	list_for_each_entry(pch, &ppp->channels, clist) {
1440 		if (pch->chan) {
1441 			pch->avail = 1;
1442 			navail++;
1443 			pch->speed = pch->chan->speed;
1444 		} else {
1445 			pch->avail = 0;
1446 		}
1447 		if (pch->avail) {
1448 			if (skb_queue_empty(&pch->file.xq) ||
1449 				!pch->had_frag) {
1450 					if (pch->speed == 0)
1451 						nzero++;
1452 					else
1453 						totspeed += pch->speed;
1454 
1455 					pch->avail = 2;
1456 					++nfree;
1457 					++totfree;
1458 				}
1459 			if (!pch->had_frag && i < ppp->nxchan)
1460 				ppp->nxchan = i;
1461 		}
1462 		++i;
1463 	}
1464 	/*
1465 	 * Don't start sending this packet unless at least half of
1466 	 * the channels are free.  This gives much better TCP
1467 	 * performance if we have a lot of channels.
1468 	 */
1469 	if (nfree == 0 || nfree < navail / 2)
1470 		return 0; /* can't take now, leave it in xmit_pending */
1471 
1472 	/* Do protocol field compression */
1473 	p = skb->data;
1474 	len = skb->len;
1475 	if (*p == 0 && mp_protocol_compress) {
1476 		++p;
1477 		--len;
1478 	}
1479 
1480 	totlen = len;
1481 	nbigger = len % nfree;
1482 
1483 	/* skip to the channel after the one we last used
1484 	   and start at that one */
1485 	list = &ppp->channels;
1486 	for (i = 0; i < ppp->nxchan; ++i) {
1487 		list = list->next;
1488 		if (list == &ppp->channels) {
1489 			i = 0;
1490 			break;
1491 		}
1492 	}
1493 
1494 	/* create a fragment for each channel */
1495 	bits = B;
1496 	while (len > 0) {
1497 		list = list->next;
1498 		if (list == &ppp->channels) {
1499 			i = 0;
1500 			continue;
1501 		}
1502 		pch = list_entry(list, struct channel, clist);
1503 		++i;
1504 		if (!pch->avail)
1505 			continue;
1506 
1507 		/*
1508 		 * Skip this channel if it has a fragment pending already and
1509 		 * we haven't given a fragment to all of the free channels.
1510 		 */
1511 		if (pch->avail == 1) {
1512 			if (nfree > 0)
1513 				continue;
1514 		} else {
1515 			pch->avail = 1;
1516 		}
1517 
1518 		/* check the channel's mtu and whether it is still attached. */
1519 		spin_lock_bh(&pch->downl);
1520 		if (pch->chan == NULL) {
1521 			/* can't use this channel, it's being deregistered */
1522 			if (pch->speed == 0)
1523 				nzero--;
1524 			else
1525 				totspeed -= pch->speed;
1526 
1527 			spin_unlock_bh(&pch->downl);
1528 			pch->avail = 0;
1529 			totlen = len;
1530 			totfree--;
1531 			nfree--;
1532 			if (--navail == 0)
1533 				break;
1534 			continue;
1535 		}
1536 
1537 		/*
1538 		*if the channel speed is not set divide
1539 		*the packet evenly among the free channels;
1540 		*otherwise divide it according to the speed
1541 		*of the channel we are going to transmit on
1542 		*/
1543 		flen = len;
1544 		if (nfree > 0) {
1545 			if (pch->speed == 0) {
1546 				flen = len/nfree;
1547 				if (nbigger > 0) {
1548 					flen++;
1549 					nbigger--;
1550 				}
1551 			} else {
1552 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1553 					((totspeed*totfree)/pch->speed)) - hdrlen;
1554 				if (nbigger > 0) {
1555 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1556 					nbigger -= ((totfree - nzero)*pch->speed)/
1557 							totspeed;
1558 				}
1559 			}
1560 			nfree--;
1561 		}
1562 
1563 		/*
1564 		 *check if we are on the last channel or
1565 		 *we exceded the length of the data to
1566 		 *fragment
1567 		 */
1568 		if ((nfree <= 0) || (flen > len))
1569 			flen = len;
1570 		/*
1571 		 *it is not worth to tx on slow channels:
1572 		 *in that case from the resulting flen according to the
1573 		 *above formula will be equal or less than zero.
1574 		 *Skip the channel in this case
1575 		 */
1576 		if (flen <= 0) {
1577 			pch->avail = 2;
1578 			spin_unlock_bh(&pch->downl);
1579 			continue;
1580 		}
1581 
1582 		/*
1583 		 * hdrlen includes the 2-byte PPP protocol field, but the
1584 		 * MTU counts only the payload excluding the protocol field.
1585 		 * (RFC1661 Section 2)
1586 		 */
1587 		mtu = pch->chan->mtu - (hdrlen - 2);
1588 		if (mtu < 4)
1589 			mtu = 4;
1590 		if (flen > mtu)
1591 			flen = mtu;
1592 		if (flen == len)
1593 			bits |= E;
1594 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1595 		if (!frag)
1596 			goto noskb;
1597 		q = skb_put(frag, flen + hdrlen);
1598 
1599 		/* make the MP header */
1600 		put_unaligned_be16(PPP_MP, q);
1601 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1602 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1603 			q[3] = ppp->nxseq;
1604 		} else {
1605 			q[2] = bits;
1606 			q[3] = ppp->nxseq >> 16;
1607 			q[4] = ppp->nxseq >> 8;
1608 			q[5] = ppp->nxseq;
1609 		}
1610 
1611 		memcpy(q + hdrlen, p, flen);
1612 
1613 		/* try to send it down the channel */
1614 		chan = pch->chan;
1615 		if (!skb_queue_empty(&pch->file.xq) ||
1616 			!chan->ops->start_xmit(chan, frag))
1617 			skb_queue_tail(&pch->file.xq, frag);
1618 		pch->had_frag = 1;
1619 		p += flen;
1620 		len -= flen;
1621 		++ppp->nxseq;
1622 		bits = 0;
1623 		spin_unlock_bh(&pch->downl);
1624 	}
1625 	ppp->nxchan = i;
1626 
1627 	return 1;
1628 
1629  noskb:
1630 	spin_unlock_bh(&pch->downl);
1631 	if (ppp->debug & 1)
1632 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1633 	++ppp->dev->stats.tx_errors;
1634 	++ppp->nxseq;
1635 	return 1;	/* abandon the frame */
1636 }
1637 #endif /* CONFIG_PPP_MULTILINK */
1638 
1639 /*
1640  * Try to send data out on a channel.
1641  */
1642 static void
1643 ppp_channel_push(struct channel *pch)
1644 {
1645 	struct sk_buff *skb;
1646 	struct ppp *ppp;
1647 
1648 	spin_lock_bh(&pch->downl);
1649 	if (pch->chan) {
1650 		while (!skb_queue_empty(&pch->file.xq)) {
1651 			skb = skb_dequeue(&pch->file.xq);
1652 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1653 				/* put the packet back and try again later */
1654 				skb_queue_head(&pch->file.xq, skb);
1655 				break;
1656 			}
1657 		}
1658 	} else {
1659 		/* channel got deregistered */
1660 		skb_queue_purge(&pch->file.xq);
1661 	}
1662 	spin_unlock_bh(&pch->downl);
1663 	/* see if there is anything from the attached unit to be sent */
1664 	if (skb_queue_empty(&pch->file.xq)) {
1665 		read_lock_bh(&pch->upl);
1666 		ppp = pch->ppp;
1667 		if (ppp)
1668 			ppp_xmit_process(ppp);
1669 		read_unlock_bh(&pch->upl);
1670 	}
1671 }
1672 
1673 /*
1674  * Receive-side routines.
1675  */
1676 
1677 struct ppp_mp_skb_parm {
1678 	u32		sequence;
1679 	u8		BEbits;
1680 };
1681 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1682 
1683 static inline void
1684 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1685 {
1686 	ppp_recv_lock(ppp);
1687 	if (!ppp->closing)
1688 		ppp_receive_frame(ppp, skb, pch);
1689 	else
1690 		kfree_skb(skb);
1691 	ppp_recv_unlock(ppp);
1692 }
1693 
1694 void
1695 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1696 {
1697 	struct channel *pch = chan->ppp;
1698 	int proto;
1699 
1700 	if (!pch) {
1701 		kfree_skb(skb);
1702 		return;
1703 	}
1704 
1705 	read_lock_bh(&pch->upl);
1706 	if (!pskb_may_pull(skb, 2)) {
1707 		kfree_skb(skb);
1708 		if (pch->ppp) {
1709 			++pch->ppp->dev->stats.rx_length_errors;
1710 			ppp_receive_error(pch->ppp);
1711 		}
1712 		goto done;
1713 	}
1714 
1715 	proto = PPP_PROTO(skb);
1716 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1717 		/* put it on the channel queue */
1718 		skb_queue_tail(&pch->file.rq, skb);
1719 		/* drop old frames if queue too long */
1720 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1721 		       (skb = skb_dequeue(&pch->file.rq)))
1722 			kfree_skb(skb);
1723 		wake_up_interruptible(&pch->file.rwait);
1724 	} else {
1725 		ppp_do_recv(pch->ppp, skb, pch);
1726 	}
1727 
1728 done:
1729 	read_unlock_bh(&pch->upl);
1730 }
1731 
1732 /* Put a 0-length skb in the receive queue as an error indication */
1733 void
1734 ppp_input_error(struct ppp_channel *chan, int code)
1735 {
1736 	struct channel *pch = chan->ppp;
1737 	struct sk_buff *skb;
1738 
1739 	if (!pch)
1740 		return;
1741 
1742 	read_lock_bh(&pch->upl);
1743 	if (pch->ppp) {
1744 		skb = alloc_skb(0, GFP_ATOMIC);
1745 		if (skb) {
1746 			skb->len = 0;		/* probably unnecessary */
1747 			skb->cb[0] = code;
1748 			ppp_do_recv(pch->ppp, skb, pch);
1749 		}
1750 	}
1751 	read_unlock_bh(&pch->upl);
1752 }
1753 
1754 /*
1755  * We come in here to process a received frame.
1756  * The receive side of the ppp unit is locked.
1757  */
1758 static void
1759 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1760 {
1761 	/* note: a 0-length skb is used as an error indication */
1762 	if (skb->len > 0) {
1763 		skb_checksum_complete_unset(skb);
1764 #ifdef CONFIG_PPP_MULTILINK
1765 		/* XXX do channel-level decompression here */
1766 		if (PPP_PROTO(skb) == PPP_MP)
1767 			ppp_receive_mp_frame(ppp, skb, pch);
1768 		else
1769 #endif /* CONFIG_PPP_MULTILINK */
1770 			ppp_receive_nonmp_frame(ppp, skb);
1771 	} else {
1772 		kfree_skb(skb);
1773 		ppp_receive_error(ppp);
1774 	}
1775 }
1776 
1777 static void
1778 ppp_receive_error(struct ppp *ppp)
1779 {
1780 	++ppp->dev->stats.rx_errors;
1781 	if (ppp->vj)
1782 		slhc_toss(ppp->vj);
1783 }
1784 
1785 static void
1786 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1787 {
1788 	struct sk_buff *ns;
1789 	int proto, len, npi;
1790 
1791 	/*
1792 	 * Decompress the frame, if compressed.
1793 	 * Note that some decompressors need to see uncompressed frames
1794 	 * that come in as well as compressed frames.
1795 	 */
1796 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1797 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1798 		skb = ppp_decompress_frame(ppp, skb);
1799 
1800 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1801 		goto err;
1802 
1803 	proto = PPP_PROTO(skb);
1804 	switch (proto) {
1805 	case PPP_VJC_COMP:
1806 		/* decompress VJ compressed packets */
1807 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1808 			goto err;
1809 
1810 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1811 			/* copy to a new sk_buff with more tailroom */
1812 			ns = dev_alloc_skb(skb->len + 128);
1813 			if (!ns) {
1814 				netdev_err(ppp->dev, "PPP: no memory "
1815 					   "(VJ decomp)\n");
1816 				goto err;
1817 			}
1818 			skb_reserve(ns, 2);
1819 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1820 			consume_skb(skb);
1821 			skb = ns;
1822 		}
1823 		else
1824 			skb->ip_summed = CHECKSUM_NONE;
1825 
1826 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1827 		if (len <= 0) {
1828 			netdev_printk(KERN_DEBUG, ppp->dev,
1829 				      "PPP: VJ decompression error\n");
1830 			goto err;
1831 		}
1832 		len += 2;
1833 		if (len > skb->len)
1834 			skb_put(skb, len - skb->len);
1835 		else if (len < skb->len)
1836 			skb_trim(skb, len);
1837 		proto = PPP_IP;
1838 		break;
1839 
1840 	case PPP_VJC_UNCOMP:
1841 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1842 			goto err;
1843 
1844 		/* Until we fix the decompressor need to make sure
1845 		 * data portion is linear.
1846 		 */
1847 		if (!pskb_may_pull(skb, skb->len))
1848 			goto err;
1849 
1850 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1851 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1852 			goto err;
1853 		}
1854 		proto = PPP_IP;
1855 		break;
1856 
1857 	case PPP_CCP:
1858 		ppp_ccp_peek(ppp, skb, 1);
1859 		break;
1860 	}
1861 
1862 	++ppp->stats64.rx_packets;
1863 	ppp->stats64.rx_bytes += skb->len - 2;
1864 
1865 	npi = proto_to_npindex(proto);
1866 	if (npi < 0) {
1867 		/* control or unknown frame - pass it to pppd */
1868 		skb_queue_tail(&ppp->file.rq, skb);
1869 		/* limit queue length by dropping old frames */
1870 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1871 		       (skb = skb_dequeue(&ppp->file.rq)))
1872 			kfree_skb(skb);
1873 		/* wake up any process polling or blocking on read */
1874 		wake_up_interruptible(&ppp->file.rwait);
1875 
1876 	} else {
1877 		/* network protocol frame - give it to the kernel */
1878 
1879 #ifdef CONFIG_PPP_FILTER
1880 		/* check if the packet passes the pass and active filters */
1881 		/* the filter instructions are constructed assuming
1882 		   a four-byte PPP header on each packet */
1883 		if (ppp->pass_filter || ppp->active_filter) {
1884 			if (skb_unclone(skb, GFP_ATOMIC))
1885 				goto err;
1886 
1887 			*skb_push(skb, 2) = 0;
1888 			if (ppp->pass_filter &&
1889 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1890 				if (ppp->debug & 1)
1891 					netdev_printk(KERN_DEBUG, ppp->dev,
1892 						      "PPP: inbound frame "
1893 						      "not passed\n");
1894 				kfree_skb(skb);
1895 				return;
1896 			}
1897 			if (!(ppp->active_filter &&
1898 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1899 				ppp->last_recv = jiffies;
1900 			__skb_pull(skb, 2);
1901 		} else
1902 #endif /* CONFIG_PPP_FILTER */
1903 			ppp->last_recv = jiffies;
1904 
1905 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1906 		    ppp->npmode[npi] != NPMODE_PASS) {
1907 			kfree_skb(skb);
1908 		} else {
1909 			/* chop off protocol */
1910 			skb_pull_rcsum(skb, 2);
1911 			skb->dev = ppp->dev;
1912 			skb->protocol = htons(npindex_to_ethertype[npi]);
1913 			skb_reset_mac_header(skb);
1914 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
1915 						      dev_net(ppp->dev)));
1916 			netif_rx(skb);
1917 		}
1918 	}
1919 	return;
1920 
1921  err:
1922 	kfree_skb(skb);
1923 	ppp_receive_error(ppp);
1924 }
1925 
1926 static struct sk_buff *
1927 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1928 {
1929 	int proto = PPP_PROTO(skb);
1930 	struct sk_buff *ns;
1931 	int len;
1932 
1933 	/* Until we fix all the decompressor's need to make sure
1934 	 * data portion is linear.
1935 	 */
1936 	if (!pskb_may_pull(skb, skb->len))
1937 		goto err;
1938 
1939 	if (proto == PPP_COMP) {
1940 		int obuff_size;
1941 
1942 		switch(ppp->rcomp->compress_proto) {
1943 		case CI_MPPE:
1944 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1945 			break;
1946 		default:
1947 			obuff_size = ppp->mru + PPP_HDRLEN;
1948 			break;
1949 		}
1950 
1951 		ns = dev_alloc_skb(obuff_size);
1952 		if (!ns) {
1953 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1954 				   "no memory\n");
1955 			goto err;
1956 		}
1957 		/* the decompressor still expects the A/C bytes in the hdr */
1958 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1959 				skb->len + 2, ns->data, obuff_size);
1960 		if (len < 0) {
1961 			/* Pass the compressed frame to pppd as an
1962 			   error indication. */
1963 			if (len == DECOMP_FATALERROR)
1964 				ppp->rstate |= SC_DC_FERROR;
1965 			kfree_skb(ns);
1966 			goto err;
1967 		}
1968 
1969 		consume_skb(skb);
1970 		skb = ns;
1971 		skb_put(skb, len);
1972 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1973 
1974 	} else {
1975 		/* Uncompressed frame - pass to decompressor so it
1976 		   can update its dictionary if necessary. */
1977 		if (ppp->rcomp->incomp)
1978 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1979 					   skb->len + 2);
1980 	}
1981 
1982 	return skb;
1983 
1984  err:
1985 	ppp->rstate |= SC_DC_ERROR;
1986 	ppp_receive_error(ppp);
1987 	return skb;
1988 }
1989 
1990 #ifdef CONFIG_PPP_MULTILINK
1991 /*
1992  * Receive a multilink frame.
1993  * We put it on the reconstruction queue and then pull off
1994  * as many completed frames as we can.
1995  */
1996 static void
1997 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1998 {
1999 	u32 mask, seq;
2000 	struct channel *ch;
2001 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2002 
2003 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2004 		goto err;		/* no good, throw it away */
2005 
2006 	/* Decode sequence number and begin/end bits */
2007 	if (ppp->flags & SC_MP_SHORTSEQ) {
2008 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2009 		mask = 0xfff;
2010 	} else {
2011 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2012 		mask = 0xffffff;
2013 	}
2014 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2015 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2016 
2017 	/*
2018 	 * Do protocol ID decompression on the first fragment of each packet.
2019 	 */
2020 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2021 		*skb_push(skb, 1) = 0;
2022 
2023 	/*
2024 	 * Expand sequence number to 32 bits, making it as close
2025 	 * as possible to ppp->minseq.
2026 	 */
2027 	seq |= ppp->minseq & ~mask;
2028 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2029 		seq += mask + 1;
2030 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2031 		seq -= mask + 1;	/* should never happen */
2032 	PPP_MP_CB(skb)->sequence = seq;
2033 	pch->lastseq = seq;
2034 
2035 	/*
2036 	 * If this packet comes before the next one we were expecting,
2037 	 * drop it.
2038 	 */
2039 	if (seq_before(seq, ppp->nextseq)) {
2040 		kfree_skb(skb);
2041 		++ppp->dev->stats.rx_dropped;
2042 		ppp_receive_error(ppp);
2043 		return;
2044 	}
2045 
2046 	/*
2047 	 * Reevaluate minseq, the minimum over all channels of the
2048 	 * last sequence number received on each channel.  Because of
2049 	 * the increasing sequence number rule, we know that any fragment
2050 	 * before `minseq' which hasn't arrived is never going to arrive.
2051 	 * The list of channels can't change because we have the receive
2052 	 * side of the ppp unit locked.
2053 	 */
2054 	list_for_each_entry(ch, &ppp->channels, clist) {
2055 		if (seq_before(ch->lastseq, seq))
2056 			seq = ch->lastseq;
2057 	}
2058 	if (seq_before(ppp->minseq, seq))
2059 		ppp->minseq = seq;
2060 
2061 	/* Put the fragment on the reconstruction queue */
2062 	ppp_mp_insert(ppp, skb);
2063 
2064 	/* If the queue is getting long, don't wait any longer for packets
2065 	   before the start of the queue. */
2066 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2067 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2068 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2069 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2070 	}
2071 
2072 	/* Pull completed packets off the queue and receive them. */
2073 	while ((skb = ppp_mp_reconstruct(ppp))) {
2074 		if (pskb_may_pull(skb, 2))
2075 			ppp_receive_nonmp_frame(ppp, skb);
2076 		else {
2077 			++ppp->dev->stats.rx_length_errors;
2078 			kfree_skb(skb);
2079 			ppp_receive_error(ppp);
2080 		}
2081 	}
2082 
2083 	return;
2084 
2085  err:
2086 	kfree_skb(skb);
2087 	ppp_receive_error(ppp);
2088 }
2089 
2090 /*
2091  * Insert a fragment on the MP reconstruction queue.
2092  * The queue is ordered by increasing sequence number.
2093  */
2094 static void
2095 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2096 {
2097 	struct sk_buff *p;
2098 	struct sk_buff_head *list = &ppp->mrq;
2099 	u32 seq = PPP_MP_CB(skb)->sequence;
2100 
2101 	/* N.B. we don't need to lock the list lock because we have the
2102 	   ppp unit receive-side lock. */
2103 	skb_queue_walk(list, p) {
2104 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2105 			break;
2106 	}
2107 	__skb_queue_before(list, p, skb);
2108 }
2109 
2110 /*
2111  * Reconstruct a packet from the MP fragment queue.
2112  * We go through increasing sequence numbers until we find a
2113  * complete packet, or we get to the sequence number for a fragment
2114  * which hasn't arrived but might still do so.
2115  */
2116 static struct sk_buff *
2117 ppp_mp_reconstruct(struct ppp *ppp)
2118 {
2119 	u32 seq = ppp->nextseq;
2120 	u32 minseq = ppp->minseq;
2121 	struct sk_buff_head *list = &ppp->mrq;
2122 	struct sk_buff *p, *tmp;
2123 	struct sk_buff *head, *tail;
2124 	struct sk_buff *skb = NULL;
2125 	int lost = 0, len = 0;
2126 
2127 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2128 		return NULL;
2129 	head = list->next;
2130 	tail = NULL;
2131 	skb_queue_walk_safe(list, p, tmp) {
2132 	again:
2133 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2134 			/* this can't happen, anyway ignore the skb */
2135 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2136 				   "seq %u < %u\n",
2137 				   PPP_MP_CB(p)->sequence, seq);
2138 			__skb_unlink(p, list);
2139 			kfree_skb(p);
2140 			continue;
2141 		}
2142 		if (PPP_MP_CB(p)->sequence != seq) {
2143 			u32 oldseq;
2144 			/* Fragment `seq' is missing.  If it is after
2145 			   minseq, it might arrive later, so stop here. */
2146 			if (seq_after(seq, minseq))
2147 				break;
2148 			/* Fragment `seq' is lost, keep going. */
2149 			lost = 1;
2150 			oldseq = seq;
2151 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2152 				minseq + 1: PPP_MP_CB(p)->sequence;
2153 
2154 			if (ppp->debug & 1)
2155 				netdev_printk(KERN_DEBUG, ppp->dev,
2156 					      "lost frag %u..%u\n",
2157 					      oldseq, seq-1);
2158 
2159 			goto again;
2160 		}
2161 
2162 		/*
2163 		 * At this point we know that all the fragments from
2164 		 * ppp->nextseq to seq are either present or lost.
2165 		 * Also, there are no complete packets in the queue
2166 		 * that have no missing fragments and end before this
2167 		 * fragment.
2168 		 */
2169 
2170 		/* B bit set indicates this fragment starts a packet */
2171 		if (PPP_MP_CB(p)->BEbits & B) {
2172 			head = p;
2173 			lost = 0;
2174 			len = 0;
2175 		}
2176 
2177 		len += p->len;
2178 
2179 		/* Got a complete packet yet? */
2180 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2181 		    (PPP_MP_CB(head)->BEbits & B)) {
2182 			if (len > ppp->mrru + 2) {
2183 				++ppp->dev->stats.rx_length_errors;
2184 				netdev_printk(KERN_DEBUG, ppp->dev,
2185 					      "PPP: reconstructed packet"
2186 					      " is too long (%d)\n", len);
2187 			} else {
2188 				tail = p;
2189 				break;
2190 			}
2191 			ppp->nextseq = seq + 1;
2192 		}
2193 
2194 		/*
2195 		 * If this is the ending fragment of a packet,
2196 		 * and we haven't found a complete valid packet yet,
2197 		 * we can discard up to and including this fragment.
2198 		 */
2199 		if (PPP_MP_CB(p)->BEbits & E) {
2200 			struct sk_buff *tmp2;
2201 
2202 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2203 				if (ppp->debug & 1)
2204 					netdev_printk(KERN_DEBUG, ppp->dev,
2205 						      "discarding frag %u\n",
2206 						      PPP_MP_CB(p)->sequence);
2207 				__skb_unlink(p, list);
2208 				kfree_skb(p);
2209 			}
2210 			head = skb_peek(list);
2211 			if (!head)
2212 				break;
2213 		}
2214 		++seq;
2215 	}
2216 
2217 	/* If we have a complete packet, copy it all into one skb. */
2218 	if (tail != NULL) {
2219 		/* If we have discarded any fragments,
2220 		   signal a receive error. */
2221 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2222 			skb_queue_walk_safe(list, p, tmp) {
2223 				if (p == head)
2224 					break;
2225 				if (ppp->debug & 1)
2226 					netdev_printk(KERN_DEBUG, ppp->dev,
2227 						      "discarding frag %u\n",
2228 						      PPP_MP_CB(p)->sequence);
2229 				__skb_unlink(p, list);
2230 				kfree_skb(p);
2231 			}
2232 
2233 			if (ppp->debug & 1)
2234 				netdev_printk(KERN_DEBUG, ppp->dev,
2235 					      "  missed pkts %u..%u\n",
2236 					      ppp->nextseq,
2237 					      PPP_MP_CB(head)->sequence-1);
2238 			++ppp->dev->stats.rx_dropped;
2239 			ppp_receive_error(ppp);
2240 		}
2241 
2242 		skb = head;
2243 		if (head != tail) {
2244 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2245 			p = skb_queue_next(list, head);
2246 			__skb_unlink(skb, list);
2247 			skb_queue_walk_from_safe(list, p, tmp) {
2248 				__skb_unlink(p, list);
2249 				*fragpp = p;
2250 				p->next = NULL;
2251 				fragpp = &p->next;
2252 
2253 				skb->len += p->len;
2254 				skb->data_len += p->len;
2255 				skb->truesize += p->truesize;
2256 
2257 				if (p == tail)
2258 					break;
2259 			}
2260 		} else {
2261 			__skb_unlink(skb, list);
2262 		}
2263 
2264 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2265 	}
2266 
2267 	return skb;
2268 }
2269 #endif /* CONFIG_PPP_MULTILINK */
2270 
2271 /*
2272  * Channel interface.
2273  */
2274 
2275 /* Create a new, unattached ppp channel. */
2276 int ppp_register_channel(struct ppp_channel *chan)
2277 {
2278 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2279 }
2280 
2281 /* Create a new, unattached ppp channel for specified net. */
2282 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2283 {
2284 	struct channel *pch;
2285 	struct ppp_net *pn;
2286 
2287 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2288 	if (!pch)
2289 		return -ENOMEM;
2290 
2291 	pn = ppp_pernet(net);
2292 
2293 	pch->ppp = NULL;
2294 	pch->chan = chan;
2295 	pch->chan_net = net;
2296 	chan->ppp = pch;
2297 	init_ppp_file(&pch->file, CHANNEL);
2298 	pch->file.hdrlen = chan->hdrlen;
2299 #ifdef CONFIG_PPP_MULTILINK
2300 	pch->lastseq = -1;
2301 #endif /* CONFIG_PPP_MULTILINK */
2302 	init_rwsem(&pch->chan_sem);
2303 	spin_lock_init(&pch->downl);
2304 	rwlock_init(&pch->upl);
2305 
2306 	spin_lock_bh(&pn->all_channels_lock);
2307 	pch->file.index = ++pn->last_channel_index;
2308 	list_add(&pch->list, &pn->new_channels);
2309 	atomic_inc(&channel_count);
2310 	spin_unlock_bh(&pn->all_channels_lock);
2311 
2312 	return 0;
2313 }
2314 
2315 /*
2316  * Return the index of a channel.
2317  */
2318 int ppp_channel_index(struct ppp_channel *chan)
2319 {
2320 	struct channel *pch = chan->ppp;
2321 
2322 	if (pch)
2323 		return pch->file.index;
2324 	return -1;
2325 }
2326 
2327 /*
2328  * Return the PPP unit number to which a channel is connected.
2329  */
2330 int ppp_unit_number(struct ppp_channel *chan)
2331 {
2332 	struct channel *pch = chan->ppp;
2333 	int unit = -1;
2334 
2335 	if (pch) {
2336 		read_lock_bh(&pch->upl);
2337 		if (pch->ppp)
2338 			unit = pch->ppp->file.index;
2339 		read_unlock_bh(&pch->upl);
2340 	}
2341 	return unit;
2342 }
2343 
2344 /*
2345  * Return the PPP device interface name of a channel.
2346  */
2347 char *ppp_dev_name(struct ppp_channel *chan)
2348 {
2349 	struct channel *pch = chan->ppp;
2350 	char *name = NULL;
2351 
2352 	if (pch) {
2353 		read_lock_bh(&pch->upl);
2354 		if (pch->ppp && pch->ppp->dev)
2355 			name = pch->ppp->dev->name;
2356 		read_unlock_bh(&pch->upl);
2357 	}
2358 	return name;
2359 }
2360 
2361 
2362 /*
2363  * Disconnect a channel from the generic layer.
2364  * This must be called in process context.
2365  */
2366 void
2367 ppp_unregister_channel(struct ppp_channel *chan)
2368 {
2369 	struct channel *pch = chan->ppp;
2370 	struct ppp_net *pn;
2371 
2372 	if (!pch)
2373 		return;		/* should never happen */
2374 
2375 	chan->ppp = NULL;
2376 
2377 	/*
2378 	 * This ensures that we have returned from any calls into the
2379 	 * the channel's start_xmit or ioctl routine before we proceed.
2380 	 */
2381 	down_write(&pch->chan_sem);
2382 	spin_lock_bh(&pch->downl);
2383 	pch->chan = NULL;
2384 	spin_unlock_bh(&pch->downl);
2385 	up_write(&pch->chan_sem);
2386 	ppp_disconnect_channel(pch);
2387 
2388 	pn = ppp_pernet(pch->chan_net);
2389 	spin_lock_bh(&pn->all_channels_lock);
2390 	list_del(&pch->list);
2391 	spin_unlock_bh(&pn->all_channels_lock);
2392 
2393 	pch->file.dead = 1;
2394 	wake_up_interruptible(&pch->file.rwait);
2395 	if (atomic_dec_and_test(&pch->file.refcnt))
2396 		ppp_destroy_channel(pch);
2397 }
2398 
2399 /*
2400  * Callback from a channel when it can accept more to transmit.
2401  * This should be called at BH/softirq level, not interrupt level.
2402  */
2403 void
2404 ppp_output_wakeup(struct ppp_channel *chan)
2405 {
2406 	struct channel *pch = chan->ppp;
2407 
2408 	if (!pch)
2409 		return;
2410 	ppp_channel_push(pch);
2411 }
2412 
2413 /*
2414  * Compression control.
2415  */
2416 
2417 /* Process the PPPIOCSCOMPRESS ioctl. */
2418 static int
2419 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2420 {
2421 	int err;
2422 	struct compressor *cp, *ocomp;
2423 	struct ppp_option_data data;
2424 	void *state, *ostate;
2425 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2426 
2427 	err = -EFAULT;
2428 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2429 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2430 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2431 		goto out;
2432 	err = -EINVAL;
2433 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2434 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2435 		goto out;
2436 
2437 	cp = try_then_request_module(
2438 		find_compressor(ccp_option[0]),
2439 		"ppp-compress-%d", ccp_option[0]);
2440 	if (!cp)
2441 		goto out;
2442 
2443 	err = -ENOBUFS;
2444 	if (data.transmit) {
2445 		state = cp->comp_alloc(ccp_option, data.length);
2446 		if (state) {
2447 			ppp_xmit_lock(ppp);
2448 			ppp->xstate &= ~SC_COMP_RUN;
2449 			ocomp = ppp->xcomp;
2450 			ostate = ppp->xc_state;
2451 			ppp->xcomp = cp;
2452 			ppp->xc_state = state;
2453 			ppp_xmit_unlock(ppp);
2454 			if (ostate) {
2455 				ocomp->comp_free(ostate);
2456 				module_put(ocomp->owner);
2457 			}
2458 			err = 0;
2459 		} else
2460 			module_put(cp->owner);
2461 
2462 	} else {
2463 		state = cp->decomp_alloc(ccp_option, data.length);
2464 		if (state) {
2465 			ppp_recv_lock(ppp);
2466 			ppp->rstate &= ~SC_DECOMP_RUN;
2467 			ocomp = ppp->rcomp;
2468 			ostate = ppp->rc_state;
2469 			ppp->rcomp = cp;
2470 			ppp->rc_state = state;
2471 			ppp_recv_unlock(ppp);
2472 			if (ostate) {
2473 				ocomp->decomp_free(ostate);
2474 				module_put(ocomp->owner);
2475 			}
2476 			err = 0;
2477 		} else
2478 			module_put(cp->owner);
2479 	}
2480 
2481  out:
2482 	return err;
2483 }
2484 
2485 /*
2486  * Look at a CCP packet and update our state accordingly.
2487  * We assume the caller has the xmit or recv path locked.
2488  */
2489 static void
2490 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2491 {
2492 	unsigned char *dp;
2493 	int len;
2494 
2495 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2496 		return;	/* no header */
2497 	dp = skb->data + 2;
2498 
2499 	switch (CCP_CODE(dp)) {
2500 	case CCP_CONFREQ:
2501 
2502 		/* A ConfReq starts negotiation of compression
2503 		 * in one direction of transmission,
2504 		 * and hence brings it down...but which way?
2505 		 *
2506 		 * Remember:
2507 		 * A ConfReq indicates what the sender would like to receive
2508 		 */
2509 		if(inbound)
2510 			/* He is proposing what I should send */
2511 			ppp->xstate &= ~SC_COMP_RUN;
2512 		else
2513 			/* I am proposing to what he should send */
2514 			ppp->rstate &= ~SC_DECOMP_RUN;
2515 
2516 		break;
2517 
2518 	case CCP_TERMREQ:
2519 	case CCP_TERMACK:
2520 		/*
2521 		 * CCP is going down, both directions of transmission
2522 		 */
2523 		ppp->rstate &= ~SC_DECOMP_RUN;
2524 		ppp->xstate &= ~SC_COMP_RUN;
2525 		break;
2526 
2527 	case CCP_CONFACK:
2528 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2529 			break;
2530 		len = CCP_LENGTH(dp);
2531 		if (!pskb_may_pull(skb, len + 2))
2532 			return;		/* too short */
2533 		dp += CCP_HDRLEN;
2534 		len -= CCP_HDRLEN;
2535 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2536 			break;
2537 		if (inbound) {
2538 			/* we will start receiving compressed packets */
2539 			if (!ppp->rc_state)
2540 				break;
2541 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2542 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2543 				ppp->rstate |= SC_DECOMP_RUN;
2544 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2545 			}
2546 		} else {
2547 			/* we will soon start sending compressed packets */
2548 			if (!ppp->xc_state)
2549 				break;
2550 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2551 					ppp->file.index, 0, ppp->debug))
2552 				ppp->xstate |= SC_COMP_RUN;
2553 		}
2554 		break;
2555 
2556 	case CCP_RESETACK:
2557 		/* reset the [de]compressor */
2558 		if ((ppp->flags & SC_CCP_UP) == 0)
2559 			break;
2560 		if (inbound) {
2561 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2562 				ppp->rcomp->decomp_reset(ppp->rc_state);
2563 				ppp->rstate &= ~SC_DC_ERROR;
2564 			}
2565 		} else {
2566 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2567 				ppp->xcomp->comp_reset(ppp->xc_state);
2568 		}
2569 		break;
2570 	}
2571 }
2572 
2573 /* Free up compression resources. */
2574 static void
2575 ppp_ccp_closed(struct ppp *ppp)
2576 {
2577 	void *xstate, *rstate;
2578 	struct compressor *xcomp, *rcomp;
2579 
2580 	ppp_lock(ppp);
2581 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2582 	ppp->xstate = 0;
2583 	xcomp = ppp->xcomp;
2584 	xstate = ppp->xc_state;
2585 	ppp->xc_state = NULL;
2586 	ppp->rstate = 0;
2587 	rcomp = ppp->rcomp;
2588 	rstate = ppp->rc_state;
2589 	ppp->rc_state = NULL;
2590 	ppp_unlock(ppp);
2591 
2592 	if (xstate) {
2593 		xcomp->comp_free(xstate);
2594 		module_put(xcomp->owner);
2595 	}
2596 	if (rstate) {
2597 		rcomp->decomp_free(rstate);
2598 		module_put(rcomp->owner);
2599 	}
2600 }
2601 
2602 /* List of compressors. */
2603 static LIST_HEAD(compressor_list);
2604 static DEFINE_SPINLOCK(compressor_list_lock);
2605 
2606 struct compressor_entry {
2607 	struct list_head list;
2608 	struct compressor *comp;
2609 };
2610 
2611 static struct compressor_entry *
2612 find_comp_entry(int proto)
2613 {
2614 	struct compressor_entry *ce;
2615 
2616 	list_for_each_entry(ce, &compressor_list, list) {
2617 		if (ce->comp->compress_proto == proto)
2618 			return ce;
2619 	}
2620 	return NULL;
2621 }
2622 
2623 /* Register a compressor */
2624 int
2625 ppp_register_compressor(struct compressor *cp)
2626 {
2627 	struct compressor_entry *ce;
2628 	int ret;
2629 	spin_lock(&compressor_list_lock);
2630 	ret = -EEXIST;
2631 	if (find_comp_entry(cp->compress_proto))
2632 		goto out;
2633 	ret = -ENOMEM;
2634 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2635 	if (!ce)
2636 		goto out;
2637 	ret = 0;
2638 	ce->comp = cp;
2639 	list_add(&ce->list, &compressor_list);
2640  out:
2641 	spin_unlock(&compressor_list_lock);
2642 	return ret;
2643 }
2644 
2645 /* Unregister a compressor */
2646 void
2647 ppp_unregister_compressor(struct compressor *cp)
2648 {
2649 	struct compressor_entry *ce;
2650 
2651 	spin_lock(&compressor_list_lock);
2652 	ce = find_comp_entry(cp->compress_proto);
2653 	if (ce && ce->comp == cp) {
2654 		list_del(&ce->list);
2655 		kfree(ce);
2656 	}
2657 	spin_unlock(&compressor_list_lock);
2658 }
2659 
2660 /* Find a compressor. */
2661 static struct compressor *
2662 find_compressor(int type)
2663 {
2664 	struct compressor_entry *ce;
2665 	struct compressor *cp = NULL;
2666 
2667 	spin_lock(&compressor_list_lock);
2668 	ce = find_comp_entry(type);
2669 	if (ce) {
2670 		cp = ce->comp;
2671 		if (!try_module_get(cp->owner))
2672 			cp = NULL;
2673 	}
2674 	spin_unlock(&compressor_list_lock);
2675 	return cp;
2676 }
2677 
2678 /*
2679  * Miscelleneous stuff.
2680  */
2681 
2682 static void
2683 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2684 {
2685 	struct slcompress *vj = ppp->vj;
2686 
2687 	memset(st, 0, sizeof(*st));
2688 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2689 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2690 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2691 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2692 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2693 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2694 	if (!vj)
2695 		return;
2696 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2697 	st->vj.vjs_compressed = vj->sls_o_compressed;
2698 	st->vj.vjs_searches = vj->sls_o_searches;
2699 	st->vj.vjs_misses = vj->sls_o_misses;
2700 	st->vj.vjs_errorin = vj->sls_i_error;
2701 	st->vj.vjs_tossed = vj->sls_i_tossed;
2702 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2703 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2704 }
2705 
2706 /*
2707  * Stuff for handling the lists of ppp units and channels
2708  * and for initialization.
2709  */
2710 
2711 /*
2712  * Create a new ppp interface unit.  Fails if it can't allocate memory
2713  * or if there is already a unit with the requested number.
2714  * unit == -1 means allocate a new number.
2715  */
2716 static struct ppp *ppp_create_interface(struct net *net, int unit,
2717 					struct file *file, int *retp)
2718 {
2719 	struct ppp *ppp;
2720 	struct ppp_net *pn;
2721 	struct net_device *dev = NULL;
2722 	int ret = -ENOMEM;
2723 	int i;
2724 
2725 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_UNKNOWN,
2726 			   ppp_setup);
2727 	if (!dev)
2728 		goto out1;
2729 
2730 	pn = ppp_pernet(net);
2731 
2732 	ppp = netdev_priv(dev);
2733 	ppp->dev = dev;
2734 	ppp->mru = PPP_MRU;
2735 	init_ppp_file(&ppp->file, INTERFACE);
2736 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2737 	ppp->owner = file;
2738 	for (i = 0; i < NUM_NP; ++i)
2739 		ppp->npmode[i] = NPMODE_PASS;
2740 	INIT_LIST_HEAD(&ppp->channels);
2741 	spin_lock_init(&ppp->rlock);
2742 	spin_lock_init(&ppp->wlock);
2743 #ifdef CONFIG_PPP_MULTILINK
2744 	ppp->minseq = -1;
2745 	skb_queue_head_init(&ppp->mrq);
2746 #endif /* CONFIG_PPP_MULTILINK */
2747 #ifdef CONFIG_PPP_FILTER
2748 	ppp->pass_filter = NULL;
2749 	ppp->active_filter = NULL;
2750 #endif /* CONFIG_PPP_FILTER */
2751 
2752 	/*
2753 	 * drum roll: don't forget to set
2754 	 * the net device is belong to
2755 	 */
2756 	dev_net_set(dev, net);
2757 
2758 	rtnl_lock();
2759 	mutex_lock(&pn->all_ppp_mutex);
2760 
2761 	if (unit < 0) {
2762 		unit = unit_get(&pn->units_idr, ppp);
2763 		if (unit < 0) {
2764 			ret = unit;
2765 			goto out2;
2766 		}
2767 	} else {
2768 		ret = -EEXIST;
2769 		if (unit_find(&pn->units_idr, unit))
2770 			goto out2; /* unit already exists */
2771 		/*
2772 		 * if caller need a specified unit number
2773 		 * lets try to satisfy him, otherwise --
2774 		 * he should better ask us for new unit number
2775 		 *
2776 		 * NOTE: yes I know that returning EEXIST it's not
2777 		 * fair but at least pppd will ask us to allocate
2778 		 * new unit in this case so user is happy :)
2779 		 */
2780 		unit = unit_set(&pn->units_idr, ppp, unit);
2781 		if (unit < 0)
2782 			goto out2;
2783 	}
2784 
2785 	/* Initialize the new ppp unit */
2786 	ppp->file.index = unit;
2787 	sprintf(dev->name, "ppp%d", unit);
2788 
2789 	ret = register_netdevice(dev);
2790 	if (ret != 0) {
2791 		unit_put(&pn->units_idr, unit);
2792 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2793 			   dev->name, ret);
2794 		goto out2;
2795 	}
2796 
2797 	ppp->ppp_net = net;
2798 
2799 	atomic_inc(&ppp_unit_count);
2800 	mutex_unlock(&pn->all_ppp_mutex);
2801 	rtnl_unlock();
2802 
2803 	*retp = 0;
2804 	return ppp;
2805 
2806 out2:
2807 	mutex_unlock(&pn->all_ppp_mutex);
2808 	free_netdev(dev);
2809 out1:
2810 	*retp = ret;
2811 	return NULL;
2812 }
2813 
2814 /*
2815  * Initialize a ppp_file structure.
2816  */
2817 static void
2818 init_ppp_file(struct ppp_file *pf, int kind)
2819 {
2820 	pf->kind = kind;
2821 	skb_queue_head_init(&pf->xq);
2822 	skb_queue_head_init(&pf->rq);
2823 	atomic_set(&pf->refcnt, 1);
2824 	init_waitqueue_head(&pf->rwait);
2825 }
2826 
2827 /*
2828  * Free the memory used by a ppp unit.  This is only called once
2829  * there are no channels connected to the unit and no file structs
2830  * that reference the unit.
2831  */
2832 static void ppp_destroy_interface(struct ppp *ppp)
2833 {
2834 	atomic_dec(&ppp_unit_count);
2835 
2836 	if (!ppp->file.dead || ppp->n_channels) {
2837 		/* "can't happen" */
2838 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2839 			   "but dead=%d n_channels=%d !\n",
2840 			   ppp, ppp->file.dead, ppp->n_channels);
2841 		return;
2842 	}
2843 
2844 	ppp_ccp_closed(ppp);
2845 	if (ppp->vj) {
2846 		slhc_free(ppp->vj);
2847 		ppp->vj = NULL;
2848 	}
2849 	skb_queue_purge(&ppp->file.xq);
2850 	skb_queue_purge(&ppp->file.rq);
2851 #ifdef CONFIG_PPP_MULTILINK
2852 	skb_queue_purge(&ppp->mrq);
2853 #endif /* CONFIG_PPP_MULTILINK */
2854 #ifdef CONFIG_PPP_FILTER
2855 	if (ppp->pass_filter) {
2856 		bpf_prog_destroy(ppp->pass_filter);
2857 		ppp->pass_filter = NULL;
2858 	}
2859 
2860 	if (ppp->active_filter) {
2861 		bpf_prog_destroy(ppp->active_filter);
2862 		ppp->active_filter = NULL;
2863 	}
2864 #endif /* CONFIG_PPP_FILTER */
2865 
2866 	kfree_skb(ppp->xmit_pending);
2867 
2868 	free_netdev(ppp->dev);
2869 }
2870 
2871 /*
2872  * Locate an existing ppp unit.
2873  * The caller should have locked the all_ppp_mutex.
2874  */
2875 static struct ppp *
2876 ppp_find_unit(struct ppp_net *pn, int unit)
2877 {
2878 	return unit_find(&pn->units_idr, unit);
2879 }
2880 
2881 /*
2882  * Locate an existing ppp channel.
2883  * The caller should have locked the all_channels_lock.
2884  * First we look in the new_channels list, then in the
2885  * all_channels list.  If found in the new_channels list,
2886  * we move it to the all_channels list.  This is for speed
2887  * when we have a lot of channels in use.
2888  */
2889 static struct channel *
2890 ppp_find_channel(struct ppp_net *pn, int unit)
2891 {
2892 	struct channel *pch;
2893 
2894 	list_for_each_entry(pch, &pn->new_channels, list) {
2895 		if (pch->file.index == unit) {
2896 			list_move(&pch->list, &pn->all_channels);
2897 			return pch;
2898 		}
2899 	}
2900 
2901 	list_for_each_entry(pch, &pn->all_channels, list) {
2902 		if (pch->file.index == unit)
2903 			return pch;
2904 	}
2905 
2906 	return NULL;
2907 }
2908 
2909 /*
2910  * Connect a PPP channel to a PPP interface unit.
2911  */
2912 static int
2913 ppp_connect_channel(struct channel *pch, int unit)
2914 {
2915 	struct ppp *ppp;
2916 	struct ppp_net *pn;
2917 	int ret = -ENXIO;
2918 	int hdrlen;
2919 
2920 	pn = ppp_pernet(pch->chan_net);
2921 
2922 	mutex_lock(&pn->all_ppp_mutex);
2923 	ppp = ppp_find_unit(pn, unit);
2924 	if (!ppp)
2925 		goto out;
2926 	write_lock_bh(&pch->upl);
2927 	ret = -EINVAL;
2928 	if (pch->ppp)
2929 		goto outl;
2930 
2931 	ppp_lock(ppp);
2932 	if (pch->file.hdrlen > ppp->file.hdrlen)
2933 		ppp->file.hdrlen = pch->file.hdrlen;
2934 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2935 	if (hdrlen > ppp->dev->hard_header_len)
2936 		ppp->dev->hard_header_len = hdrlen;
2937 	list_add_tail(&pch->clist, &ppp->channels);
2938 	++ppp->n_channels;
2939 	pch->ppp = ppp;
2940 	atomic_inc(&ppp->file.refcnt);
2941 	ppp_unlock(ppp);
2942 	ret = 0;
2943 
2944  outl:
2945 	write_unlock_bh(&pch->upl);
2946  out:
2947 	mutex_unlock(&pn->all_ppp_mutex);
2948 	return ret;
2949 }
2950 
2951 /*
2952  * Disconnect a channel from its ppp unit.
2953  */
2954 static int
2955 ppp_disconnect_channel(struct channel *pch)
2956 {
2957 	struct ppp *ppp;
2958 	int err = -EINVAL;
2959 
2960 	write_lock_bh(&pch->upl);
2961 	ppp = pch->ppp;
2962 	pch->ppp = NULL;
2963 	write_unlock_bh(&pch->upl);
2964 	if (ppp) {
2965 		/* remove it from the ppp unit's list */
2966 		ppp_lock(ppp);
2967 		list_del(&pch->clist);
2968 		if (--ppp->n_channels == 0)
2969 			wake_up_interruptible(&ppp->file.rwait);
2970 		ppp_unlock(ppp);
2971 		if (atomic_dec_and_test(&ppp->file.refcnt))
2972 			ppp_destroy_interface(ppp);
2973 		err = 0;
2974 	}
2975 	return err;
2976 }
2977 
2978 /*
2979  * Free up the resources used by a ppp channel.
2980  */
2981 static void ppp_destroy_channel(struct channel *pch)
2982 {
2983 	atomic_dec(&channel_count);
2984 
2985 	if (!pch->file.dead) {
2986 		/* "can't happen" */
2987 		pr_err("ppp: destroying undead channel %p !\n", pch);
2988 		return;
2989 	}
2990 	skb_queue_purge(&pch->file.xq);
2991 	skb_queue_purge(&pch->file.rq);
2992 	kfree(pch);
2993 }
2994 
2995 static void __exit ppp_cleanup(void)
2996 {
2997 	/* should never happen */
2998 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2999 		pr_err("PPP: removing module but units remain!\n");
3000 	unregister_chrdev(PPP_MAJOR, "ppp");
3001 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3002 	class_destroy(ppp_class);
3003 	unregister_pernet_device(&ppp_net_ops);
3004 }
3005 
3006 /*
3007  * Units handling. Caller must protect concurrent access
3008  * by holding all_ppp_mutex
3009  */
3010 
3011 /* associate pointer with specified number */
3012 static int unit_set(struct idr *p, void *ptr, int n)
3013 {
3014 	int unit;
3015 
3016 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3017 	if (unit == -ENOSPC)
3018 		unit = -EINVAL;
3019 	return unit;
3020 }
3021 
3022 /* get new free unit number and associate pointer with it */
3023 static int unit_get(struct idr *p, void *ptr)
3024 {
3025 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3026 }
3027 
3028 /* put unit number back to a pool */
3029 static void unit_put(struct idr *p, int n)
3030 {
3031 	idr_remove(p, n);
3032 }
3033 
3034 /* get pointer associated with the number */
3035 static void *unit_find(struct idr *p, int n)
3036 {
3037 	return idr_find(p, n);
3038 }
3039 
3040 /* Module/initialization stuff */
3041 
3042 module_init(ppp_init);
3043 module_exit(ppp_cleanup);
3044 
3045 EXPORT_SYMBOL(ppp_register_net_channel);
3046 EXPORT_SYMBOL(ppp_register_channel);
3047 EXPORT_SYMBOL(ppp_unregister_channel);
3048 EXPORT_SYMBOL(ppp_channel_index);
3049 EXPORT_SYMBOL(ppp_unit_number);
3050 EXPORT_SYMBOL(ppp_dev_name);
3051 EXPORT_SYMBOL(ppp_input);
3052 EXPORT_SYMBOL(ppp_input_error);
3053 EXPORT_SYMBOL(ppp_output_wakeup);
3054 EXPORT_SYMBOL(ppp_register_compressor);
3055 EXPORT_SYMBOL(ppp_unregister_compressor);
3056 MODULE_LICENSE("GPL");
3057 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3058 MODULE_ALIAS("devname:ppp");
3059