xref: /linux/drivers/net/ppp/ppp_generic.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION	"2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP	0		/* Internet Protocol V4 */
63 #define NP_IPV6	1		/* Internet Protocol V6 */
64 #define NP_IPX	2		/* IPX protocol */
65 #define NP_AT	3		/* Appletalk protocol */
66 #define NP_MPLS_UC 4		/* MPLS unicast */
67 #define NP_MPLS_MC 5		/* MPLS multicast */
68 #define NUM_NP	6		/* Number of NPs. */
69 
70 #define MPHDRLEN	6	/* multilink protocol header length */
71 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel.  In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79 	enum {
80 		INTERFACE=1, CHANNEL
81 	}		kind;
82 	struct sk_buff_head xq;		/* pppd transmit queue */
83 	struct sk_buff_head rq;		/* receive queue for pppd */
84 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86 	int		hdrlen;		/* space to leave for headers */
87 	int		index;		/* interface unit / channel number */
88 	int		dead;		/* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X)		container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage.  Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
101 struct ppp_link_stats {
102 	u64 rx_packets;
103 	u64 tx_packets;
104 	u64 rx_bytes;
105 	u64 tx_bytes;
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116 	struct file	*owner;		/* file that owns this unit 48 */
117 	struct list_head channels;	/* list of attached channels 4c */
118 	int		n_channels;	/* how many channels are attached 54 */
119 	spinlock_t	rlock;		/* lock for receive side 58 */
120 	spinlock_t	wlock;		/* lock for transmit side 5c */
121 	int		mru;		/* max receive unit 60 */
122 	unsigned int	flags;		/* control bits 64 */
123 	unsigned int	xstate;		/* transmit state bits 68 */
124 	unsigned int	rstate;		/* receive state bits 6c */
125 	int		debug;		/* debug flags 70 */
126 	struct slcompress *vj;		/* state for VJ header compression */
127 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129 	struct compressor *xcomp;	/* transmit packet compressor 8c */
130 	void		*xc_state;	/* its internal state 90 */
131 	struct compressor *rcomp;	/* receive decompressor 94 */
132 	void		*rc_state;	/* its internal state 98 */
133 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135 	struct net_device *dev;		/* network interface device a4 */
136 	int		closing;	/* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 	int		nxchan;		/* next channel to send something on */
139 	u32		nxseq;		/* next sequence number to send */
140 	int		mrru;		/* MP: max reconst. receive unit */
141 	u32		nextseq;	/* MP: seq no of next packet */
142 	u32		minseq;		/* MP: min of most recent seqnos */
143 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
147 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 	struct net	*ppp_net;	/* the net we belong to */
150 	struct ppp_link_stats stats64;	/* 64 bit network stats */
151 };
152 
153 /*
154  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156  * SC_MUST_COMP
157  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158  * Bits in xstate: SC_COMP_RUN
159  */
160 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163 
164 /*
165  * Private data structure for each channel.
166  * This includes the data structure used for multilink.
167  */
168 struct channel {
169 	struct ppp_file	file;		/* stuff for read/write/poll */
170 	struct list_head list;		/* link in all/new_channels list */
171 	struct ppp_channel *chan;	/* public channel data structure */
172 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174 	struct ppp	*ppp;		/* ppp unit we're connected to */
175 	struct net	*chan_net;	/* the net channel belongs to */
176 	struct list_head clist;		/* link in list of channels per unit */
177 	rwlock_t	upl;		/* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 	u8		avail;		/* flag used in multilink stuff */
180 	u8		had_frag;	/* >= 1 fragments have been sent */
181 	u32		lastseq;	/* MP: last sequence # received */
182 	int		speed;		/* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185 
186 /*
187  * SMP locking issues:
188  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189  * list and the ppp.n_channels field, you need to take both locks
190  * before you modify them.
191  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192  * channel.downl.
193  */
194 
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198 
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 	/* units to ppp mapping */
203 	struct idr units_idr;
204 
205 	/*
206 	 * all_ppp_mutex protects the units_idr mapping.
207 	 * It also ensures that finding a ppp unit in the units_idr
208 	 * map and updating its file.refcnt field is atomic.
209 	 */
210 	struct mutex all_ppp_mutex;
211 
212 	/* channels */
213 	struct list_head all_channels;
214 	struct list_head new_channels;
215 	int last_channel_index;
216 
217 	/*
218 	 * all_channels_lock protects all_channels and
219 	 * last_channel_index, and the atomicity of find
220 	 * a channel and updating its file.refcnt field.
221 	 */
222 	spinlock_t all_channels_lock;
223 };
224 
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227 
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN	32
230 
231 /*
232  * Maximum number of multilink fragments queued up.
233  * This has to be large enough to cope with the maximum latency of
234  * the slowest channel relative to the others.  Strictly it should
235  * depend on the number of channels and their characteristics.
236  */
237 #define PPP_MP_MAX_QLEN	128
238 
239 /* Multilink header bits. */
240 #define B	0x80		/* this fragment begins a packet */
241 #define E	0x40		/* this fragment ends a packet */
242 
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
245 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
246 
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 			struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 			      struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 					    struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 				struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit,
273 					struct file *file, int *retp);
274 static void init_ppp_file(struct ppp_file *pf, int kind);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285 
286 static const struct net_device_ops ppp_netdev_ops;
287 
288 static struct class *ppp_class;
289 
290 /* per net-namespace data */
291 static inline struct ppp_net *ppp_pernet(struct net *net)
292 {
293 	BUG_ON(!net);
294 
295 	return net_generic(net, ppp_net_id);
296 }
297 
298 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
299 static inline int proto_to_npindex(int proto)
300 {
301 	switch (proto) {
302 	case PPP_IP:
303 		return NP_IP;
304 	case PPP_IPV6:
305 		return NP_IPV6;
306 	case PPP_IPX:
307 		return NP_IPX;
308 	case PPP_AT:
309 		return NP_AT;
310 	case PPP_MPLS_UC:
311 		return NP_MPLS_UC;
312 	case PPP_MPLS_MC:
313 		return NP_MPLS_MC;
314 	}
315 	return -EINVAL;
316 }
317 
318 /* Translates an NP index into a PPP protocol number */
319 static const int npindex_to_proto[NUM_NP] = {
320 	PPP_IP,
321 	PPP_IPV6,
322 	PPP_IPX,
323 	PPP_AT,
324 	PPP_MPLS_UC,
325 	PPP_MPLS_MC,
326 };
327 
328 /* Translates an ethertype into an NP index */
329 static inline int ethertype_to_npindex(int ethertype)
330 {
331 	switch (ethertype) {
332 	case ETH_P_IP:
333 		return NP_IP;
334 	case ETH_P_IPV6:
335 		return NP_IPV6;
336 	case ETH_P_IPX:
337 		return NP_IPX;
338 	case ETH_P_PPPTALK:
339 	case ETH_P_ATALK:
340 		return NP_AT;
341 	case ETH_P_MPLS_UC:
342 		return NP_MPLS_UC;
343 	case ETH_P_MPLS_MC:
344 		return NP_MPLS_MC;
345 	}
346 	return -1;
347 }
348 
349 /* Translates an NP index into an ethertype */
350 static const int npindex_to_ethertype[NUM_NP] = {
351 	ETH_P_IP,
352 	ETH_P_IPV6,
353 	ETH_P_IPX,
354 	ETH_P_PPPTALK,
355 	ETH_P_MPLS_UC,
356 	ETH_P_MPLS_MC,
357 };
358 
359 /*
360  * Locking shorthand.
361  */
362 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
363 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
364 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
365 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
366 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
367 				     ppp_recv_lock(ppp); } while (0)
368 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
369 				     ppp_xmit_unlock(ppp); } while (0)
370 
371 /*
372  * /dev/ppp device routines.
373  * The /dev/ppp device is used by pppd to control the ppp unit.
374  * It supports the read, write, ioctl and poll functions.
375  * Open instances of /dev/ppp can be in one of three states:
376  * unattached, attached to a ppp unit, or attached to a ppp channel.
377  */
378 static int ppp_open(struct inode *inode, struct file *file)
379 {
380 	/*
381 	 * This could (should?) be enforced by the permissions on /dev/ppp.
382 	 */
383 	if (!capable(CAP_NET_ADMIN))
384 		return -EPERM;
385 	return 0;
386 }
387 
388 static int ppp_release(struct inode *unused, struct file *file)
389 {
390 	struct ppp_file *pf = file->private_data;
391 	struct ppp *ppp;
392 
393 	if (pf) {
394 		file->private_data = NULL;
395 		if (pf->kind == INTERFACE) {
396 			ppp = PF_TO_PPP(pf);
397 			rtnl_lock();
398 			if (file == ppp->owner)
399 				unregister_netdevice(ppp->dev);
400 			rtnl_unlock();
401 		}
402 		if (atomic_dec_and_test(&pf->refcnt)) {
403 			switch (pf->kind) {
404 			case INTERFACE:
405 				ppp_destroy_interface(PF_TO_PPP(pf));
406 				break;
407 			case CHANNEL:
408 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
409 				break;
410 			}
411 		}
412 	}
413 	return 0;
414 }
415 
416 static ssize_t ppp_read(struct file *file, char __user *buf,
417 			size_t count, loff_t *ppos)
418 {
419 	struct ppp_file *pf = file->private_data;
420 	DECLARE_WAITQUEUE(wait, current);
421 	ssize_t ret;
422 	struct sk_buff *skb = NULL;
423 	struct iovec iov;
424 	struct iov_iter to;
425 
426 	ret = count;
427 
428 	if (!pf)
429 		return -ENXIO;
430 	add_wait_queue(&pf->rwait, &wait);
431 	for (;;) {
432 		set_current_state(TASK_INTERRUPTIBLE);
433 		skb = skb_dequeue(&pf->rq);
434 		if (skb)
435 			break;
436 		ret = 0;
437 		if (pf->dead)
438 			break;
439 		if (pf->kind == INTERFACE) {
440 			/*
441 			 * Return 0 (EOF) on an interface that has no
442 			 * channels connected, unless it is looping
443 			 * network traffic (demand mode).
444 			 */
445 			struct ppp *ppp = PF_TO_PPP(pf);
446 			if (ppp->n_channels == 0 &&
447 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
448 				break;
449 		}
450 		ret = -EAGAIN;
451 		if (file->f_flags & O_NONBLOCK)
452 			break;
453 		ret = -ERESTARTSYS;
454 		if (signal_pending(current))
455 			break;
456 		schedule();
457 	}
458 	set_current_state(TASK_RUNNING);
459 	remove_wait_queue(&pf->rwait, &wait);
460 
461 	if (!skb)
462 		goto out;
463 
464 	ret = -EOVERFLOW;
465 	if (skb->len > count)
466 		goto outf;
467 	ret = -EFAULT;
468 	iov.iov_base = buf;
469 	iov.iov_len = count;
470 	iov_iter_init(&to, READ, &iov, 1, count);
471 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
472 		goto outf;
473 	ret = skb->len;
474 
475  outf:
476 	kfree_skb(skb);
477  out:
478 	return ret;
479 }
480 
481 static ssize_t ppp_write(struct file *file, const char __user *buf,
482 			 size_t count, loff_t *ppos)
483 {
484 	struct ppp_file *pf = file->private_data;
485 	struct sk_buff *skb;
486 	ssize_t ret;
487 
488 	if (!pf)
489 		return -ENXIO;
490 	ret = -ENOMEM;
491 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
492 	if (!skb)
493 		goto out;
494 	skb_reserve(skb, pf->hdrlen);
495 	ret = -EFAULT;
496 	if (copy_from_user(skb_put(skb, count), buf, count)) {
497 		kfree_skb(skb);
498 		goto out;
499 	}
500 
501 	skb_queue_tail(&pf->xq, skb);
502 
503 	switch (pf->kind) {
504 	case INTERFACE:
505 		ppp_xmit_process(PF_TO_PPP(pf));
506 		break;
507 	case CHANNEL:
508 		ppp_channel_push(PF_TO_CHANNEL(pf));
509 		break;
510 	}
511 
512 	ret = count;
513 
514  out:
515 	return ret;
516 }
517 
518 /* No kernel lock - fine */
519 static unsigned int ppp_poll(struct file *file, poll_table *wait)
520 {
521 	struct ppp_file *pf = file->private_data;
522 	unsigned int mask;
523 
524 	if (!pf)
525 		return 0;
526 	poll_wait(file, &pf->rwait, wait);
527 	mask = POLLOUT | POLLWRNORM;
528 	if (skb_peek(&pf->rq))
529 		mask |= POLLIN | POLLRDNORM;
530 	if (pf->dead)
531 		mask |= POLLHUP;
532 	else if (pf->kind == INTERFACE) {
533 		/* see comment in ppp_read */
534 		struct ppp *ppp = PF_TO_PPP(pf);
535 		if (ppp->n_channels == 0 &&
536 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
537 			mask |= POLLIN | POLLRDNORM;
538 	}
539 
540 	return mask;
541 }
542 
543 #ifdef CONFIG_PPP_FILTER
544 static int get_filter(void __user *arg, struct sock_filter **p)
545 {
546 	struct sock_fprog uprog;
547 	struct sock_filter *code = NULL;
548 	int len;
549 
550 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
551 		return -EFAULT;
552 
553 	if (!uprog.len) {
554 		*p = NULL;
555 		return 0;
556 	}
557 
558 	len = uprog.len * sizeof(struct sock_filter);
559 	code = memdup_user(uprog.filter, len);
560 	if (IS_ERR(code))
561 		return PTR_ERR(code);
562 
563 	*p = code;
564 	return uprog.len;
565 }
566 #endif /* CONFIG_PPP_FILTER */
567 
568 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
569 {
570 	struct ppp_file *pf = file->private_data;
571 	struct ppp *ppp;
572 	int err = -EFAULT, val, val2, i;
573 	struct ppp_idle idle;
574 	struct npioctl npi;
575 	int unit, cflags;
576 	struct slcompress *vj;
577 	void __user *argp = (void __user *)arg;
578 	int __user *p = argp;
579 
580 	if (!pf)
581 		return ppp_unattached_ioctl(current->nsproxy->net_ns,
582 					pf, file, cmd, arg);
583 
584 	if (cmd == PPPIOCDETACH) {
585 		/*
586 		 * We have to be careful here... if the file descriptor
587 		 * has been dup'd, we could have another process in the
588 		 * middle of a poll using the same file *, so we had
589 		 * better not free the interface data structures -
590 		 * instead we fail the ioctl.  Even in this case, we
591 		 * shut down the interface if we are the owner of it.
592 		 * Actually, we should get rid of PPPIOCDETACH, userland
593 		 * (i.e. pppd) could achieve the same effect by closing
594 		 * this fd and reopening /dev/ppp.
595 		 */
596 		err = -EINVAL;
597 		mutex_lock(&ppp_mutex);
598 		if (pf->kind == INTERFACE) {
599 			ppp = PF_TO_PPP(pf);
600 			rtnl_lock();
601 			if (file == ppp->owner)
602 				unregister_netdevice(ppp->dev);
603 			rtnl_unlock();
604 		}
605 		if (atomic_long_read(&file->f_count) < 2) {
606 			ppp_release(NULL, file);
607 			err = 0;
608 		} else
609 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
610 				atomic_long_read(&file->f_count));
611 		mutex_unlock(&ppp_mutex);
612 		return err;
613 	}
614 
615 	if (pf->kind == CHANNEL) {
616 		struct channel *pch;
617 		struct ppp_channel *chan;
618 
619 		mutex_lock(&ppp_mutex);
620 		pch = PF_TO_CHANNEL(pf);
621 
622 		switch (cmd) {
623 		case PPPIOCCONNECT:
624 			if (get_user(unit, p))
625 				break;
626 			err = ppp_connect_channel(pch, unit);
627 			break;
628 
629 		case PPPIOCDISCONN:
630 			err = ppp_disconnect_channel(pch);
631 			break;
632 
633 		default:
634 			down_read(&pch->chan_sem);
635 			chan = pch->chan;
636 			err = -ENOTTY;
637 			if (chan && chan->ops->ioctl)
638 				err = chan->ops->ioctl(chan, cmd, arg);
639 			up_read(&pch->chan_sem);
640 		}
641 		mutex_unlock(&ppp_mutex);
642 		return err;
643 	}
644 
645 	if (pf->kind != INTERFACE) {
646 		/* can't happen */
647 		pr_err("PPP: not interface or channel??\n");
648 		return -EINVAL;
649 	}
650 
651 	mutex_lock(&ppp_mutex);
652 	ppp = PF_TO_PPP(pf);
653 	switch (cmd) {
654 	case PPPIOCSMRU:
655 		if (get_user(val, p))
656 			break;
657 		ppp->mru = val;
658 		err = 0;
659 		break;
660 
661 	case PPPIOCSFLAGS:
662 		if (get_user(val, p))
663 			break;
664 		ppp_lock(ppp);
665 		cflags = ppp->flags & ~val;
666 #ifdef CONFIG_PPP_MULTILINK
667 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
668 			ppp->nextseq = 0;
669 #endif
670 		ppp->flags = val & SC_FLAG_BITS;
671 		ppp_unlock(ppp);
672 		if (cflags & SC_CCP_OPEN)
673 			ppp_ccp_closed(ppp);
674 		err = 0;
675 		break;
676 
677 	case PPPIOCGFLAGS:
678 		val = ppp->flags | ppp->xstate | ppp->rstate;
679 		if (put_user(val, p))
680 			break;
681 		err = 0;
682 		break;
683 
684 	case PPPIOCSCOMPRESS:
685 		err = ppp_set_compress(ppp, arg);
686 		break;
687 
688 	case PPPIOCGUNIT:
689 		if (put_user(ppp->file.index, p))
690 			break;
691 		err = 0;
692 		break;
693 
694 	case PPPIOCSDEBUG:
695 		if (get_user(val, p))
696 			break;
697 		ppp->debug = val;
698 		err = 0;
699 		break;
700 
701 	case PPPIOCGDEBUG:
702 		if (put_user(ppp->debug, p))
703 			break;
704 		err = 0;
705 		break;
706 
707 	case PPPIOCGIDLE:
708 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
709 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
710 		if (copy_to_user(argp, &idle, sizeof(idle)))
711 			break;
712 		err = 0;
713 		break;
714 
715 	case PPPIOCSMAXCID:
716 		if (get_user(val, p))
717 			break;
718 		val2 = 15;
719 		if ((val >> 16) != 0) {
720 			val2 = val >> 16;
721 			val &= 0xffff;
722 		}
723 		vj = slhc_init(val2+1, val+1);
724 		if (IS_ERR(vj)) {
725 			err = PTR_ERR(vj);
726 			break;
727 		}
728 		ppp_lock(ppp);
729 		if (ppp->vj)
730 			slhc_free(ppp->vj);
731 		ppp->vj = vj;
732 		ppp_unlock(ppp);
733 		err = 0;
734 		break;
735 
736 	case PPPIOCGNPMODE:
737 	case PPPIOCSNPMODE:
738 		if (copy_from_user(&npi, argp, sizeof(npi)))
739 			break;
740 		err = proto_to_npindex(npi.protocol);
741 		if (err < 0)
742 			break;
743 		i = err;
744 		if (cmd == PPPIOCGNPMODE) {
745 			err = -EFAULT;
746 			npi.mode = ppp->npmode[i];
747 			if (copy_to_user(argp, &npi, sizeof(npi)))
748 				break;
749 		} else {
750 			ppp->npmode[i] = npi.mode;
751 			/* we may be able to transmit more packets now (??) */
752 			netif_wake_queue(ppp->dev);
753 		}
754 		err = 0;
755 		break;
756 
757 #ifdef CONFIG_PPP_FILTER
758 	case PPPIOCSPASS:
759 	{
760 		struct sock_filter *code;
761 
762 		err = get_filter(argp, &code);
763 		if (err >= 0) {
764 			struct bpf_prog *pass_filter = NULL;
765 			struct sock_fprog_kern fprog = {
766 				.len = err,
767 				.filter = code,
768 			};
769 
770 			err = 0;
771 			if (fprog.filter)
772 				err = bpf_prog_create(&pass_filter, &fprog);
773 			if (!err) {
774 				ppp_lock(ppp);
775 				if (ppp->pass_filter)
776 					bpf_prog_destroy(ppp->pass_filter);
777 				ppp->pass_filter = pass_filter;
778 				ppp_unlock(ppp);
779 			}
780 			kfree(code);
781 		}
782 		break;
783 	}
784 	case PPPIOCSACTIVE:
785 	{
786 		struct sock_filter *code;
787 
788 		err = get_filter(argp, &code);
789 		if (err >= 0) {
790 			struct bpf_prog *active_filter = NULL;
791 			struct sock_fprog_kern fprog = {
792 				.len = err,
793 				.filter = code,
794 			};
795 
796 			err = 0;
797 			if (fprog.filter)
798 				err = bpf_prog_create(&active_filter, &fprog);
799 			if (!err) {
800 				ppp_lock(ppp);
801 				if (ppp->active_filter)
802 					bpf_prog_destroy(ppp->active_filter);
803 				ppp->active_filter = active_filter;
804 				ppp_unlock(ppp);
805 			}
806 			kfree(code);
807 		}
808 		break;
809 	}
810 #endif /* CONFIG_PPP_FILTER */
811 
812 #ifdef CONFIG_PPP_MULTILINK
813 	case PPPIOCSMRRU:
814 		if (get_user(val, p))
815 			break;
816 		ppp_recv_lock(ppp);
817 		ppp->mrru = val;
818 		ppp_recv_unlock(ppp);
819 		err = 0;
820 		break;
821 #endif /* CONFIG_PPP_MULTILINK */
822 
823 	default:
824 		err = -ENOTTY;
825 	}
826 	mutex_unlock(&ppp_mutex);
827 	return err;
828 }
829 
830 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
831 			struct file *file, unsigned int cmd, unsigned long arg)
832 {
833 	int unit, err = -EFAULT;
834 	struct ppp *ppp;
835 	struct channel *chan;
836 	struct ppp_net *pn;
837 	int __user *p = (int __user *)arg;
838 
839 	mutex_lock(&ppp_mutex);
840 	switch (cmd) {
841 	case PPPIOCNEWUNIT:
842 		/* Create a new ppp unit */
843 		if (get_user(unit, p))
844 			break;
845 		ppp = ppp_create_interface(net, unit, file, &err);
846 		if (!ppp)
847 			break;
848 		file->private_data = &ppp->file;
849 		err = -EFAULT;
850 		if (put_user(ppp->file.index, p))
851 			break;
852 		err = 0;
853 		break;
854 
855 	case PPPIOCATTACH:
856 		/* Attach to an existing ppp unit */
857 		if (get_user(unit, p))
858 			break;
859 		err = -ENXIO;
860 		pn = ppp_pernet(net);
861 		mutex_lock(&pn->all_ppp_mutex);
862 		ppp = ppp_find_unit(pn, unit);
863 		if (ppp) {
864 			atomic_inc(&ppp->file.refcnt);
865 			file->private_data = &ppp->file;
866 			err = 0;
867 		}
868 		mutex_unlock(&pn->all_ppp_mutex);
869 		break;
870 
871 	case PPPIOCATTCHAN:
872 		if (get_user(unit, p))
873 			break;
874 		err = -ENXIO;
875 		pn = ppp_pernet(net);
876 		spin_lock_bh(&pn->all_channels_lock);
877 		chan = ppp_find_channel(pn, unit);
878 		if (chan) {
879 			atomic_inc(&chan->file.refcnt);
880 			file->private_data = &chan->file;
881 			err = 0;
882 		}
883 		spin_unlock_bh(&pn->all_channels_lock);
884 		break;
885 
886 	default:
887 		err = -ENOTTY;
888 	}
889 	mutex_unlock(&ppp_mutex);
890 	return err;
891 }
892 
893 static const struct file_operations ppp_device_fops = {
894 	.owner		= THIS_MODULE,
895 	.read		= ppp_read,
896 	.write		= ppp_write,
897 	.poll		= ppp_poll,
898 	.unlocked_ioctl	= ppp_ioctl,
899 	.open		= ppp_open,
900 	.release	= ppp_release,
901 	.llseek		= noop_llseek,
902 };
903 
904 static __net_init int ppp_init_net(struct net *net)
905 {
906 	struct ppp_net *pn = net_generic(net, ppp_net_id);
907 
908 	idr_init(&pn->units_idr);
909 	mutex_init(&pn->all_ppp_mutex);
910 
911 	INIT_LIST_HEAD(&pn->all_channels);
912 	INIT_LIST_HEAD(&pn->new_channels);
913 
914 	spin_lock_init(&pn->all_channels_lock);
915 
916 	return 0;
917 }
918 
919 static __net_exit void ppp_exit_net(struct net *net)
920 {
921 	struct ppp_net *pn = net_generic(net, ppp_net_id);
922 	struct net_device *dev;
923 	struct net_device *aux;
924 	struct ppp *ppp;
925 	LIST_HEAD(list);
926 	int id;
927 
928 	rtnl_lock();
929 	for_each_netdev_safe(net, dev, aux) {
930 		if (dev->netdev_ops == &ppp_netdev_ops)
931 			unregister_netdevice_queue(dev, &list);
932 	}
933 
934 	idr_for_each_entry(&pn->units_idr, ppp, id)
935 		/* Skip devices already unregistered by previous loop */
936 		if (!net_eq(dev_net(ppp->dev), net))
937 			unregister_netdevice_queue(ppp->dev, &list);
938 
939 	unregister_netdevice_many(&list);
940 	rtnl_unlock();
941 
942 	idr_destroy(&pn->units_idr);
943 }
944 
945 static struct pernet_operations ppp_net_ops = {
946 	.init = ppp_init_net,
947 	.exit = ppp_exit_net,
948 	.id   = &ppp_net_id,
949 	.size = sizeof(struct ppp_net),
950 };
951 
952 #define PPP_MAJOR	108
953 
954 /* Called at boot time if ppp is compiled into the kernel,
955    or at module load time (from init_module) if compiled as a module. */
956 static int __init ppp_init(void)
957 {
958 	int err;
959 
960 	pr_info("PPP generic driver version " PPP_VERSION "\n");
961 
962 	err = register_pernet_device(&ppp_net_ops);
963 	if (err) {
964 		pr_err("failed to register PPP pernet device (%d)\n", err);
965 		goto out;
966 	}
967 
968 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
969 	if (err) {
970 		pr_err("failed to register PPP device (%d)\n", err);
971 		goto out_net;
972 	}
973 
974 	ppp_class = class_create(THIS_MODULE, "ppp");
975 	if (IS_ERR(ppp_class)) {
976 		err = PTR_ERR(ppp_class);
977 		goto out_chrdev;
978 	}
979 
980 	/* not a big deal if we fail here :-) */
981 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
982 
983 	return 0;
984 
985 out_chrdev:
986 	unregister_chrdev(PPP_MAJOR, "ppp");
987 out_net:
988 	unregister_pernet_device(&ppp_net_ops);
989 out:
990 	return err;
991 }
992 
993 /*
994  * Network interface unit routines.
995  */
996 static netdev_tx_t
997 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
998 {
999 	struct ppp *ppp = netdev_priv(dev);
1000 	int npi, proto;
1001 	unsigned char *pp;
1002 
1003 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1004 	if (npi < 0)
1005 		goto outf;
1006 
1007 	/* Drop, accept or reject the packet */
1008 	switch (ppp->npmode[npi]) {
1009 	case NPMODE_PASS:
1010 		break;
1011 	case NPMODE_QUEUE:
1012 		/* it would be nice to have a way to tell the network
1013 		   system to queue this one up for later. */
1014 		goto outf;
1015 	case NPMODE_DROP:
1016 	case NPMODE_ERROR:
1017 		goto outf;
1018 	}
1019 
1020 	/* Put the 2-byte PPP protocol number on the front,
1021 	   making sure there is room for the address and control fields. */
1022 	if (skb_cow_head(skb, PPP_HDRLEN))
1023 		goto outf;
1024 
1025 	pp = skb_push(skb, 2);
1026 	proto = npindex_to_proto[npi];
1027 	put_unaligned_be16(proto, pp);
1028 
1029 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1030 	skb_queue_tail(&ppp->file.xq, skb);
1031 	ppp_xmit_process(ppp);
1032 	return NETDEV_TX_OK;
1033 
1034  outf:
1035 	kfree_skb(skb);
1036 	++dev->stats.tx_dropped;
1037 	return NETDEV_TX_OK;
1038 }
1039 
1040 static int
1041 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1042 {
1043 	struct ppp *ppp = netdev_priv(dev);
1044 	int err = -EFAULT;
1045 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1046 	struct ppp_stats stats;
1047 	struct ppp_comp_stats cstats;
1048 	char *vers;
1049 
1050 	switch (cmd) {
1051 	case SIOCGPPPSTATS:
1052 		ppp_get_stats(ppp, &stats);
1053 		if (copy_to_user(addr, &stats, sizeof(stats)))
1054 			break;
1055 		err = 0;
1056 		break;
1057 
1058 	case SIOCGPPPCSTATS:
1059 		memset(&cstats, 0, sizeof(cstats));
1060 		if (ppp->xc_state)
1061 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1062 		if (ppp->rc_state)
1063 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1064 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1065 			break;
1066 		err = 0;
1067 		break;
1068 
1069 	case SIOCGPPPVER:
1070 		vers = PPP_VERSION;
1071 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1072 			break;
1073 		err = 0;
1074 		break;
1075 
1076 	default:
1077 		err = -EINVAL;
1078 	}
1079 
1080 	return err;
1081 }
1082 
1083 static struct rtnl_link_stats64*
1084 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1085 {
1086 	struct ppp *ppp = netdev_priv(dev);
1087 
1088 	ppp_recv_lock(ppp);
1089 	stats64->rx_packets = ppp->stats64.rx_packets;
1090 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1091 	ppp_recv_unlock(ppp);
1092 
1093 	ppp_xmit_lock(ppp);
1094 	stats64->tx_packets = ppp->stats64.tx_packets;
1095 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1096 	ppp_xmit_unlock(ppp);
1097 
1098 	stats64->rx_errors        = dev->stats.rx_errors;
1099 	stats64->tx_errors        = dev->stats.tx_errors;
1100 	stats64->rx_dropped       = dev->stats.rx_dropped;
1101 	stats64->tx_dropped       = dev->stats.tx_dropped;
1102 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1103 
1104 	return stats64;
1105 }
1106 
1107 static struct lock_class_key ppp_tx_busylock;
1108 static int ppp_dev_init(struct net_device *dev)
1109 {
1110 	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1111 	return 0;
1112 }
1113 
1114 static void ppp_dev_uninit(struct net_device *dev)
1115 {
1116 	struct ppp *ppp = netdev_priv(dev);
1117 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1118 
1119 	ppp_lock(ppp);
1120 	ppp->closing = 1;
1121 	ppp_unlock(ppp);
1122 
1123 	mutex_lock(&pn->all_ppp_mutex);
1124 	unit_put(&pn->units_idr, ppp->file.index);
1125 	mutex_unlock(&pn->all_ppp_mutex);
1126 
1127 	ppp->owner = NULL;
1128 
1129 	ppp->file.dead = 1;
1130 	wake_up_interruptible(&ppp->file.rwait);
1131 }
1132 
1133 static const struct net_device_ops ppp_netdev_ops = {
1134 	.ndo_init	 = ppp_dev_init,
1135 	.ndo_uninit      = ppp_dev_uninit,
1136 	.ndo_start_xmit  = ppp_start_xmit,
1137 	.ndo_do_ioctl    = ppp_net_ioctl,
1138 	.ndo_get_stats64 = ppp_get_stats64,
1139 };
1140 
1141 static void ppp_setup(struct net_device *dev)
1142 {
1143 	dev->netdev_ops = &ppp_netdev_ops;
1144 	dev->hard_header_len = PPP_HDRLEN;
1145 	dev->mtu = PPP_MRU;
1146 	dev->addr_len = 0;
1147 	dev->tx_queue_len = 3;
1148 	dev->type = ARPHRD_PPP;
1149 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1150 	netif_keep_dst(dev);
1151 }
1152 
1153 /*
1154  * Transmit-side routines.
1155  */
1156 
1157 /*
1158  * Called to do any work queued up on the transmit side
1159  * that can now be done.
1160  */
1161 static void
1162 ppp_xmit_process(struct ppp *ppp)
1163 {
1164 	struct sk_buff *skb;
1165 
1166 	ppp_xmit_lock(ppp);
1167 	if (!ppp->closing) {
1168 		ppp_push(ppp);
1169 		while (!ppp->xmit_pending &&
1170 		       (skb = skb_dequeue(&ppp->file.xq)))
1171 			ppp_send_frame(ppp, skb);
1172 		/* If there's no work left to do, tell the core net
1173 		   code that we can accept some more. */
1174 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1175 			netif_wake_queue(ppp->dev);
1176 		else
1177 			netif_stop_queue(ppp->dev);
1178 	}
1179 	ppp_xmit_unlock(ppp);
1180 }
1181 
1182 static inline struct sk_buff *
1183 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1184 {
1185 	struct sk_buff *new_skb;
1186 	int len;
1187 	int new_skb_size = ppp->dev->mtu +
1188 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1189 	int compressor_skb_size = ppp->dev->mtu +
1190 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1191 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1192 	if (!new_skb) {
1193 		if (net_ratelimit())
1194 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1195 		return NULL;
1196 	}
1197 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1198 		skb_reserve(new_skb,
1199 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1200 
1201 	/* compressor still expects A/C bytes in hdr */
1202 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1203 				   new_skb->data, skb->len + 2,
1204 				   compressor_skb_size);
1205 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1206 		consume_skb(skb);
1207 		skb = new_skb;
1208 		skb_put(skb, len);
1209 		skb_pull(skb, 2);	/* pull off A/C bytes */
1210 	} else if (len == 0) {
1211 		/* didn't compress, or CCP not up yet */
1212 		consume_skb(new_skb);
1213 		new_skb = skb;
1214 	} else {
1215 		/*
1216 		 * (len < 0)
1217 		 * MPPE requires that we do not send unencrypted
1218 		 * frames.  The compressor will return -1 if we
1219 		 * should drop the frame.  We cannot simply test
1220 		 * the compress_proto because MPPE and MPPC share
1221 		 * the same number.
1222 		 */
1223 		if (net_ratelimit())
1224 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1225 		kfree_skb(skb);
1226 		consume_skb(new_skb);
1227 		new_skb = NULL;
1228 	}
1229 	return new_skb;
1230 }
1231 
1232 /*
1233  * Compress and send a frame.
1234  * The caller should have locked the xmit path,
1235  * and xmit_pending should be 0.
1236  */
1237 static void
1238 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1239 {
1240 	int proto = PPP_PROTO(skb);
1241 	struct sk_buff *new_skb;
1242 	int len;
1243 	unsigned char *cp;
1244 
1245 	if (proto < 0x8000) {
1246 #ifdef CONFIG_PPP_FILTER
1247 		/* check if we should pass this packet */
1248 		/* the filter instructions are constructed assuming
1249 		   a four-byte PPP header on each packet */
1250 		*skb_push(skb, 2) = 1;
1251 		if (ppp->pass_filter &&
1252 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1253 			if (ppp->debug & 1)
1254 				netdev_printk(KERN_DEBUG, ppp->dev,
1255 					      "PPP: outbound frame "
1256 					      "not passed\n");
1257 			kfree_skb(skb);
1258 			return;
1259 		}
1260 		/* if this packet passes the active filter, record the time */
1261 		if (!(ppp->active_filter &&
1262 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1263 			ppp->last_xmit = jiffies;
1264 		skb_pull(skb, 2);
1265 #else
1266 		/* for data packets, record the time */
1267 		ppp->last_xmit = jiffies;
1268 #endif /* CONFIG_PPP_FILTER */
1269 	}
1270 
1271 	++ppp->stats64.tx_packets;
1272 	ppp->stats64.tx_bytes += skb->len - 2;
1273 
1274 	switch (proto) {
1275 	case PPP_IP:
1276 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1277 			break;
1278 		/* try to do VJ TCP header compression */
1279 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1280 				    GFP_ATOMIC);
1281 		if (!new_skb) {
1282 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1283 			goto drop;
1284 		}
1285 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1286 		cp = skb->data + 2;
1287 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1288 				    new_skb->data + 2, &cp,
1289 				    !(ppp->flags & SC_NO_TCP_CCID));
1290 		if (cp == skb->data + 2) {
1291 			/* didn't compress */
1292 			consume_skb(new_skb);
1293 		} else {
1294 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1295 				proto = PPP_VJC_COMP;
1296 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1297 			} else {
1298 				proto = PPP_VJC_UNCOMP;
1299 				cp[0] = skb->data[2];
1300 			}
1301 			consume_skb(skb);
1302 			skb = new_skb;
1303 			cp = skb_put(skb, len + 2);
1304 			cp[0] = 0;
1305 			cp[1] = proto;
1306 		}
1307 		break;
1308 
1309 	case PPP_CCP:
1310 		/* peek at outbound CCP frames */
1311 		ppp_ccp_peek(ppp, skb, 0);
1312 		break;
1313 	}
1314 
1315 	/* try to do packet compression */
1316 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1317 	    proto != PPP_LCP && proto != PPP_CCP) {
1318 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1319 			if (net_ratelimit())
1320 				netdev_err(ppp->dev,
1321 					   "ppp: compression required but "
1322 					   "down - pkt dropped.\n");
1323 			goto drop;
1324 		}
1325 		skb = pad_compress_skb(ppp, skb);
1326 		if (!skb)
1327 			goto drop;
1328 	}
1329 
1330 	/*
1331 	 * If we are waiting for traffic (demand dialling),
1332 	 * queue it up for pppd to receive.
1333 	 */
1334 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1335 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1336 			goto drop;
1337 		skb_queue_tail(&ppp->file.rq, skb);
1338 		wake_up_interruptible(&ppp->file.rwait);
1339 		return;
1340 	}
1341 
1342 	ppp->xmit_pending = skb;
1343 	ppp_push(ppp);
1344 	return;
1345 
1346  drop:
1347 	kfree_skb(skb);
1348 	++ppp->dev->stats.tx_errors;
1349 }
1350 
1351 /*
1352  * Try to send the frame in xmit_pending.
1353  * The caller should have the xmit path locked.
1354  */
1355 static void
1356 ppp_push(struct ppp *ppp)
1357 {
1358 	struct list_head *list;
1359 	struct channel *pch;
1360 	struct sk_buff *skb = ppp->xmit_pending;
1361 
1362 	if (!skb)
1363 		return;
1364 
1365 	list = &ppp->channels;
1366 	if (list_empty(list)) {
1367 		/* nowhere to send the packet, just drop it */
1368 		ppp->xmit_pending = NULL;
1369 		kfree_skb(skb);
1370 		return;
1371 	}
1372 
1373 	if ((ppp->flags & SC_MULTILINK) == 0) {
1374 		/* not doing multilink: send it down the first channel */
1375 		list = list->next;
1376 		pch = list_entry(list, struct channel, clist);
1377 
1378 		spin_lock_bh(&pch->downl);
1379 		if (pch->chan) {
1380 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1381 				ppp->xmit_pending = NULL;
1382 		} else {
1383 			/* channel got unregistered */
1384 			kfree_skb(skb);
1385 			ppp->xmit_pending = NULL;
1386 		}
1387 		spin_unlock_bh(&pch->downl);
1388 		return;
1389 	}
1390 
1391 #ifdef CONFIG_PPP_MULTILINK
1392 	/* Multilink: fragment the packet over as many links
1393 	   as can take the packet at the moment. */
1394 	if (!ppp_mp_explode(ppp, skb))
1395 		return;
1396 #endif /* CONFIG_PPP_MULTILINK */
1397 
1398 	ppp->xmit_pending = NULL;
1399 	kfree_skb(skb);
1400 }
1401 
1402 #ifdef CONFIG_PPP_MULTILINK
1403 static bool mp_protocol_compress __read_mostly = true;
1404 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1405 MODULE_PARM_DESC(mp_protocol_compress,
1406 		 "compress protocol id in multilink fragments");
1407 
1408 /*
1409  * Divide a packet to be transmitted into fragments and
1410  * send them out the individual links.
1411  */
1412 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1413 {
1414 	int len, totlen;
1415 	int i, bits, hdrlen, mtu;
1416 	int flen;
1417 	int navail, nfree, nzero;
1418 	int nbigger;
1419 	int totspeed;
1420 	int totfree;
1421 	unsigned char *p, *q;
1422 	struct list_head *list;
1423 	struct channel *pch;
1424 	struct sk_buff *frag;
1425 	struct ppp_channel *chan;
1426 
1427 	totspeed = 0; /*total bitrate of the bundle*/
1428 	nfree = 0; /* # channels which have no packet already queued */
1429 	navail = 0; /* total # of usable channels (not deregistered) */
1430 	nzero = 0; /* number of channels with zero speed associated*/
1431 	totfree = 0; /*total # of channels available and
1432 				  *having no queued packets before
1433 				  *starting the fragmentation*/
1434 
1435 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1436 	i = 0;
1437 	list_for_each_entry(pch, &ppp->channels, clist) {
1438 		if (pch->chan) {
1439 			pch->avail = 1;
1440 			navail++;
1441 			pch->speed = pch->chan->speed;
1442 		} else {
1443 			pch->avail = 0;
1444 		}
1445 		if (pch->avail) {
1446 			if (skb_queue_empty(&pch->file.xq) ||
1447 				!pch->had_frag) {
1448 					if (pch->speed == 0)
1449 						nzero++;
1450 					else
1451 						totspeed += pch->speed;
1452 
1453 					pch->avail = 2;
1454 					++nfree;
1455 					++totfree;
1456 				}
1457 			if (!pch->had_frag && i < ppp->nxchan)
1458 				ppp->nxchan = i;
1459 		}
1460 		++i;
1461 	}
1462 	/*
1463 	 * Don't start sending this packet unless at least half of
1464 	 * the channels are free.  This gives much better TCP
1465 	 * performance if we have a lot of channels.
1466 	 */
1467 	if (nfree == 0 || nfree < navail / 2)
1468 		return 0; /* can't take now, leave it in xmit_pending */
1469 
1470 	/* Do protocol field compression */
1471 	p = skb->data;
1472 	len = skb->len;
1473 	if (*p == 0 && mp_protocol_compress) {
1474 		++p;
1475 		--len;
1476 	}
1477 
1478 	totlen = len;
1479 	nbigger = len % nfree;
1480 
1481 	/* skip to the channel after the one we last used
1482 	   and start at that one */
1483 	list = &ppp->channels;
1484 	for (i = 0; i < ppp->nxchan; ++i) {
1485 		list = list->next;
1486 		if (list == &ppp->channels) {
1487 			i = 0;
1488 			break;
1489 		}
1490 	}
1491 
1492 	/* create a fragment for each channel */
1493 	bits = B;
1494 	while (len > 0) {
1495 		list = list->next;
1496 		if (list == &ppp->channels) {
1497 			i = 0;
1498 			continue;
1499 		}
1500 		pch = list_entry(list, struct channel, clist);
1501 		++i;
1502 		if (!pch->avail)
1503 			continue;
1504 
1505 		/*
1506 		 * Skip this channel if it has a fragment pending already and
1507 		 * we haven't given a fragment to all of the free channels.
1508 		 */
1509 		if (pch->avail == 1) {
1510 			if (nfree > 0)
1511 				continue;
1512 		} else {
1513 			pch->avail = 1;
1514 		}
1515 
1516 		/* check the channel's mtu and whether it is still attached. */
1517 		spin_lock_bh(&pch->downl);
1518 		if (pch->chan == NULL) {
1519 			/* can't use this channel, it's being deregistered */
1520 			if (pch->speed == 0)
1521 				nzero--;
1522 			else
1523 				totspeed -= pch->speed;
1524 
1525 			spin_unlock_bh(&pch->downl);
1526 			pch->avail = 0;
1527 			totlen = len;
1528 			totfree--;
1529 			nfree--;
1530 			if (--navail == 0)
1531 				break;
1532 			continue;
1533 		}
1534 
1535 		/*
1536 		*if the channel speed is not set divide
1537 		*the packet evenly among the free channels;
1538 		*otherwise divide it according to the speed
1539 		*of the channel we are going to transmit on
1540 		*/
1541 		flen = len;
1542 		if (nfree > 0) {
1543 			if (pch->speed == 0) {
1544 				flen = len/nfree;
1545 				if (nbigger > 0) {
1546 					flen++;
1547 					nbigger--;
1548 				}
1549 			} else {
1550 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1551 					((totspeed*totfree)/pch->speed)) - hdrlen;
1552 				if (nbigger > 0) {
1553 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1554 					nbigger -= ((totfree - nzero)*pch->speed)/
1555 							totspeed;
1556 				}
1557 			}
1558 			nfree--;
1559 		}
1560 
1561 		/*
1562 		 *check if we are on the last channel or
1563 		 *we exceded the length of the data to
1564 		 *fragment
1565 		 */
1566 		if ((nfree <= 0) || (flen > len))
1567 			flen = len;
1568 		/*
1569 		 *it is not worth to tx on slow channels:
1570 		 *in that case from the resulting flen according to the
1571 		 *above formula will be equal or less than zero.
1572 		 *Skip the channel in this case
1573 		 */
1574 		if (flen <= 0) {
1575 			pch->avail = 2;
1576 			spin_unlock_bh(&pch->downl);
1577 			continue;
1578 		}
1579 
1580 		/*
1581 		 * hdrlen includes the 2-byte PPP protocol field, but the
1582 		 * MTU counts only the payload excluding the protocol field.
1583 		 * (RFC1661 Section 2)
1584 		 */
1585 		mtu = pch->chan->mtu - (hdrlen - 2);
1586 		if (mtu < 4)
1587 			mtu = 4;
1588 		if (flen > mtu)
1589 			flen = mtu;
1590 		if (flen == len)
1591 			bits |= E;
1592 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1593 		if (!frag)
1594 			goto noskb;
1595 		q = skb_put(frag, flen + hdrlen);
1596 
1597 		/* make the MP header */
1598 		put_unaligned_be16(PPP_MP, q);
1599 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1600 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1601 			q[3] = ppp->nxseq;
1602 		} else {
1603 			q[2] = bits;
1604 			q[3] = ppp->nxseq >> 16;
1605 			q[4] = ppp->nxseq >> 8;
1606 			q[5] = ppp->nxseq;
1607 		}
1608 
1609 		memcpy(q + hdrlen, p, flen);
1610 
1611 		/* try to send it down the channel */
1612 		chan = pch->chan;
1613 		if (!skb_queue_empty(&pch->file.xq) ||
1614 			!chan->ops->start_xmit(chan, frag))
1615 			skb_queue_tail(&pch->file.xq, frag);
1616 		pch->had_frag = 1;
1617 		p += flen;
1618 		len -= flen;
1619 		++ppp->nxseq;
1620 		bits = 0;
1621 		spin_unlock_bh(&pch->downl);
1622 	}
1623 	ppp->nxchan = i;
1624 
1625 	return 1;
1626 
1627  noskb:
1628 	spin_unlock_bh(&pch->downl);
1629 	if (ppp->debug & 1)
1630 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1631 	++ppp->dev->stats.tx_errors;
1632 	++ppp->nxseq;
1633 	return 1;	/* abandon the frame */
1634 }
1635 #endif /* CONFIG_PPP_MULTILINK */
1636 
1637 /*
1638  * Try to send data out on a channel.
1639  */
1640 static void
1641 ppp_channel_push(struct channel *pch)
1642 {
1643 	struct sk_buff *skb;
1644 	struct ppp *ppp;
1645 
1646 	spin_lock_bh(&pch->downl);
1647 	if (pch->chan) {
1648 		while (!skb_queue_empty(&pch->file.xq)) {
1649 			skb = skb_dequeue(&pch->file.xq);
1650 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1651 				/* put the packet back and try again later */
1652 				skb_queue_head(&pch->file.xq, skb);
1653 				break;
1654 			}
1655 		}
1656 	} else {
1657 		/* channel got deregistered */
1658 		skb_queue_purge(&pch->file.xq);
1659 	}
1660 	spin_unlock_bh(&pch->downl);
1661 	/* see if there is anything from the attached unit to be sent */
1662 	if (skb_queue_empty(&pch->file.xq)) {
1663 		read_lock_bh(&pch->upl);
1664 		ppp = pch->ppp;
1665 		if (ppp)
1666 			ppp_xmit_process(ppp);
1667 		read_unlock_bh(&pch->upl);
1668 	}
1669 }
1670 
1671 /*
1672  * Receive-side routines.
1673  */
1674 
1675 struct ppp_mp_skb_parm {
1676 	u32		sequence;
1677 	u8		BEbits;
1678 };
1679 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1680 
1681 static inline void
1682 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1683 {
1684 	ppp_recv_lock(ppp);
1685 	if (!ppp->closing)
1686 		ppp_receive_frame(ppp, skb, pch);
1687 	else
1688 		kfree_skb(skb);
1689 	ppp_recv_unlock(ppp);
1690 }
1691 
1692 void
1693 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1694 {
1695 	struct channel *pch = chan->ppp;
1696 	int proto;
1697 
1698 	if (!pch) {
1699 		kfree_skb(skb);
1700 		return;
1701 	}
1702 
1703 	read_lock_bh(&pch->upl);
1704 	if (!pskb_may_pull(skb, 2)) {
1705 		kfree_skb(skb);
1706 		if (pch->ppp) {
1707 			++pch->ppp->dev->stats.rx_length_errors;
1708 			ppp_receive_error(pch->ppp);
1709 		}
1710 		goto done;
1711 	}
1712 
1713 	proto = PPP_PROTO(skb);
1714 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1715 		/* put it on the channel queue */
1716 		skb_queue_tail(&pch->file.rq, skb);
1717 		/* drop old frames if queue too long */
1718 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1719 		       (skb = skb_dequeue(&pch->file.rq)))
1720 			kfree_skb(skb);
1721 		wake_up_interruptible(&pch->file.rwait);
1722 	} else {
1723 		ppp_do_recv(pch->ppp, skb, pch);
1724 	}
1725 
1726 done:
1727 	read_unlock_bh(&pch->upl);
1728 }
1729 
1730 /* Put a 0-length skb in the receive queue as an error indication */
1731 void
1732 ppp_input_error(struct ppp_channel *chan, int code)
1733 {
1734 	struct channel *pch = chan->ppp;
1735 	struct sk_buff *skb;
1736 
1737 	if (!pch)
1738 		return;
1739 
1740 	read_lock_bh(&pch->upl);
1741 	if (pch->ppp) {
1742 		skb = alloc_skb(0, GFP_ATOMIC);
1743 		if (skb) {
1744 			skb->len = 0;		/* probably unnecessary */
1745 			skb->cb[0] = code;
1746 			ppp_do_recv(pch->ppp, skb, pch);
1747 		}
1748 	}
1749 	read_unlock_bh(&pch->upl);
1750 }
1751 
1752 /*
1753  * We come in here to process a received frame.
1754  * The receive side of the ppp unit is locked.
1755  */
1756 static void
1757 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1758 {
1759 	/* note: a 0-length skb is used as an error indication */
1760 	if (skb->len > 0) {
1761 		skb_checksum_complete_unset(skb);
1762 #ifdef CONFIG_PPP_MULTILINK
1763 		/* XXX do channel-level decompression here */
1764 		if (PPP_PROTO(skb) == PPP_MP)
1765 			ppp_receive_mp_frame(ppp, skb, pch);
1766 		else
1767 #endif /* CONFIG_PPP_MULTILINK */
1768 			ppp_receive_nonmp_frame(ppp, skb);
1769 	} else {
1770 		kfree_skb(skb);
1771 		ppp_receive_error(ppp);
1772 	}
1773 }
1774 
1775 static void
1776 ppp_receive_error(struct ppp *ppp)
1777 {
1778 	++ppp->dev->stats.rx_errors;
1779 	if (ppp->vj)
1780 		slhc_toss(ppp->vj);
1781 }
1782 
1783 static void
1784 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1785 {
1786 	struct sk_buff *ns;
1787 	int proto, len, npi;
1788 
1789 	/*
1790 	 * Decompress the frame, if compressed.
1791 	 * Note that some decompressors need to see uncompressed frames
1792 	 * that come in as well as compressed frames.
1793 	 */
1794 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1795 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1796 		skb = ppp_decompress_frame(ppp, skb);
1797 
1798 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1799 		goto err;
1800 
1801 	proto = PPP_PROTO(skb);
1802 	switch (proto) {
1803 	case PPP_VJC_COMP:
1804 		/* decompress VJ compressed packets */
1805 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1806 			goto err;
1807 
1808 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1809 			/* copy to a new sk_buff with more tailroom */
1810 			ns = dev_alloc_skb(skb->len + 128);
1811 			if (!ns) {
1812 				netdev_err(ppp->dev, "PPP: no memory "
1813 					   "(VJ decomp)\n");
1814 				goto err;
1815 			}
1816 			skb_reserve(ns, 2);
1817 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1818 			consume_skb(skb);
1819 			skb = ns;
1820 		}
1821 		else
1822 			skb->ip_summed = CHECKSUM_NONE;
1823 
1824 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1825 		if (len <= 0) {
1826 			netdev_printk(KERN_DEBUG, ppp->dev,
1827 				      "PPP: VJ decompression error\n");
1828 			goto err;
1829 		}
1830 		len += 2;
1831 		if (len > skb->len)
1832 			skb_put(skb, len - skb->len);
1833 		else if (len < skb->len)
1834 			skb_trim(skb, len);
1835 		proto = PPP_IP;
1836 		break;
1837 
1838 	case PPP_VJC_UNCOMP:
1839 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1840 			goto err;
1841 
1842 		/* Until we fix the decompressor need to make sure
1843 		 * data portion is linear.
1844 		 */
1845 		if (!pskb_may_pull(skb, skb->len))
1846 			goto err;
1847 
1848 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1849 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1850 			goto err;
1851 		}
1852 		proto = PPP_IP;
1853 		break;
1854 
1855 	case PPP_CCP:
1856 		ppp_ccp_peek(ppp, skb, 1);
1857 		break;
1858 	}
1859 
1860 	++ppp->stats64.rx_packets;
1861 	ppp->stats64.rx_bytes += skb->len - 2;
1862 
1863 	npi = proto_to_npindex(proto);
1864 	if (npi < 0) {
1865 		/* control or unknown frame - pass it to pppd */
1866 		skb_queue_tail(&ppp->file.rq, skb);
1867 		/* limit queue length by dropping old frames */
1868 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1869 		       (skb = skb_dequeue(&ppp->file.rq)))
1870 			kfree_skb(skb);
1871 		/* wake up any process polling or blocking on read */
1872 		wake_up_interruptible(&ppp->file.rwait);
1873 
1874 	} else {
1875 		/* network protocol frame - give it to the kernel */
1876 
1877 #ifdef CONFIG_PPP_FILTER
1878 		/* check if the packet passes the pass and active filters */
1879 		/* the filter instructions are constructed assuming
1880 		   a four-byte PPP header on each packet */
1881 		if (ppp->pass_filter || ppp->active_filter) {
1882 			if (skb_unclone(skb, GFP_ATOMIC))
1883 				goto err;
1884 
1885 			*skb_push(skb, 2) = 0;
1886 			if (ppp->pass_filter &&
1887 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1888 				if (ppp->debug & 1)
1889 					netdev_printk(KERN_DEBUG, ppp->dev,
1890 						      "PPP: inbound frame "
1891 						      "not passed\n");
1892 				kfree_skb(skb);
1893 				return;
1894 			}
1895 			if (!(ppp->active_filter &&
1896 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1897 				ppp->last_recv = jiffies;
1898 			__skb_pull(skb, 2);
1899 		} else
1900 #endif /* CONFIG_PPP_FILTER */
1901 			ppp->last_recv = jiffies;
1902 
1903 		if ((ppp->dev->flags & IFF_UP) == 0 ||
1904 		    ppp->npmode[npi] != NPMODE_PASS) {
1905 			kfree_skb(skb);
1906 		} else {
1907 			/* chop off protocol */
1908 			skb_pull_rcsum(skb, 2);
1909 			skb->dev = ppp->dev;
1910 			skb->protocol = htons(npindex_to_ethertype[npi]);
1911 			skb_reset_mac_header(skb);
1912 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
1913 						      dev_net(ppp->dev)));
1914 			netif_rx(skb);
1915 		}
1916 	}
1917 	return;
1918 
1919  err:
1920 	kfree_skb(skb);
1921 	ppp_receive_error(ppp);
1922 }
1923 
1924 static struct sk_buff *
1925 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1926 {
1927 	int proto = PPP_PROTO(skb);
1928 	struct sk_buff *ns;
1929 	int len;
1930 
1931 	/* Until we fix all the decompressor's need to make sure
1932 	 * data portion is linear.
1933 	 */
1934 	if (!pskb_may_pull(skb, skb->len))
1935 		goto err;
1936 
1937 	if (proto == PPP_COMP) {
1938 		int obuff_size;
1939 
1940 		switch(ppp->rcomp->compress_proto) {
1941 		case CI_MPPE:
1942 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1943 			break;
1944 		default:
1945 			obuff_size = ppp->mru + PPP_HDRLEN;
1946 			break;
1947 		}
1948 
1949 		ns = dev_alloc_skb(obuff_size);
1950 		if (!ns) {
1951 			netdev_err(ppp->dev, "ppp_decompress_frame: "
1952 				   "no memory\n");
1953 			goto err;
1954 		}
1955 		/* the decompressor still expects the A/C bytes in the hdr */
1956 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1957 				skb->len + 2, ns->data, obuff_size);
1958 		if (len < 0) {
1959 			/* Pass the compressed frame to pppd as an
1960 			   error indication. */
1961 			if (len == DECOMP_FATALERROR)
1962 				ppp->rstate |= SC_DC_FERROR;
1963 			kfree_skb(ns);
1964 			goto err;
1965 		}
1966 
1967 		consume_skb(skb);
1968 		skb = ns;
1969 		skb_put(skb, len);
1970 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1971 
1972 	} else {
1973 		/* Uncompressed frame - pass to decompressor so it
1974 		   can update its dictionary if necessary. */
1975 		if (ppp->rcomp->incomp)
1976 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1977 					   skb->len + 2);
1978 	}
1979 
1980 	return skb;
1981 
1982  err:
1983 	ppp->rstate |= SC_DC_ERROR;
1984 	ppp_receive_error(ppp);
1985 	return skb;
1986 }
1987 
1988 #ifdef CONFIG_PPP_MULTILINK
1989 /*
1990  * Receive a multilink frame.
1991  * We put it on the reconstruction queue and then pull off
1992  * as many completed frames as we can.
1993  */
1994 static void
1995 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1996 {
1997 	u32 mask, seq;
1998 	struct channel *ch;
1999 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2000 
2001 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2002 		goto err;		/* no good, throw it away */
2003 
2004 	/* Decode sequence number and begin/end bits */
2005 	if (ppp->flags & SC_MP_SHORTSEQ) {
2006 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2007 		mask = 0xfff;
2008 	} else {
2009 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2010 		mask = 0xffffff;
2011 	}
2012 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2013 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2014 
2015 	/*
2016 	 * Do protocol ID decompression on the first fragment of each packet.
2017 	 */
2018 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2019 		*skb_push(skb, 1) = 0;
2020 
2021 	/*
2022 	 * Expand sequence number to 32 bits, making it as close
2023 	 * as possible to ppp->minseq.
2024 	 */
2025 	seq |= ppp->minseq & ~mask;
2026 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2027 		seq += mask + 1;
2028 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2029 		seq -= mask + 1;	/* should never happen */
2030 	PPP_MP_CB(skb)->sequence = seq;
2031 	pch->lastseq = seq;
2032 
2033 	/*
2034 	 * If this packet comes before the next one we were expecting,
2035 	 * drop it.
2036 	 */
2037 	if (seq_before(seq, ppp->nextseq)) {
2038 		kfree_skb(skb);
2039 		++ppp->dev->stats.rx_dropped;
2040 		ppp_receive_error(ppp);
2041 		return;
2042 	}
2043 
2044 	/*
2045 	 * Reevaluate minseq, the minimum over all channels of the
2046 	 * last sequence number received on each channel.  Because of
2047 	 * the increasing sequence number rule, we know that any fragment
2048 	 * before `minseq' which hasn't arrived is never going to arrive.
2049 	 * The list of channels can't change because we have the receive
2050 	 * side of the ppp unit locked.
2051 	 */
2052 	list_for_each_entry(ch, &ppp->channels, clist) {
2053 		if (seq_before(ch->lastseq, seq))
2054 			seq = ch->lastseq;
2055 	}
2056 	if (seq_before(ppp->minseq, seq))
2057 		ppp->minseq = seq;
2058 
2059 	/* Put the fragment on the reconstruction queue */
2060 	ppp_mp_insert(ppp, skb);
2061 
2062 	/* If the queue is getting long, don't wait any longer for packets
2063 	   before the start of the queue. */
2064 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2065 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2066 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2067 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2068 	}
2069 
2070 	/* Pull completed packets off the queue and receive them. */
2071 	while ((skb = ppp_mp_reconstruct(ppp))) {
2072 		if (pskb_may_pull(skb, 2))
2073 			ppp_receive_nonmp_frame(ppp, skb);
2074 		else {
2075 			++ppp->dev->stats.rx_length_errors;
2076 			kfree_skb(skb);
2077 			ppp_receive_error(ppp);
2078 		}
2079 	}
2080 
2081 	return;
2082 
2083  err:
2084 	kfree_skb(skb);
2085 	ppp_receive_error(ppp);
2086 }
2087 
2088 /*
2089  * Insert a fragment on the MP reconstruction queue.
2090  * The queue is ordered by increasing sequence number.
2091  */
2092 static void
2093 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2094 {
2095 	struct sk_buff *p;
2096 	struct sk_buff_head *list = &ppp->mrq;
2097 	u32 seq = PPP_MP_CB(skb)->sequence;
2098 
2099 	/* N.B. we don't need to lock the list lock because we have the
2100 	   ppp unit receive-side lock. */
2101 	skb_queue_walk(list, p) {
2102 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2103 			break;
2104 	}
2105 	__skb_queue_before(list, p, skb);
2106 }
2107 
2108 /*
2109  * Reconstruct a packet from the MP fragment queue.
2110  * We go through increasing sequence numbers until we find a
2111  * complete packet, or we get to the sequence number for a fragment
2112  * which hasn't arrived but might still do so.
2113  */
2114 static struct sk_buff *
2115 ppp_mp_reconstruct(struct ppp *ppp)
2116 {
2117 	u32 seq = ppp->nextseq;
2118 	u32 minseq = ppp->minseq;
2119 	struct sk_buff_head *list = &ppp->mrq;
2120 	struct sk_buff *p, *tmp;
2121 	struct sk_buff *head, *tail;
2122 	struct sk_buff *skb = NULL;
2123 	int lost = 0, len = 0;
2124 
2125 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2126 		return NULL;
2127 	head = list->next;
2128 	tail = NULL;
2129 	skb_queue_walk_safe(list, p, tmp) {
2130 	again:
2131 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2132 			/* this can't happen, anyway ignore the skb */
2133 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2134 				   "seq %u < %u\n",
2135 				   PPP_MP_CB(p)->sequence, seq);
2136 			__skb_unlink(p, list);
2137 			kfree_skb(p);
2138 			continue;
2139 		}
2140 		if (PPP_MP_CB(p)->sequence != seq) {
2141 			u32 oldseq;
2142 			/* Fragment `seq' is missing.  If it is after
2143 			   minseq, it might arrive later, so stop here. */
2144 			if (seq_after(seq, minseq))
2145 				break;
2146 			/* Fragment `seq' is lost, keep going. */
2147 			lost = 1;
2148 			oldseq = seq;
2149 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2150 				minseq + 1: PPP_MP_CB(p)->sequence;
2151 
2152 			if (ppp->debug & 1)
2153 				netdev_printk(KERN_DEBUG, ppp->dev,
2154 					      "lost frag %u..%u\n",
2155 					      oldseq, seq-1);
2156 
2157 			goto again;
2158 		}
2159 
2160 		/*
2161 		 * At this point we know that all the fragments from
2162 		 * ppp->nextseq to seq are either present or lost.
2163 		 * Also, there are no complete packets in the queue
2164 		 * that have no missing fragments and end before this
2165 		 * fragment.
2166 		 */
2167 
2168 		/* B bit set indicates this fragment starts a packet */
2169 		if (PPP_MP_CB(p)->BEbits & B) {
2170 			head = p;
2171 			lost = 0;
2172 			len = 0;
2173 		}
2174 
2175 		len += p->len;
2176 
2177 		/* Got a complete packet yet? */
2178 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2179 		    (PPP_MP_CB(head)->BEbits & B)) {
2180 			if (len > ppp->mrru + 2) {
2181 				++ppp->dev->stats.rx_length_errors;
2182 				netdev_printk(KERN_DEBUG, ppp->dev,
2183 					      "PPP: reconstructed packet"
2184 					      " is too long (%d)\n", len);
2185 			} else {
2186 				tail = p;
2187 				break;
2188 			}
2189 			ppp->nextseq = seq + 1;
2190 		}
2191 
2192 		/*
2193 		 * If this is the ending fragment of a packet,
2194 		 * and we haven't found a complete valid packet yet,
2195 		 * we can discard up to and including this fragment.
2196 		 */
2197 		if (PPP_MP_CB(p)->BEbits & E) {
2198 			struct sk_buff *tmp2;
2199 
2200 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2201 				if (ppp->debug & 1)
2202 					netdev_printk(KERN_DEBUG, ppp->dev,
2203 						      "discarding frag %u\n",
2204 						      PPP_MP_CB(p)->sequence);
2205 				__skb_unlink(p, list);
2206 				kfree_skb(p);
2207 			}
2208 			head = skb_peek(list);
2209 			if (!head)
2210 				break;
2211 		}
2212 		++seq;
2213 	}
2214 
2215 	/* If we have a complete packet, copy it all into one skb. */
2216 	if (tail != NULL) {
2217 		/* If we have discarded any fragments,
2218 		   signal a receive error. */
2219 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2220 			skb_queue_walk_safe(list, p, tmp) {
2221 				if (p == head)
2222 					break;
2223 				if (ppp->debug & 1)
2224 					netdev_printk(KERN_DEBUG, ppp->dev,
2225 						      "discarding frag %u\n",
2226 						      PPP_MP_CB(p)->sequence);
2227 				__skb_unlink(p, list);
2228 				kfree_skb(p);
2229 			}
2230 
2231 			if (ppp->debug & 1)
2232 				netdev_printk(KERN_DEBUG, ppp->dev,
2233 					      "  missed pkts %u..%u\n",
2234 					      ppp->nextseq,
2235 					      PPP_MP_CB(head)->sequence-1);
2236 			++ppp->dev->stats.rx_dropped;
2237 			ppp_receive_error(ppp);
2238 		}
2239 
2240 		skb = head;
2241 		if (head != tail) {
2242 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2243 			p = skb_queue_next(list, head);
2244 			__skb_unlink(skb, list);
2245 			skb_queue_walk_from_safe(list, p, tmp) {
2246 				__skb_unlink(p, list);
2247 				*fragpp = p;
2248 				p->next = NULL;
2249 				fragpp = &p->next;
2250 
2251 				skb->len += p->len;
2252 				skb->data_len += p->len;
2253 				skb->truesize += p->truesize;
2254 
2255 				if (p == tail)
2256 					break;
2257 			}
2258 		} else {
2259 			__skb_unlink(skb, list);
2260 		}
2261 
2262 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2263 	}
2264 
2265 	return skb;
2266 }
2267 #endif /* CONFIG_PPP_MULTILINK */
2268 
2269 /*
2270  * Channel interface.
2271  */
2272 
2273 /* Create a new, unattached ppp channel. */
2274 int ppp_register_channel(struct ppp_channel *chan)
2275 {
2276 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2277 }
2278 
2279 /* Create a new, unattached ppp channel for specified net. */
2280 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2281 {
2282 	struct channel *pch;
2283 	struct ppp_net *pn;
2284 
2285 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2286 	if (!pch)
2287 		return -ENOMEM;
2288 
2289 	pn = ppp_pernet(net);
2290 
2291 	pch->ppp = NULL;
2292 	pch->chan = chan;
2293 	pch->chan_net = net;
2294 	chan->ppp = pch;
2295 	init_ppp_file(&pch->file, CHANNEL);
2296 	pch->file.hdrlen = chan->hdrlen;
2297 #ifdef CONFIG_PPP_MULTILINK
2298 	pch->lastseq = -1;
2299 #endif /* CONFIG_PPP_MULTILINK */
2300 	init_rwsem(&pch->chan_sem);
2301 	spin_lock_init(&pch->downl);
2302 	rwlock_init(&pch->upl);
2303 
2304 	spin_lock_bh(&pn->all_channels_lock);
2305 	pch->file.index = ++pn->last_channel_index;
2306 	list_add(&pch->list, &pn->new_channels);
2307 	atomic_inc(&channel_count);
2308 	spin_unlock_bh(&pn->all_channels_lock);
2309 
2310 	return 0;
2311 }
2312 
2313 /*
2314  * Return the index of a channel.
2315  */
2316 int ppp_channel_index(struct ppp_channel *chan)
2317 {
2318 	struct channel *pch = chan->ppp;
2319 
2320 	if (pch)
2321 		return pch->file.index;
2322 	return -1;
2323 }
2324 
2325 /*
2326  * Return the PPP unit number to which a channel is connected.
2327  */
2328 int ppp_unit_number(struct ppp_channel *chan)
2329 {
2330 	struct channel *pch = chan->ppp;
2331 	int unit = -1;
2332 
2333 	if (pch) {
2334 		read_lock_bh(&pch->upl);
2335 		if (pch->ppp)
2336 			unit = pch->ppp->file.index;
2337 		read_unlock_bh(&pch->upl);
2338 	}
2339 	return unit;
2340 }
2341 
2342 /*
2343  * Return the PPP device interface name of a channel.
2344  */
2345 char *ppp_dev_name(struct ppp_channel *chan)
2346 {
2347 	struct channel *pch = chan->ppp;
2348 	char *name = NULL;
2349 
2350 	if (pch) {
2351 		read_lock_bh(&pch->upl);
2352 		if (pch->ppp && pch->ppp->dev)
2353 			name = pch->ppp->dev->name;
2354 		read_unlock_bh(&pch->upl);
2355 	}
2356 	return name;
2357 }
2358 
2359 
2360 /*
2361  * Disconnect a channel from the generic layer.
2362  * This must be called in process context.
2363  */
2364 void
2365 ppp_unregister_channel(struct ppp_channel *chan)
2366 {
2367 	struct channel *pch = chan->ppp;
2368 	struct ppp_net *pn;
2369 
2370 	if (!pch)
2371 		return;		/* should never happen */
2372 
2373 	chan->ppp = NULL;
2374 
2375 	/*
2376 	 * This ensures that we have returned from any calls into the
2377 	 * the channel's start_xmit or ioctl routine before we proceed.
2378 	 */
2379 	down_write(&pch->chan_sem);
2380 	spin_lock_bh(&pch->downl);
2381 	pch->chan = NULL;
2382 	spin_unlock_bh(&pch->downl);
2383 	up_write(&pch->chan_sem);
2384 	ppp_disconnect_channel(pch);
2385 
2386 	pn = ppp_pernet(pch->chan_net);
2387 	spin_lock_bh(&pn->all_channels_lock);
2388 	list_del(&pch->list);
2389 	spin_unlock_bh(&pn->all_channels_lock);
2390 
2391 	pch->file.dead = 1;
2392 	wake_up_interruptible(&pch->file.rwait);
2393 	if (atomic_dec_and_test(&pch->file.refcnt))
2394 		ppp_destroy_channel(pch);
2395 }
2396 
2397 /*
2398  * Callback from a channel when it can accept more to transmit.
2399  * This should be called at BH/softirq level, not interrupt level.
2400  */
2401 void
2402 ppp_output_wakeup(struct ppp_channel *chan)
2403 {
2404 	struct channel *pch = chan->ppp;
2405 
2406 	if (!pch)
2407 		return;
2408 	ppp_channel_push(pch);
2409 }
2410 
2411 /*
2412  * Compression control.
2413  */
2414 
2415 /* Process the PPPIOCSCOMPRESS ioctl. */
2416 static int
2417 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2418 {
2419 	int err;
2420 	struct compressor *cp, *ocomp;
2421 	struct ppp_option_data data;
2422 	void *state, *ostate;
2423 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2424 
2425 	err = -EFAULT;
2426 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2427 	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2428 	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2429 		goto out;
2430 	err = -EINVAL;
2431 	if (data.length > CCP_MAX_OPTION_LENGTH ||
2432 	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2433 		goto out;
2434 
2435 	cp = try_then_request_module(
2436 		find_compressor(ccp_option[0]),
2437 		"ppp-compress-%d", ccp_option[0]);
2438 	if (!cp)
2439 		goto out;
2440 
2441 	err = -ENOBUFS;
2442 	if (data.transmit) {
2443 		state = cp->comp_alloc(ccp_option, data.length);
2444 		if (state) {
2445 			ppp_xmit_lock(ppp);
2446 			ppp->xstate &= ~SC_COMP_RUN;
2447 			ocomp = ppp->xcomp;
2448 			ostate = ppp->xc_state;
2449 			ppp->xcomp = cp;
2450 			ppp->xc_state = state;
2451 			ppp_xmit_unlock(ppp);
2452 			if (ostate) {
2453 				ocomp->comp_free(ostate);
2454 				module_put(ocomp->owner);
2455 			}
2456 			err = 0;
2457 		} else
2458 			module_put(cp->owner);
2459 
2460 	} else {
2461 		state = cp->decomp_alloc(ccp_option, data.length);
2462 		if (state) {
2463 			ppp_recv_lock(ppp);
2464 			ppp->rstate &= ~SC_DECOMP_RUN;
2465 			ocomp = ppp->rcomp;
2466 			ostate = ppp->rc_state;
2467 			ppp->rcomp = cp;
2468 			ppp->rc_state = state;
2469 			ppp_recv_unlock(ppp);
2470 			if (ostate) {
2471 				ocomp->decomp_free(ostate);
2472 				module_put(ocomp->owner);
2473 			}
2474 			err = 0;
2475 		} else
2476 			module_put(cp->owner);
2477 	}
2478 
2479  out:
2480 	return err;
2481 }
2482 
2483 /*
2484  * Look at a CCP packet and update our state accordingly.
2485  * We assume the caller has the xmit or recv path locked.
2486  */
2487 static void
2488 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2489 {
2490 	unsigned char *dp;
2491 	int len;
2492 
2493 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2494 		return;	/* no header */
2495 	dp = skb->data + 2;
2496 
2497 	switch (CCP_CODE(dp)) {
2498 	case CCP_CONFREQ:
2499 
2500 		/* A ConfReq starts negotiation of compression
2501 		 * in one direction of transmission,
2502 		 * and hence brings it down...but which way?
2503 		 *
2504 		 * Remember:
2505 		 * A ConfReq indicates what the sender would like to receive
2506 		 */
2507 		if(inbound)
2508 			/* He is proposing what I should send */
2509 			ppp->xstate &= ~SC_COMP_RUN;
2510 		else
2511 			/* I am proposing to what he should send */
2512 			ppp->rstate &= ~SC_DECOMP_RUN;
2513 
2514 		break;
2515 
2516 	case CCP_TERMREQ:
2517 	case CCP_TERMACK:
2518 		/*
2519 		 * CCP is going down, both directions of transmission
2520 		 */
2521 		ppp->rstate &= ~SC_DECOMP_RUN;
2522 		ppp->xstate &= ~SC_COMP_RUN;
2523 		break;
2524 
2525 	case CCP_CONFACK:
2526 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2527 			break;
2528 		len = CCP_LENGTH(dp);
2529 		if (!pskb_may_pull(skb, len + 2))
2530 			return;		/* too short */
2531 		dp += CCP_HDRLEN;
2532 		len -= CCP_HDRLEN;
2533 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2534 			break;
2535 		if (inbound) {
2536 			/* we will start receiving compressed packets */
2537 			if (!ppp->rc_state)
2538 				break;
2539 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2540 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2541 				ppp->rstate |= SC_DECOMP_RUN;
2542 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2543 			}
2544 		} else {
2545 			/* we will soon start sending compressed packets */
2546 			if (!ppp->xc_state)
2547 				break;
2548 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2549 					ppp->file.index, 0, ppp->debug))
2550 				ppp->xstate |= SC_COMP_RUN;
2551 		}
2552 		break;
2553 
2554 	case CCP_RESETACK:
2555 		/* reset the [de]compressor */
2556 		if ((ppp->flags & SC_CCP_UP) == 0)
2557 			break;
2558 		if (inbound) {
2559 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2560 				ppp->rcomp->decomp_reset(ppp->rc_state);
2561 				ppp->rstate &= ~SC_DC_ERROR;
2562 			}
2563 		} else {
2564 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2565 				ppp->xcomp->comp_reset(ppp->xc_state);
2566 		}
2567 		break;
2568 	}
2569 }
2570 
2571 /* Free up compression resources. */
2572 static void
2573 ppp_ccp_closed(struct ppp *ppp)
2574 {
2575 	void *xstate, *rstate;
2576 	struct compressor *xcomp, *rcomp;
2577 
2578 	ppp_lock(ppp);
2579 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2580 	ppp->xstate = 0;
2581 	xcomp = ppp->xcomp;
2582 	xstate = ppp->xc_state;
2583 	ppp->xc_state = NULL;
2584 	ppp->rstate = 0;
2585 	rcomp = ppp->rcomp;
2586 	rstate = ppp->rc_state;
2587 	ppp->rc_state = NULL;
2588 	ppp_unlock(ppp);
2589 
2590 	if (xstate) {
2591 		xcomp->comp_free(xstate);
2592 		module_put(xcomp->owner);
2593 	}
2594 	if (rstate) {
2595 		rcomp->decomp_free(rstate);
2596 		module_put(rcomp->owner);
2597 	}
2598 }
2599 
2600 /* List of compressors. */
2601 static LIST_HEAD(compressor_list);
2602 static DEFINE_SPINLOCK(compressor_list_lock);
2603 
2604 struct compressor_entry {
2605 	struct list_head list;
2606 	struct compressor *comp;
2607 };
2608 
2609 static struct compressor_entry *
2610 find_comp_entry(int proto)
2611 {
2612 	struct compressor_entry *ce;
2613 
2614 	list_for_each_entry(ce, &compressor_list, list) {
2615 		if (ce->comp->compress_proto == proto)
2616 			return ce;
2617 	}
2618 	return NULL;
2619 }
2620 
2621 /* Register a compressor */
2622 int
2623 ppp_register_compressor(struct compressor *cp)
2624 {
2625 	struct compressor_entry *ce;
2626 	int ret;
2627 	spin_lock(&compressor_list_lock);
2628 	ret = -EEXIST;
2629 	if (find_comp_entry(cp->compress_proto))
2630 		goto out;
2631 	ret = -ENOMEM;
2632 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2633 	if (!ce)
2634 		goto out;
2635 	ret = 0;
2636 	ce->comp = cp;
2637 	list_add(&ce->list, &compressor_list);
2638  out:
2639 	spin_unlock(&compressor_list_lock);
2640 	return ret;
2641 }
2642 
2643 /* Unregister a compressor */
2644 void
2645 ppp_unregister_compressor(struct compressor *cp)
2646 {
2647 	struct compressor_entry *ce;
2648 
2649 	spin_lock(&compressor_list_lock);
2650 	ce = find_comp_entry(cp->compress_proto);
2651 	if (ce && ce->comp == cp) {
2652 		list_del(&ce->list);
2653 		kfree(ce);
2654 	}
2655 	spin_unlock(&compressor_list_lock);
2656 }
2657 
2658 /* Find a compressor. */
2659 static struct compressor *
2660 find_compressor(int type)
2661 {
2662 	struct compressor_entry *ce;
2663 	struct compressor *cp = NULL;
2664 
2665 	spin_lock(&compressor_list_lock);
2666 	ce = find_comp_entry(type);
2667 	if (ce) {
2668 		cp = ce->comp;
2669 		if (!try_module_get(cp->owner))
2670 			cp = NULL;
2671 	}
2672 	spin_unlock(&compressor_list_lock);
2673 	return cp;
2674 }
2675 
2676 /*
2677  * Miscelleneous stuff.
2678  */
2679 
2680 static void
2681 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2682 {
2683 	struct slcompress *vj = ppp->vj;
2684 
2685 	memset(st, 0, sizeof(*st));
2686 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2687 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2688 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2689 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2690 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2691 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2692 	if (!vj)
2693 		return;
2694 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2695 	st->vj.vjs_compressed = vj->sls_o_compressed;
2696 	st->vj.vjs_searches = vj->sls_o_searches;
2697 	st->vj.vjs_misses = vj->sls_o_misses;
2698 	st->vj.vjs_errorin = vj->sls_i_error;
2699 	st->vj.vjs_tossed = vj->sls_i_tossed;
2700 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2701 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2702 }
2703 
2704 /*
2705  * Stuff for handling the lists of ppp units and channels
2706  * and for initialization.
2707  */
2708 
2709 /*
2710  * Create a new ppp interface unit.  Fails if it can't allocate memory
2711  * or if there is already a unit with the requested number.
2712  * unit == -1 means allocate a new number.
2713  */
2714 static struct ppp *ppp_create_interface(struct net *net, int unit,
2715 					struct file *file, int *retp)
2716 {
2717 	struct ppp *ppp;
2718 	struct ppp_net *pn;
2719 	struct net_device *dev = NULL;
2720 	int ret = -ENOMEM;
2721 	int i;
2722 
2723 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_UNKNOWN,
2724 			   ppp_setup);
2725 	if (!dev)
2726 		goto out1;
2727 
2728 	pn = ppp_pernet(net);
2729 
2730 	ppp = netdev_priv(dev);
2731 	ppp->dev = dev;
2732 	ppp->mru = PPP_MRU;
2733 	init_ppp_file(&ppp->file, INTERFACE);
2734 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2735 	ppp->owner = file;
2736 	for (i = 0; i < NUM_NP; ++i)
2737 		ppp->npmode[i] = NPMODE_PASS;
2738 	INIT_LIST_HEAD(&ppp->channels);
2739 	spin_lock_init(&ppp->rlock);
2740 	spin_lock_init(&ppp->wlock);
2741 #ifdef CONFIG_PPP_MULTILINK
2742 	ppp->minseq = -1;
2743 	skb_queue_head_init(&ppp->mrq);
2744 #endif /* CONFIG_PPP_MULTILINK */
2745 #ifdef CONFIG_PPP_FILTER
2746 	ppp->pass_filter = NULL;
2747 	ppp->active_filter = NULL;
2748 #endif /* CONFIG_PPP_FILTER */
2749 
2750 	/*
2751 	 * drum roll: don't forget to set
2752 	 * the net device is belong to
2753 	 */
2754 	dev_net_set(dev, net);
2755 
2756 	rtnl_lock();
2757 	mutex_lock(&pn->all_ppp_mutex);
2758 
2759 	if (unit < 0) {
2760 		unit = unit_get(&pn->units_idr, ppp);
2761 		if (unit < 0) {
2762 			ret = unit;
2763 			goto out2;
2764 		}
2765 	} else {
2766 		ret = -EEXIST;
2767 		if (unit_find(&pn->units_idr, unit))
2768 			goto out2; /* unit already exists */
2769 		/*
2770 		 * if caller need a specified unit number
2771 		 * lets try to satisfy him, otherwise --
2772 		 * he should better ask us for new unit number
2773 		 *
2774 		 * NOTE: yes I know that returning EEXIST it's not
2775 		 * fair but at least pppd will ask us to allocate
2776 		 * new unit in this case so user is happy :)
2777 		 */
2778 		unit = unit_set(&pn->units_idr, ppp, unit);
2779 		if (unit < 0)
2780 			goto out2;
2781 	}
2782 
2783 	/* Initialize the new ppp unit */
2784 	ppp->file.index = unit;
2785 	sprintf(dev->name, "ppp%d", unit);
2786 
2787 	ret = register_netdevice(dev);
2788 	if (ret != 0) {
2789 		unit_put(&pn->units_idr, unit);
2790 		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2791 			   dev->name, ret);
2792 		goto out2;
2793 	}
2794 
2795 	ppp->ppp_net = net;
2796 
2797 	atomic_inc(&ppp_unit_count);
2798 	mutex_unlock(&pn->all_ppp_mutex);
2799 	rtnl_unlock();
2800 
2801 	*retp = 0;
2802 	return ppp;
2803 
2804 out2:
2805 	mutex_unlock(&pn->all_ppp_mutex);
2806 	free_netdev(dev);
2807 out1:
2808 	*retp = ret;
2809 	return NULL;
2810 }
2811 
2812 /*
2813  * Initialize a ppp_file structure.
2814  */
2815 static void
2816 init_ppp_file(struct ppp_file *pf, int kind)
2817 {
2818 	pf->kind = kind;
2819 	skb_queue_head_init(&pf->xq);
2820 	skb_queue_head_init(&pf->rq);
2821 	atomic_set(&pf->refcnt, 1);
2822 	init_waitqueue_head(&pf->rwait);
2823 }
2824 
2825 /*
2826  * Free the memory used by a ppp unit.  This is only called once
2827  * there are no channels connected to the unit and no file structs
2828  * that reference the unit.
2829  */
2830 static void ppp_destroy_interface(struct ppp *ppp)
2831 {
2832 	atomic_dec(&ppp_unit_count);
2833 
2834 	if (!ppp->file.dead || ppp->n_channels) {
2835 		/* "can't happen" */
2836 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2837 			   "but dead=%d n_channels=%d !\n",
2838 			   ppp, ppp->file.dead, ppp->n_channels);
2839 		return;
2840 	}
2841 
2842 	ppp_ccp_closed(ppp);
2843 	if (ppp->vj) {
2844 		slhc_free(ppp->vj);
2845 		ppp->vj = NULL;
2846 	}
2847 	skb_queue_purge(&ppp->file.xq);
2848 	skb_queue_purge(&ppp->file.rq);
2849 #ifdef CONFIG_PPP_MULTILINK
2850 	skb_queue_purge(&ppp->mrq);
2851 #endif /* CONFIG_PPP_MULTILINK */
2852 #ifdef CONFIG_PPP_FILTER
2853 	if (ppp->pass_filter) {
2854 		bpf_prog_destroy(ppp->pass_filter);
2855 		ppp->pass_filter = NULL;
2856 	}
2857 
2858 	if (ppp->active_filter) {
2859 		bpf_prog_destroy(ppp->active_filter);
2860 		ppp->active_filter = NULL;
2861 	}
2862 #endif /* CONFIG_PPP_FILTER */
2863 
2864 	kfree_skb(ppp->xmit_pending);
2865 
2866 	free_netdev(ppp->dev);
2867 }
2868 
2869 /*
2870  * Locate an existing ppp unit.
2871  * The caller should have locked the all_ppp_mutex.
2872  */
2873 static struct ppp *
2874 ppp_find_unit(struct ppp_net *pn, int unit)
2875 {
2876 	return unit_find(&pn->units_idr, unit);
2877 }
2878 
2879 /*
2880  * Locate an existing ppp channel.
2881  * The caller should have locked the all_channels_lock.
2882  * First we look in the new_channels list, then in the
2883  * all_channels list.  If found in the new_channels list,
2884  * we move it to the all_channels list.  This is for speed
2885  * when we have a lot of channels in use.
2886  */
2887 static struct channel *
2888 ppp_find_channel(struct ppp_net *pn, int unit)
2889 {
2890 	struct channel *pch;
2891 
2892 	list_for_each_entry(pch, &pn->new_channels, list) {
2893 		if (pch->file.index == unit) {
2894 			list_move(&pch->list, &pn->all_channels);
2895 			return pch;
2896 		}
2897 	}
2898 
2899 	list_for_each_entry(pch, &pn->all_channels, list) {
2900 		if (pch->file.index == unit)
2901 			return pch;
2902 	}
2903 
2904 	return NULL;
2905 }
2906 
2907 /*
2908  * Connect a PPP channel to a PPP interface unit.
2909  */
2910 static int
2911 ppp_connect_channel(struct channel *pch, int unit)
2912 {
2913 	struct ppp *ppp;
2914 	struct ppp_net *pn;
2915 	int ret = -ENXIO;
2916 	int hdrlen;
2917 
2918 	pn = ppp_pernet(pch->chan_net);
2919 
2920 	mutex_lock(&pn->all_ppp_mutex);
2921 	ppp = ppp_find_unit(pn, unit);
2922 	if (!ppp)
2923 		goto out;
2924 	write_lock_bh(&pch->upl);
2925 	ret = -EINVAL;
2926 	if (pch->ppp)
2927 		goto outl;
2928 
2929 	ppp_lock(ppp);
2930 	if (pch->file.hdrlen > ppp->file.hdrlen)
2931 		ppp->file.hdrlen = pch->file.hdrlen;
2932 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2933 	if (hdrlen > ppp->dev->hard_header_len)
2934 		ppp->dev->hard_header_len = hdrlen;
2935 	list_add_tail(&pch->clist, &ppp->channels);
2936 	++ppp->n_channels;
2937 	pch->ppp = ppp;
2938 	atomic_inc(&ppp->file.refcnt);
2939 	ppp_unlock(ppp);
2940 	ret = 0;
2941 
2942  outl:
2943 	write_unlock_bh(&pch->upl);
2944  out:
2945 	mutex_unlock(&pn->all_ppp_mutex);
2946 	return ret;
2947 }
2948 
2949 /*
2950  * Disconnect a channel from its ppp unit.
2951  */
2952 static int
2953 ppp_disconnect_channel(struct channel *pch)
2954 {
2955 	struct ppp *ppp;
2956 	int err = -EINVAL;
2957 
2958 	write_lock_bh(&pch->upl);
2959 	ppp = pch->ppp;
2960 	pch->ppp = NULL;
2961 	write_unlock_bh(&pch->upl);
2962 	if (ppp) {
2963 		/* remove it from the ppp unit's list */
2964 		ppp_lock(ppp);
2965 		list_del(&pch->clist);
2966 		if (--ppp->n_channels == 0)
2967 			wake_up_interruptible(&ppp->file.rwait);
2968 		ppp_unlock(ppp);
2969 		if (atomic_dec_and_test(&ppp->file.refcnt))
2970 			ppp_destroy_interface(ppp);
2971 		err = 0;
2972 	}
2973 	return err;
2974 }
2975 
2976 /*
2977  * Free up the resources used by a ppp channel.
2978  */
2979 static void ppp_destroy_channel(struct channel *pch)
2980 {
2981 	atomic_dec(&channel_count);
2982 
2983 	if (!pch->file.dead) {
2984 		/* "can't happen" */
2985 		pr_err("ppp: destroying undead channel %p !\n", pch);
2986 		return;
2987 	}
2988 	skb_queue_purge(&pch->file.xq);
2989 	skb_queue_purge(&pch->file.rq);
2990 	kfree(pch);
2991 }
2992 
2993 static void __exit ppp_cleanup(void)
2994 {
2995 	/* should never happen */
2996 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2997 		pr_err("PPP: removing module but units remain!\n");
2998 	unregister_chrdev(PPP_MAJOR, "ppp");
2999 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3000 	class_destroy(ppp_class);
3001 	unregister_pernet_device(&ppp_net_ops);
3002 }
3003 
3004 /*
3005  * Units handling. Caller must protect concurrent access
3006  * by holding all_ppp_mutex
3007  */
3008 
3009 /* associate pointer with specified number */
3010 static int unit_set(struct idr *p, void *ptr, int n)
3011 {
3012 	int unit;
3013 
3014 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3015 	if (unit == -ENOSPC)
3016 		unit = -EINVAL;
3017 	return unit;
3018 }
3019 
3020 /* get new free unit number and associate pointer with it */
3021 static int unit_get(struct idr *p, void *ptr)
3022 {
3023 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3024 }
3025 
3026 /* put unit number back to a pool */
3027 static void unit_put(struct idr *p, int n)
3028 {
3029 	idr_remove(p, n);
3030 }
3031 
3032 /* get pointer associated with the number */
3033 static void *unit_find(struct idr *p, int n)
3034 {
3035 	return idr_find(p, n);
3036 }
3037 
3038 /* Module/initialization stuff */
3039 
3040 module_init(ppp_init);
3041 module_exit(ppp_cleanup);
3042 
3043 EXPORT_SYMBOL(ppp_register_net_channel);
3044 EXPORT_SYMBOL(ppp_register_channel);
3045 EXPORT_SYMBOL(ppp_unregister_channel);
3046 EXPORT_SYMBOL(ppp_channel_index);
3047 EXPORT_SYMBOL(ppp_unit_number);
3048 EXPORT_SYMBOL(ppp_dev_name);
3049 EXPORT_SYMBOL(ppp_input);
3050 EXPORT_SYMBOL(ppp_input_error);
3051 EXPORT_SYMBOL(ppp_output_wakeup);
3052 EXPORT_SYMBOL(ppp_register_compressor);
3053 EXPORT_SYMBOL(ppp_unregister_compressor);
3054 MODULE_LICENSE("GPL");
3055 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3056 MODULE_ALIAS("devname:ppp");
3057